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A B S T R A C T   

The potential of the tailings from the Morille scheelite-bearing calc-silicate deposit as a commercial raw material 
for inert glass–ceramic was determined. Nucleation and crystal growth temperatures of glass were studied. The 
temperatures of maximum nucleation rate of the parent glass are 612 ◦C and 660 ◦C and crystal growth is at 
776 ◦C and 1047 ◦C. At 776 ◦C a glass–ceramic of nepheline, wollastonite and akermanite is formed. In glasses 
treated at higher temperature nepheline becomes unstable and at 1047 ◦C a wollastonite-akermanite glass 
ceramic was obtained. The leaching tests show that the potentially toxic elements are effectively bound in the 
structure of the glass–ceramic, which can be considered inert.   

1. Introduction 

Mine tailings represent the deposition of great volumes of wastes 
susceptible of causing a high environmental pollution due to the release 
of potentially toxic elements (PTE). The use of tailings as raw materials 
for glass and glass–ceramic production is an environmentally friendly 
solution to the disposal of mining wastes [1,2]. In the framework of 
circular economy, this use complies with four of the five areas estab
lished for a sustainable mining [3]: safety, economy, resource efficiency 
and environment. 

Tungsten is considered a strategic raw material for the European 
Union [4]. The stratabound-stratiform Morille deposit (Salamanca, 
Spain) belongs to the Sn–W metallogenic province of the Variscan Eu
ropean Belt. The ore is scheelite hosted in calcsilicate rocks. This deposit 
was mined until 1986, when the low price of metals forced its closure. 
Morille is currently under evaluation for to be exploited again. 

The present work aims to determine the potential of the tailings from 
the Morille tungsten mine to be used as raw materials for glass–ceramic 
production. The use of these residues to produce glass was previously 
investigated [5]. Glass-ceramics were obtained in other tungsten tailings 
[6–10]. This application could contribute to reduce the wastes during a 
future reopening. 

2. Experimental 

The parental glass was prepared using 85% of wastes sampled at the 
Morille tungsten mines as raw materials using a procedure detailed in 
Alfonso et al. [5]. Several glass fragments of 1.2x1.2x0.8 cm, were used 
for the experiments. 

Glasses were treated at the nucleation and crystallization tempera
tures. The temperature of maximum nucleation rate (TNMR) was ob
tained from the Differential Thermal Analysis (DTA) of the parent glass 
as described by Tarragó et al. [11]. 

To obtain the glass-ceramics, several thermal treatments were car
ried out as listed: (1) glass was treated at 15 ◦C/min up to the TMNR, 
612 ◦C, for 6 h (2) the same treatment followed by another step up to the 
TMNR of 665 ◦C, for 6 h. (3) glass directly treated at 665 ◦C, for 6 h. (4) 
nucleated glass treated at 776 ◦C for 4 h, (5) nucleated glass treated at 
776 ◦C followed by step of 1047 ◦C for 4 h. 

For the mineralogical characterization the newly-formed minerals 
were analysed by X-ray powder diffraction (XRD) in a Bragg–Brentano 
PAN Analytical X’Pert Diffractometer. 

Raman spectrum of the parent glass was obtained with a T64000 
Jobin-Yvon Raman spectrometer equipped with a CCD detector. The 
light source was an Ar+ laser operating at 488 nm with an output of 100 
mW on the sample. The integration time was 120 s and the spectral 
range 20 – 1500 cm− 1. 
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Microtextures were observed by scanning electron microscopy 
(SEM), using a JEOL J-7100F field emission scanning electron micro
scope with EDS detector INCA 250. 

The leachability of the glass-ceramics was evaluated to determine 
their ability to be a binder for PTE according to the DIN 38414-S4 
standard [12]. The leachates were analysed by inductively coupled 
plasma optical emission spectrometry and inductively coupled plasma 
mass spectroscopy. The PTE content of the glass was determined by X- 
ray fluorescence. 

3. Results and discussion 

The main characteristics of the parental glass were presented in [5]. 
In addition to this study a Raman analysis was carried out in the present 
research. In the Raman spectrum (Fig. 1a), the boson region, between 20 
and 200 cm− 1, is characteristic of glasses and represents the distortion of 
the silicate network. The bands in low frequency zone, between 250 and 
800 cm− 1, are associated with the motions of bridging oxygen in T–O–T 
linkages (T = Si, Al) [13,14]). The high frequency zone (800 – 1250 

Fig. 1. a) Raman spectrum of the parent glass, b) shift of the temperature of the exothermic peak at the nucleation temperature at 612 ◦C, c) shift of the temperature 
of the exothermic peak at the nucleation temperature at 665 ◦C, d) glass treated at a TMNR of 612 ◦C, e) glass treated at TMNR of 612 ◦C and 665, f) glass treated 
directly at a TMNR of 665 ◦C. 

