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ABSTRACT This work deals with the design of a Fuzzy Logic Control (FLC) based Energy Management
System (EMS) for smoothing the grid power profile of a grid-connected electro-thermal microgrid. The
case study aims to design an Energy Management System (EMS) to reduce the impact on the grid power
when renewable energy sources are incorporated to pre-existing grid-connected household appliances. The
scenario considers a residential microgrid comprising photovoltaic and wind generators, flat-plate collectors,
electric and thermal loads and electrical and thermal energy storage systems and assumes that neither
renewable generation nor the electrical and thermal load demands are controllable. The EMS is built through
two low-complexity FLC blocks of only 25 rules each. The first one is in charge of smoothing the power
profile exchanged with the grid, whereas the second FLC block drives the power of the Electrical Water
Heater (EWH). The EMS uses the forecast of the electrical and thermal power balance between generation
and consumption to predict the microgrid behavior, for each 15-minute interval, over the next 12 hours.
Simulations results, using real one-year measured data show that the proposed EMS design achieves 11.4%
reduction of the maximum power absorbed from the grid and an outstanding reduction of the grid power
profile ramp-rates when compared with other state-of-the-art studies.

INDEX TERMS Distributed power generation, energymanagement, power forecasting, fuzzy control, power
smoothing, microgrid.

NOMENCLATURE
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DHW Domestic Hot Water
DOD Depth of Discharge
DR Demand Response
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FLC Fuzzy Logic Control
FPC Flat-Plate Collector
HESS Hybrid Energy Storage System
HRES Hybrid Renewable Energy System
MF Membership Function
MG Microgrid
MILP Mixed-Integer Linear Programming
MPD Maximum Power Derivative
MPP Maximum Power Point
PPV Power Profile Variability
PV Photovoltaic
RES Renewable Energy Source
SMA Simple Moving Average
SOC State-Of-Charge
WT Wind Turbine

I. INTRODUCTION
Distributed Generation (DG) systems have emerged as a great
alternative to satisfy the growth of consumption demand, mit-
igate the effects of climate change and in turn contribute to the
sustainable society development [1]. The use of DG systems,
especially based on Renewable Energy Sources (RES), has
significantly grown due mainly to environmental regulations,
the shortage of fossil fuels, and the reduction of greenhouse
gas emissions [2].

Several countries have promoted the use of DG sys-
tems mostly based on solar photovoltaic (PV) and wind
turbine (WT) systems, in conjunction with energy storage
systems (e.g., batteries, supercapacitors, fuel cells) [3], [4].
However, given the stochastic nature and high variability
of both renewable resources and load demand, intelligent
energy management systems are required that are capable of
regulating the power flow among its elements and guarantee a
reliable, safe, and economic operation of the system [5]–[7].

In this regard, microgrids (MG) [8], [9] arise as low
power systems comprising DG elements, Energy Storage
System (ESS), and an Energy Management System (EMS)
which is in charge of controlling the power flow within
the MG’s elements to achieve a set of predefined objec-
tives [10], [11]. Microgrids including renewable energies
can be classified as smart-grids and can operate in both
islanded and grid-connected modes. In stand-alone mode,
where the MG is not connected to the distribution network,
the EMS is in charge of keeping a reliable power supply
to customers [12], [13], whereas in grid-connected mode,
the MG adjusts the power balance between generation and
demand by purchasing or selling power to the utility grid.

These systems have been in the focus of researchers for
more than one decade, as confirmed by the abundant literature
on this matter reported in recent review papers such as [14]
and [15]. On the one hand, the large variety of microgrid
EMS designs found in these works is at first due to the
different energy scenarios under consideration (microgrid
architectures, types, and controllability of DG sources, loads
and storing technologies, . . . ), as well as to the desired power

fluxes among the MG elements and the grid to reach a set
of goals. On the other hand, from a methodological point of
view, the design of the EMS generally entails the definition
of objective functions and optimization algorithms to reach
the MG desired behavior by setting the power reference of
MG controllable elements according to the available infor-
mation (i.e., measuredMG variables, weather conditions, and
energy tariff forecasted data, . . .). In this respect, multiple
possibilities have also been reported. For instance, refer-
ring to grid-connected microgrids, Table 1 mentions some
research works to highlight the diversity of the cases in terms
of scenarios, objectives, algorithms, and main controllable
elements/available information, which can be found in the
literature.

From Table 1, besides the different scenarios, it can be
noticed that a large set of objective functions found in the
literature are oriented to optimize the economical balance
between cost and benefit of the microgrid operation along
a given time period. This is directly related to the power
exchange allowance between the grid and the MG facilitating
the owner to become a prosumer and benefit from the tariff
policies established by grid stakeholders. However, the feasi-
bility of this approach is limited by the grid capability to man-
age power variations without instabilities [16]–[19]. That is
why the definition of objective functions following these eco-
nomical goals involves, among others, grid tariff policies and
user comfort criteria, but rarely power quality indexes, being
the grid and MG operational limits included as constraints in
the algorithms in charge of the optimization process. Finally,
it can be pointed out that the methods/algorithms driving the
EMS strategy are generally on-line ones requiring different
levels of computational load and communication facilities.

