
1

IGNNITION: Bridging the Gap Between
Graph Neural Networks and Networking Systems

David Pujol-Perich, José Suárez-Varela, Miquel Ferriol, Shihan Xiao,
Bo Wu, Albert Cabellos-Aparicio and Pere Barlet-Ros

NOTE: Accepted for publication at IEEE Network Magazine. ©2021 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Recent years have seen the vast potential of Graph
Neural Networks (GNN) in many fields where data is structured
as graphs (e.g., chemistry, recommender systems). In particu-
lar, GNNs are becoming increasingly popular in the field of
networking, as graphs are intrinsically present at many levels
(e.g., topology, routing). The main novelty of GNNs is their
ability to generalize to other networks unseen during training,
which is an essential feature for developing practical Machine
Learning (ML) solutions for networking. However, implementing
a functional GNN prototype is currently a cumbersome task
that requires strong skills in neural network programming. This
poses an important barrier to network engineers that often do
not have the necessary ML expertise. In this article, we present
IGNNITION, a novel open-source framework that enables fast
prototyping of GNNs for networking systems. IGNNITION is
based on an intuitive high-level abstraction that hides the
complexity behind GNNs, while still offering great flexibility to
build custom GNN architectures. To showcase the versatility and
performance of this framework, we implement two state-of-the-
art GNN models applied to different networking use cases. Our
results show that the GNN models produced by IGNNITION are
equivalent in terms of accuracy and performance to their native
implementations in TensorFlow.

INTRODUCTION

Graph Neural Networks (GNN) [1] have recently become a
hot topic among the Machine Learning (ML) community. The
main novelty behind these models is their unique ability to
learn and generalize over graph-structured information. This
has enabled the development of groundbreaking applications
in different fields where data is fundamentally represented
as graphs (e.g., chemistry, physics, biology, recommender
systems, social networks) [2].

The last few years have seen an increasing interest among
the networking community to exploit the potential of GNN,
as many fundamental networking problems involve the use
of graphs (e.g., topology, routing). As such, we have already
witnessed some successful GNN-based applications for net-
working (e.g., routing optimization [3], [4], virtual network
function placement [5], resource allocation in wireless net-
works [6], job scheduling in data center networks [7]). In
particular, GNN is the only ML technique that demonstrated
the capability to effectively operate in other networks unseen

David Pujol-Perich, José Suárez-Varela, Miquel Ferriol-Galmés, Albert
Cabellos-Aparicio, and Pere Barlet-Ros: Barcelona Neural Networking
Center, Universitat Politècnica de Catalunya.
Shihan Xiao and Bo Wu: Network Technology Lab., Huawei Technologies
Co.,Ltd.

Custom GNN architecture
Networking scenario

TensorFlow
High-level GNN

abstraction

(MSMP Graph)

Fig. 1: Overview of IGNNITION.

during the training phase. This is thanks to the generalization
power of GNNs over graphs which, in the networking field,
represents a cornerstone for the development of a new genera-
tion of ML-based solutions that can be trained in a controlled
network testbed (e.g., at the vendor’s lab) and, once trained, be
ready for deployment in any customer network (topologies of
arbitrary size and structure), without the need for re-training
on premises [3].

Nowadays, designing and implementing a GNN model
involves dealing with complex mathematical formulation and
using ML libraries with tensor-based programming, such as
TensorFlow, or PyTorch. At the same time, GNN models
for networking often rely on non-standard GNN architectures
(e.g., heterogeneous graphs with sequential dependencies be-
tween different element types [3], [4]), which makes their
implementation even more difficult. This represents a critical
entry barrier for network researchers and engineers that could
benefit from the use of GNN, but lack the necessary ML
expertise to implement these models.

In this article, we present IGNNITION, a TensorFlow-based
framework for fast prototyping of GNNs (see Fig. 1). This
framework is open source1, and mainly targets networking
experts and researchers with little background on neural net-
work programming. With IGNNITION, users can easily design
their own GNN models — even for the most complex network
scenarios — via an intuitive, human-readable YAML file.
Based on this input, the framework automatically generates
an efficient TensorFlow implementation of the GNN, without
the need for writing a single line of TensorFlow code.

