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a b s t r a c t

The threats posed by floating marine macro-litter (FMML) of anthropogenic origin to the marine fauna,
and marine ecosystems in general, are universally recognized. Dedicated monitoring programmes and
mitigation measures are in place to address this issue worldwide, with the increasing support of new
technologies and the automation of analytical processes. In the current study, we developed algorithms
capable of detecting and quantifying FMML in aerial images, and a web-oriented application that allows
users to identify FMML within images of the sea surface. The proposed algorithm is based on a deep
learning approach that uses convolutional neural networks (CNNs) capable of learning from unstruc-
tured or unlabelled data. The CNN-based deep learning model was trained and tested using 3723 aerial
images (50% containing FMML, 50% without FMML) taken by drones and aircraft over the waters of the
NW Mediterranean Sea. The accuracies of image classification (performed using all the images for
training and testing the model) and cross-validation (performed using 90% of images for training and 10%
for testing) were 0.85 and 0.81, respectively. The Shiny package of R was then used to develop a user-
friendly application to identify and quantify FMML within the aerial images. The implementation of
this, and similar algorithms, allows streamlining substantially the detection and quantification of FMML,
providing support to the monitoring and assessment of this environmental threat. However, the auto-
mated monitoring of FMML in the open sea still represents a technological challenge, and further
research is needed to improve the accuracy of current algorithms.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Marine litter, defined as any persistent, manufactured or pro-
cessed solid material discarded, disposed of, abandoned, or lost in the
marine and coastal environment (UNEP, 2005), is ubiquitous in all
marine compartments worldwide (e.g., Arcangeli et al., 2018; C�ozar
et al., 2014; Suaria et al., 2020). It poses a potential threat to the
marine fauna, including invertebrates (e.g., Digka et al., 2018), fish
(e.g., Garcia-Garin et al., 2019; 2020d), marine mammals (e.g., De
e by Eddy Y. Zeng.

in).

r Ltd. This is an open access article
Stephanis et al., 2013), and turtles (e.g., Schuyler et al., 2014).
Floating marine macro-litter (FMML, i.e., objects > 2.5 cm; Galgani
et al., 2013; GESAMP, 2019) of anthropogenic origin is particularly
harmful, because of its potential to entangle all sort of marine or-
ganisms (e.g., fishes, turtles, marine mammals; Deudero & Alomar,
2015), and of being ingested bymarine fauna, especially large filter-
feeding species (Garcia-Garin et al., 2020c). Monitoring its density
and distribution patterns through standardized methodologies
(Van Sebille et al., 2020) is highly needed to assess the extent of this
environmental threat (GESAMP, 2015; UNEP 2016).

FMML presence and distribution have been traditionally
assessed through manta trawl nets (e.g., Lebreton et al., 2018), in-
dicator species (e.g., Dom�enech et al., 2019), and observer-based
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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methods applied from vessels (Arcangeli et al., 2018; Suaria and
Aliani, 2014) or manned aircraft (e.g., Garcia-Garin et al., 2020a;
Pichel et al., 2012), which are often time-demanding and expensive
techniques. Although traditional observer-based methods present
many advantages (e.g., precise identification of targets, absence of
constraints related to the duration of the camera battery charge or
the storage space), alternative remote sensing methods offer
distinct advantages, such as more objective and reproducible re-
sults, and the possibility to re-analyse the recorded images for
other investigations (Garcia-Garin et al., 2020b; Veenstra and
Churnside, 2012). Thus, either passive (e.g., RGB video, digital
camera, multispectral, hyperspectral) or active (e.g., lidar, radar)
sensors coupled to aerial vehicles (e.g., aircraft, drones, satellites)
can be excellent tools to quantify and monitor the distribution of
FMML (Garcia-Garin et al., 2020b; Kikaki et al., 2020; Martínez-
Vicente et al., 2019; Maximenko et al., 2019; Veenstra and
Churnside, 2012; Topouzelis et al., 2019). Nevertheless, these
techniques can also be highly time-consuming if the analysis of the
images is done manually by one or more trained scientists, (e.g.,
Garcia-Garin et al., 2020a). The development of algorithms to
automatically detect FMML in aerial images, and thus streamline
the analytical process, is critical for the successful implementation
of these techniques.

