
Intent-Based Networking and its Application to 
Optical Networks [Invited Tutorial] 

L. VELASCO*, S. BARZEGAR, F. TABATABAEIMEHR, AND M. RUIZ

Universitat Politècnica de Catalunya, Barcelona, Spain 
*Corresponding author: luis.velasco@upc.edu

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX 

The Intent-Based Networking (IBN) paradigm targets at defining high-level abstractions, so network operators can define what 

are their desired outcomes without specifying how they would be achieved. The latter can be achieved by leveraging network 

programmability, monitoring and data analytics, as well as the key assurance component. In this tutorial, we introduce the IBN 

paradigm and its application to optical networking, highlighting the benefits that Machine Learning (ML) algorithms can provide 

to IBN. Because the deployment of ML applications requires a specific orchestrator to create ML functions that are connected as 

ML pipelines, we show an implementation of such orchestrator. Some challenges and solutions are presented for the generation 

of accurate synthetic data, proactive self-configuration, and cooperative intent operation. Illustrative examples of intent-based 

operation and numerical results are presented and the obtained performance is discussed. © 2021 Optical Society of America

http://dx.doi.org/10.1364/JOCN.99.099999 

1. INTRODUCTION

Software Defined Networking (SDN) defines a centralized

control plane architecture with global network vision. At the 

optical layer, the SDN controller can achieve optimal routing 

for optical connections (lightpaths) at provisioning time and 

during reconfiguration [1]. Besides, a distributed computing 

and storage infrastructure has been deployed for virtualizing 

network functions, which is managed by a centralized Virtual 

Infrastructure Orchestrator (VIO) [2]. Placed besides the SDN 

controller, a Monitoring and Data Analytics (MDA) controller 

was proposed in [3] to collect monitoring data, analyze such 

data, and make decisions (control loop). Such data analysis 

can be based on Artificial Intelligence (AI) / Machine 

Learning (ML) algorithms [4], which enable network 

automation solutions, aiming at reducing operational costs. 

Among the large number of use cases for autonomous 

optical network operation, three major categories covering the 

entire lifecycle of optical connections are highlighted in [3]. 

The first category refers to the automation of connectivity 

provisioning, when the provisioning process itself requires 

meeting some performance, e.g., achieve resource efficiency 

or minimize connection blocking [5, 6]. In addition, 

monitoring and estimation of Quality of Transmission (QoT) 

is of paramount importance for both connection provisioning 

and reconfiguration. A second category is related to the 

dynamic network adaptation, which entails monitoring one or 

more network entities (e.g., an optical connection) and make 

decisions to achieve some target performance. The target is to 

deal with situations ranging from those that require scaling or 

reallocating resources to elastically adjust to demand 

variations in volume and direction, to those that require 

healing and recovery. Examples include QoT degradation and 

connection rerouting [7], in-operation network planning [8], 

dynamic capacity allocation of virtual links supported by one 

or more optical connections [9] or even reconfigure a virtual 

network topology [10, 11]. Finally, as a third category, 

degradation detection can be used also for failure localization 

[12, 13]. Here, the performance to be achieved is related, e.g., 

to availability metrics. 

However, the drawback is the proliferation of individual 

control loops, which brings also complexity to network 

management. In addition, defining how to achieve operational 

goals is very complex. In this scenario, Intent-Based 

Networking (IBN) proposes a different approach, where 

intents are defined as high-level abstractions that allow 

network operators to define what are their desired outcomes, 

without specifying how they would be achieved [14]. This 

strategy reduces human intervention and paves the way to the 

application of AI/ML techniques. In an IBN environment 

thus, operators provide intents as inputs to guide content-

based systems to implement them without human 

intervention. Intents allow to define the goals and outcomes 

and provide: i) data abstraction to avoid users and operators 

© 2022 Optica Publishing Group. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for 
non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.



 2 

to take care of specific device configuration; and ii) functional 

abstraction to avoid users and operators being concerned with 

how to achieve the goals. 

Another issue is that of data availability, since AI/ML 

usually require a large dataset for training purposes, which is 

difficult to obtain. The lack of data can be compensated with 

the use of tools that include analytic models to explain the data 

plane, e.g., GNPy [15] for the optical and CURSA-SQ [16] 

for the packet layers. Such tools can run in sandbox domains 

[17] and used for training AI/ML algorithms (see [18]). 

Finally, using ML algorithms for network automation 

entails analyzing heterogeneous data collected from 

monitoring points in network devices. Because network 

entities can be reconfigured, e.g., lightpath rerouting, it is of 

paramount importance to link different ML functions (i.e., 

performance data collection, pre-processing, analysis, 

storage, visualization, etc.) among them to create an ML 

pipeline and to the related network entity (e.g., a lightpath). 

ML pipelines are associated to network entities and need to be 

deployed and reconfigured using an independent orchestrator, 

named ML Function Orchestrator (MLFO) [19]. 

The rest of the paper is organized as follows. Section 2 

introduces the path to network automation by reviewing 

previous architectures and motivating the IBN paradigm. 

Section 3 presents an implementation of MLFO, which 

includes algorithms for managing ML pipelines, including its 

computation and reconfiguration. An architecture and 

workflows are proposed, and preliminary results of an 

implementation are presented. Because the application of IBN 

is closely related to AI/ML, a short background on advanced 

ML techniques is provided in Section 4 to help the reader to 

fully understand the challenges, solutions and illustrative 

applications presented in Sections 5 and 6. Finally, Section 7 

draws the main conclusions. 

2. TOWARD NETWORK AUTOMATION 

A. Previous Architectures 

Network automation has been long time envisioned. In fact, 

the Telecommunications Management Network (TMN), 

defined by the International Telecommunication Union in 

[20], is a hierarchy of management layers (network element, 

network, service, and business management), where high-

level operational goals propagate from upper to lower layers. 

In the way toward autonomic adaptation to changes, while 

hiding intrinsic complexity to operators and users, the Internet 

Engineering Task Force developed the concept of Policy-

Based Network Management (PBNM) [21]. PBNM separates 

the rules governing the behavior of a system from its 

functionality. In PBNM, high-level management policies are 

broken down into low-level configurations and control logic 

(policy rules) to ensure that the network provides the required 

services. Policies can be defined as a set of simple control 

loops; each policy rule consists of a set of events and 

conditions and a corresponding set of actions, where each 

condition defines when the policy rule is applicable. 

The most extended PBNM architecture consists of four 

systems (Fig. 1a): i) the policy management tool allows 

operators to define and update policies and it translates and 

validates policy rules; ii) the policy repository that stores the 

policies; iii) a set of policy decision points, which interprets 

the policies, translates them into a device-specific 

representation, and triggers the execution of the related 

actions whenever they satisfy the specified conditions; and iv) 

the policy enforcement points running on a policy-aware node 

that executes the policies. The drawback of PBNM is solving 

conflicts that might arise within or among policies; conflict 

resolution requires some external system or iterations with 

operators and/or users. 

The network management architecture has evolved with the 

development of the SDN concept that brings programmability 

to simplify configuration (it breaks down high-level service  
 

(a)

Policy Management Tool

• Policy Editing

• Rule Translation

• Rule Validation

• Conflict Resolution 

Policy Decision Point

• Policy Trigger

• Rule Locator

• Device Adapter

• Resource Validation

Policy Enforcement 

Points

Policy Repository

Policy Decision Point

Communicate 

RuleControl

Loops

 

(b)

Programmability

(SDN)
Analytics

Orchestrate 

and configure 

systems

Collect 

Measurements

Reports Expected future 

conditions and 

recommendations

Requests

Network Management System

 

Programmability

(SDN)
Analytics

Orchestrate 

and configure 

systems

Collect Context

Assurance

Continuous verification, 

insights and visibility, 

and corrective actions

Intent:

Business goal

Translation

Capture business 

intent, translate to 

policies, and check 

integrity

What

How

(c)

 

Fig. 1. Steps Toward Network Automation: Policy-Based Network Management (a), Monitoring and Data Analytics (b), and Intent-Based Networking (c). 