To achieve this, we propose a high-level abstraction we
call the Multi-Stage Message Passing graph (MSMP graph).
This novel abstraction covers a broad definition of GNN,
offering great flexibility to design a wide variety of exist-
ing GNN variants, and generate new custom architectures
combining individual components of them (e.g., message-

1Available at: https://ignnition.net

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/MNET.001.2100266

https://ignnition.net

2

passing functions). Likewise, MSMP graphs enable to hide
the complex mathematical formulation and the tensor-wise
operations behind the implementation of GNNs.

IGNNITION provides a YAML-based codeless interface
that network engineers and practitioners can leverage to im-
plement custom GNN models applied to networking. In this
context, coding these types of models with general-purpose
GNN libraries (e.g., [1], [8]–[12]) is arguably more complex
for non experts in neural network programming, as they often
require using lower-level abstractions, and some of these
libraries even lack sufficient flexibility to implement non-
standard GNN architectures applied to networking [8], [11].

More in detail, IGNNITION offers the following main
features:

• High-level abstraction: Codeless interface — based on
MSMP graphs and YAML files — that abstracts away
both the mathematical formulation of the GNN and its
implementation.

• Flexibility of design: Broad support for existing GNN
variants and custom message-passing architectures via the
novel MSMP graph abstraction.

• High performance: Efficient GNN implementations
equivalent to native TensorFlow code, as performance is
crucial for network applications.

• Easy debugging: Advanced error-checking mechanisms
and enhanced visualizations of the implemented GNNs,
to help network engineers troubleshoot their models.

• Easy integration: User-friendly dataset interface, based
on the well-known NetworkX library, to feed GNN
models with data from different sources and in various
formats (e.g., network monitoring logs).

• Networking focus: IGNNITION is specially designed
to facilitate the implementation of non-standard features
commonly used in GNN-based networking applications
(e.g., support for heterogeneous graphs with possible
sequential dependencies [3], [4]).

As a result, with IGNNITION, network researchers and
engineers with limited knowledge on neural network program-
ming should be able to quickly produce a fully functional
prototype of a GNN model tailored to a particular application.

BACKGROUND ON GNN

The input of a GNN is a graph, which comprises a set of
nodes and edges connecting them. Each node v has an associ-
ated hidden state vector hv of predefined size that encodes its
internal state. At the beginning of the GNN execution, hidden
state vectors are initialized with some node-related features
included in the input graph.

After this, a message-passing algorithm is executed accord-
ing to the connections of the input graph. This message-
passing process comprises three main phases (see Fig. 2):

1) Message exchange
2) Aggregation
3) Update
First, each node sends a message to all its neighbors in the

graph. This message is the result of combining the hidden
states of the sender node hv and the receiver neighbor hu

Message Exchange

1

2

4 5

Aggregation Update

3

1

2

4 5

3

1

2

4 5

3

𝒎𝟏 = Aggr ()
2
+ U(𝒉𝟏,𝒎𝟏)

3
+

4
+

5

Fig. 2: Phases of a message-passing iteration: Message ex-
change, Aggregation, and Update

through the so-called Message function (M). After this, each
node aggregates all the messages collected from its neighbors
into a single fixed-size vector mv (a.k.a., the aggregated mes-
sage). To do this, nodes use a common Aggregation function
(Aggr), which in standard GNNs is typically an element-wise
summation over all the messages collected on the node. Lastly,
each node applies an Update function (U) that combines its
own hidden state hv with the node’s aggregated message mv.
This message passing is repeated a number of iterations T ,
until the nodes’ hidden states hv converge to some fixed
values.

After the message-passing phase, a Readout function is used
to produce the output of the GNN model. This function takes
as input the nodes’ hidden states and converts them into the
final predictions of the model. Note that the output of the
Readout function can be either a set of global graph-level
properties or specific node-level features.