This work presents several differences with the antecedents
cited in Table 1. On the one hand, it focuses on the design of
an EMSwhen RES and storing capabilities are included in the
supply of pre-existing grid-connected household appliances.
The energy scenario considers a residential MG comprising
PV and WT generators, flat-plate collectors (FPC), electric
and thermal loads, and electrical and thermal ESSs. The oper-
ating conditions assume that the generators should operate
at their maximum power point (MPP) to take the maximum
profit of renewable generation, and both electric and thermal
loads only driven by the user according to his comfort stan-
dards. This means that neither the renewable generation nor
the loads are controllable. As concerns the available infor-
mation, this scenario was implemented years ago in a phys-
ical residential grid-connected MG monitored with metering
devices recording real data of renewable production and load
consumption every 15 minutes. This monitoring allows the
access to historical data recorded in one year. Additionally,
forecast weather and consumption data are also considered
available.

On the other hand, the main goal of the EMS is to smooth
the power profile exchanged with the mains to reduce the
impact on the grid power when RES are incorporated to sup-
ply pre-existing grid-connected household appliances. That
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TABLE 1. Literature review.
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TABLE 1. (Continued.) Literature review.

is why, instead of considering grid operational limits as con-
straints in the optimization process, the objective function
considered in this work directly involves grid power qual-
ity indexes. In other words, this work prioritizes smoothing
the power profile exchanged with the grid keeping the load
demand according to the user needs and leaving economic
benefits as a desirable consequence. Finally, as concerns the
optimization algorithms, this work will optimize the objec-
tive function of designing low-complexity Fuzzy Logic Con-
trollers (FLC) since they facilitate the implementation of the
microgrid control policies through linguistic rules of easy
understanding. These FLC will be adjusted through an off-
line training procedure. To conclude, the rationale of the
proposed approach is the design of a low-complexity EMS
for a grid-connected residential microgrid with low control
degrees of freedom, which mitigates the interaction with the
mains. This is intended to facilitate the transition from a
conventional electric supply to a progressive renewable-based
one.

The authors worked during the last years in this scenario
on the design an EMS to ‘‘smooth’’ the profile of the power
exchanged between the microgrid and the grid by employing
a set of quality indices to measure the degree of smoothness
of such profile [35], [36]. Early works considered a simple
grid-connected electrical microgrid, including an ESS, RES,
and a residential electrical load [36], [37]. The MG operation
assumed the ESS as the only controllable element since RES
operated at their MPP to maximize RES production and the
load consumption was not manageable. Under these assump-
tions, the main antecedents attempting to reduce peaks and
fluctuations in the power profile exchanged with the grid
can be found, for instance, in [38], [39]. In these works
the EMS design is based on the use of a Simple Moving
Average (SMA) filter (low-pass filter with a window size
of 1 day) to split the microgrid power balance spectrum,
so that only the low-frequency components are exchanged
with the mains, whereas high-frequency ones were absorbed
by the ESS. From the control point of view, these strate-
gies were open-loop control strategies and did not take into

account the state-of-charge (SOC) of the ESS whose capacity
should be oversized to assure its operation within secure
limits. A control strategy of the SOC was presented in [40]
by defining a set of heuristically adjustable analytical expres-
sions driving the power-sharing between the ESS and the
mains. This work also included the SMAfilter, but now acting
on the resulting grid power-sharing. However, this strategy
preserved the ESS operation at the expense of grid power high
fluctuations. Due to its heuristic nature, this procedure was
especially suitable to be improved by using expert knowledge
rule-based systems based on FLC [41]. FLC have proven
to be of easy implementation and low computational run
time cost than other sophisticated analytical solutions such
as those reported in [42], [43]. As a result, an FLC-based
EMS of only 25 rules with an off-line FLC parameters tuning,
using measured RES generation and load consumption data
for one year, was suggested in [44] and [10]. This design
was implemented, experimentally tested, and confirmed the
better performances on the grid power profile smoothness
than those given in [40], while preserving the ESS SOC
operation within prefixed safe operation limits. However,
a common drawback of the previous EMS designs is the
use of the SMA filter with a window size of 24h, since it
introduces a lag into the EMS response and leads to degraded
features when weather conditions show a great difference
from one day to the next one. This problemwas solved in [36]
by considering a 24h Central Moving Average (CMA) filter
instead of the commonly used SMA filters. This strategy
takes advantage of the 12h ahead forecast of generated and
consumed power in the microgrid to obtain a better grid
power profile with efficient usage of the ESS. Moreover,
following the same methodology, a new FLC-based design
improving the grid power profile of [36] was presented
in [11]. A review of the complete design criteria of the FLC
parameters for all the aforementioned cases can be found
in [45].