 3 

abstraction into lower-level device abstractions), orchestrates 

operation, and automatically reacts to changes or events. A 

data analytics system [22] can complement the SDN 

controller (Fig. 1b), so the network becomes proactive. Being 

proactive is of paramount importance, as the analytics system 

could anticipate anomalies and degradations before they 

cause major problems or become failures. Upon the detection, 

the analytics system can issue proper recommendations to the 

SDN controller, which can take the most appropriate action. 

Additionally, such analysis can be extended to forecasting 

network conditions that can be used to improve resource 

efficiency. In this architecture, control loops can be defined at 

various levels, from the device [23] to the network, depending 

on the use case [24, 25], as monitoring is collected and can be 

analyzed locally and/or network-wide. The drawback of this 

architecture is that the analytics system needs to combine 

information about services and the network itself, which, in 

practice, requires redesigning that and other control and 

management systems. 

B. Intents and Intent-Based Networking 

IBN complements SDN control and orchestration by 

allowing a declarative syntax while abstracting the 

operational process and focusing on behavior. Service 

definition can be based on templates to define resources and 

relationships for the service and allow specifying the Intent in 

terms of policy rules that guide the service behavior, 

specifying the applications, analytics and closed control loop 

events needed for the elastic management of the service. 

A translation mechanism is needed to convert the intent 

into a network configuration to be automatically deployed 

within the network infrastructure and a set of policies that the 

IBN needs to verify that such policies can be executed (Fig. 

1c). During the service lifecycle, the service assurance system 

makes sure that the network continues to deliver on that intent 

based on the specified design, analytics, and policies and with 

the help of ML algorithms. Intent-Based ML algorithms find 

the right knowledge and data to identify conditions with 

significant semantic value (insights) from raw telemetry, 

without being explicitly programmed. Actionable insights and 

rich context together with policy-driven closed loops can take 

automated actions whenever the network deviates from the 

intent. Reporting is intended to generate descriptive outputs, 

e.g., statistical summaries, as well as knowledge transfer of 

main key performance indicators of the service. Differentiated 

reports can be generated, so applications can reconfigure 

policies to adjust to service requirements and the network 

management can gather knowledge transferred for different 

services and processed jointly to improve actions [26-28]. 

An ML pipeline associated to the service can be also 

created, as specified in [19]. The ML pipeline consists of a set 

of ML nodes (e.g., collectors, pre-processors, models, 

policies, etc.) that are combined to form an analytics function 

and are managed by an MLFO. The MLFO is an independent 

orchestrator that manages ML pipelines by placing functions 

in different locations in the network and manage their 

connectivity to create a chain. Based on ML algorithms, IBN 

suggests the optimal network configuration for the services 

and the associated ML pipeline prior to deployment. Finally, 

the IBN architecture can be complemented with sandbox 

domains, where model training will be performed with data 

from a data lake populated from heterogeneous data and 

context sources, including network, applications, and other 

systems, and augmented with data from simulation [29-30]. 

3. MACHINE LEARNING FUNCTION ORCHESTRATION 

Many intent-based applications might focus on the 

operation of one single network entity, where the source of 

monitoring data and the point of actuation are closely related, 

e.g., a packet node or an optical transponder. However, 

generally speaking, IBN applications require a global view of 

the network resources, either to make decisions, to bring 

performance measurements and operation action to a global 

system, or both. A very natural application is for failure 

localization, where data needs to be collected from 

heterogeneous sources and analyzed together. Based on the 

definition in [19], in this section, we present an MLFO 

implementation as an independent orchestrator that manages 

ML pipelines by placing ML functions in different locations 

in the network and connecting them to create a chain [31]. 

A. ML Pipeline Management 

Let us first focus on the ML Pipeline computation. We 

assume that an entity in the data plane (e.g., a lightpath) 

requires deploying an ML pipeline with five different ML 

functions: i) collector (Co) in charge of collecting monitoring 

data from activated monitoring points (M), e.g., from the end 

optical transponders and spectrum analyzers deployed in 

intermediate optical nodes [24, 25]; ii) aggregator (Ag) that 

collects measurements from a number of different collectors 

and perform some not computationally intensive task, like 

compute some statistics, e.g., max, min, and average; iii) 

processor (Pr), which performs more computational intensive 

task on the received data; iv) a time series database (DB); and 

v) a user interface (UI). The relation among those ML 

functions can be specified as a graph T=(V,A) (see Fig. 2a).  

An optimization problem can be defined to find the optimal 

solution, given graph T, the description of the set of nodes N, 

the constraints for the set of arcs A, as well as some other 

constraints, like fixed ML function placements. The output of 

the problem should include the placement of the ML functions 

to create an ML pipeline that follows template T and meets 

the constraints, while minimizing some utility function (e.g., 

number and capacity of containers/VMs to be deployed, 

connectivity cost, etc.) subject to the state of the resources in 

the telecom cloud infrastructure. We name such problem ML 

Pipeline Deployment (PLD) and it can formally be stated as: 

Given: 

• Pipeline Template: graph T = (V, A), where V = {<allowed 

types={type}>}, A = {<maxDelay, minCapacity>}, and 

type=<container/VM descriptor, fan-out>. 



 4 

DB

Ag1 Ag2

CoA Co1 CoZ

UI

Pr

Co4Co3

DB

Ag1 Ag2

CoA Co1 CoZ

UI

Pr

Co2

(b) (c)

Ag

Co

Pr

DB

UI

ML Pipeline
Template

(a)

0..n

ML Pipeline
Deployment

ML Pipeline
Reconfiguration 

M MA M1 M2 MZ MA M1 M4 MZM3

 

Fig. 2. Example of ML pipeline template (a), deployment (b) and 
reconfiguration (c). 

• Constrained nodes: set N = {<n, F>}, where n = type ∊ 

v.”allowed types” | v∊V, and F is a set of constraints, e.g., 

a location, and it can be empty. 

• Telecom cloud infrastructure, i.e., edge/cloud computing 

and connectivity. 

Output: The pipeline P to be deployed, i.e., P = (N’, E) ~ T, 

N’⊇ N and every e ∊ E is an instance of a ∊ A that satisfies its 

constraints. 

Objective: Minimize some utility function. 

To solve the PLD problem, a heuristic algorithm can be 

developed to place the constrained ML functions and find the 

shortest paths connecting the already placed ML functions. 

During such process, more ML functions can be added to meet 

the given constraints until graph P following template T is 

obtained. An example of solution is illustrated in Fig. 2b, 

where the location of the collector ML functions have been 

specified to be in the same location as the related monitoring 

point. Once the PLD problem is solved, the obtained solution 

needs to be deployed. 

Because the ML pipeline is linked to an entity in the data 

plane, when that entity is reconfigured, its ML pipeline might 

also need to be reconfigured. Therefore, we can define a 

different optimization problem, where we are given the 

template T, the current ML pipeline P and the new set of 

constrained nodes and the objective is to reconfigure P with 

the minimum cost (e.g., number of changes in P’ with respect 

to P and the total cost, etc.). We name such problem ML 

Pipeline Reconfiguration (PLR) and it can be stated as: 

Given: 

• The template T, the deployed pipeline P and the new set 

of constrained nodes N. 

• Telecom cloud infrastructure, i.e., edge/cloud computing 

and connectivity. 

Output: The new pipeline P’ to be deployed. 

Objective: Minimize some utility function. 

A heuristic similar as the one for the PLD problem can be 

devised, where the deployed ML functions that are not in the 

new constrained set of nodes are first removed, and the nodes 

that need to be migrated are disconnected and moved. An 

example of reconfiguration is presented in Fig. 2c, where ML 

function Co2 is not needed for the new ML pipeline, and Co3 

and Co4 have been added. 

Descriptor
1

Deploy
2 Solve PLD

Create

name space3

4
Image Repo 

config

9

F
o
r 

e
v
e
ry

 M
L

fu
n
c
ti
o
n

VLAN/VXLAN config
6

5 VLAN config

7

Deploy 

Containers
8

Dynamic 

config

A

Deploy1 Solve PLR

Container

Deployment

A

Eliminate

Container

B

2
Update

Config

3

W
F

1
 -

M
L

 P
ip

e
li
n

e
 D

e
p

lo
y
m

e
n

t

WF2 - ML Pipeline Reconfig

SDNVIOMLFOMgmt App SDNVIOMLFOMgmt App

Container

Deployment

 

Fig. 3. ML pipeline deployment (WF1) and reconfiguration (WF2). 