An essential aspect of GNN is that the internal functions that
shape its architecture are modeled by neural networks (NN).
Particularly, the Message, Update, and Readout functions are
typically approximated by three independent NNs (e.g., feed-
forward NN, Recurrent NN). These NNs are then dynamically
assembled within the GNN architecture according to the nodes
and connections of the input graphs. During training, the afore-
mentioned NNs (e.g., the Message NN) optimize jointly their
internal parameters, effectively learning the target function
from the perspective of each individual node in the graph.
As a result, after training, the GNN is able to make accurate
predictions on graphs with different sizes and structures not
seen before.

Note that beyond the generic GNN description provided in
this section, there is a rich body of literature with different
GNN architectural variants (e.g., Graph Convolutional Net-
works, Gated Neural Networks, Graph Attention Networks,
Graph Recurrent Networks, GraphSAGE) [2], while all of
them share the basic principle of an initial message-passing
phase followed by a final readout. We refer the reader to [1],
[2] for more generic background on GNN.

THE MSMP GRAPH ABSTRACTION

In the networking field, GNN models need to be highly
customized to accommodate specific networking use cases.
Particularly, it is common to find non-standard message-
passing architectures [3], [4], [6] that stem from the need
to explicitly model the circular dependencies between various
network elements, based on the actual behavior of real net-
work infrastructures. As a result, state-of-the-art GNN models
for networking often consider heterogeneous graphs as input

3

Fig. 3: MSMP graphs — Generic example and RouteNet [3].

— with different element types (e.g., forwarding devices,
links, paths) —, and custom message-passing definitions di-
vided in multiple stages [3], [13], where in each stage a
specific set of elements (e.g., paths) share their hidden states
with some other elements (e.g., devices).

Existing general-purpose GNN libraries offer high-level
abstractions to simplify the implementation of custom GNN
models. Among the most popular libraries, DGL [10] provides
support for heterogeneous graphs, offering flexibility to define
GNNs with differentiated message, aggregation, and update
functions for each element type of input graphs, as well
as combining components from well-known GNN architec-
tures (e.g., Graph Convolutional Networks, Graph Attention
Networks). Likewise, PyTorch Geometric [9] provides pre-
implemented GNN layers that can be combined to create
complex GNN architectures. However, the higher-level ab-
stractions of these libraries do not provide direct support
for implementing multi-stage message passing definitions,
with flexibility to define message exchanges between different
element types at different execution stages, which is a common
architectural framework among state-of-the-art GNN models
for networking [3], [13]. This eventually requires the use of
lower-level abstractions to implement these types of models.

In light of the above, IGNNITION introduces a novel
high-level abstraction called the Multi-Stage Message Passing
graph (MSMP graph), which is carefully designed to facilitate
the implementation of GNN models applied to networking.
With MSMP graphs, users can define their custom GNN
architectures through a visual graph representation, abstracting
them from the complex mathematical formulation behind their
designs.Particularly, a GNN can be defined by a set of element
types (hereafter, graph entities) and how they relate to each
other in a sequential order, allowing the definition of multi-
stage message passing schemes in a natural and intuitive way.

Figure 3 (left) illustrates a generic example of an MSMP
graph with three graph entities (e1, e2 and e3). In this
scheme, two message-passing stages can be differentiated:
First, elements of type e1 and e2 send their hidden states to
their neighbors of type e3, according to their connections in
the input graph. Then, in a second stage e3 elements share their
states with their linked elements of type e1 and e2. Likewise,
Figure 3 (right) depicts the MSMP graph of RouteNet [3].
In this case, the GNN model considers two graph entities
(links and paths), and implements a two-stage message-passing
scheme that explicitly represent the circular dependencies be-
tween these two entities. The implementation of the Message,
Aggregation, Update, and Readout functions is later defined

by the user via an intuitive model description file in YAML, as
described in the next section of this article. An MSMP graph
description eventually describes a message-passing iteration
of the GNN. Then, IGNNITION automatically unrolls this
definition a number of iterations T defined by the user.

At the same time, the MSMP graph abstraction offers a
flexible modular design, which supports a wide range of
existing GNN variants (e.g., Message-Passing NNs, Graph
Convolutional Networks, Gated NNs, Graph Attention Net-
works, Graph Recurrent Networks) [2], as well as custom
combinations with individual components of them (e.g., mes-
sage, aggregation, update, normalization). To the best of our
knowledge, this abstraction supports all the state-of-the-art
GNN models applied to networking at the time of this writing.