In the last decade, machine learning models have shown good
results in the analysis of environmental processes (Quetglas et al.,
2011). In particular, deep learning models using Convolutional
Neural Networks (CNNs) have been widely applied due to their
ability to recognize features and patterns contained in large data-
sets of images or videos (Guirado et al., 2019; Velandia et al., 2017).
So far, few algorithms have been developed to detect and identify
FMML in digital images (Kylili et al., 2019). To the best of our
knowledge, none of them were trained or tested to recognize
floating litter items using aerial RGB images. Some authors (e.g.,
Garaba and Dierssen 2018; Garaba et al., 2018; Goddijn-Murphy
Fig. 1. Map of the study area indicating the GPS tracks and locations of the drone (red) and
l’Ebre. (For interpretation of the references to color in this figure legend, the reader is refer
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and Dufaur, 2018; Goddijn-Murphy et al., 2018; Kikaki et al.,
2020; Topouzelis et al., 2019) used spectral information to
develop models that could automatically detect litter items and
could be applied to aerial imagery, and others (e.g., Kylili et al.,
2019) successfully applied CNN models to automatically detect
FMML in images taken fewmeters above the water surface. Remote
sensing of FMML is in its infancy (Garaba et al., 2018; Maximenko
et al., 2019), and despite recent improvements and encouraging
results, algorithms able to automatically detect FMML in aerial RGB
images are still lacking.

The aim of the present study was to develop an R (R Core Team,
2020) library based on a deep learning approach, to automatically
detect and quantify FMML in aerial images of the sea surface taken
from drones and aircraft. After validating the accuracy of the
package, we also propose the implementation of such approach
through a web-oriented application based on the Shiny package.
The development of user-friendly applications for monitoring the
presence of floating marine litter would facilitate the imple-
mentation of routine monitoring programmes of this threat, in
compliance with current regional and national environmental
regulations.
2. Materials and methods

2.1. Survey area

Aerial images were obtained during photographic surveys per-
formed by drones andmanned aircraft between 2017 and 2019 over
the marine area located between Delta de l’Ebre and Cap de Creus
(NW Mediterranean, Fig. 1). Surveys with drones were performed
on May 16th and June 3rd 2017 at Blanes, June 6th 2018 at Cap de
Creus and February 4th 2019 at Delta de l’Ebre. Surveys with aircraft
were performed on January 24th and March 14th 2018 at Delta de
l’Ebre. To minimize the effect of wind and sun glint on the detection
aircraft (green) surveys performed over the areas of Cap de Creus, Blanes and Delta de
red to the Web version of this article.)
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of FMML, all surveys were conducted with low wind force (i.e.,
Beaufort sea state < 3) and avoiding the hours of the day when the
sun was higher on the horizon.

2.2. Photographic surveys

2.2.1. Drone surveys
Four different types of drones were used: (1) a fixed-wing HP1

equipped with an RGB camera Sony ILCE-6000 (6000 � 4000
pixels), and (2) a multi-rotor Topografia equipped with an RGB
camera Sony Alpha 7 R (7952 � 5304 pixels) off Blanes, (3) a
Phantom 3 Advanced equipped with an RGB camera FC300S
(4000 � 3000 pixels) at Cap de Creus, and (4) a DJI Mavic Pro
equipped with an RGB camera FC220 (4000 � 3000 pixels) at Delta
de l’Ebre. All images were taken with the cameras placed in the
nadir position at altitudes ranging from 20 to 120 m, and with a
ground sampling distance ranging between 0.6 and 3.6 cm pixel�1.
A total of 3900 images were recorded, of which the 121 taken by (1)
and 200 by (2), were shot over positive controls (i.e., a series of
FMML of known size and type) deployed from a boat (Fig. 2). The
remaining 2589 images taken by (3) and 990 by (4) were recorded
over natural sea conditions.