On the other hand, the power profile smoothness can be
further improved if the scenario includes a Domestic Hot
Water (DHW) power consumption driven by a controllable
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Electrical Water Heater (EWH). An interesting and success-
ful approach can be found in [35], where the authors apply
a demand-side management (DSM) technique to drive the
EWH as a controllable load. The main idea of the design
is to use the thermal storage capacity of the water tank
to relieve the stress of the ESS and to improve the grid
power profile. In this concern, the power share among the
ESS, the EWH, and the mains is once again heuristically
adjusted to concurrently improve the smoothness of themains
power while keeping both the water tank temperature and
the ESS SOC within desired limits. However, this work still
uses an SMA filter and does not take advantage of fore-
cast data regarding generated and consumed power in the
microgrid.

In order to better smooth the grid power profile, this paper
proposes an EMS design for a grid-connected electro-thermal
microgrid merging the advantages of using an FLC to better
tune the heuristic approach of [35], combined with the use of
forecasted power generation and consumption data (including
the thermal one). Following the idea exposed in [35], but
under an FLC perspective, this design uses the electrical
and thermal power balance of the microgrid together with
its predictions to perform the suitable DSM of the EWH
controllable load. Simulation results using one year real data
provided by the microgrid installed at the Public Univer-
sity of Navarre (UPNa) are compared with those obtained
in [35] to highlight the improved features of the proposed
design in terms of smoothing the power profile while keeping
the ESS SOC and the temperature of the water tank within
desired limits. Moreover, the design also includes the possi-
bility to limit the peak value of the power injected into the
mains.

The main contributions of this work are listed below:

1) An EMS control block-diagram based on two FLC
blocks of only 25 rules each, to smooth the grid power
profile of a residential grid-connected electro-thermal
microgrid.

2) The complete design of each of the two FLC blocks
using the electro-thermal power balance of the micro-
grid as well as the forecasted data of power generation
and consumption. The first FLC block is in charge
of smoothing the power profile exchanged with the
grid, whereas the second FLC block is responsible for
performing the DSM of the EWH.

3) A set of comparative one-year simulations and quan-
tification of smoothing indexes using real data both
highlights the improved performances of the proposed
approach.

The remainder of this paper is organized as follows:
Section II presents the electro-thermal microgrid architecture
under study. Section III describes the criteria associated with
the quality of the grid power profile. Section IV deals with the
fuzzy-based EMS design. Section V presents the simulation
and comparison results. Finally, Section VI presents the main
conclusion of this work.

II. ELECTRO-THERMAL MICROGRID POWER
ARCHITECTURE
The microgrid under study has been previously described
in [35], [45]–[47] and it is shown in Fig. 1. The figure high-
lights the DHW system with FPC, EWH, the water tank, and
the DHW consumption. Its elements and the power sizes (out
of the scope of this work) are described below in short:
1) Hybrid electrical renewable energy system (HRES)

including a 6kWp PV generator, a 6kWWT, and a 2kW FPC.
2) Hybrid Energy Storage System (HESS) consisting of a

lead-acid battery bank with a usable capacity of 36kWh and
an 800l capacity water tank.
3) Thermal and electrical loads with the equivalent thermal

demand rated at 2kW. These loads are divided according to
their controllability, into:

• Non controllable electrical AC loads (electrical appli-
ances, lighting. . . ) of 7kW.

• AEWHof 2kW rated power considered as a controllable
load.

As described in [11], the INGECON R© Hybrid Inverter
shown in Fig. 1, includes a WT power conversion module,
a battery charger and a PV power conversionmodule, together
with a bidirectional inverter-rectifier module for controlling
the grid power profile. It is worth noting that the battery
charger has an internal active power control, whereas the
bidirectional inverter-rectifier has both active and reactive
power control. The EMS provides the reference values of
the active power for battery charger and inverter rectifier
and of the reactive power for the inverter. Since the reac-
tive power does not have associated energy, the bidirectional
inverter-rectifier can supply all reactive power of the load
as long, as the apparent power does not exceed its nominal
value [11]. Therefore, the EMS is responsible for measuring
the load reactive power and delivering it, as the reference
value, to the inverter-rectifier.

The following power balance expressions can be defined
considering a positive power flow according to the direction
of the arrows depicted in Fig. 1:

PBAL(n) = PLOAD(n)+ PDHW (n)− PPV (n)− PWT (n)

−PSC (n) (1)

PBAT (n) = PLG(n)− PGRID(n)+ PEWH (n) (2)

PLG(n) = PLOAD(n)− PPV (n)− PWT (n) (3)

where PBAL is the MG’s overall power balance, PLOAD is
the residential power demand, PDHW is the equivalent of
domestic hot water power consumption, PPV and PWT are
the rated photovoltaic and wind turbine powers, respectively,
PSC is the FPC thermal power, PBAT is the battery power
(i.e., PBAT > 0 for discharging process and PBAT < 0
for charging process), PLG is the MG electrical net power,
PGRID is the power exchanged with the mains (i.e., PGRID >

0 for injection to the MG and PGRID < 0 for absorp-
tion from the MG), and PEWH is the power required by
the EWH.
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FIGURE 1. Residential grid-connected electro-thermal microgrid architecture.