B. Proposed Architecture and Workflows 

In our architecture, an external management application 

system triggers ML pipeline deployment. Therefore, the 

MLFO needs to expose a Northbound Interface (NBI) to 

receive the description of the ML pipeline, including the 

template, constrained nodes, etc. (collectively named ML 

pipeline descriptor). The MLFO runs the PLD and PLR 

optimization problems to compute the ML pipeline to be 

deployed (deployment plan), and coordinates with the VIO 

and the packet layer SDN controller. A specific VLAN is 

created for each ML pipeline for intra-DC communications, 

whereas we assume that connectivity between two DCs is 

based on pre-established connections (e.g., VXLAN tunnels). 

Fig. 3 presents the workflows for the initial ML pipeline 

deployment and for any subsequent externally-triggered 

reconfiguration. Let us start with the deployment workflow 

(WF1). The management application initiates WF1 by 

sending the deployment plan (WF1 message 1 in Fig. 3). The 

descriptor contains a template for the ML functions and for 

the connectivity. Next, the deployment is triggered (2) and the 

MLFO starts a series of steps. First, the MLFO solves the PDL 

using the constraints, resulting in a mapping between the ML 

functions and the datacenters, and the connectivity and the 

deployment plan is computed. A list of iterations is generated 

that includes the communication of the MLFO with the VIO 

(e.g., Kubernetes) for the deployment of the ML functions 

(e.g., encapsulated into containers), and with the SDN 

controller for managing the connectivity among the ML 

functions. The list iterations include: i) the namespace 

creation (3); ii) the configuration of an image repository 

storing the different computing images that are retrieved when 

a new ML function instance is deployed (4); iii) the 

configuration of the ML pipeline network that entails creating 

the VLAN (5) and pairing it to the VXLAN tunnels (6); iv) 

the creation of a volume for the dynamic configuration of the 

computing instances (7); and v) the deployment of the 

containers (8). Steps 6-8 are followed for every ML function 

to be deployed (block A). A reply is eventually sent (9). 

WF2 is triggered when the ML pipeline needs to be 

reconfigured. The management application initiates WF2 by 

sending a new set of constraints to the MLFO (WF2 message 

1 in Fig. 3). The PLR problem is then solved considering the 

received configuration. Then, the MLFO finds the changes to 



5 

be performed and prepares a plan with the creation of new ML 

functions (block A) and removal of existing ones (block B). 

Besides, the dynamic configs are updated to reflect the 

changes in the system (e.g., changes on the IPs) (2). When all 

the steps are executed, the result is sent back to the 

management application (3). 

C. Implementation and results

We implemented the MLFO in Python 3.8 that exposes a 

REST API NBI. Kubernetes was used as VIO and docker as 

the container technology [32]. The MLFO uses the 

Kubernetes API through a python client library. A private 

image repository was hosted in Docker Hub. Multus and Open 

vSwitch Container Network Interface plugins were used for 

the VLAN configuration thorough Kubernetes. Kubernetes 

ConfigMap was used for the dynamic configuration files 

mounted into the containers as read-only files. The ingress-

nginx controller was used for the reverse proxy; the 

configuration is done through the Kubernetes’ ingress 

resource, which exposes a service through a load balancer. As 

for the SDN controller, we used OpenDayLight, which 

controls intra-DC switches through the OpenFlow protocol. 

VXLAN was used as tunneling technology for inter-DC 

tunnels. The MLFO pairs VLANs with VXLANs on each of 

the intra-DC switches that are involved on a connection 

between two containers. 

To summarize the results, the time to run WF1 to deploy 

the ML pipeline in Fig. 2b was about 1 min, whereas that of 

WF2 to reconfigure the ML pipeline as in Fig. 2c was 8.5 sec. 

4. BACKGROUND ON ADVANCED ML TECHNIQUES

Many intent-based solutions need from ML techniques as a

way to implement proactive approaches. In this section, we 

give some background on advanced ML techniques that are 

used in the applications that are presented in the next sections. 

Note that simpler (but not necessarily less effective) ML 

techniques for network automation can be found in [4]. 

A. Regression for Time Series

Time series forecasting covers those methodologies that 

predict future events as a function of previous observations, 

as well as some additional features that may or not depend on 

time. Traditionally, Autoregressive Integrated Moving 

Average (ARIMA) models [33] have been proposed for time 

series forecasting, due to several key characteristics, such as 

easiness of interpretability and the ability to provide 

probability distributions of the predicted events. They assume 

linearity between features and need some data pre-processing 

to remove important components out of the model (such as 

trend or heteroscedasticity), which reduces their applicability 

for more complex time series events. 

Deep learning techniques can be applied to predict complex 

future events without considering strongly limiting 

assumptions. In particular, the use of feed-forward neural 

networks (FFNN) [34] allows considering complex nonlinear 

relations among input features and the predicted future event. 

Moreover, they facilitate working with a mix of numerical and 

categorical inputs, as well as making predictions for several 

steps ahead, i.e., multi-step prediction. 

In general, FFNNs work better with pre-processed features 

that summarize the input information to be considered for 

prediction, e.g., some statistics and trend of the last observed 

events. This can be a limiting factor if features are not well 

designed. Another approach is to use raw data, e.g., all data 

observed in a large past window. In this regard, convolutional 

neural networks (CNN) have the inherent ability to learn and 

automatically extract features from raw input data [35]. By 

means of hidden convolutional layers, automatic 

identification and extraction of relevant features is produced 

in an unsupervised manner. 

Although both FFNN and CNN can be designed and trained 

to predict time series events, they were devised for 

applications that do not depend on time. On the contrary, 

Recurrent Neural Networks (RNN) [36] have been proposed 

specifically to deal with time series events, since they can 

explicitly manage the ordering among inputs. RNNs 

implement knowledge persistence, so it can be used for 

predictions. However, in general, this memory is short and 

knowledge vanishes with time. To improve RNNs, Long 

Short-Term Memory (LSTM) networks [36] were proposed 

to expand temporal dependence learning. LSTM units consist 

of a set of different complex gates, namely input, output, and 

forget gates and the coefficients of the network are 

dynamically managed to keep long term memory. LSTMs 

provide accurate prediction of time series with complex 

temporal correlation, e.g., periodical sharp changes [37]. 

B. Reinforcement Learning

Reinforcement Learning (RL) considers the paradigm of an 

intelligent agent that takes actions in an environment (as in 

Fig. 5c). At every discrete time step t, with a given state s, the 

agent selects action a with respect to a policy, and it receives 

from the environment a reward r and the new state s’. The 

objective is to find the optimal policy that maximizes a 

cumulative reward function. RL fits perfectly as part of intent 

agents, as the related problems can be usually stated in the 

form of a Markov decision process and they can be solved RL 

using dynamic programming techniques. In addition, in 

contrast to supervised learning, RL does not need labeled 

datasets and it can correct sub-optimal actions through 

exploration. 

The simplest RL is Q-learning [38], which is a model-free 

discrete RL method that uses a Q-table to represent the 

learned policy, where every pair <s, a> contains a q value. 

Being at state s, the action a to be taken is the one with the 

highest q value (or it is chosen randomly). Once the action is 

implemented and the new state s’ and the gained reward r are 

received from the environment, the agent updates the 

corresponding q value in the Q-table. Q-learning works 

efficiently for problems where both states and actions are 

discrete and finite. However, it usually introduces 

overestimation, which leads to suboptimal policies, and the 

Q-table grows with the number of states.



 6 

Deep Q-learning (DQN) substitutes the Q-table by a FFNN 

that receives a continuous representation of the state and 

returns the expected q value for each discrete action [38]. 