IGNNITION ARCHITECTURE

This section provides an overview of IGNNITION. In
particular, we describe below the four main building blocks
that shape this framework:

1) Model Description Interface
2) Dataset Interface
3) Core Engine
4) Debugging Assistant

Model Description Interface

The first step to build a GNN with IGNNITION is to
describe the model architecture using the MSMP graph ab-
straction, introduced in the previous section. This can be done
through a codeless interface, by filling a short YAML file.
More specifically, this file contains the following information:

Entities Definition: First, the user defines the different enti-
ties (i.e., element types) to consider in the networking scenario
and, consequently, in the corresponding MSMP graph. In the
networking context, an entity represents a set of network
elements, which can be physical (e.g., routers, links), or
logical (e.g., paths, virtual network functions). As an example,
Fig. 4 shows the definition of an entity in the YAML model
description file. There, the user indicates the entity name (e.g.,
path), the size of the hidden state vectors (e.g., 32 elements),
and the method and features used to initialize these vectors.
The initialization can be defined as a flexible pipeline of
operations that supports elaborate methods used in state-of-
the-art models (e.g., normalization, initial feature embedding).
Feature names (e.g., traffic) are used as unique identifiers to
then feed the model with any input dataset, as shown later in
this section.

Message Passing: After defining the entities, the user com-
pletes the MSMP graph by describing the message-passing
operations in the GNN model. These are based on the rela-
tionships between the graph entities previously defined. To do
so, the user defines a single message-passing iteration, which
can be divided into multiple stages. In each stage, a set of
entities share their hidden states with other specific entities,
thus offering flexibility to define the source and destination
entities participating in each message-passing stage.

For example, in the generic MSMP graph of Fig. 3 (left),
the message passing is divided in two stages. In the first one,

4

Entity definition
entities:
- name: path

state_dimension: 32
initial_state:
- type: build_state

input: [traffic]

...

Message-passing definition
message_passing:

num_iterations: N
stages:

Stage 1
- stage_message_passings:

- destination_entity: path
source_entities:

- name: link
message:

- type: direct_assignment
aggregation:

- type: ordered
update:

type: neural_network
nn_name: recurrent1

Fig. 4: Example of a YAML model description file.

the following message exchanges are executed: e1→e3, and
e2→e3; while the second stage performs the reverse message-
passing operations: e3→e1, and e3→e2.

In the model description file, this can be defined as a
series of YAML objects describing the several stages. For each
stage, the user defines the names of the source and destination
entities, and the Message, Aggregation and Update functions
to be applied. IGNNITION provides great flexibility to im-
plement these functions, using any type of NN (e.g., multi-
layer perceptron, recurrent, convolutional), or other operations
such as element-wise sum, average, max, min, product, or
even direct variable assignments, which are often used in
state-of-the-art GNN models for networking [3], [13]. A full
description of all the options available can be found at [14].
As an example, Fig. 4 shows the definition of Stage 1 in
the message passing of RouteNet [3] (see the corresponding
MSMP graph in Fig. 3-right). Note that, in case of using NNs
(e.g., in the Update function), the user can define a name (e.g.,
recurrent 1) that is then used to describe the NN details in a
separate section of the file, as detailed later in this section.

Readout: After the message passing, the user defines the
Readout function, producing either per-node or global graph-
level outputs. In IGNNITION, the Readout is defined via a
flexible pipeline of instructions that may combine pooling
operations, neural networks, and other less common operations
used in state-of-the-art GNN models applied to networking.
Pooling operations (e.g., element-wise sum, mean) transform a
variable-size set of nodes’ hidden states into a single fixed-size
embedding vector, which is often used to make global graph-
level predictions. Likewise, neural network operations take as
input nodes’ hidden states — or the embeddings resulting from
previous operations — and pass them through a NN. More
information about the Readout definition can be found at [14].

