

A door to the GTD methodology

Final deliverable

Final Degree thesis

Thesis director

Xavier Burgués Illa

GEP tutor

Marcos Eguiguren Huerta

Author: Marc Ferreiro Aliberch

University: Universitat Politécnica de Barcelona

Specialty: Software Specialty

Date: Barcelona, 18th October 2021

CONTENTS

List of Figures .. 6

List of Tables ... 10

Contextualization .. 11

Introduction .. 11

Getting Things Done ... 12

Workflow / principles ... 13

The steps in detail ... 14

From theory to practice .. 15

My workflow ... 15

What are the benefits of this methodology? .. 16

Stakeholders ... 16

GTD Interested people .. 16

Thesis Director .. 16

Myself, as a user and as undergraduate student .. 16

Justification & Research .. 17

Todoist .. 17

All-new Things ... 17

Omnifocus ... 17

Conclusion ... 17

Scope ... 19

Objectives ... 19

Technologies ... 19

Mobile App .. 19

Web App ... 19

On-Cloud backend ... 20

Testing ... 20

Functional and non-functional requirements ... 20

Methodology... 21

Microsoft Azure DevOps ... 21

Microsoft Azure .. 22

Toggl Track .. 22

Temporal Planification .. 24

Tasks description... 24

Project Management – PM ... 25

Platform Design - PD ... 26

Story Book implementation - SB ... 27

Mobile App Creation – MA ... 28

Web App Creation - WA .. 30

Back End Creation - BE .. 31

Thesis extension modifications ... 32

Modifications: Tasks description .. 32

Gantt & estimations .. 34

Thesis extension modifications ... 34

Alternative plans & obstacles ... 35

Economic Management .. 36

Human Resources ... 36

Activities costs .. 36

Project Management .. 37

Mobile App Implementation ... 38

Web App Implementation .. 40

Story Book Implementation .. 41

Back End Implementation ... 42

Generic costs ... 44

Material costs ... 44

Electricity costs ... 44

Unforeseen ... 46

Final budget .. 47

Management Control .. 48

Activities costs changes .. 48

Generic costs changes ... 48

Thesis extension modifications ... 49

Modifications: Human resources .. 49

Modifications: Activities costs .. 49

Modifications: Final Budget .. 49

Sustainability Report ... 50

Ambiental .. 50

Economic ... 50

Social ... 51

Project Planification .. 52

Introduction .. 52

Application Schema .. 52

Designing user stories ... 53

Backend endpoints ... 57

Tasks Group... 58

Lists Group .. 58

Users Group .. 59

Auth Group ... 60

Tips Group ... 61

Files Group .. 62

Seed Group ... 62

Application design ... 63

The .sketch file .. 63

The .sketch designs ... 63

Today screen designs .. 64

Inbox screen designs ... 66

Review screen designs .. 67

Code reusability investigation... 67

Shared components .. 68

The viewport ... 68

react-native-web ... 69

Conclusion ... 69

Backend API Implementation ... 70

Technologies ... 70

Boilerplate ... 70

Architecture .. 71

Features .. 72

Swagger documentation ... 74

Swagger final implementation .. 79

Auth group .. 79

Users group ... 81

Lists group ... 84

Tasks group ... 88

Tips group ... 93

Files group ... 95

Seed group .. 96

Mobile & Web Application Implementation ... 98

Project initialization .. 98

Installing expo and Its dependencies .. 98

Initialize the expo project ... 99

Run it from terminal ... 99

Connect to the application ... 102

Cares about merging Mobile and Web projects ... 102

Merge issues ... 103

Development process ... 107

Screens implementation ... 107

User stories implementation .. 111

Conclusions ... 119

Bibliography .. 120

Appendix ... 121

APPENDIX A: Gantt chart – Part 1 ... 121

APPENDIX B: Gantt chart – Part 2 ... 122

APPENDIX C: Gantt chart after thesis extension – Part 1 ... 123

APPENDIX D: Gantt chart after thesis extension – Part 2 ... 124

LIST OF FIGURES

Figure 1: Flow chart illustrating the review process of a task .. 13
Figure 2: Tools to be used on project management ... 21
Figure 3: Microsoft Azure DevOps Dashboard .. 22
Figure 4: Microsoft Azure Dashboard ... 22
Figure 5: Toggl Track web app .. 23