However, the FFNN tends to make learning unstable, so a 

replay buffer can be used to retrain the FFNN. Double DQN 

[39] uses two different FFNNs (learning and target) to avoid 

overestimation, which happens when a non-optimal action is 

quickly biased (due to noise or exploration) with a high q 

value that makes it preferably selected. The learning model is 

updated using the q values retrieved from the target model, 

which is just a simple copy of the learning model and it is 

periodically updated. Finally, dueling double DQN (D3QN) 

[40] uses two different estimators to compute the q value of a 

pair <s, a>: i) the value estimator, an average q value of any 

action taken at state s; and ii) the advantage estimator, which 

is the specific state-action dependent component. The sum of 

both components returns expected q values. 

DQN-based methods assume a finite discrete action space. 

Nonetheless, other approaches, such as Actor-Critic methods 

[41], use continuous state and action spaces. Actor-Critic 

methods train two different types of models separately: i) 

actors, which compute actions based on states, and ii) critics 

that evaluate the actions taken by actors, i.e., compute q 

values. Both actor and critic models can be implemented by 

means of FFNNs. Aiming at reducing overestimation, the 

Twin Delayed Deep Deterministic Policy Gradient (TD3) 

method [41] considers one single actor and two different critic 

models, where the minimum value from the two critics is used 

for learning the optimal policy. 

5. SOME CHALLENGES AND POSSIBLE SOLUTIONS 

How to gather data for training ML algorithms is one of the 

main challenges that need to be solved. The objectives to be 

achieved include not only the quality of such dataset, which 

is directly related to the final accuracy of the prediction for 

network operation, but also the time needed for that 

collection. Note that in many cases, performance-related data 

heavily depends on the actual characteristics of the network 

entity of interest and are only available when such entity is 

set-up. For instance, QoT measurements depend on the actual 

routing and spectrum allocation of an optical connection; in 

consequence, real measurements can only be available after 

such optical connection is established, and might change due 

to the provisioning of neighboring connections. However, ML 

algorithms need to be ready to be deployed at connection set-

up time and thus, special techniques are needed to train 

accurate ML algorithms before data for that specific network 

entity is available. Further, the inherent prediction ability of 

ML algorithms can be used during the lifetime of the network 

entity to elastically allocate resources to the optimality. 

Autonomous network operation reduces human 

intervention related to the configuration of the network. Such 

operation requires collecting performance measurements 

from the network and developing intelligent algorithms that 

make decisions proactively to reach some performance 

defined for each network entity (see Section 2). A related 

concept is that of independent operation vs coordinated 

operation. Independent operation occurs when the decisions 

that are made on a network entity are based on measurements 

collected for the same entity. However, since in a network 

infrastructure many entities are sharing the set of common 

resources, pure independent operation is rare, as it can lead to 

overall suboptimal resource utilization and even to result in 

poor performance because of the natural competence for 

resources. Therefore, some kind of coordination among 

entities should be devised. 

The next subsections present possible solutions for these 

challenges. 

A. Generation of reliable and accurate synthetic data 

Synthetic data generation is one of the solutions that can be 

implemented for the identified challenges and run in a 

sandbox domain. However, for the generated data to be 

reliable and accurate, they must be generated using techniques 

that rigorously reproduce the real scenario, thus creating a 

digital twin. Such a digital twin can be based on a combination 

of analytics and simulation models, which need to be tuned 

using the characteristics of the real entity, as well as with real 

measurements collected before or during operation. 

To illustrate accurate data generation, Fig. 4 presents two 

examples of digital twins for the packet (Fig. 4a-b) and the 

optical layer (Fig. 4c-d). For the packet layer, Fig. 4a presents 

an example of a network with four nodes interconnecting four 

data centers (DC), where DC1-3 exchange data with DC4 

(flows are also represented). Let us assume that traffic is 

monitored at the input interfaces, so a number of observation 

points have been activated. A digital twin is represented in 

Fig. 4b based on the CURSA-SQ methodology [16]. CURSA-

SQ’s includes a continuous G/G/1/k queue model with a first-

in-first-out discipline based on the logistic function, which 

enables solving the model in near-real time. To accurately 

reproduce the real scenario, however, parameter tuning for the 

queues is required. To that end, the dynamic configuration 

module is in charge of defining the traffic to be generated and 

consumed by every DC, as well as the entities configuration, 

which evaluates the accuracy of the estimation by comparing 

it against the real traffic conditions measured from the 

observation points in the network. In the case of the optical 

layer, Fig. 4c reproduces an example of optical connection 

established between two locations A and Z; optical 

transponders in the remote locations, cross-connects and 

intermediate amplifiers are represented. As for the optical 

layer, a digital twin is represented in Fig. 4d, based on the 

GNPy tool [15] to estimate the expected Signal to Noise Ratio 

(SNR) of the optical connections. In this case, the dynamic 

configuration module finds the most likely value of modeling 

parameters based on the monitoring data received from the 

network (see [12]). 

B. Proactive Self-configuration 

Autonomous network operation can be reactive (i.e., 
 



 7 

M

M

Q1-R3

e2e performance 

estimation

S

Simulation

CURSA-SQ

M

M
M

M

M

M

Evaluation and 

Tuning

Q1-R1

Q1-R2

Network

MonitoringDynamic 

Configuration

Queue State 

and Traffic

G

G

M
R1 R3

R4

R2

DC1

DC2

DC4DC3

G Q1-R4

(a)

(b)

X1

X2

X3
TpA TpZ

OA2-3_1OA1-2_1

MM

M Observation Point

(c)

e2e QoT

estimation

Simulation

GNPY

Evaluation 

and Tuning

Network

MonitoringDynamic 

Configuration

Input and 

Output Traffic

OSNR

(d)

M

M

TpA TpZ

X1 X2 X3

OA1-2_1 OA2-3_1
M

 

Fig. 4. Examples of digital twins for the packet (a-b) and the optical (c-d) layers. 

R1 R2

R3

vLink R1-R2

capacity

traffic
PkC DC2-DC3 

DC1

DC2

DC3

DC4

vLink

(a)

PkC DC1-DC4 

traffic(t), cap(t)

Monitoring 

Data

State & Reward

comp
Capacity

Adjustment

Environment

req. 

cap(t+1)agent 

cap(t+1)

Capacity

Adjustment

Thr-based

capacity 

adaption 

req. cap(t+1)

(b) Threshold-based Operation

traffic(t), cap(t) cap(t+1)

(c) RL-based Operation

 

Fig. 5. Capacity operation of PkCs and vLinks. 

in response to events) or proactive (i.e., acting ahead of time). 

Let us illustrate the difference with an example, where a 

packet connection (PkC) is established and conveys a traffic 

flow with unknown traffic characteristics. Our target here is 

to allocate just enough capacity to ensure the required 

performance, which would optimize resource utilization. 

However, every different PkC supports services with different 

operational goals in terms of delay and throughput (e.g., 

keeping the total delay below a given maximum, or 

minimizing the capacity while ensuring zero packet losses, 

etc.), and so, the tailored capacity dimensioning is required. 

Imagine that a policy-based management based on a fixed 

threshold (e.g., defined in terms of the ratio traffic volume 

over capacity) is set to operate the capacity of a PkC. Note 

that such operation can be highly reliable and it is based on a 

specific rule that is easily understood by human operators. 

However, deciding the value of the threshold requires 

knowledge of the traffic: i) a high threshold value (e.g., 90%) 

would result into poor performance coming from high delay, 

and it can be worse when the variability of the traffic is high; 

and ii) a low threshold value (e.g., 60%) would result into 

poor resource utilization. Therefore, some traffic analysis 

would be required. Further, since traffic characteristics can 

change over time, such analysis need to be continuously 

performed to change the operating model, when needed. 

When PkCs are routed on top of virtual networks, where 

virtual links (vLink) are supported by the optical layer, 

capacity might not be instantly allocated. Let us illustrate this 

problem with an example. Fig. 5a shows two PkCs (DC1-DC4 

and DC2-DC3) that are established on top of a virtual 

network. Packet nodes are connected through vLinks, each 

supported by lightpaths on the optical layer. To minimize 

overprovisioning, such capacity is dynamically adjusted, thus 

enabling the dynamic vLink capacity management, e.g., by 

establishing and releasing parallel lightpaths between the end 

packet nodes or activating and deactivating subcarriers in 

Digital Subcarriers Multiplexing (DSCM) systems [9]. 