Neural Networks Definition: Lastly, the user can define all
the neural networks previously referenced in a separate section

(e.g., Message, Update, Readout NNs). For this purpose,
IGNNITION supports all the native functions of the well-
known Keras library [15]. Thus, to define for instance a
multilayer perceptron, the user should specify in the YAML
file at least the fields required by Keras, which are the number
and type of layers and some basic parameters (e.g., neurons
per layer). For other undefined parameters, IGNNITION uses
the Keras default values, thus considerably simplifying the
definition of the NN. This YAML-based interface provides
flexibility to implement any NN as long as it is supported by
Keras, which is widely considered as one of the most complete
low-level NN programming libraries.

Dataset Interface

The Dataset Interface is intended to decouple the GNN
model description from the input data. Similar to other GNN
libraries, such as DGL [10] or PyTorch Geometric [9], IGN-
NITION enables to directly process data with the well-known
NetworkX library. This Python library already implements a
plethora of functions that automatize the definition of graphs
from datasets, which enables to easily feed the GNN model
with datasets from different sources and in various formats
(e.g., NetFlow/IPFIX measurement reports, router configura-
tion logs).

Core Engine

This module implements the main logic behind IGNNI-
TION. Once the model has been designed and the datasets
have been properly formatted — as explained above — the
user can call different functionalities from the Core Engine:

• Generate a TensorFlow implementation of the GNN
• Run the training/validation of the model
• Make predictions with a trained model
• Generate visual representations of the model (for debug-

ging purposes)
The Core Engine internally implements a generic definition

of the MSMP graph abstraction, thus covering the broad spec-
trum of GNN architectures supported by such abstraction. To
generate the model implementation, the Core Engine proceeds
in a similar way to traditional compilers, first performing a
lexical analysis, then a syntactical analysis, and finally a se-
mantic analysis. These three steps enable to detect unexpected
structures in the model definition (in YAML files) and trigger
numerous error-checking messages to help users debug their
models.

After validating all the input information, IGNNITION
automatically generates the GNN model implementation di-
rectly in TensorFlow. This enables to work internally with the
efficient computational graph produced by this ML library.
As a result, IGNNITION implementations have comparable
performance to models directly coded in TensorFlow, as shown
later in the evaluation of this article.

Debugging Assistant

One of the biggest challenges when designing a GNN model
with traditional ML libraries is to identify potential bugs and
fix them. Typically, having a clear picture of the resulting
GNN model is a cumbersome and time-consuming task. For

5

this reason, IGNNITION incorporates an advanced debugging
system that assists the user in different ways.

First, it automatically produces an interactive visual rep-
resentation of the internal GNN architecture. To this end, it
relies on Tensorboard — a TensorFlow-based visualization
toolkit — allowing the user to dynamically visualize its GNN
model at different levels of granularity. Standard visualizations
of TensorBoard show the resulting computational graph of the
model. However, it is difficult to identify the different building
blocks of the GNN from the tensor operations shown in this
graph (e.g., message, aggregation, update functions, message-
passing iterations). IGNNITION implements a layer on top of
this computational graph (using scope variables) that differen-
tiates the main building blocks of the GNN at different levels
of hierarchy, which makes it easier to identify the internal
functions. For example, after implementing RouteNet [3] with
IGNNITION the user can navigate through the resulting Ten-
sorBoard graph and easily identify the two message-passing
stages of this model (see Fig. 3-right): links→paths, and
paths→links. Moreover, by zooming in on the visualization,
the user can easily find the internal functions and how they
are implemented (e.g., Message, Aggregation, Update).

Additionally, the debugging assistant incorporates several
advanced error-checking mechanisms to ensure the correct
definition of the model and to provide guidance to fix badly
defined fields in YAML files (e.g., wrong NN descriptions,
entities definitions, missing features in the datasets).

CASE STUDIES

GNNs have been successfully applied to a plethora of
networking use cases, such as routing optimization [3], [4],
virtual network function placement [5], resource allocation
in wireless networks [6], job scheduling in data center net-
works [7], MPLS configuration, or Multipath TCP. A more
comprehensive list of relevant GNN-based applications for
communication networks can be found at [13].