2.2.2. Aircraft surveys
Aircraft surveys were performed with a high-wing aircraft

(Partenavia P- 68) flying at a constant groundspeed of 90 knots
(166 km h�1) and an altitude ranging from 230 to 300 m, equipped
with a Canon EOS REBEL SL1 (5184 � 3456 pixels) camera con-
nected to the aircraft GPS signal. The camera, placed under the
aircraft and pointed at 90� to the ground, was controlled from a
Fig. 2. Example of an aerial image taken by the drone over a series of known items with n
control). 1 ¼ crate; 2e4, 8, 19 ¼ bottles; 5, 7, 22, 26 ¼ cans; 6 ¼ sack; 9, 21 ¼ tetra-brik pa
16 ¼ turtle carapax; 18 ¼ six pack rings; 20, 25 ¼ trays; 27 ¼ jar; 28 ¼ balloon; 29 ¼ tow
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tablet through the Waldo Flight Control System software. Ground
sampling distance ranged between 2.5 and 3.3 cm pixel�1. A total of
3000 images were taken, 25 of which were obtained over the same
positive controls used for the drone surveys (Fig. 3A).

2.3. Image pre-processing

Images were inspected by a trained scientist to detect the
presence of FMML, and a subset of 796 images was labelled ac-
cording to the following categories: (1) containing FMML (398
images), and (2) not containing FMML (398 images). The trained
scientist had a proven experience in detecting floating litter in
aerial imagery as he had previously reviewed thousands of images
for the purpose and he was also involved in the field observations.
However, all doubtful items were checked by a second experienced
researcher. As thousands of images per category are usually needed
to train properly a deep learning model (Sun et al., 2017), the
available images for each category were not enough. Thus, the
number of images was increased through data augmentation (i.e.,
shifting, zooming, rotation, etc. of the available images) as in Kylili
et al. (2019), to obtain a larger dataset of 1860 images containing
FMML and 1863 images without FMML. Examples of aerial images
taken by drones and aircraft over positive controls, FMML and sea
water, are shown in Fig. 3.

2.4. Deep learning algorithm

Consistently with Kylili et al. (2019), an algorithm to automati-
cally detect FMML in aerial images was developed by applying a
deep learning approach based on a CNN architecture. While other
eutral or positive buoyancy attached to a line deployed from a boat (i.e., our positive
ckages; 10 ¼ net; 11,13, 23, 24 ¼ bags; 12 ¼ ball; 14, 30 ¼ boards; 15, 17, 32 ¼ drum;
els; 31, 33e37 ¼ polystyrene.



Fig. 3. Examples of aerial images ((A) positive controls as in Fig. 2, (B) board and (C) sea water with an area affected by sun glint circled in red) taken from aircraft and drones.
Images were cropped to improve the visibility of items. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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machine learning methods need a set of features to feed the clas-
sifier, deep learning based on CNNs trains and recognizes the
spatial patterns of the targets using a series of features that are
inside its native structure (Gonçalves et al., 2020b; Guirado et al.,
2019).

A total of 34 different models (Table S2) were developed in R (R
Core Team, 2020) with the following CNN architectures:

Architecture 1: 1 Convolutional layer (Hyperparameters) þ 1
Pooling layer (size ¼ 1 � 1) þ 1 Convolutional layer
(Hyperparameters) þ 1 Pooling layer (size ¼ 1 � 1) þ 1 Fully con-
nected (500 neurons, Tanh) þ 1 Fully connected (20
neurons) þ Softmax.

Architecture 2: 2 Convolutional layers (Hyperparameters) þ 1
Pooling layer (size ¼ 2 � 2) þ 2 Convolutional layers
(Hyperparameters) þ 1 Pooling layer (size ¼ 2 � 2) þ 1 Fully con-
nected (3200 neurons, ReLU) þ 1 Fully connected (1000
neurons) þ Softmax.

After testing the different models (Table S2), the second CNN
architecture, showed in Fig. 4, was selected as the best option. The
optimization of the value of the hyperparameters was decisive to
obtain the maximum accuracy in the training and testing sets
without falling into overfitting. The optimal parameters were:
Kernel ¼ 3 � 3, learning rate ¼ 0.0001, batch size ¼ 100,
momentum ¼ 0.9, optimizer ¼ Adam, epochs ¼ 400.