Note that modifying the capacity of a PkC entails 

programming some rules in packet nodes and new capacity 

becomes immediately available. In contrast, adding more 

capacity to the vLink entails establishing a new lightpath, 

which requires some time (e.g., one minute). Therefore, vLink 

intents must make decisions with enough time to guarantee 

capacity availability. Such time depends, among others, of the 

packet traffic variation and thus, the value of the configured 

threshold could result into high delay and packet loss.  

The inner graph for PkC DC2-DC3 in Fig. 5a shows the 

capacity adjustments performed assuming that the operational 

goal of the PkC is to minimize the allocated capacity to reduce 

connectivity costs, by following as close as possible the input 

traffic, while avoiding traffic loss. Fig. 5b-c present two 

alternative approaches to operate the capacity of the PkCs, 

based on a simple threshold rule or based on an intelligent 

ML-based algorithm, in this case, RL. Every connection (PkC 

or vLink) intent agent collects the amount of input traffic that 

is injected to the connection, as well as some other 

measurements, like packet loss and delay, and it determines 

the capacity of the connection that will be needed to meet the 

given operational goals for the next period (e.g., one minute). 

Such capacity can be used to program some rules in the packet 

nodes not only to increment the capacity but also, e.g., to 

adjust the amount of buffer at the input of the connection. 

C. Cooperative Intent Operation and Transfer Knowledge 

Although PkCs and related vLinks can work independently, 

making decisions based on the observed input traffic, some 

coordination might facilitate the overall operation. For 

instance, as a result of the capacity required by the PkCs, the 

capacity of the vLink needs to be reconfigured, as observed in 

Fig. 5a. Nonetheless, if the available capacity of the vLink is 

exhausted, competition for the available capacity of the vLink 

would lead to poor performance for both PkCs. 



 8 

PkC

Intent

vLink

Intent

vLink

SLA, Policy

PkC

Intent

•Capacity,

• Input traffic,

•Packet Loss,

•Delay

PkC
• Input traffic,

•Capacity

Manage vLink Capacity 

(e.g., by creating 

parallel lightpaths)
Req. Capacity

Knowledge
SLA, Policy

Req. Capacity

Knowledge

Capacity

Knowledge

Knowledge

 

Fig. 6. Intent cooperation and transfer knowledge. 

A possible solution to avoid conflicts and countereffects 

between intent agents competing for common resources is to 

consider cooperation among them to ensure that they can 

achieve their operational goals. To illustrate such 

coordination, let us consider the multilayer scenario in Fig. 

5a. We assume that PkCs have different objectives. On the 

one hand, PkC DC1-DC4 requires that the maximum end-to-

end delay is not violated, whereas PkC DC2-DC3 requires 

minimize overprovisioning. In spite of the subtle difference in 

the plots in Fig. 5a between both PkCs, the capacity of DC1-

DC4 is always large enough with respect the input traffic to 

ensure that the delay added by the time spent in the queues is 

under the given maximum. Note that the capacity of DC2-

DC3 is kept closer to the actual traffic. Considering the 

capacity requirements from PkCs, vLinks can be easily 

managed; the capacity of vLink R1-R2 varies after adding or 

releasing one lightpath to adapt its aggregated capacity to the 

PkCs requirements, which motivates intent coordination. 

To manage the capacity of the entities, the architecture in 

Fig. 6 supports a hierarchy of intents, where each intent agent 

is in line with that in Fig. 5b-c. In the case of vLink intent 

agents, they receive as input the aggregated amount of input 

traffic in the vLink, its actual capacity, as well as the total 

capacity that PkCs will require for the next period, and are in 

charge of managing the vLinks capacity by establishing and 

tearing down lightpaths.  

Besides, there is some knowledge that can be transferred 

from PkC intents to vLink intents, which cannot be 

anticipated by means of monitoring the (aggregated) traffic in 

the vLink. Knowledge that can be transferred include: i) 

traffic models for the PkC; ii) sudden capacity increase due to 

customer operational decisions (e.g., a pre-planned increase 

of productivity of a factory can lead to data traffic increase); 

or iii) PkC rerouting requiring new connectivity to be 

supported by the underlying network. This knowledge could 

be used by vLink intents to increase the capacity or, on the 

contrary, reject the request if no resources are available. Note 

that such rejection would be informed back to PkC intents, 

which will use that knowledge to reformulate their decisions 

and for finding alternatives to achieve the operational 

objectives. Finally, knowledge transfer would benefit directly 

from the MLFO introduced in Section 3, as it would facilitate 

the dynamic association between PkC and vLink intents. 

RL agent 

Environment

Actions

a(t)

State s(t),

Reward r(t)

vLink

Intent

Manage SC 

config
Monitoring

Transponder

Agent

Tx

From SDN

Controller

List of allowed 

configurations

vlink traffic

Traffic (x(t))

Capacity (z(t))

Max Capacity,

Granularity,

Period, Policy

x(t), z(t)
Target

Capacity

(z’(t+1))

Actual

Capacity

(z(t+1))

 

Fig. 7. RL-based Autonomous vLink Operation Architecture. 

6. ILLUSTRATIVE INTENT-BASED APPLICATIONS 

In this section, we present two illustrative examples of 

intent applications based on ML. In the first example, the 

proactive self-configuration solution presented in Section 5.B 

is extended for managing the capacity of the vLink. In this 

approach, the vLink intent takes actions based on the traffic 

in the vLink. We go a step beyond in the second application, 

where intent cooperation is showcased developing the ideas 

introduced in Section 5.C. The intents deployed for the 

individual PkCs take actions based on the traffic in the 

connection and cooperate with the vLink intent, which 

aggregates the capacity of the individual PkCs to decide the 

capacity of the vLink. 

A. Autonomic vLink Capacity Adaptation 

Let us now illustrate the application of RL techniques for 

the autonomous operation of the capacity of a vLink. To this 

aim, we extend the RL-based intent agent in Fig. 5c with the 

architecture in Fig. 7; a RL-based vLink intent analyzes 

monitoring data, specifically input traffic x(t) and current 

vLink capacity z(t), that is collected periodically (e.g., every 

minute). Based on such analysis, the vLink intent agent 

determines the target capacity z’(t+1) that should be allocated 

for the next period by using the learned optimal policy. With 

such capacity, an agent running at the optical transponder (Tx 

side) decides the actual capacity z(t+1) to be allocated, which 

will depend on the characteristics of the optical layer. The 

operation can be based on policies and other parameters 

received from the SDN controller. 

Without loss of generality, let us consider that the optical 

connection supporting the vLink is based on DSCM. The key-

aspect of DSCM is the use of multiple subcarriers (SC), where 

each SC can be activated/deactivated and configured 

independently of the others in terms of modulation format and 

symbol rate. In addition, dynamic capacity adaptation can be 

carried out at the data plane without control plane 

intervention; the Tx side decides the configuration and 

activates a SC, and the Rx automatically detects the new SC 

and determines its configuration [9]. 



 9 

Autonomic RL-based operation can be configured to 

achieve a desired operational goal maximizing the long-term 

reward by taking proper actions to the environment. In this 

illustrative application, the goal is to adjust the vLink capacity 

to guarantee that the vLink load l(t) (defined as x(t) / z(t)) does 

not exceed but is close to a given maximum lmax; this will 

minimize over-provisioning (defined as z(t)-x(t)) while 

limiting the average maximum delay for the traffic. In this 

scenario, the learning process can be focus on the traffic 

variation and its evolution with time, which is key for a tight 

load adjustment and for avoiding high delay and traffic loss 

due to insufficient capacity allocation. 

The environment in the intent agent is in charge of 

computing the state s(t) based on the approach in [9], whereas 

s(t) is obtained as a function of both l(t) and lmax. Given s(t), 

the learned policy performs action a(t), which consists in a 

capacity volume ∆z to be added to or subtracted from the 

current vLink capacity. The reward function r(t) is a linear 

function with three penalty components (ordered by 

importance): i) traffic loss (x(t) > z(t)), ii) lmax violation (l(t) > 

lmax), and iii) over-provisioning (z(t) - x(t)). Thus, the 

maximum reward is achieved when neither loss nor lmax 

violation is observed, and over-provisioning is minimized. 