Fig. 2. XRD patterns of the parental glass and glass treated at 776 ◦C and 1047 ◦C.  
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cm− 1) corresponds to the T-O stretching motion of Qn species (Q, TO4 
units; n, number of bridging oxygens) mainly to the vibrations of the 
aluminosilicate groups. The band centred at 950 cm− 1 can be linked to 
Q2 groups, representing chains and the band at 1040 cm− 1 can be related 
to the vibration of Q3 groups corresponding to such as Q3 groups con
sisting of sheets or layers, and Q2 groups representing chains [15–16]. 

The presence of Q2 and Q3 units in the Raman spectrum of the glass 
(Fig. 1a) could be interpreted as preceding the simultaneous nucleation 
of wollastonite (CaSiO3) and nepheline, which nucleate in the glass and 
start forming at similar temperatures corresponding to the TMNR of 
612 ◦C (Fig. 1b). At 665 ◦C is the TMNR of akermanite (Fig. 1c). 

At 612 ◦C nepheline and wollastonite crystals of nanometric size are 
formed (Fig. 1d). In glasses treated directly at the TNMR, at 665 ◦C, only 
the presence of a single phase is observed, with larger crystals than those 
treated at 612 ◦C and more abundant glassy phase (Fig. 1e). Nepheline, 
akermanite and wollastonite form in the glass treated at both TNMR 
(Fig. 1f). 

At 776 ◦C, the main phases formed are nepheline (Na3(Na,K) 
Al4Si4O16) and wollastonite together with minor contents of akermanite, 
whereas at 1047 ◦C only the two last phases remain. The rise of tem
perature promotes an increase in the crystallization rate of wollastonite 
and a decrease in the rate of nepheline crystallization. (Fig. 2). 

SEM observations of the glass–ceramic show a regular microtexture 
constituted by two crystalline phases embedded in a glassy matrix 
(Fig. 3). Akermanite occurs as tabular idimorphic crystals of about 20 
µm and with a dissolved center. Semiquantitative EDS analyses indicate 
that its composition is closer to the akermanite end member of the 
akermanite-gehlenite series (Ca2MgSi2O7 – Ca2AlAlSiO7). The EDS 

compositional maps indicate that during crystallization Ca and Mg are 
preferentially locate in this phase rather than in the glassy matrix 
(Fig. 3). The other phase is constituted by prismatic wollastonite crys
tals, of about 10 µm in length. 

The glassy phase is enriched in Na, K and Al compared to the crys
talline phases and constitutes the matrix in which the crystals are ar
ranged. Some unconnected pores also appear. 

The crystalline evolution with temperature can be attributed to the 
fact that initially, the glass has a relatively low SiO2 content, so the most 
stable phase will be a feldspathoid, in this case nepheline. The concen
tration of Si in the residual glass increases up to the point where neph
eline becomes unstable and only wollastonite and akermanite remain. 

3.1. Leaching behaviour 

The leaching test in the glass–ceramic evaluated the efficiency of the 
vitrification method in the inertization of hazardous metals, showing 
that the PTE content in the leachate was low (Table 1), always under the 
threshold values indicated in DIN 38414-S4 [12]. In the present study, 

Fig. 3. SEM images of microtexture of the glass–ceramic. a) general view, b) detailed view, c) detail of the area of compositional maps presented in d-h.  

Table 1 
Potentially toxic elements (ppb) of glass and leachates from the glass–ceramic. 
TL: thresold limits for each PTE according to [12].  

Element Zn Cd Pb As Cu Cr Ni 

Parent glass (x104) 66.2 3.3 6.4 93.2 18.0 100 27.6 
GC-1047 2.6 0.01 0.81 1.12 0.33 0.32 1.49 
TL 4000 40 500 500 2000 500 400  

P. Alfonso et al.                                                                                                                                                                                                                                 



Materials Letters 312 (2022) 131694

4

the potentially toxic elements present in the mining waste were bound in 
the structure of the glass-ceramics in agreement to previous studies of 
glass ceramics obtained from tailings [17]. 

4. Conclusions 

Calc-silicate waste originated in tungsten mining are appropriate to 
produce glass–ceramic materials. The parent glass had TMRN at 612 ◦C 
and 665 ◦C and crystallization temperatures at 776 ◦C and 1047 ◦C. 

Nepheline, wollastonite and akermanite crystallised from the treat
ment at 776 ◦C. Nepheline formed simultaneously with wollastonite but 
this became unstable at higher temperatures, hence, the glass–ceramic 
obtained at 1047 ◦C contains wollastonite and akermanite. 

The contents in potentially toxic elements leached from the obtained 
glass–ceramic were below the limits established by the European legis
lation. In consequence, Morille mine tailings can be used as raw mate
rials in glass–ceramic production following the principles of circular 
economy (reducing both environmental pollution and waste volume). 
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