Figure 5 illustrates the general workflow for producing with
IGNNITION a GNN model adapted to a particular network
problem. First, the user — e.g., a network engineer — needs
to identify the main elements involved in the networking
problem to be addressed (e.g., devices, links, apps, paths) and,
according to the purpose of the GNN model (e.g., Traffic
Engineering), define potential dependencies between these
different elements. In the networking context, we can often
find circular dependencies between different elements that can
be naturally encoded in GNNs as a sequence of message-
passing stages. These elements and dependencies shape the
input graphs of the GNN, thus defining the structure of the
samples in the train, validate and/or test datasets used for
the model. Afterward, the user can define the architecture of
the GNN. In IGNNITION, this can be done by filling the
YAML model description file, leveraging the novel MSMP
graph abstraction. Lastly, IGNNITION generates an efficient
implementation of the model in TensorFlow that can be trained
with the generated datasets.

As an example, we briefly describe below how we can
implement with IGNNITION two state-of-the-art GNN models
that introduce some non-standard architectural patterns.

Network engineer

1) Identify the entities

2) Define the dependencies

Elements and dependencies

Model description

Dataset

Custom GNN model

NetworkX

MSMP Graph

Input graph

Network Scenario

Links Paths AppsDevices

Fig. 5: General workflow to produce GNN models for net-
working with IGNNITION.

RouteNet

RouteNet [3] was proposed as a network modeling tool
that predicts path-level performance metrics (e.g., delay, jitter)
given a network state snapshot as input, which is defined by: a
network topology, a routing configuration, and a traffic matrix.
This GNN is then used to optimize the routing configuration
in networks, by combining the model with an optimizer. To
this end, RouteNet considers input graphs with two different
entities (links and paths) that have circular dependencies
between them, and encodes its input parameters as features
within the initial hidden states of these elements. As a result,
this GNN model implements a two-stage message-passing
scheme combining the hidden states of these entities, which
can be naturally defined by an MSMP graph (see Fig. 3-right).

Graph-Query Neural Network (GQNN)

The GQNN model [4] addresses a different problem: super-
vised learning of traditional routing protocols with GNN, such
as shortest path or max-min routing. To this end, this GNN
model uses a novel architecture with two graph entities: routers
and interfaces, being the latter the several network interfaces of
each router in the network. This model considers a single-stage
message-passing scheme where routers and interfaces share
their hidden states simultaneously. As output, it determines
whether the interfaces are used to transmit traffic or not (i.e.,
[0,1]), which eventually defines the routing configuration of
the network. GQNN introduces a particularity in the Readout
definition, which uses a non-standard operation pipeline with
an element-wise product and then a NN to produce the final
prediction. With IGNNTION, this can be easily defined in the
YAML model description file as a pipeline with a product
operation and then a NN function.

For more information on how to implement a GNN pro-
totype with IGNNITION, we refer the reader to [14]. There,
the user can find an easy-to-follow quick-start tutorial, where
a basic GNN model is built to compute the shortest path
routing configuration given a network topology with weights
on links. Also, IGNNITION includes a library with state-of-
the-art GNN models applied to different networking use cases,
which is under continuous development by the community of
this open-source project.

6

EVALUATION: ACCURACY AND COST

As mentioned earlier, IGNNITION internally implements
GNN models in TensorFlow, thus leveraging the efficient com-
putational graphs produced by this ML library. This section
aims to showcase this aspect by making a direct comparison of
IGNNITION implementations with respect to implementations
directly coded in TensorFlow. As an example, we consider the
two state-of-the-art GNN models described in the previous
section (RouteNet and GQNN).

For the evaluation, we use the implementations of these
models in IGNNITION — publicly available at [14] — and,
as a reference, their native implementations in TensorFlow, and
reproduce some of the experiments made in their correspond-
ing papers [3], [4]. Note that IGNNITION does not provide
additional compiling optimizations. Instead, in the evaluation
we reproduce the same scheme used in the original TensorFlow
implementation. We use the datasets of the original evaluations
of RouteNet, and GQNN (with 300,000, and 40,000 samples
respectively), where 80 percent of the samples are randomly
selected for training and 20 percent for evaluation.