Such architecture was built through the use of three types of
layers: (1) the convolutional layer, which extracts features from the
input images at different levels of hierarchy, (2) the pooling layer,
which is a reduction operation used to increase the abstraction
level of the extracted features, and (3) fully connected and hidden
layers, which are used as classifiers at the end of the pipeline
(Fig. 4). Convolutional layers were composed of the convolution of
small groups of pixels (3 � 3) extracted from the input image by a
kernel matrix with the addition of a bias; these parameters were
previously established during the network learning process. The
4

ReLU activation function, which complies with the basic property of
introducing non-linearity in the system (Shridhar et al., 2019;
Velandia et al., 2017), was applied to facilitate the optimization
process for binary classifications. A pooling layer was also applied
to each convolutional layer to perform a subsampling process with
the most relevant features. A process of vectorization and concat-
enation of data (flattened) was carried out, allowing the application
of two completely connected layers that made the convolutional
layers determine the learning process of the most relevant
characteristics.

The softmax regression, which is often used in neural networks
to map the non-normalized output to a probability distribution of a
defined number of predicted outputs, was used to obtain the pre-
diction of 2 categories (i.e., FMML, no FMML). The softmax function
(Bishop, 2006) took as input a vector of K real numbers from the
hidden layers and normalized them into a probability distribution
consisting of K probabilities proportional to the exponentials of the
input numbers. The learning of the neural network was done
through the backpropagation process. Thus, the parameters were
estimated and updated until the network reached the optimal so-
lution through the estimation of the weight matrix and the vector
of biases within the hyperconus of feasible solutions (Fig. 5) that
allowed the convergence of the model with the best performance
(Shridhar et al., 2019; Velandia et al., 2017).

A library named AIImagePred (automatic image recognition and
prediction based on deep learning) was developed in R (R Core
Team, 2020) to classify images in 2 classes, based on the CNN
model. AIImagePred was developed based on other well-known
libraries in the deep-learning environment, such as Keras (Falbel
et al., 2018) and Mxnet (Chen et al., 2018), as a general-purpose
package for image recognition and prediction based on CNNs. As
AIImagePred includes an algorithm that splits the image into
multiple parts, individual or multiple images can be processed,
without prior separation or segmentation.



Fig. 4. Convolutional neural network workflow. The processed image was a positive control image of marine litter captured from a drone.
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The two main functions of AIImagePred (Table 1) were: (1)
image. trainimages.DL.algorithm_multiclass(), which creates and
trains the CNNmodel for the classification of aerial images based on
the architecture in Fig. 4; and (2) split. predict.count.multiclass(),
which uses the pre-trained CNN model to classify a testing set of
images in a series of 2 predefined classes. Thus, once the image is
split in multiple cells (we recommend splitting images into at least
25 cells), the algorithm classifies each cell of the image as con-
taining FMML or not.

To guarantee the functionality of the algorithm, aerial images
must be taken in nadir positionwith a ground sampling distance of
C ¼ P
�
a
�X128

q¼1

a
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at least 3.6 cm pixel�1. To further improve the algorithm accuracy,
aerial images should be taken with sea state conditions of Beaufort
< 3 and avoiding the times of the day when the sun is higher on the
horizon to minimize the effect of the wind and the sun glint on the
detection of FMML.

The convolutional layering and pooling operations are repre-
sented by Equation (1). The resulting matrices of the convolutional
layers (C) were flattened. Equation (2) represents the complete
model including the densely connected layers (Dumoulin and Visin,
2018; Kuo, 2016):
2jÞ

�
*K3

1;q þ b3q

�
*K4

1;q þ b4q

��
maxð2i;2jÞ

(1)



Fig. 5. Three-dimensional region of feasible solutions for weights and biases in the
case of binary classification. The axes represent the dimensions in the convolutional
space (x ¼ length, y ¼ width, z ¼ depth). Each point within the cone represents the
optimal value for each convolutional layer to extract the characteristics of the image in
the best way.
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by¼ softmax
h X1000

q¼1

h
a
� X3200

q¼1

Ca $ K5
1;q þ b5q

�i
$ k61;q þ b6q

i
(2)

where:

- Kl
p;q ¼ Kernel matrix; l ¼ number of the layer; p ¼ origin;

q ¼ filter number.
- blq ¼ biases.
- Pmaxð2i;2jÞ ¼ pooling layer (max-pooling).
- a ¼ activation function “ReLU”.
- by ¼ output (FMML e not FMML).
- ð *Þ ¼ convolution; ð $Þ ¼ matrix product.
- C ¼ convolution and pooling layer process.
- Ca ¼ vectorization and concatenation of the output C.
Table 1
Functions contained in the library AIImagePred.