Figure 6: Toggl Track desktop app .. 23
Figure 7: Tasks defined in DevOps Platform ... 24
Figure 8: Project Management Epic Features & Tasks ... 26
Figure 9: Platform Design Web Tasks ... 27
Figure 10: Platform Design Mobile Tasks .. 27
Figure 11: Story Book Implementation Epic Features & Tasks ... 28
Figure 12: Mobile App Creation Epic Features & Tasks .. 29
Figure 13: Web App Creation Epic Features & Tasks .. 30
Figure 14: Back End Creation Epic Features & Tasks .. 31
Figure 15: Application navigation schema .. 52
Figure 16: User story - quick add task by title sequence diagram .. 54
Figure 17: User story - quick add task by voice record sequence diagram ... 54
Figure 18: User story 2 - List creation sequence diagram ... 55
Figure 19: User story 2 - List remove sequence diagram .. 55
Figure 20: User story 3 - Edit task sequence diagram ... 56
Figure 21: User story 4 - Review inbox task sequence diagram ... 57
Figure 22: API Tasks group - flow chart .. 58
Figure 23: API Lists group - flow chart .. 59
Figure 24: API Users group - flow chart .. 59
Figure 25: API Users group - boilerplate flow chart .. 60
Figure 26: API Auth group - initial flow chart .. 60
Figure 27: API Auth group - boilerplate flow chart ... 61
Figure 28: API Tips group - flow chart ... 61
Figure 29: API Files group - flow chart .. 62
Figure 30: API Seed group - flow chart ... 62
Figure 31: Lunacy .sketch editor ... 63
Figure 32: Main screens design... 63
Figure 33: Today screen design - example 1 ... 64
Figure 34: Today screen design - example 2 ... 65
Figure 35: Today screen design - example 3 ... 65
Figure 36: Today screen design - example 4 ... 66
Figure 37: Inbox screen design ... 66
Figure 38: Review screen design ... 67
Figure 39: Sharing components between react and react native ... 68

Figure 40: React Native WebView .. 68
Figure 41: Backend technologies stack ... 70
Figure 42: API simple route definition .. 72
Figure 43: API complex route definition ... 72
Figure 44: API validation definition ... 73
Figure 45: API models’ definition .. 74
Figure 46: API swagger definition ... 75
Figure 47: API swagger model definition .. 75
Figure 48: API swagger authentication definition .. 76
Figure 49: Swagger login endpoint ... 76
Figure 50: Swagger login endpoint response .. 77
Figure 51: API swagger bearer token set .. 77
Figure 52: API swagger calling authorized endpoint... 77
Figure 53: Swagger documentation blocks to explain .. 78
Figure 54: Swagger documentation - endpoint blocks to explain .. 78
Figure 55: API auth group swagger ... 79
Figure 56: Swagger test - register user body .. 80
Figure 57: Swagger test - register user response .. 80
Figure 58: Swagger test - login response .. 80
Figure 59: Swagger test - logout body .. 80
Figure 60: Swagger test - logout response.. 81
Figure 61: API users group swagger .. 81
Figure 62: Swagger test - create user body .. 81
Figure 63: Swagger test - create user without authorization response ... 82
Figure 64: Swagger test - create user response .. 82
Figure 65: Swagger test - get list users response .. 82
Figure 66: Swagger test - get user information parameter .. 83
Figure 67: Swagger test - get user information response ... 83
Figure 68: Swagger test - update user parameter and body .. 83
Figure 69: Swagger test - update user response .. 83
Figure 70: Swagger test - remove user parameter ... 84
Figure 71: Swagger test - remove user response .. 84
Figure 72: Swagger test - get all users response ... 84
Figure 73: API lists group swagger .. 85
Figure 74: Swagger test - create list body ... 85
Figure 75: Swagger test - create list response .. 85
Figure 76: Swagger test - get all lists response ... 86
Figure 77: Swagger test - get list by id parameters .. 86
Figure 78: Swagger test - get list by id response .. 86
Figure 79: Swagger test - edit list parameters and body .. 87
Figure 80: Swagger test - edit list response .. 87
Figure 81: Swagger test - get list tasks parameter .. 87