Note that the case under study assumes that both PV and
WT are operating at theirMPP and both thermal and electrical
load consumptions are given. Therefore, neither the renew-
able power generation nor the consumptions are controllable.
In contrast, the DHW system includes a controllable load,
i.e., electric water heater. In short, the grid profile will be
controlled by the bidirectional inverter-rectifier as long as
the battery charger can handle the resulting battery power
PBAT . In this regard, the battery power directly depends on
the current battery SOC, which must be kept between secure
limits to preserve ESS lifetime. Since this study considers
a battery pack composed of lead-acid batteries, a maximum
allowable Depth of Discharge (DOD) of 50% is imposed [48].
Therefore, the battery SOC boundaries are defined as
follows:

SOCMIN ≤ SOC(n) ≤ SOCMAX (4)
SOCMIN = (1− DOD) · SOCMAX (5)

where SOCMIN and SOCMAX the minimum and maxi-
mum battery SOC limits, respectively, and SOC (n) can
be computed using the SOC estimator block presented
in [10], [11], [45].

The thermal storage capacity associated with the water
tank temperature, is responsible for improving the system
performance by providing a thermal buffer to alleviate the
solar availability or load mismatch [46], [49]. In this regard,
the water tank and the controllable load (i.e., EWH) provide
extra possibilities to control the grid power profile.

Therefore, suitable control of the water tank temperature
is required to meet the user’s consumption needs. In this
context, the mathematical model (out of the scope of this
work) to estimate the water temperature in the thermal storage
must consider the physical characteristics of the tank and
also the energy rates of the different variables involved in the
water heating process. A complete description of the thermal
storage model can be found in [45], [47]. Note that this study
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considers that the water temperature should be kept in the
range between 35◦C and 75◦C.

III. GRID POWER QUALITY CRITERIA
A set of quality criteria is defined in order to evaluate and
compare different EMS designs to be described in the fol-
lowing paragraphs. The grid power profile quality criteria
are defined to quantify the improvement of the power profile
exchanged with the grid obtained by a specific energy man-
agement strategy. For instance, when concerning the power
exchanged with the grid, an EMS is considered to have
better performance when the values of the quality criteria
are minimized. These quality criteria are based on the grid
profile averaged every fifteen minutes (i.e., Ts = 900s) and
have been defined in [10], [11], [35], [36], [45]. Here they
are recalled in the following paragraphs for the sake of paper
completeness.

A. POSITIVE AND NEGATIVE GRID POWER PEAKS
The positive grid power peak, PG,MAX , is defined as the max-
imum power delivered by the mains in one year, whereas the
negative grid power peak, PG,MIN , is defined as the maximum
power fed into the mains (i.e., maximum power injected by
theMG to the mains) in one year. These criteria are computed
as follows:

PG,MAX = max(PGRID) (6)

PG,MIN = min(PGRID) (7)

B. MAXIMUM POWER DERIVATIVE
The maximum power derivative (MPD) is defined as the
maximum yearly value, in absolute value, of the grid power
profile slopes, ṖGRID. This criterion is expressed in W/h and
it is computed as follows:

MPD = max
(∣∣ṖGRID∣∣) (8)

ṖGRID(n) = [PGRID(n)− PGRID(n− 1)]/Ts (9)

C. AVERAGE POWER DERIVATIVE
The average power derivative (APD) is computed as the
annual average value of the absolute value of ṖGRID. Simi-
larly to MPD criterion, APD is expressed in W/h:

APD =
1
N

N∑
n=1

∣∣ṖGRID(n)∣∣ (10)

where N is the number of samples in a year.

D. POWER PROFILE VARIABILITY (PPV)
This criterion measures the grid power profile variability and
is defined as:

PPV =

√∑ff

f=fi

(
PGRID,f

)2
/PDC (11)

where PGRID,f is grid power harmonic at frequency f , fi and ff
are the initial and final frequencies, respectively and, PDC is
the yearly power average value. This criterion only evaluates

frequencies above fi = 1.65 × 10−6 Hz (i.e., variation
periods of one week or less), since the energy management
strategy seeks to compensate daily variations. Furthermore,
the maximum frequency considered to calculate PPV is half
of the sampling frequency ff = 5.55× 10−4 Hz.
Note that variable renewable energy sources, such as PV

and WT, are set to attain very high degrees of penetration
level. Thus, the power variability is of great concern for grid
operators [50]–[52]. In this regard, MPD and APD criteria
represent power fluctuations in the grid and, hence they are
related to grid instability.