Function Features

image.trainimages.DL.algorithm_
multiclass()

Algorithm that extracts features from the image to
learning model using the architecture presented in
creates, tests, and optimizes the model to be used f

split.predict.count.multiclass() Algorithm that automatically identifies FMML in aer
trained images, and predicts their class. The algorith
the whole image or its division in equal parts, after
images.

6

2.5. Accuracy assessment

A total of 3723 images (1860 with FMML, 1863 without FMML)
were used to train/test the model during classification, 90% and 10%
of which were used to train and test the model, respectively, during
cross-validation. The overall accuracy of the model results was
assessed during both processes through four parameters: accuracy,
precision, recall, and F1-score. Accuracy (Equation (3)) represents
the fraction of all the images processed that were correctly classi-
fied as containing FMML or not containing FMML, precision
(Equation (4)) represents the fraction of images classified as con-
taining FMML that actually belonged to that class, while recall
(Equation (5)) represents the fraction of correctly labelled images
within each class. Accuracy, precision, and recall values vary be-
tween 0 and 1. F1-score (Equation (6)) represents a balance be-
tween precision and recall (Fawcett, 2006) and its value increases
with the performance of the model (Bekkar et al., 2013). The ac-
curacy assessment was obtained from the training and testing sets
over 400 epochs.

Accuracy¼ TP þ TN
N

(3)

Precision¼ TP
TP þ FP

(4)

Recall¼ TP
TP þ FN

(5)

F1 ¼ 2*TP
2*TP þ FP þ FN

(6)

where:
- TP ¼ True positive: images with FMML well classified
- TN ¼ True negative: images without FMML well classified.
- FP ¼ False positive: images without FMML misclassified.
- FN ¼ False negative: images with FMML misclassified.
- N ¼ Total images analysed.

The repeatability of the method was tested by processing 10
runs of randomly selected image sets (n ¼ 3723, 90% of which were
used for training, and 10% for testing).

2.6. Application based on the Shiny package

An interactive web applicationwas built in R, based on a simpler
version of the CNN model developed (see supplementary material:
Arguments

train a CNN-based deep
Fig. 4. The algorithm
or image classification.

Function1(dir.imag.training, dictionary ¼ c(plastic ¼ 0,
sin ¼ 1),
size_foto ¼ 28,
check.accuracy ¼ T, Do.saveRDS ¼ T,
Do.save.model ¼ T,
percent.CV ¼ 0.9,
num.round ¼ 400)

ial images: it reads the
m allows the analysis of
converting it to multiple

Function2(train.images.dir, name.files.images,
predict.test.images.dir, size_foto ¼ 28,
dictionary ¼ c(plastic ¼ 0, sin ¼ 1),
use.model ¼ T,
nom.model.saved ¼ “prova_model.RData”,
num.round ¼ 400, n.div ¼ 5,
my.opinion ¼ NULL).
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Table S2, test 2 & Fig. S1), using the Shiny package (Chang et al.,
2020). The scope of the application was to create a user-friendly
interface that could allow the detection of FMML in any aerial im-
age that is uploaded by the user.

2.7. Hardware requirements

Image processing and numerical calculations under pre-built or
designed CNN architectures require high-level processors with
special features in their RAM and graphic cards (NVIDIA). Currently,
the most popular mean of developing Artificial Intelligence is the
computer running NVIDIA, closely followed by Raspberry Pi. Due to
the high computational cost required to train the network using
cross-validation and the high quality of the images analysed, the
pre- and post-processing of the network were developed using a
HPC Computer Server, 40 cores Xeon SP 4114 2,2 GHz, within the
premises of the University of Barcelona (Spain).

Despite the new Raspberry Pi 4 - Model B of 8 gigabytes could
allow the classification of images (testing phase), this option was
discarded due to its too expensive training in the metric “execution
time".