Figure 82: Swagger test - get list tasks response .. 88
Figure 83: Swagger test - remove list parameter ... 88
Figure 84: Swagger test - remove list response .. 88
Figure 85: API tasks group swagger .. 89
Figure 86: Swagger test - create task body ... 89
Figure 87: Swagger test - create task response .. 89
Figure 88: Swagger test - get all tasks response ... 90
Figure 89: Swagger test - get task by id parameter .. 91
Figure 90: Swagger test - get task by id response... 91
Figure 91: Swagger test - edit task by id parameter and body ... 91
Figure 92: Swagger test - edit task by id response ... 92
Figure 93: Swagger test - move task to list parameters ... 92
Figure 94: Swagger test - move task to list response ... 92
Figure 95: Swagger test - remove task by id parameter ... 93
Figure 96: Swagger test - remove task by id response ... 93
Figure 97: API tips group swagger .. 93
Figure 98: Swagger test - new tip body .. 94
Figure 99: Swagger test - new tip response .. 94
Figure 100: Swagger test - get all tips response ... 94
Figure 101: Swagger test - remove tip by id parameter ... 94
Figure 102: Swagger test - remove by id response ... 94
Figure 103: API files group swagger .. 95
Figure 104: Swagger test - upload file parameter .. 95
Figure 105: Swagger test - upload file response ... 95
Figure 106: Swagger test - upload file URL check ... 96
Figure 107: API seed group swagger ... 96
Figure 108: Swagger test - get database content response.. 97
Figure 109: Swagger test - reseed database validation .. 97
Figure 110: Expo-cli installation .. 98
Figure 111: Expo go on App Store ... 99
Figure 112: Expo Go on Play Store .. 99
Figure 113: Expo initialization project commands .. 99
Figure 114: Start commands after project init .. 99
Figure 115: yarn start response linking ... 100
Figure 116: yarn start response version lookup ... 100
Figure 117: yarn start response QR .. 100
Figure 118: yarn start response commands ... 101
Figure 119: Expo developer tools ... 101
Figure 120: Expo app running on iOS .. 102
Figure 121: Expo app running on web browser .. 102
Figure 122: NavigationContainer code example ... 103
Figure 123: Linking configuration code example .. 103

Figure 124: Apply platform specific styles .. 104
Figure 125: Applying styles to a component... 104
Figure 126: Applying styled with styled-components ... 105
Figure 127: Using props on styled-component ... 105
Figure 128: Login screen ... 107
Figure 129: Expo's calendar library compatibility ... 108
Figure 130: Today Screen - Calendar integration ... 108
Figure 131: Today Screen - Calendar with tasks ... 108
Figure 132: Today Screen - Final design .. 109
Figure 133: Review Screen - Tasks list .. 109
Figure 134: Review Screen final design .. 110
Figure 135: Lists Screen final design ... 110
Figure 136: Settings Screen Final design ... 111
Figure 137: Add quick task by text - Unfilled .. 112
Figure 138: Add quick task by text – Filled ... 112
Figure 139: Add quick task by voice record .. 113
Figure 140: Add quick task results .. 113
Figure 141: Manage lists - create new list .. 114
Figure 142: Manage lists - swipe to delete ... 115
Figure 143: Lists with swappable disabled.. 115
Figure 144: Edit already created task ... 116
Figure 145: Review task questions to answer... 116

LIST OF TABLES

Table 1: Todoist research conditions .. 17
Table 2: All-New Things research conditions .. 17
Table 3: Omnifocus research conditions... 17
Table 4: Project Epics Hours and Risk ... 31
Table 5: Scope & Contextualization Hours & Cost .. 37
Table 6: Temporal Planification Hours & Cost .. 37
Table 7: Economic Management and Sustainability Hours & Cost ... 38
Table 8: Final Delivery Hours & Cost ... 38
Table 9: Mobile App Project Scaffolding Hours & Cost ... 39
Table 10: Mobile App Project Design Implementation Hours & Cost ... 39
Table 11: Mobile App Project Enable Continuous Integration Hours & Cost 39
Table 12: Mobile App Project Design App Workflow Hours & Cost ... 40
Table 13: Web App Implementation Project Scaffolding.. 40
Table 14: Web App Implementation Design Implementation Hours & Cost 40
Table 15: Web App Implementation Enable Continuous Integration Hours & Cost 41
Table 16: Web App Implementation Design App Workflow Hours & Cost ... 41
Table 17: Story Book Implementation Mobile Hours & Cost .. 41
Table 18: Story Book Implementation Web Hours & Cost ... 42
Table 19: Story Book Implementation Storybook Hours & Cost ... 42
Table 20: Back End Implementation Implement Microservice Hours & Cost 42
Table 21: Back End Implementation Integrate CI into the microservice Hours & Cost 43
Table 22: Total generic costs .. 46
Table 23: Final Budget... 47