IV. FUZZY ENERGY MANAGEMENT ARCHITECTURE
As shown in Fig.2, the proposed EMS is built out of three
main blocks: (1) MG power balance; (2) thermal power bal-
ance and demand management; and, (3) a grid power injec-
tion limitation, which simply clamps the power at a desired
upper limit value. These blocks are described below:

A. BLOCK 1: MG POWER BALANCE - BATTERY SOC
CONTROL AND GRID POWER COMPONENTS
The first block in Fig.2 is in charge of computing the value for
the grid power profile before the power clamper of Block 3.
This grid power is noted as PS1G and the control strategy
principle for its computation is very similar to that presented
in [11] excepted for the fact that the present work utilizes
the overall MG power balance, PBAL , instead of only the
electrical MG net power, PLG as used in [11]. Taking into
account this change and following the steps of [11], the grid
power PS1G is computed according to the MG power balance,
to its forecast error, and as well as to the current energy stored
in the ESS. To do so PS1G is split into three components as:

PS1G (n) = PCTR(n)+ PSOC (n)+ PFLC,E (n) (12)

where the first component, PCTR, is the average value
between the MG overall power balance of the previous 12h,
P12hBAL , and the forecast value of this balance for the next 12h,

P12h,FCBAL , thus defined as:

PCTR(n) =
1
2

[
P12hBAL(n)+ P

12h,FC
BAL (n)

]
(13)

These values are computed by a CMA filter according to
the expressions given in (14) and (15):

P12hBAL(n) =
1
M12

M12∑
k=1

PBAL(n− k) (14)

P12h,FCBAL (n) =
1
M12

M12∑
k=1

PFCBAL(n+ k) (15)

whereM12 represents the number of samples in 12 hours.
The second component PSOC , in (12) takes into account

the SOC of the battery and is proportional to the difference
between the reference SOC value, SOCREF , and the average
SOC value of the previous 24h, SOCAVG:

PSOC (n) = kE [SOCREF − SOCAVG(n)] (16)
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FIGURE 2. Complete block diagram of the proposed fuzzy-based EMS.

The average SOC value can be written further as:

SOCAVG(n) =
1
M24

M24∑
k=1

SOC(n− k) (17)

where M24 represents the number of samples in 24 hours.
This component is used to maintain the battery SOC fluc-
tuating around to the 75% of the ESS rated capacity and
not to drift away from this value. Note that the proportional
gain, kE , is therefore set to kE = 0.075 kW/% in order to
obtain high enough phase margin in the battery SOC loop
control [11], [36].

Finally, the third variable in (12),PFLC,E , is used to smooth
the grid power profile PS1G depending on the current battery
SOC and the forecast error of the MG power balance, PE =
PBAL − PFCBAL of the previous 3h, P3hE , which is defined as:

P3hE (n) =
1
M3

M3∑
k=1

PE (n− k) (18)

where M3 represents the number of samples in 3 hours.
This component is computed by a two-input, one-output, and
25 rules FLC block that will be presented in Section V.

B. BLOCK 2: THERMAL POWER BALANCE – DEMAND
MANAGEMENT
The second block in Fig.2 deals with the EWH demand
management considering the MG thermal balance, PBAL,T ,
defined as the difference between the DHW consumption,

PDHW , and the power generated by the solar collector, PSC ,:

PBAL,T (n) = PDHW (n)− PSC (n) (19)

In short, this block determines the power required by the
EWH in order to maintain the temperature in the water tank
stable and in the chosen range.

The EWH power before the power clamper of Block 3,
PS2EWH , is computed as the sum of two components, as follows:

PS2EWH (n) = PCTR,T (n)+ kT · PFLC,T (n) (20)

The first component PCTR,T is the average thermal power
balance used to provide a low-frequency profile to the EWH
power, namely:

PCTR,T (n) =
1
2

[
P12hBAL,T (n)+ P

12h,FC
BAL,T (n)

]
(21)

As for the Block 1,PCTR,T is computed bymeans of a CMA
filter which uses the thermal power balance of the previous
12h, P12hBAL,T , and the forecast of the thermal power balance
for the following 12h, P12h,FCBAL,T , defined as:

P12hBAL,T (n) =
1
M12

M12∑
k=1

PBAL,T (n− k) (22)

P12h,FCBAL,T (n) =
1
M12

M12∑
k=1

PFCBAL,T (n+ k) (23)

The second component of (20), PFLC,T is computed by
means of a two-input, one output FLC block of 25 rules that
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sets the amount of power supplied to the EWH according to
the water temperature in the water tank and the battery SOC.
Note that this component is proportional to the rated-power
of EWH. In this work, the maximum power set by the FLC
output is 75% of the EWH rated-power (i.e., kT = 0.75) to
avoid strong power variations in the EWH power profile. The
FLC design will be presented further in Section V.

C. BLOCK 3: LIMITATION OF GRID POWER INJECTION
The third block in Fig.2 establishes the strategy to define the
final values of both the grid power profile, PGRID, and the
power delivered to the EWH, PEWH .