3. Results

3.1. CNN model accuracy

The function image.trainimages.DL.algorithm_multiclass() was
used to compute the CNN model, following the CNN architecture
presented in Fig. 4. The accuracy of the CNN model was tested
during classification and cross-validation. In a first step, all the
labelled images were used to test the total accuracy (n¼ 3723,1860
images with FMML, 1863 images without FMML). The classification
accuracy was 0.85 (TP ¼ 94%, TN ¼ 76%) using all images as both
training and testing set, and 0.81 (TP ¼ 84%, TN ¼ 78%) after cross-
validation (n ¼ 3723, 90% images used for training, 10% for testing)
(Table 2). The maximum accuracies attained by cross-validation
during training and testing were 0.90 and 0.85, respectively. Im-
ages mis-classified were those that were most affected by sun glint
(Fig. 3B). It should be noted that the accuracy obtained during
cross-validation was lower than that of classification because the
first process uses different images for training and testing, while
the same images are used for training and testing during
classification.

The repeatability of the method was tested by processing 10
runs of randomly selected image sets (n ¼ 3723, 90% images used
for training, 10% for testing) using the AIImagePred function and
computing the accuracy for each set. The mean classification ac-
curacy was 0.85 ± 0.03 for the training sets and 0.79 ± 0.03 for the
testing sets (Fig. 6).
Table 2
Accuracy, precision, recall and F1-score of the CNN model here proposed to detect FMM
Mean values are shown.

Method Process

This study CNN Classification
CNN Cross-validation (trainin
CNN Cross-validation (testin

Martin et al. (2018) Random forest
Fallati et al. (2019) CNN

CNN
Training
Testing

Kylili et al. (2019) CNN
CNN

Training
Testing

Jakovljevic et al. (2020)* CNN
Gonçalves et al. (2020a) Random forest
Gonçalves et al. (2020b) CNN
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3.2. Application based on Shiny language

A visual application, namely MARLIT, to detect and quantify
FMML in aerial images, oriented to web applications, was devel-
oped through the Shiny package within the R programming lan-
guage. The web application, accessible from a computer device,
allowed: (1) uploading aerial images; (2) splitting images into
multiple cells, (3) analysing them through the AIImagePred R li-
brary; (4) detecting FMML presence in each of the cells; and (5)
quantifying its density in relation to the surface covered by the
images, which is calculated from the metadata provided in the
uploading phase, namely the height and focal distance. They are
online for public test and use, and any possible improvements or
suggestions from other researchers are warmly welcomed. The
CNN model analyses each cell separately to determine if it contains
FMML or not. By increasing the number of cells, the accuracy of the
FMML density calculated by the application is improved, but the
time needed for processing increases. The MARLIT application and
the AIImagePred library can be downloaded from https://github.
com/amonleong/MARLIT.

Fig. 7 shows an example of the application interface, where an
image containing FMML is analysed, cells containing FMML are
identified and FMML relative density is quantified.
4. Discussion

In this study, we applied CNN-based deep learning models to
detect and quantify FMML in aerial images, we proposed their
coupling to the AIImagePred library in R and their implementation
on a web-oriented application based on the Shiny package. Results
obtained from the application of the optimal CNNmodel to analyse
3723 aerial images recorded during drone and aircraft surveys
showed good accuracies of FMML detection.

Our results further support the use of airborne sensors for
inspecting the sea surface and detecting FMML. Studies based on
these techniques for FMML monitoring have substantially
increased within the last decade. Aerial photography is already
being used for this aim at large scale, including for the monitoring
of the “Great Pacific Garbage Patch” (Garaba et al., 2018; Lebreton
et al., 2018) and of coastal areas of the Western Mediterranean
Sea (Garcia-Garin et al., 2020a). However, when photographic
methods are used, densities of FMML are not calculated through a
common, standardized, and efficient algorithm, since image ana-
lyses are still often performed manually. Aerial photography
methods should be coupled with efficient automated FMML
detection processes to prove their effectiveness and to provide a
valid alternative to replace traditional monitoring techniques.