CONTEXTUALIZATION

This is a Bachelor thesis for the Computer Engineering Degree, with specialization in Software, at
Facultat d’Informàtica de Barcelona (FIB) of the Universitat Politécnica de Catalunya. This thesis is
directed by Xavier Burgués Illa, member of the ESSI department at FIB.

Introduction
I’m 26 years old, and one of my worst qualities over the years has been in organizational aspects.
I’m a very restless person, so I have my mind full of small and big things all day. I’m always trying to
not forget something that I should or must do, but it’s impossible to avoid it.

Once I got my first phone, I started learning how to use the amazing apps that a smartphone offers
us. I’m fan of the “Productivity” category in the app store. But, download an app, install it and learn
how to use is not the whole solution. There’s a lot more related with attitude, methodology and
habits. Well, it’s all habits. But, to get a habit, you need attitude, perseverance and motivation. All
investing in a methodology in which you believe. A methodology that will give you the how in the
way you do things.

So, yes. I’m bad organizing the “tasks” of my life. Why? I think that’s because I have too much
inputs in my mind. Coming from everywhere, since a small noise, to my work tasks, passing through
all the notifications I get every day in my phone. Our dear social networks. How they helped us this
quarantine, keeping us near out most loved people.

Well, let’s make a list of all the inputs I receive every day:

- Clock alarm
- Reminders scheduled for the day
- My mom asking me how to send a WhatsApp with this tiny bear
- The time to start work
- The first meeting of the day (let’s ignore the big amount of inputs in each meeting)
- My stomach asking me about the breakfast
- More alarms related with tasks that I had to be doing
- New email about some stuff
- Another meeting
- Calendar event remembering that I’m late to my doctor’s appointment
- Another reminder, remembering me to get this paper to the doctor
- A team member asking me something that he forgot (yes, for sure, I’m out of my working

hours)
- A new unexpected bill arrived to my bank account
- Time to do some exercise
- A client suggesting me that his website is maybe down (run to solve it)

- A reminder to send a bill to a client
- Time to take the dog for a walk
- A client calling you for something related with a job that had to be done 2 days ago (…)
- Time to go sleep! (let’s ignore it, I need to finish more stuff)
- New budget should be done for a possible drone production
- I now remembered 3 more things that need to be done. Let’s write them down to do it

tomorrow.
- Time to go bed! Perfect, I’ll sleep less than 8 hours again…
- No! There is an exam tomorrow!

Yes, I know. We can call it chaos. With all these things to keep in mind, is impossible to pretend to
remember everything.

This situation just finishes in one thing: Stress and anxiety. For a person like me with organizational
problems this is really hard. I always have the feeling that I’m forgetting something. I think that I
repeat the phrase “I think I’m forgetting something…” at least… I don’t remember it.

I’ve been living in this situation in the last 5 years ago until I discovered one amazing thing, a
methodology. It’s called GTD (Getting Things Done). It appeared in a David Allen’s book published
in 2001 (Allen, Getting Things Done: The Art of Stress-Free Productivity, 2015), with the incoming of
the “new technologies”.

Getting Things Done
As said, Getting Things Done is an activities organizational methodology inspired by David Allen in a
book with the same name, published in 2001 where he explains that, as opposed to other time
management experts, you should not center on set priorities but in the creation of different lists
defined by its context, for example, a list of pending phone calls or things to do in the city. It also
suggests that every task that can be done in less than two minutes should be immediately done.

The psychology of GTD is based on do easy the storage, tracking and review of all the information
related with the things that you need to do.