If the power, PS1G defined in Block 1 is less than the max-
imum injection power allowed to the utility grid, PLIM , the
proposed ESM sets the final grid power to PLIM and transfers
the excess power to the EWH as long as the water temperature
in the tank is below the established upper limit, T inymax.
Otherwise, the final grid power takes the value of the initial

grid power (PGRID = PS1G ) ifPS1G is greater thanPLIM , in order
to limit the power injection from the MG to the mains. This
strategy can be easily implemented bymeans of (24) to define
the final grid power profile whereas the transfer of the power
excess to the EWH is quantified by (25):

PGRID(n)

=

{
PLIM , if T (n) ≤ 65 AND PS1G (n) ≤ PLIM
PS1G (n), otherwise

(24)

PEWH (n)

=



PS1EWH (n)+
∣∣∣PS1G (n)+ PLIM

∣∣∣ ,
if


T (n) ≤ T inymax

and
PS1G (n) ≤ PLIM

PS2EWH (n), otherwise

(25)

The case under study considers a maximum power injec-
tion to the mains of PLIM = −0.8 kW and a maximum
water temperature for power injection of T inymax = 70◦C.
Finally, once the grid power profile and the EWH power are
obtained, the power delivered/absorbed by the battery ESS
can be computed by means of (2).

A complete flowchart of the proposed EMS, including the
sequence of steps taken and their variables at the different
levels, is presented in Fig. 3.

V. FUZZY LOGIC CONTROLLERS DESIGN
The FLC blocks, shown in Fig. 2, assume a Mamdani-based
inference and a defuzzification of Center of Gravity [41]. This
study uses two FLC blocks, the first one, namely FLC MG
balance, is used to smooth the grid power profile and the
second one, namely FLC thermal, is used to determine the
power assigned to the EWH.

The FLC design makes use of one year of real data
obtained by measuring the output power of the RES as
well as the load consumptions of the microgrid laboratory
installed at Public University of Navarre, Navarra, Spain

FIGURE 3. Flowchart of the proposed fuzzy-based energy management
system.

[10], [11], [35], [36], [45]. The data acquisition was carried
out by means of power analyzers recording data every sec-
ond and then obtaining the average of all variables every
15 minutes.

A. FLC MG BALANCE BLOCK
As mentioned in Section 4.1, this block computes the vari-
able PFLC,E according to the magnitude of inputs P3hE and
SOC. This FLC block follows the design and methodology
presented by the authors in [10], [11], [44]. In this context,
the FLC parameter adjustment, for instance, selection of
membership functions (MF) number, type, mapping, and rule
base, is performed by an offline adjustment procedure, which
is described in [44] to minimize the magnitude of the defined
quality criteria. Note that beside the procedure used in this
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work, different methods to perform the parameter adjustment
of the FLC controller can be used, for instance, metaheuris-
tic nature-inspired algorithms (i.e., Cuckoo Search, Particle
Swarm Optimization, among others) [53]–[55] or evolution-
ary algorithms (i.e., Genetic Algorithms, Machine Learning,
among others) [42], [43].

As a result of the aforementioned procedure, five triangular
MFs are assigned to both input variables whereas seven tri-
angular MFs are assigned to the output variable. These MFs
correspond to the fuzzy sub-sets denoted as NB for ‘‘Negative
Big’’, NS for ‘‘Negative Small’’, NSS for ‘‘Negative Small-
est’’, ZE for ‘‘Zero’’, PSS for ‘‘Positive Smallest’’, PS for
‘‘Positive Small’’, PM for ‘‘Positive Medium’’, and PB for
‘‘Positive Big’’, as shown in Fig. 4.

As it can be seen in Fig. 4, each variable has a pre-defined
variation range. The variation range for input variable SOC

FIGURE 4. Membership functions for inputs and output variables of FLC
MG balance block (a) input P3h

E , (b) input SOC, and (c) output PFLC,E .

(n) is defined by (4) whereas the variation range of input
variable P3hE (n) and output variable PFLC,E (n) are defined
as follows:

−Pe ≤ P3hE (n) ≤ +Pe (26)

PN ≤ PFLC,E (n) ≤ PP (27)

TABLE 2. Rule Base of the MG balance FLC block.

FIGURE 5. Membership functions for inputs and output variables of FLC
thermal balance block (a) input T (n − 1), (b) input SOC, and (c) output
PFLC,T .
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TABLE 3. Rule base of the Thermal balance FLC block.

FIGURE 6. Surface plot of thermal balance fuzzy system input-output
relationship.

FIGURE 7. Power exchanged with the grid using EMS1 (top) and the
proposed EMS strategy (bottom).

where Pe is the maximum error in the power balance forecast
allowable in the MG, and PN and PP are the minimum
and maximum power assigned to the FLC controller output,
respectively. The case under study has considered the follow-
ing values: SOCMIN = 50%, SOCMAX = 100%, Pe = 6 kW,
PN = −0.3 kW, and PP = 0.45 kW [11].