The remote sensing of marine litter is a technological challenge
and is currently in constant development (Martínez-Vicente et al.,
L in aerial RGB images and of those currently available for marine litter detection. *

Accuracy Precision Recall F1-score

0.85 0.79 0.94 0.86
g) 0.85 0.81 0.91 0.86
g) 0.81 0.82 0.84 0.83

e 0.08 0.40 0.13
0.95
-

e

0.54
e

0.44
e

0.49
1

0.99
e

-
e

-
e

-
e 0.82 0.59 0.66
e 0.73 0.74 0.75
e 0.55 0.65 0.60

https://github.com/amonleong/MARLIT
https://github.com/amonleong/MARLIT


Fig. 6. CNN model accuracy assessed during 10 repeated cross-validation runs processing randomly selected image sets (n ¼ 3723, 90% used for training, 10% for testing). Left
columns represent the accuracy obtained for the training sets and right columns represent the accuracy obtained for the testing sets. The last two columns indicate the mean
accuracy ± the standard deviation obtained within the 10 cross-validation runs.
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2019; Maximenko et al., 2019). Remote sensing algorithms for
beach monitoring are more advanced than those available for the
sea surface, mainly because georeferenced orthomosaics are more
easily produced from the overlapped photographs of beaches,
where many reference points can be used for calibration (e.g., trees,
shrubs, plant logs). Furthermore, beach monitoring is less affected
by environmental conditions such as perturbations on the sea
surface caused by wind or sun glint, and the risk of losing un-
manned vehicles is lower when flying over the land than over the
sea surface (Fallati et al., 2019; Gonçalves et al., 2020b; Martin et al.,
2018; Merlino et al., 2020). Conversely, monitoring FMML through
remote sensing is further challenged by bright elements on the
marine surface (e.g., white caps, foam, waves, sun glint), cloud
shadows (Dierssen and Garaba, 2020; Garaba and Dierssen, 2018;
Matthews et al., 2017; Maximenko et al., 2019) and the fact that
floating items can often be partially submerged in the water col-
umn (Van Sebille et al., 2020).

Machine learning algorithms have been used to automate ma-
rine litter recognition in aerial imagery, using, for instance, random
forest (Gonçalves et al., 2020a, 2020b; Martin et al., 2018) or deep
learning approaches (Fallati et al., 2019; Gonçalves et al., 2020b;
Kako et al., 2020; Kylili et al., 2019). The main advantage of deep
learning algorithms compared to their predecessors (e.g., SVM,
random forest, Multiple Regression) is that they can automatically
identify the important features of an image without any human
supervision, which makes them less time-demanding.

CNNs are the most popular deep learning architectures, inspired
by the biological resemblance between the connectivity pattern of
neurons and the organization of the animal visual cortex (Shridhar
et al., 2019). Their effectiveness to identify images with hidden
complex patterns (e.g., Gonçalves et al., 2020b; Kylili et al., 2019)
8

brought a raising interest on CNNs algorithms, which have been
recently used for the automatic detection of litter, mainly on bea-
ches (Fallati et al., 2019; Gonçalves et al., 2020b), but also on the
water surface (Jakovljevic et al., 2020; Kylili et al., 2019) (Table 2).

Studies to automatically detect marine litter in aerial imagery of
beaches were conducted by Fallati et al. (2019) and Gonçalves et al.
(2020b), who used a DJI Phantom 4 drone equipped with an RGB
high resolution camera for the purpose, and developed a deep
learning software for the automatic detection of litter. While the
former authors reported a similar accuracy (0.95) to that obtained
in the current study (0.85) for the training set, their F1-score for the
testing set was lower (Table 2), probably due to the high detection
of false negatives and false positives due to footprints and shadows
on the beaches. Gonçalves et al. (2020b) also reported a lower F1-
score than that obtained in the current study (Table 2), mainly
due to the detection of many false positives. The main difficulties
faced by the CNNmodel developed by these authors were related to
the identification of litter items trapped among natural wood and
dune vegetation.

Suitable algorithms that could deal with these environmental
variables have still to be developed to improve the efficiency of new
remote sensing technologies for routine beach monitoring. How-
ever, the challenges posed by the detection of floating litter over the
marine surface are even more difficult to cope.