A small description of GTD (Allen, Ready for Anything: 52 Productivity Principles for Getting Things
Done, 2004):

KEEP EVERYTHING OUT OF YOUR MIND. DECIDE

WHICH ACTIONS ARE REQUIRED BY YOUR TASKS ONCE

THEY APPEAR NOT WHEN THEY EXPIRE. ORGANIZE

REMINDERS OF YOUR PROJECTS AND YOUR NEXT

ACTIONS IN THE APPROPRIATE CATEGORIES. KEEP

YOUR SYSTEM UPDATED, COMPLETED AND ENOUGH

REVIEWED TO UNDERSTAND THE OPTIONS YOU HAVE

ABOUT WHAT YOU ARE DOING (AND NOT DOING) IN

ANY MOMENT.

WORKFLOW / PRINCIPLES

The GTD workflow consists of five stages: capture, clarify, organize, reflect and engage.

Once all the material (“stuff”) is captured in the inbox, each item is clarified and organized by
asking and answering questions about each item in turn as shown in the black boxes in the logic
tree diagram below. As a result, items end up in one of the eight oval end points in the diagram.

Next, reflection occurs. Multi-step projects identified above are assigned as desired outcome and a
single “next action”. Finally, a task from your task list is worked on engage step unless the calendar
dictates otherwise. You select which task to work on next by considering where you are (context),
time available, energy available and priority.

Figure 1: Flow chart illustrating the review process of a task

THE STEPS IN DETAIL

Capture
Deposit in external “cubes”, everything that we need to remember, do to keep tracked. The goal is
to get everything out of our mind and storage it in any of these “cubes” to, then, clarify it. After the
“Clarification”, all cubes should be emptied, at least once a week.

Clarify
When you are processing your “cube”, you should follow strictly this order:

1. Start always from the beginning.
2. Don’t process more than one element at time.
3. Don’t sent an element back to the “cube”.
4. If an element requires an action to be finished.

a. If it takes less than 2 minutes, do it
b. If not your task, delegate it properly.
c. Postpone it.

5. If an element doesn’t require an action
a. Archive it.
b. Discard it if it’s not appropriate.
c. Keep it in quarantine if cannot be done at this moment.
d. If cannot be delegated properly, notify to the specific area that it’s waiting for a

revision.

Organize
Allen describes the suggested lists that you can use to keep a tracking of the elements waiting for
attention:

- Upcoming actions: For every element that requires your attention, decide which is the
next action that needs to be done in order to complete the element.

- Projects: Every open loop task in your life (a task that requires multiple actions) is
considered a “project”. You will need to review those actions in order to ensure that the
project will be finished correctly.

- Waiting: When you delegate an action to somebody or you’re waiting for an event to
occurs before keep going with a specific task, it needs to be tracked and reviewed
periodically.

- Someday/Maybe: things that you want to do, but, nowadays is not possible.

A calendar is also super important to keep tracking of your appointments and commitments, but
it’s recommended to only use it for hard landscapes (things that must be done in a specific moment
or a specific term).

Review
All actions list will be completely useless if we don’t review them at least daily or as long as we
have a free moment. Given the time, the energy and the resources we have in a specific moment,
we should decide which is the most important thing to do in this moment and do it. If neglect
dominates you, you maybe will be finishing easy tasks first, keeping more difficult ones for the end.
You can solve this by forcing you to execute tasks in the same order you processed them.

The GTD discipline also require to review at least weekly all features actions, projects and items
“waiting for”, to ensure that all new tasks or events are included in your system and it’s updated.

Engage
Any organization system is not good if we waste too much time organizing the tasks instead of
doing them. So, keep it simple is the main goal to success in this method usage.

FROM THEORY TO PRACTICE
In theory everything is easy to understand, but, in practice, everyone is different, and prefers things
his way. That’s why I’ve been using this methodology in a different way but always keeping its
essence of simplicity.

For me, contexts are a little bit complicated. Maybe it’s a next level in GTD implementation but I
still working on the first level. Let me explain how I’ve been using it:

Keep it simple, get out things of my head, let me focus on what I should be focusing on. So, simple.
The enumeration of the tasks lists I’m using:

- Inbox: You remember something that needs to be done. Is less than 2 minutes? Do it. No?
Add it to your inbox.

- Actionable: Things to be done. This is the only list you will focus on during your day.
- Incubator: Things that you want to do, someday, but don’t know when you will be able to

do it.
- Ticker files: This is a list of lists. Here I have three different lists.

o Recurrent: All tasks that will repeat on time are added here.
o Long term: All tasks that needs to be handled in long term will be added here.
o Short term: All tasks that needs to be handled in short term will be added here.