Regarding the FLC rule base the adjustment procedure
results in a set of rules which smooth the grid power profile

FIGURE 8. Comparison of the battery SOC profile between the EMS1 (top)
and the proposed EMS strategy (bottom).

FIGURE 9. Histogram of the battery SOC ranges in the year under analysis
for the EMS1 and the proposed EMS strategies.

and minimize the magnitude of the quality criteria defined in
Section III. This rule base consists of 25 rules as presented
in Table 2 which establishes the control policy. For instance,
the last rule (highlighted in the table) is formulated as: ‘‘IF the
error, in the previous 3-h, of the MG power balance forecast
is high, (i.e., the MG power balance is far greater than the
forecasted value, P3hE (n) � 0), AND the energy stored in the
battery ESS is high, (i.e., the SOC (n) is close to SOCMAX ),
THEN strongly increase the grid power to discharge the
battery ESS, (i.e., PFLC (n) � 0’’), therefore, increasing the
power injected to the mains.

B. FLC THERMAL BALANCE BLOCK
Similarly, the FLC design for the thermal balance block fol-
lows the aforementioned procedure [44]. The adjustment of
the FLC parameters is performed only for the input T (n− 1)
and the output PFLC,T , since the input SOC is common for
both FLC blocks. In short, five MFs (three triangular MFs
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FIGURE 10. Electric water heater power PEWH with EMS1 (red dotted line) and with the proposed EMS (blue solid line).

FIGURE 11. Simulation results for the grid power profile and the battery SOC with EMS1 and the proposed EMS.

and two trapezoidal MFs) are assigned to the input T (n− 1)
and five MFs (three triangular MFs and two single tones)
are assigned to the FLC output, as shown in Fig. 5. These
MFs are distributed along the variation range of each variable,
defined as:

35◦C ≤ T (n− 1) ≤ 75◦C (28)

0 ≤ PFLC,T (n) ≤ 2kW (29)

Following the same procedure, the rule base of the
thermal balance FLC block consists of 25 rules that
establish the power assigned to the EWH. As presented
in Table 3, the highlighted cell is formulated as: ‘‘IF the
temperature in the water tank is low, (i.e., T (n−1) < 40◦C),
AND the energy stored in the battery ESS is high, (i.e., SOC
(n) close to SOCMAX ), THEN strongly increase the power
assigned to the EWH to increase the water temperature and
to avoid the battery over charging.

Fig. 6 shows the surface of the thermal balance FLC block.
As it can be seen, the power assigned to the EWH decreases
as the water temperature increases, whereas it increases as

the battery SOC increases. It is worth noting that the power
assigned to the EWH is zero when the water temperature
exceeds 50◦C excepted when the battery charge is over 75%
and should be limited.

VI. SIMULATION RESULTS AND COMPARISON
The simulation of the proposed EMS is performed using
the one-year historical data recorded at the MG installed
at the Public University of Navarre. The forecast of renew-
able power generation is estimated by Numerical Weather
Prediction method [56] using the data provided by Meteo-
Galicia THREDDS Server [57], which comprise a set of
hourly weather data for the Iberian Peninsula that is updated
every 12 hours with three days prediction horizon [11]. The
forecast of load demand is obtained through the persistence
model (i.e., the past data is the forecast for the next sampling
time) [36]. Both the renewable power generation and the
load forecasts are estimated using the MG power forecasting
procedure presented in [11].
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The simulation results are compared with the heuristic
approach described in [35], referred to as EMS1. Fig. 7 shows
the grid power profiles for both EMSs.

As shown in Fig. 7, the resulting grid power profile
achieved by EMS 1 has still high power peaks due to inef-
ficient energy management of the ESS, i.e., battery over-
charging, as evidenced in Fig. 8. On Fig. 7 can be seen
the proposed EMS performs a suitable management of the
ESS and achieves a reduction in both the maximum power
absorbed/injected from/to the utility network of 11.41% and
82.02%, respectively. The introduction of the power injection
limitation in the EMS allows a maximum power fed into the
grid of 0.8 kW, thus, removing the negative power peaks in
the grid power profile.

In this regard, the enhanced behavior of the proposed EMS
is also validated when comparing the battery SOC profile
achieved by both EMSs, as shown in Fig. 8. The battery
SOC evolution of the proposed EMS strategy exhibits less
deviations with respect to 75% of the rated battery capacity
(red solid line) by mitigating overcharge and over-discharge
of the ESS. This mitigation is better visible on the histogram
in Fig. 9 which quantifies the annual percentages of the time
intervals when the battery SOC remains between prefixed
limits for the considered year. As can be seen, the battery
SOC remains in a range between 70% and 80% of the rated
battery capacity during almost 50% (49.62%) of the year
under analysis, improving the previous value achieved by the
EMS1 (36.08%).