A deep learning algorithm to classify plastic litter in images from
the water surface was recently developed by Jakovljevic et al.
(2020), who used a DJI Mavic pro equipped with an RGB camera
to take images of the surface of enclosed bodies of water with
ground sampling distances similar to those used in the current
study (0.4e3.0 cm vs 0.6e3.6 cm pixel�1, respectively). The authors
also deployed “positive controls” (plastic bottles, ropes, and



Fig. 7. Web-oriented application, named MARLIT, developed to detect interactively FMML in aerial images, based on the Shiny package. The MARLIT application can be downloaded
from https://github.com/amonleong/MARLIT. On the left side of the app the user is able to: (1) browse and upload images, and specify: (2) the number of iterations used for the
analysis, (3) the number of rows and columns for the image splitting, (4) the viewpoint height, and (5) the focal distance. Parameters for (2) and (3) should be at least 150 and 5 (to
split the image into 25 cells), respectively. Information for (4) and (5) can be extracted directly from the image metadata. On the right side of the app, the panel shows the output of
the analysis, including the image name, the area covered by the image, and the density of FMML detected. The above panel shows the image with its cells classified as containing
FMML (yellow dots) and not containing FMML (blue dots); the bottom panel shows a histogram summarizing the number of cells containing and not containing FMML. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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polystyrene) on the water surface to train their model, reporting
similar F1-scores to those obtained in the current study (Table 2),
and subsequently tested the CNN algorithm in an independent
scenario, obtaining F1-scores for plastic and “maybe plastic” of 0.78
and 0.43, respectively. The low F1-score for “maybe plastic” was
due to the confusion of this category with those of “water” and
“plastic”. However, although the methodology of Jakovljevic et al.
(2020) is very similar to that applied here, their study was
located in enclosed bodies of water (lakes), and thus some adverse
elements (waves, foam, white caps) that may impair the detection
of litter in the marine environment did not affect the performance
of their algorithm.

Studies about automatic FMML detection in aerial RGB imagery
are scarce: to the best of our knowledge, only Kylili et al. (2019)
developed a CNN model for the automatic detection of FMML.
The training and testing accuracies of the algorithms developed by
these authors were higher than those obtained in the current study
(Table 2). However, the images they used to test and train themodel
were taken from only a few meters above the sea surface, as their
aim was the implementation of the model on a prototype device
installed onboard marine vessels. Moreover, they used more im-
ages (9600) than those used here to train the CNN model, which
may have been determinant to the higher level of accuracy attained
(Sun et al., 2017).

The CNN algorithms presented in the current study were
adapted from those currently available with the objective to
streamline the process of FMML detection in images taken by aerial
9

platforms (e.g., drones, aircraft), which is highly time-demanding
when performed by different trained scientists. As routine moni-
toring of FMML density, distribution, and trends is strongly rec-
ommended by national and international regulations, any
improvement that would increase its efficiency and guarantee the
consistency of results is highly valuable. Moreover, the develop-
ment of user-friendly web-oriented applications such as MARLIT,
the proof of concept presented here, may be of great interest for
their implementation during regular monitoring of Marine Pro-
tected Areas, coastal areas, or even large oceanic areas. The current
functionality of the application allows the user to upload aerial
images and to get results in terms of presence and density of FMML
and, if geo-referenced images are used, it could already provide an
approximation of the presence of floating litter in a given marine
area. The implementation of the CNN models developed in this
study through a web-oriented application is a further step towards
the automation of FMML detection and provides a useful approach
to standardize FMMLmonitoring through any aerial platform (e.g., a
drone, or a small aircraft) equipped with remote sensing devices. It
could be useful to classify high amounts of images as containing
FMML or not, which in turn could help to identify potential areas of
aggregation of litter at sea.

However, future improvements of the algorithm and the MAR-
LIT application are needed to allow identifying the size, colour and
type of FMML, which are relevant information for planning well-
targeted policy and mitigation measures (GESAMP, 2019). The
collaboration with other researchers to share data sets of sea

https://github.com/amonleong/MARLIT
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surface aerial imagery would also facilitate the improvement of the
currentmodel accuracy. As well, further research is needed to allow
implementing the application directly to remote sensing devices
for the real-time inspection of the marine surface during aerial
surveys.

5. Conclusions

In this paper, we propose the use of CNN-based deep learning
models connected to a web-oriented application to process aerial
images for the automatic detection and quantification of FMML. Its
installation in remote sensing devices, such as RGB cameras
mounted on aerial platforms, would allow streamlining the moni-
toring of FMML over marine areas at any geographical scale. Further
research is needed to improve the current automated algorithms by
increasing the number of images used for training (and thus
improving detection accuracy), and to implement the application
directly on remote sensing devices. Effective and feasible auto-
matedmethods to monitor FMML could complement or replace the
traditional methods for marine monitoring, significantly improving
the quality of results.
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