- The calendar: This is not a list as such, but it’s a super important part of your
organizational system. It will let you know when you have time to do tasks, when you
organize yourself daily.

MY WORKFLOW
The goal of “my system” is that during a day, once I have time to do tasks, I’ll go to Actionable list,
and do all tasks there, in the same order as they appear in the list.

During the day, all new tasks that appears or I remember, will be added in the Inbox list. Then, I’ll
forget about them. The capture process of a task is the following:

1. It will take less than 2 minutes?
2. If yes do it. I cannot do it, answer No.
3. If no. Add it to the Inbox list.

Easy, simple. It won’t take less than 20 seconds to add a new task.

At the end of the day, my goal is to empty the Inbox list, by organizing each item in the properly
way. Here I still working in a strict process, but the idea is the next one:

- It will take less than 2 minutes? Do it.
- It needs more than one tasks to be completed? Organize it as a “project”.
- It’s a time fixed task? For example, “I meet a friend on Friday at 17h”, “I have doctor’s

appointment tomorrow 8 a.m.”. If yes, add it to the calendar as you won’t be the owner of
your time during this period.

- Is a task that you would like to do, but don’t know when you will be able to do it? You can

add it in the Incubator list, waiting to be moved to the Actionable list.
- Is a task that you cannot do any action yet? Add it in one of your Tickler files lists.

WHAT ARE THE BENEFITS OF THIS METHODOLOGY?
The main goal of GTD is to keep your mind clear. Allowing you to focus on what you need to do,
without being all time thinking on what you are not remembering. Trust in your system is all you
need to be relaxed, free of stress and, the most important thing, never forgot anything.

I know that at the beginning, implement this methodology could be complicated. You need to
create habits, but nowadays, automations can do its implementation and tracking easy.

Stakeholders

GTD INTERESTED PEOPLE
People interested in GTD methodology are direct stakeholders as they could be potentially
interested in this platform, finding an easy way to implement this methodology.

THESIS DIRECTOR
My director is an indirect stakeholder, as I’m a direct stakeholder.

MYSELF, AS A USER AND AS UNDERGRADUATE STUDENT
I’m the first stakeholder of this project as I’m trying to improve my organizational abilities
implementing GTD. Also, I’ll be finally graduated once this project is finished.

Justification & Research
There are tons of applications focused on TODO’s lists in the market. I did a research about some
apps that are already in the market. The result is that there is no app/platform which is
multiplatform, free and focused on GTD methodology. Let’s check some of the best ones:

TODOIST
Multiplatform GTD Focused Free

Table 1: Todoist research conditions

This is a really good app, it’s super complete, but is not free. It has a lot of features, but this means
that you cannot explode the possibilities without pay.

ALL-NEW THINGS
Multiplatform GTD Focused Free

Table 2: All-New Things research conditions

This is also a really good app, but it’s limited to the Apple ecosystem. It’s also not focused on GTD
methodology and it’s not free too.

OMNIFOCUS
Multiplatform GTD Focused Free

Table 3: Omnifocus research conditions

This app is more focused on the Mac OS X platform, but also available in iOS. Anyway, it’s only
available in the Apple ecosystem. It’s also not focused on GTD and also not free to use.

CONCLUSION
As we have seen in the previous research, there isn’t any app/platform focused on the GTD
methodology implementation. All the apps are focused on TODO’s tasks. Making the GTD
implementation more complicated. This thesis pretends to implement a GTD focused platform
which makes its implementation really easy.

I also want to make this app free to use, and this is the hard part of this project. As this platform is
GTD focused, the user target group is smaller than with a TODO’s tasks focused app.

SCOPE

Objectives
The objectives of the thesis are to build a fully ready to production ecosystem based on React.js
and Node.js, with a mobile app, a website app and an on-cloud backend. Identifying the most
optimal way to implement both apps using the same technology and trying to share as much code
as possible. Always keeping a good user experience and a good development experience:

- Implement a multiplatform application focused on GTD methodology implementation.
- Develop an optimized way to share components between web and mobile apps.

After the general objectives, we can go deeper into sub-objectives:

TECHNOLOGIES
The objective in technologies scope is to reuse as much code as possible, unifying front-end
components to be used in both platforms. Keeping a good behavior in multiple devices, responsive
terms, accessibility, etc.