We first evaluate the accuracy achieved by the models,
to check that both implementations achieve the same results
under equal training conditions. Our experimental results show
that the IGNNITION implementation of RouteNet yields a
Mean Relative Error of 2.62 percent, and the implementation
of GQNN an accuracy of 98.07 percent. Both numbers are
in line with the results obtained by the original TensorFlow
implementations.

Likewise, we evaluate the execution cost of both types
of implementations. Figure 6 depicts the average execution
time per sample during training and inference. In line with
the previous results, we can observe that the execution times
of IGNNITION implementations are equivalent to those of
the original models implemented in TensorFlow. Note that
all these experiments were made in a controlled testbed,
considering the same computing resources for all cases.

These results reveal the capability of IGNNITION to pro-
duce efficient GNN models, while offering substantial time
savings for non-ML experts to implement them. Moreover,
users can leverage additional functionalities such as the visual
representations of the debugging system and the advanced
error-checking mechanisms to easily fix potential bugs.

RELATED WORK

Several GNN libraries have emerged in recent years, moti-
vated by the outstanding applications of GNNs to a plethora of
relevant real-world problems. Among the most popular open-
source libraries, we can find: DGL [10], PyTorch Geomet-
ric [9], or Graph Nets [1]. Also, NeuGraph [12] has recently
become a popular GNN library that focuses on parallelizing
the execution of GNN models, although it is not open source.
These libraries provide high-level abstractions to code standard
GNN layers (e.g., Graph Convolutional Networks, Graph
Attention Networks) that can be concatenated. However, these
higher-level abstractions do not provide direct support for
implementing multi-stage message passing iterations, where
in each stage specific graph entities share their hidden states

RouteNet

IGNNITION

GQNN

IGNNITION

GQNN

original
RouteNet

original

T
im

e
 /
 s

a
m

p
le

 (
m

s
)

Fig. 6: Evaluation of the execution time of IGNNNITION vs.
native TensorFlow implementations (training and inference).

with some other entities, which is a common architectural
pattern for modeling circular dependencies in GNN models for
networking [3], [13]. As an example, DGL provides several
built-in functionalities to deal with heterogeneous graphs.
Nevertheless, these functionalities do not handle directly the
implementation of message-passing definitions where different
graph entities share their hidden states sequentially. As a
result, it is eventually needed to use lower-level abstractions to
implement these types of models. Lastly, some other popular
libraries, such as GraphGym [8] or Spektral [11], provide
higher-level abstractions compared to the previous libraries.
However, these libraries do not support many non-standard
GNN architectures used in networking (e.g., [3], [4]).

In contrast, IGNNITION provides a codeless interface that
users can leverage to easily implement GNN prototypes. This
interface is based on the novel MSMP graph abstraction
proposed along with this framework, which is inspired by
the architectural patterns commonly used in GNN models for
networking. In particular, this abstraction naturally introduces
the definition of non-standard message-passing architectures
considering heterogeneous graphs with sequential dependen-
cies between different sets of elements.

CONCLUSION

In this article, we have introduced IGNNITION, an open-
source framework based on TensorFlow that enables fast proto-
typing of Graph Neural Networks for networking applications.
IGNNITION works over a novel high-level abstraction called
the Multi-Stage Message Passing graph (MSMP graph), which
isolates users from the complex mathematical formulation
and implementation in traditional ML libraries (e.g., Tensor-
Flow, PyTorch). MSMP graphs are flexible enough to support
state-of-the-art GNN architectures with non-standard message-
passing strategies. We implemented with IGNNITION two
state-of-the-art GNNs for networking, to showcase the ver-
satility of this framework. Likewise, we validated that the
performance of the GNN models produced by IGNNITION
is equivalent to that of native TensorFlow implementations, as
efficiency is a must for networking applications.

7

ACKNOWLEDGMENT

This open-source project has received funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme within the framework of the NGI-POINTER Project
funded under grant agreement No. 871528. This article re-
flects only the author’s view; the European Commission
is not responsible for any use that may be made of the
information it contains. The work was also supported by
the Spanish MINECO under contract TEC2017-90034-C2-1-
R (ALLIANCE) and the Catalan Institution for Research and
Advanced Studies (ICREA).

REFERENCES

[1] P. W. Battaglia et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[2] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, pp. 57–81, 2020.