A Python-based simulator reproducing the architecture in 

Fig. 7 has been implemented for evaluation purposes. 

Realistic vLink input traffic was generated using the flow 

simulator and parameters described in [16], which resulted 

into a daily traffic pattern varying between 20 and 240 Gb/s. 

We assume that the DSCM system consists of 8 SCs, where 

each SC can be configured with either 8QAM or 16QAM at 

11 Gbaud to serve the target capacity determined by the vLink 

intent agent. The target load lmax was set to 80%. 

Q-learning, D3QN, and TD3 RL methods were 

implemented, adapting state and action spaces to either 

discrete or continuous space depending on the method (see 

Section 5.B). The FFNNs for D3QN and TD3 methods were 

configured with 2 layers each with 100 neurons implementing 

ReLU activation function [34]. For the sake of fairness, ∆z 

was setup to 10 Gb/s in all the methods. In addition, a 

threshold-based approach was implemented for 

benchmarking purposes, which reactively adds or releases 

capacity to keep l(t) in the range [0.7-0.8]. 

Fig. 8 shows the performance of the threshold-based 

approach and RL-based methods (note that latter ones need a 

sufficiently large number of episodes to guarantee robust and 

efficient operation). The measured input traffic x(t), target 

capacity z’(t) in the case of RL-based methods, and allocated 

capacity z(t) are plotted for a typical day. We observe that the 

threshold-based method with an a priori good configuration 

produces poor performance (traffic loss and high delay) as a 

result of its reactive nature. In contrast, all RL-based methods 

learned policies to avoid losses and they adapt better to the 

traffic characteristics. Specifically, D3QN achieves low 

maximum delay (at least, half of the other RL methods). 

However, the main conclusions to be extracted from delay  
 

Table 1. vLink Capacity Adaptation Summary 

Method 
Loss 

(Gb/s) 

Over- 

Provisioning 

(Tb/day) 

Num SC 

Changes 

Delay (μs) 

min avg max 

Thr-based 4.05 19.2 18 45 129 1629 

Q-Learning 0 21.6 54 23 95 603 

D3QN 0 22.6 34 19 82 267 

TD3 0 20.8 70 21 96 512 
 

analysis is that although the reward function explicitly 

controls the load, which is closely related to delay 

performance, a finer delay control (e.g., keeping delay below 

a target maximum) requires ad-hoc delay analysis 

components to be considered in the reward function. Table 1 

summarizes the results. In general, RL methods require higher 

overprovisioning than the threshold-based approach, but such 

overprovisioning is necessary to achieve the target 

performance. Therefore, these results validate the usefulness 

of RL for the proposed vLink operation use case.  

The drawbacks rely on the need for a larger number of SC 

changes (activations and deactivations) compared to the 

threshold-based approach. E.g., among the RL-based 

methods, the lowest overprovisioning is achieved by TD3 at 

the expense of doubling the number of SC changes with 

respect to D3QN, which requires double number of SC 

changes than the threshold-based approach. Hence, the 

selection of the RL method is not trivial and it might depend 

on limitations of the hardware, e.g., the SC activation time. 

Finally, it is worth noting that RL-based operation at the 

vLink level cannot provide differentiated delay performance 

for the different PkCs supported by the vLink. On the 

contrary, implementing the RL-based operation at the PkC 

would provide specific performance to the individual PkC but 

would require from specific cooperation between PkC and 

vLink intent agents. 

B. Cooperative Intent Operation 

In this section, we extend the previous stand-alone intent-

based vLink capacity adaptation and focus on evaluating the 

potential benefits of the hierarchical cooperation introduced 

in Section 5.C. Fig. 9a shows the architecture, where PkC 

intent agents implement a RL-based method similarly to the 

previously used for the vLink. For PkCs specifically, let us 

consider different operational goals than those used for the 

vLink; every PkC has a different requirement in terms of 

maximum delay budget dmax that needs to be guaranteed. This 

entails changes in the reward function r(t), where a new 

component adds a large penalty if the measured delay in the 

packet connection exceeds the required dmax. Moreover, no 

penalty for maximum load violation is considered. 

Fig. 9a shows the hierarchical cooperation between PkC 

and vLink intents. The aggregation of the target capacity 

requested for every PkC is used as target capacity for the 

vLink. In addition, based on the enhanced RL-based operation 

scheme proposed in [42], a LSTM-based traffic model can 

predict the evolution of the traffic and used to define the state  
 



 10 

0

100

200

300

400

0 50 100 150 200 250

x(t)
z'(t)
z(t)

0

100

200

300

400

0 50 100 150 200 250 0 50 100 150 200 2500 50 100 150 200 250

Tr
af

fi
c

o
r

C
ap

ac
it

y
(G

b
/s

)
Threshold-based Q-Learning D3QN

Loss ~4 Gb/s

0

200

400

600

800

1000

0 50 100 150 200 250

D
e

la
y

(n
s)

0 50 100 150 200 250

Time (min)
0 50 100 150 200 2500 50 100 150 200 250250  0 250  0 250  0

TD3

0
1000

 

Fig. 8. Autonomic vLink Capacity Adaptation (a) and obtained delay (b). 

vlink

PkC 1 

…
PkC n 

z1' (t+1)

z1'(t+1)

+

Packet Connection Intent 1

z1 (t)

x1 (t)

RL agent 

Environment

s(t), r(t) a(t)

zn'(t+1)

Target Capacity 

Analysis z’(t+1)

Manage 

SC config

z(t+1)

Tx

vLink intent

Packet Connection Intent n

zn' (t+1)

(a)

zn (t)

xn (t)

vlink

PkC 1 

…
z1' (t+1)

z1'(t+1)

+

Packet Connection Intent 1

RL agent 

Environment

s(t), r(t) a(t)

zn'(t+1)

Target Capacity 

Analysis z’(t+1)

Manage 

SC config

z(t+1)

Tx

vLink

intent

Packet Connection Intent n

(b)

f1, g1 fn, gn

Model ensemble

…

x’(t+m)

x1 (t)

z1 (t)

x1 (t+1)

fn, gn

LSTM
f1, g1

 

Fig. 9. Extended architecture with hierarchical intent cooperation (a) and 
knowledge transfer (b). 

for the RL agent. Taking advantage of such prediction, we can 

transfer LSTM-based models from PkCs to vLink intents in 

order to enhance target capacity definition at the vLink (Fig. 

9b). In this approach, the vLink intent collects models from 

PkC intents and creates an ensemble that is used for long-term 

predictions x’(t+m). The objective is to anticipate traffic 

variations and enhance the management of the underlying 

optical connection configuration, e.g., reducing the amount of 

SC changes to absorb both current and future traffic demand. 

Specifically, a compound traffic model is proposed (see 

Fig. 10a-b for an illustrative example), with two components: 

i) an average profile component f(t), that is a simple time-

dependent function (e.g., polynomial or piece-wise linear) 

defined on a given periodicity, e.g., one day (Fig. 10a); and ii) 

a single step LSTM component that models the residual traffic 

ξ(t)=x(t)-f(t) as a function of the last w residual values (g(t)) 

(Fig. 10b). Note that f models the overall periodic traffic 

evolution, while g collects the specific variations observed in 

different periods, as well as other perturbation (peaks) that 

scape from the coarse granularity of f. Hence, the combination 

of both components provides high accurate predictions. 

The use of the proposed LSTM-based model for state 

definition is as follows: i) x’(t+1) is obtained by estimating 

ξ(t+1) with the LSTM model and adding it to f(t+1). Then, 

∆x(t) is computed as max(0, x’(t+1) - x(t)) and used to obtain 

the load l(t) (now redefined as (x(t) + ∆x(t)) / z(t)), which is 

the main component of s(t). This anticipation of traffic 

increase allows a better maximum delay assurance since it 

minimizes the risk of under-provisioning. 