On Fig. 10 and Fig. 11 the resulting power of the EWH
and the grid power profile together with the battery SOC
along 4 days in April and acquired with both EMSs are
presented.

As can be seen in Fig. 11, on April 4 the EMS1 strategy
leads the battery’s SOC to reach its allowed charge limit
(brown dashed line in Fig. 10), which entails a power peak in
the grid power profile (red dashed line in Fig. 11). Conversely,
for the same date the proposed EMS performs better manage-
ment of both the EWH power (blue solid line in Fig. 10) and
the battery SOC (green solid line in Fig. 11). This improved
behavior prevents the ESS overcharge and the subsequent
power peaks in the network profile. Therefore a smoother
grid power profile (blue solid line in Fig. 11) with fewer
fluctuations is achieved. Note that the grid power profile on
certain days (e.g., April 1st to 2nd in Fig. 11) is constant,
although the MG net power (black dotted line in Fig. 11) is
highly variable.

Table 4 summarizes the resulting values of the aforemen-
tioned quality criteria to the grid power profile achieved by
both EMSs. Note that for comparison purposes the values of
the quality criteria obtained for the case of a MG without an
EMS (i.e., PGRID = PLG) is also included in Table 4. It is
worth pointing out that the proposed EMS reduces all defined
quality criteria, some of them more significantly than others.
The MPD criterion is very much lowered down, actually by
96% compared with the EMS1 due to the inclusion of the
power clamper block.

TABLE 4. Quality criteria comparison.

FIGURE 12. Comparison of simulation results (EMS1 (top) and proposed
EMS (bottom)) (a) electric water heater power and (b) water temperature
in the storage tank.

Finally, Fig. 12(a) and Fig. 12(b) present the EWH power
profile and the temperature of the water tank, respectively,
achieved by both EMSs along the year under analysis. As can
be seen, the maximum power used by the EWH with the pro-
posed EMS is 1.688 kW, while it is 2 kW for the EMS1. The
temperature in the water tank is kept between the established
limits in both cases (35◦C and 75◦C), however showing less
fluctuations in the case of the proposed EMS.

VII. CONCLUSION
This paper has addressed the design of a fuzzy-based
energy management system for grid profile smoothing of
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a residential grid-connected electro-thermal microgrid. The
EMS has been designed based on FLC to smooth the power
profile exchanged with the grid and limiting the injection
of RES into the mains. The EMS design has been built
out of three blocks, where the first one uses a FLC block
to compute the preliminary value of the grid power profile
according to the error in the MG power balance forecast and
the battery SOC; the second block performs a demand-side
management of the EWH through the use of another FLC
block and accounting for the MG thermal balance and the
water temperature in the thermal storage (water tank); the
third block is used to define the final values of the grid power
profile and the EWH power and performs the limitation of the
RES penetration into the grid. Analysis of the comparative
simulations with a similar heuristically approach has demon-
strated the improved features of the proposed EMS. These
results can be summarized as:

• An improvement on the grid power profile smoothness,
by reducing the maximum and minimum values of the
power injected/fed from/to the grid.

• A less fluctuating EWH power consumption profile with
a lower maximum value.

• A battery SOC profile with lower fluctuations centered
to the 75% of the battery rated capacity. This reduction
would allow a lower sizing of the ESS compared with
the use of a SMA filter.

From a quantitative point of view, with respect to the
heuristically EMS, the proposed EMS approach has featured
a 11.4% reduction of the maximum power absorbed from
the grid as well as a very significant reduction of 98% of
the MPD criterion concerning the grid power fluctuations.
Further, it can be pointed out that these improved features of
the proposed EMS have been obtained including a grid power
clamper block allowing the grid power injection limitation to
a desired upper limit, whichwas not considered in the strategy
EMS1. For the case under study, this limit has allowed a
reduction of 82.02% of the maximum power value injected
to the grid.

The authors consider that the proposed approach can be
classified as a ’’low computational complexity’’ one due to
the simplicity of the off-line trained fuzzy controllers and
can be embedded in low cost digital platforms as it was done
in [11].

As a critical discussion, one the possible drawbacks of the
proposed approach is the availability of historical data along
one year mainly on the consumption side, since environmen-
tal variables and predictions for RES production are accessi-
ble in public databases. However, in the framework of current
and future policies to reduce the fossil fuel dependence in
electricity generation, metering at user level is expected to
play a key role [58]. On the other hand, building and com-
paring different on-line optimization strategies as those cited
in Table 1 and recent works of more theoretical aspects on
FLC design [59], [60] applied to the scenario and the goals
of this work would be also interesting. They can contribute to

establish a trade-off between computational complexity and
resulting grid profiles. Finally, including economic variables
in the optimization process and analyzing the resulting grid
profiles would also provide useful assessments on tariff poli-
cies and their feasibility. All these issues would be undertaken
in a future work.
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