[3] K. Rusek et al., “Unveiling the potential of graph neural networks for
network modeling and optimization in SDN,” in Proceedings of ACM
SOSR, 2019, pp. 140–151.

[4] F. Geyer and G. Carle, “Learning and generating distributed routing
protocols using graph-based deep learning,” in Proceedings of the ACM
SIGCOMM Big-DAMA Workshop, 2018, pp. 40–45.

[5] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for VNF forwarding graph embedding,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1318–1331, 2019.

[6] M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with
random edge graph neural networks,” IEEE Transactions on Signal
Processing, vol. 68, pp. 2977–2991, 2020.

[7] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proceedings of ACM SIGCOMM, 2019, pp. 270–288.

[8] J. You, Z. Ying, and J. Leskovec, “Design space for graph neural
networks,” Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), vol. 33, 2020.

[9] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” in Proceedings of the ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

[10] M. Wang et al., “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” arXiv preprint arXiv:1909.01315,
2019.

[11] D. Grattarola and C. Alippi, “Graph neural networks in TensorFlow and
Keras with spektral,” in Proceedings of the ICML workshop on Graph
Representation Learning and Beyond, 2020.

[12] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“Neugraph: parallel deep neural network computation on large graphs,”
in USENIX Annual Technical Conference (ATC), 2019, pp. 443–458.

[13] Barcelona Neural Networking center. (2021) Must-read papers on
GNN for communication networks. Accessed: 04-08-2021. [Online].
Available: https://github.com/BNN-UPC/GNNPapersCommNets

[14] ——. (2021) IGNNITION-Documentation. Accessed: 15-04-2021.
[Online]. Available: https://ignnition.net/doc/

[15] F. Chollet et al. (2015) Keras. Accessed: 07-04-2021. [Online].
Available: https://github.com/fchollet/keras

BIOGRAPHY

David Pujol-Perich is an MSc student in advanced comput-
ing from the Universitat Politècnica de Catalunya (2020-2022),
where he also received his BSc in Computer Science (2020).
In 2019-2020, he did an academic exchange in ETH Zurich.
He is currently a machine learning researcher at the Barcelona
Neural Networking Center (BNN-UPC).

José Suárez-Varela received his PhD in Computer Science
from the Universitat Politécnica de Catalunya (2020). He is
currently a postdoctoral researcher at the Barcelona Neural
Networking Center (BNN-UPC), and co-Principal Investigator
of the EU-funded project IGNNITION (NGI Pointer). His
main research interests are in Machine Learning applied to
networking.

Miquel Ferriol-Galmés received his BSc in Computer
science (2018) and MSc in Data Science (2020) from the
Universitat Politècnica de Catalunya. He is currently pursuing
a PhD at the Barcelona Neural Networking center (BNN-
UPC). His main research interests are in the application of
Graph Neural Networks to computer networks.

Shihan Xiao received a B.Eng. degree in electronic and
information engineering from the Beijing University of Posts
and Telecommunications, in 2012, and a PhD degree from the
Department of Computer Science and Technology, Tsinghua
University. He is currently a senior engineer with Huawei 2012
NetLab.

Bo Wu received his Bachelor’s degree from the School
of Software at Shandong University, China, in 2014, and
his PhD degree from the Department of Computer Science
and Technology at Tsinghua University in 2019. Currently,
he works in the Network Technology Laboratory at Huawei
Technologies.

Albert Cabellos-Aparicio is an assistant professor at Uni-
versitat Politècnica de Catalunya (UPC), where he obtained
his PhD in computer science in 2008. He is director of the
Barcelona Neural Networking Center (BNN-UPC) and scien-
tific director of the NaNoNetworking Center in Catalunya.

Pere Barlet-Ros is an associate professor at Universitat
Politècnica de Catalunya (UPC) and scientific director of the
Barcelona Neural Networking Center (BNN-UPC). From 2013
to 2018, he was co-founder and chairman of the machine
learning startup Talaia Networks, which was acquired by
Auvik Networks in 2018.

https://github.com/BNN-UPC/GNNPapersCommNets
https://ignnition.net/doc/
https://github.com/fchollet/keras

	References