Any time a new prediction x’(t+m) needs to be done, a 

multi-step procedure generates independent residual 

predictions from ξi(t+1) to ξi(t+m) with the gi models, using 

as input the residuals of the measured vLink traffic. Then, the 

average ξ(t+m) is computed and added to ∑i fi(t+m) to obtain 

the prediction x’(t+m). The actual target capacity to be 

ensured is max(x’(t+m), z’(t+1)). 

The numerical evaluation scenario detailed in Section 6.A 

is adapted to fit this example. Three PkCs A, B, C with 

maximum traffic 120, 60, and 60 Gb/s and different delay 

budgets have been considered to generate the same 

aggregated vLink traffic as in Fig. 8. Both f and g models have 

been pre-trained after collecting 60 days of data. Periodicity 

of f components was fixed to 1 day and w=120 minutes was 

selected for all g components. We focus on the TD3 RL 

method and similarly as for vLink intent operation, we run it 

until achieving a robust and accurate operation. 

The accuracy of the proposed transfer knowledge scheme 

to predict vLink traffic is illustrated in Fig. 10c. The vLink 

traffic is compared against the prediction from model 

ensemble for m=60 min. Models learned by different PkCs 

intent agents for the short 1-min scope can be aggregated and 

used by the vLink for a much longer time scope with 

remarkable accuracy. Fig. 10d shows the delay at the source 

node for all PkCs, assuming that PkCs leave through 100/200  
 



 11 

0

20

40

60

80

100

120

0 100 200 300 400 500

-30

-10

10

30

50

0 100 200 300 400 500

0

100

200

300

400

0 50 100 150 200 250

x(t)
z(t) [vlink]
z(t) [hierarchical]
z(t) [transfer]

0

100

200

300

400

0 50 100 150 200 250

Tr
af

fi
c

(G
b

/s
)

Time (min)

R
e

si
d

u
al

 T
ra

ff
ic

(G
b

/s
)

x(t)

f(t)

ξ(t)

g(t)

0

200

400

600

800

1000

0 50 100 150 200 250

f1 [measured]
f2 [measured]
f3 [measured]

(a)

x(t)

D
e

la
y

(n
s)

Tr
af

fi
c

(G
b

/s
)

(c)

x’(t+m)

Tr
af

fi
c

o
r

ca
p

(G
b

/s
)

0

200

400

600

800

1000

0 50 100 150 200 250

vlink
hierarchical
transfer

Time (min)

D
e

la
y

(n
s)

(b)

0
1000

0
1000

Time (min)

(d)

(e)

(f)

0
50

PkC-A
PkC-B
PkC-C

 

Fig. 10. Compound traffic model for PkCs (a-b), PKC-vLink intent cooperation performance (c-d), and comparative results (e-f). 

 

Table 2. Cooperative IBN summary 

Method 

Over- 

Provisioning 

(Tb/day) 

Num SC 

Changes 

Delay (ns) 

min avg max 

vLink 20.8 70 21 96 512 

Hierarchical 29.8 50 15 54 233 

Transfer 29.8 16 15 52 187 
 

Gb/s interfaces. We observe that RL-based operation at the 

PkC level allows achieving the targeted differentiated delay 

performance.  

From Fig. 10c-d, we observe that the requested target 

capacity for every PkC is accurate and well-fitted so, the sum 

of all target capacities to be considered by the vLink intent 

agent results into an overall capacity that meets PkCs needs. 

Then, we conclude that knowledge transfer is potentially very 

useful for vLink intents as it enables prediction capabilities 

without the need of learning the models. 

Finally, Fig. 10e-f and Table 2 compare hierarchical 

cooperation without and with knowledge transfer, named 

hierarchical (Fig. 9a) and transfer (Fig. 9b), respectively. For 

comparison purposes, RL-based vLink intent (Fig. 7) 

performance is considered. Results of the vLink allocated 

capacity and introduced delay are presented in Fig. 10e and 

Fig. 10f, respectively. In view of the graphs, the requirements 

from the PkCs to achieve differentiated delay performance 

result in a higher capacity that cannot be successfully learnt 

by the vLink intent. Interestingly, when PkC operation is 

intent-based, the number of SC changes at the optical layer 

reduces noticeably. This fact points out the benefits of 

hierarchical intent cooperation to simplify multilayer 

operation. This reduction is even larger when knowledge 

transfer is implemented; really few SC changes are enough to 

accommodate the same overall capacity in a more intelligent 

way. Moreover, the delay contribution introduced by the 

vLink is greatly reduced. We can conclude that hierarchical 

intent cooperation with knowledge transfer is the option that 

provides the best trade-off between the achievement of the 

operational goals and resource utilization and management. 

7. CONCLUDING REMARKS 

In this tutorial, the IBN paradigm was introduced focused 

on its application to optical networking. IBN allows network 

operators to define what are their desired outcomes without 

specifying how such outcomes would be achieved. IBN can 

be fueled by the use of ML algorithms. First the deployment 

of ML applications requires from a specific orchestrator, 

named MLFO, to create ML functions that are connected as 

ML pipelines. An implementation of MLFO for the 

deployment and reconfiguration of an ML pipeline related to 

a lightpath was shown. Some challenges and solutions were 

afterwards presented for the generation of reliable and 

accurate synthetic data by using digital twins running in 

sandbox domains, proactive self-configuration, and 

cooperative intent operation and transfer knowledge. 

Illustrative examples of intent-based operation that use ML 

techniques were introduced. First, intent agents based on RL 

were proposed to adjust the capacity of a vLink as a function 

of the input traffic. Second, a combined LSTM and RL 

approach was proposed for dynamic PkC capacity allocation. 

The LSTM models for every PkC can be shared to vLink 

intents to anticipate long-term traffic changes. Numerical 

results were presented and discussed. 

Funding. The research leading to these results has received funding 

from the MICINN IBON (PID2020-114135RB-I00) project and 

from the ICREA Institution. 

REFERENCES 
1. L. Velasco, D. King, O. Gerstel, R. Casellas, A. Castro, V. López, “In-

Operation Network Planning,” IEEE Communications Magazine, vol. 
52, pp. 52-60, 2014. 

2. M. Bonfim, K. Dias, S. Fernandes, “Integrated NFV/SDN Architectures: 
A Systematic Literature Review,” ACM Computing Surveys, vol. 51, pp. 
1-39, 2019. 

3. L. Velasco, A. Chiadò Piat, O. González, A. Lord, A. Napoli, P. Layec, D. 
Rafique, A. D'Errico, D. King, M. Ruiz, F. Cugini, R. Casellas, 
“Monitoring and data analytics for optical networking: benefits, 
architectures, and use cases,” IEEE Network Magazine, vol. 33, pp. 
100-108, 2019. 



 12 

4. D. Rafique and L. Velasco, “Machine Learning for Optical Network 
Automation: Overview, Architecture and Applications,” IEEE/OSA J. 
of Optical Comm and Networking, vol. 10, pp. D126-D143, 2018. 

5. M. Dallaglio, A. Giorgetti, N. Sambo, L. Velasco, P. Castoldi, “Routing, 
Spectrum, and Transponder Assignment (RSTA) in Elastic Optical 
Networks,” IEEE/OSA J. of Lightwave Technology, vol. 33, pp. 4648-
4658, 2015. 

6. X. Chen, B. Li, R. Proietti, H. Lu, Z. Zhu, S. J. Ben Yoo, “DeepRMSA: A 
deep reinforcement learning framework for routing, modulation and 
spectrum assignment in elastic optical networks,” IEEE/OSA J. 
Lightwave Technology, vol. 37, pp. 4155-4163, 2019. 

7. L. Velasco, A. Sgambelluri, R. Casellas, Ll. Gifre, J.-L. Izquierdo-
Zaragoza, F. Fresi, F. Paolucci, R. Martínez, E. Riccardi, “Building 
Autonomic Optical Whitebox-based Networks,” IEEE/OSA J. of 
Lightwave Technology, vol. 36, pp. 3097-3104, 2018. 