MOBILE APP
The objective in mobile app scope is to build a fully functional application that will works in both
platforms (iOS & android), always using the same components as the web app.

This mobile app will let the users to start with a quick guide over GTD methodology, also an easy
implementation of the basic tasks lists (Inbox, Actionable, Incubator, Tickler files).

The implementation of custom lists is a good to have.

Update
During the development process, we discarded the “quick guide over GTD” feature as we preferred
to focus on daily features that add value to the user.

WEB APP
The objective in the web app is to build a fully functional app that will reuse the same components
as the mobile app.

The web app will let the user to start with a quick guide over GTD methodology, also an easy
implementation of the basic tasks lists (Inbox, Actionable, Incubator, Tickler files).

The implementation of custom lists is a good to have.

Update
During the development process, we discarded the “quick guide over GTD” feature as we preferred
to focus on daily features that add value to the user.

ON-CLOUD BACKEND
The objective in the on-cloud backend scope is to deploy all the backend automatically, using
technologies as ARM templates which let you deploy all the services with the selected plans and
configurations automatically.

The code repositories will have Continuous Integration, to automatically deploy the services as
soon as you push some code changes, while ensuring your code is not broken and is pretty enough.

The backend will ensure that all the user tasks is safely stored in databases and the web and mobile
apps can synchronize and work smoothly.

Update
At the finishing date of this thesis documentation, the on-cloud feature couldn’t not be completed
as we reduced the available time to spend on the thesis. Until thesis presentation, we will work on
it in order to finish this feature and demo it.

TESTING
The objective in the testing scope is to have the most important parts of the process perfectly
tested and integrated with the Continuous Integration.

Update
At the finishing date of this thesis documentation, the testing objectives was not accomplished as
we prioritized the application functionality instead the testing. We know that in a real project, this
objective would be mandatory, but taking advantage that we are in a non-real environment, we
took this decision.

Functional and non-functional requirements
After the specific objectives and sub-objectives of the project, we have to specify the functional
and non-functional objectives, which are really clear and user related:

- The user should be able to implement the GTD methodology efficiently.
o The user should be able to introduce ideas to the Inbox list in a super easy and fast

way.
o The user should be able to review the tasks in the inbox moving each element to

wherever it should go.

o The user should be able to add remaindered tasks in order to be notified.
o The user should be able to add recurrent tasks in order to create repetitive tasks.

- The user should be able to manage do the same action in the web and in the mobile app.
- The user should be able to synchronize the tasks created in any of the platform (mobile or

web) automatically.
- The user should be able to work offline, without worrying about the automatic

synchronization once the networks is recovered.

Methodology
The thesis will be executed under the rules of an Agile methodology, as almost all the software
companies uses nowadays.

The sprints will be of 7 days, from Monday to Sunday. Each Monday, the sprint will be prepared
and it will be reviewed each Friday.

I’ll define Epics, that will be broken in PBI’s, that will be broken in different kind of tasks.

The size of a task will be defined in hours (this is not like Agile rules say, I now).

Each sprint end, a report with the project status will be analyzed, to keep tracking if the
development is going well, or not.

The tools that will be used in this project are:

- Microsoft Azure DevOps for the sprints and tasks management.
- Microsoft Azure as the cloud service provider.
- Toggle to track the time spent in each task.

Figure 2: Tools to be used on project management

MICROSOFT AZURE DEVOPS
This tool is the one chosen to manage all the tasks and all the sprints. It also gives us the ability to
centralize the repositories and the pipelines, plus the deployment of everything. It’s fully
connected with Microsoft Azure.

Figure 3: Microsoft Azure DevOps Dashboard

MICROSOFT AZURE
This tool is the Cloud Computing Service Provider chosen. It’s fully connected with Microsoft Azure
DevOps and is the one I’ve been using the last months.

Figure 4: Microsoft Azure Dashboard

TOGGL TRACK
This tool is the one selected to track the time spent in each task. Is has a good interface and a
Chrome extension that allows you to start a timer from the Microsoft Azure DevOps page directly.
It has a web app and also a desktop application. I fully recommend to use the desktop application
because it tracks your idle time and avoids the tracking of this time. It also has a multiplatform
mobile app to track your time using your phone.