8. L. Velasco, A. P. Vela, F. Morales, M. Ruiz, “Designing, Operating and 
Re-Optimizing Elastic Optical Networks,” (Invited Tutorial) IEEE/OSA 
J. of Lightwave Technology, vol. 35, pp. 513-526, 2017. 

9. L. Velasco, S. Barzegar, D. Sequeira, A. Ferrari, N. Costa, V. Curri, J. 
Pedro, A. Napoli, M. Ruiz, “Autonomous and Energy Efficient 
Lightpath Operation based on Digital Subcarrier Multiplexing,” IEEE J. 
on Selected Areas in Communications, vol. 39, pp. 2864-2877, 2021. 

10. F. Morales, Ll. Gifre, F. Paolucci, M. Ruiz, F. Cugini, P. Castoldi, L. 
Velasco, “Dynamic core VNT adaptability based on predictive metro-
flow traffic models,” IEEE/OSA J. Optical Comm and Networking, vol. 
9, pp. 1202–1211, 2017. 

11. L. Velasco, Ll. Gifre, J.-L. Izquierdo-Zaragoza, F. Paolucci, A. P. Vela, A. 
Sgambelluri, M. Ruiz, F. Cugini, “An Architecture to Support 
Autonomic Slice Networking [Invited],” IEEE/OSA J. of Lightwave 
Technology, vol. 36, pp. 135-141, 2018. 

12. S. Barzegar, M. Ruiz, A. Sgambelluri, F. Cugini, A. Napoli, L. Velasco, 
“Soft-Failure Detection, Localization, Identification, and Severity 
Prediction by Estimating QoT Model Input Parameters,” IEEE 
Transactions on Network and Service Management, vol. 18, pp. 2627-
2640, 2021. 

13. B. Shariati, M. Ruiz, J. Comellas, L. Velasco, “Learning from the Optical 
Spectrum: Failure Detection and Identification [Invited],” IEEE/OSA J. 
of Lightwave Technology, vol. 37, pp. 433-440, 2019. 

14. A. Clemm, L. Ciavaglia, L. Granville, J. Tantsura, “Intent-Based 
Networking - Concepts and Definitions,” IRTF draft work-in-progress, 
2021. 

15. M. Filer, M. Cantono, A. Ferrari, G. Grammel, G. Galimberti, V. Curri, 
“Multi-Vendor Experimental Validation of an Open Source QoT 
Estimator for Optical Networks,” IEEE/OSA J. of Lightwave Technology, 
vol. 36, pp. 3073-3082, 2018. 

16. M. Ruiz, F. Coltraro, L. Velasco, “CURSA-SQ: A Methodology for 
Service-Centric Traffic Flow Analysis,” IEEE/OSA J. of Optical Comm 
and Networking, vol. 10, pp. 773-784, 2018. 

17. M. Ruiz, M. Ruiz, F. Tabatabaeimehr, Ll. Gifre, S. López-Buedo, J. López 
de Vergara, O. González, and L. Velasco, “Modeling and Assessing 
Connectivity Services Performance in a Sandbox Domain,” IEEE/OSA 
J. of Lightwave Technology, vol. 38, pp. 3180-3189, 2020. 

18. “Framework for data handling to enable ML in future networks 
including IMT-2020,” ITU-T Y.3174, 2020. 

19. “Unified architecture for machine learning in 5G and future 
networks,” Focus group on Machine Learning for Future Networks 
including 5G, ITU-T, 2019. 

20. “Principles for a Telecommunications Management Network,” ITU-T, 
Rec. M.3010, 2000. 

21. J. Strassner, Policy-Based Network Management: Solutions for the 
Next Generation, Morgan Kaufmann, 2004. 

22. Ll. Gifre, J.-L. Izquierdo-Zaragoza, M. Ruiz, L. Velasco, “Autonomic 
Disaggregated Multilayer Networking,” IEEE/OSA J. of Optical 
Communications and Networking, vol. 10, pp. 482-492, 2018. 

23. A. P. Vela, M. Ruiz, L. Velasco, “Distributing Data Analytics for Efficient 
Multiple Traffic Anomalies Detection,” Elsevier Computer 
Communications, vol. 107, pp. 1-12, 2017. 

24. A. P. Vela, B. Shariati, M. Ruiz, F. Cugini, A. Castro, H. Lu, R. Proietti, J. 
Comellas, P. Castoldi, S. J. Ben Yoo, L. Velasco, “Soft failure localization 
during commissioning testing and lightpath operation,” IEEE/OSA J. 
of Optical Comm and Networking, vol. 10, pp. A27-A36, 2018. 

25. A. P. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, G. Meloni, L. Potí, L. 
Velasco, P. Castoldi, “BER Degradation Detection and Failure 
Identification in Elastic Optical Networks,” IEEE/OSA J. of Lightwave 
Technology, vol. 35, pp. 4595-4604, 2017. 

26. X. Chen, R. Proietti, C-Y Liu, S. J. Ben Yoo, “A Multi-Task-Learning-
based Transfer Deep Reinforcement Learning Design for Autonomic 
Optical Networks,” IEEE J. on Sel. Areas in Communications, vol. 39, 
pp. 2878-2889, 2021. 

27. M. Ruiz, F. Tabatabaeimehr, L. Velasco, “Knowledge Management in 
Optical Networks: Architecture, Methods and Use Cases [Invited],” 
IEEE/OSA J. of Optical Comm and Networking, vol. 12, pp. A70-A81, 
2020. 

28. F. Tabatabaeimehr, M. Ruiz, C.-Y. Liu, X. Chen, R. Proietti, S. J. Ben Yoo, 
L. Velasco, “Cooperative Learning for Disaggregated Delay Modeling 
in MultiDomain Networks,” IEEE Transactions on Network and 
Service Management, vol. 18, pp. 3633-3646, 2021. 

29. L. Velasco, B. Shariati, F. Boitier, P. Layec, M. Ruiz, “A Learning Life-Cycle 
to Speed-up Autonomic Optical Transmission and Networking 
Adoption,” in IEEE/OSA J. of Optical Comm and Networking, vol. 11, 
pp. 226-237, 2019. 

30. A. Bernal, M. Richart, M. Ruiz, A. Castro, L. Velasco, “Near Real-Time 
Estimation of End-to-End Performance in Converged Fixed-Mobile 
Networks,” Comp. Comm., vol. 150, pp. 393-404, 2020. 

31. A. Wassington, L. Velasco, Ll. Gifre, M. Ruiz, “Implementing a Machine 
Learning Function Orchestration,” accepted in ECOC, 2021. 

32. D. Bernstein, “Containers and Cloud: From LXC to Docker to 
Kubernetes,” IEEE Cloud Computing, vol. 1, pp. 81-84, 2014. 

33. R. Shumway and D. Stoffer, Time Series Analysis and Its Applications, 
Springer International Publishing, 2017. 

34. P. Zhang and M. Qi, “Neural network forecasting for seasonal and 
trend time series,” European J. of Operational Research, vol. 160, pp. 
501-514, 2005. 

35. C. Aggarwal, Neural Networks and Deep Learning: A Textbook, 
Springer, 2018. 

36. D. Mandic and J. Chambers, Recurrent Neural Networks for Prediction: 
Learning Algorithms, Architectures and Stability, Wiley, 2001. 

37. V. Le Guen and N. Thome, “Shape and Time Distortion Loss for 
Training Deep Time Series Forecasting Models,” In Proc. NeurIPS, 
2019. 

38. R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2nd 
Ed., MIT Press, 2018. 

39. H. Hasselt, A.Guez, D. Silver, “Deep Reinforcement Learning with 
Double Q-learning,” in Proc. AAAI Conference on AI, 2016. 

40. Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, N. de Freitas, 
“Dueling Network Architectures for Deep Reinforcement Learning,” 
in Proc. ICML, 2016. 

41. S. Fujimoto, H. van Hoof, D. Meger, “Addressing Function 
Approximation Error in Actor-Critic Methods,” in Proc. ICML, 2018. 

42. F. Tabatabaeimehr, S. Barzegar, M. Ruiz, L. Velasco, “Combining Long-
Short Term Memory and Reinforcement Learning for Improved 
Autonomous Network Operation,” in Proc. OFC, 2021. 