Figure 5: Toggl Track web app

Figure 6: Toggl Track desktop app

TEMPORAL PLANIFICATION

The Project, from the outset, aims to be completed in about 17-18 weeks, starting from the 16th of
February, until 14th of June. We’re going to dedicate 330-346 hours to the project more or less.
Including the Project Management tasks and the thesis itself.

The presentation of the thesis is planned from the 28th of June, 2021.

Keep in mind that we are using Microsoft Azure DevOps platform to manage all the tasks, so,
starting here, we will refer to it as DevOps Platform.

Tasks description
All the known tasks are currently defined in the DevOps Platform, so we already have 70 tasks
defined, with its dependencies, expected time & descriptions:

Figure 7: Tasks defined in DevOps Platform

We’re starting with 5 different epics:

- Project Management
- Story Book implementation
- Back End implementation
- Web app implementation

- Mobile app implementation

Each one epic has multiple Features inside, and the Feature has Tasks inside.

PROJECT MANAGEMENT – PM
It’s super important to have all the initial documentation prepared as it helps us to have all the
ideas clear. We will spend 33 hours more or less to prepare all this documentation, through the
following tasks:

Scope & Contextualization – PM1
This task pretends to contextualize the project and define the scope of it. We will spend 6,5 hours
on it.

Temporal Planification – PM2
This task pretends to document the temporal planification of the project, forcing us to think about
the tasks that we will need to do, the temporality of each one and evaluating the risks of each one.
We will spend 8,5 hours on it.

Economic Management 6 Sustainability – PM3
This task pretends to document the budget of the project, in general words, do the economic
management of the project. It also requires to write a sustainability document. We will spend 10,5
hours on it.

Previous documents union – PM4
This task will handle all the time we will spend in the join of the previous written documents. This
will take 7,5 hours.

Epic tasks:

Figure 8: Project Management Epic Features & Tasks

PLATFORM DESIGN - PD
As we’ll be creating a full web/app platform, so everything should be aligned in terms of design.
This is why this is maybe one of the most important tasks in the thesis. The output of this tasks
would be a .sketch file with all the components and designs of each part of the web/mobile app.

Is mandatory that the components created in these tasks are as much reused as possible, making
the implementation easy.

We will spend 47 hours more or less in this task, which are placed in two different epics: Web app
implementation (22 hours) & Mobile app implementation (25 hours).

Epic tasks:

Figure 9: Platform Design Web Tasks

Figure 10: Platform Design Mobile Tasks

STORY BOOK IMPLEMENTATION - SB
Remembering that the goal of this thesis is to arrive to the most optimal way to share components
between mobile and web react apps, a good components library is mandatory, to let us centralize
the components that both parts uses and its styles. This whole app is estimated between 44 and 60
hours.

This task has two big parts:

Components Sharing Investigation – SB1
The goal of this first part is to output the best way to share components between both web &
mobile react apps. We will be dedicating 20 hours to this investigation.

Story Book Implementation – SB2
The goal of this second part is to implement all the components designed in the first task “Platform
Design” in order to be consumed by both apps. We originally have estimated this task in 24 hours,
keeping it open up to 40 hours.

Epic tasks:

Figure 11: Story Book Implementation Epic Features & Tasks

MOBILE APP CREATION – MA
This task is focused on creating the mobile app, for both iOS & android platforms. It will be done
with CRNA (Create-React-Native-App) using typescript template, using cocoa pods on iOS and basic
configuration in Android. React Native has the hardest configuration at the beginning of the
development. Is really complicated to have a project working perfectly and smoothly in both
platforms so this will be the longest epic in the thesis. That’s why we will spend 103 hours on this
epic.

Epic tasks:

Figure 12: Mobile App Creation Epic Features & Tasks

WEB APP CREATION - WA
The creation of a React Web Application is really easy and straightforward, using more or less the
same script to create the web app (Create-React-App) using the typescript template. That’s why we
will spend 54 hours in this epic task.

Epic tasks:

Figure 13: Web App Creation Epic Features & Tasks

BACK END CREATION - BE
This task focuses on create the back end and deploy it. It includes tasks as Investigating the best
way to implement the microservice which will be created using node.js, test it and deploy it on
Microsoft Azure. We will spend 61 hours in this task.

Epic tasks:

Figure 14: Back End Creation Epic Features & Tasks

Tasks Hours Risk

Platform Design – PD 47 Low

Story Book Implementation – SB 24-40 Medium

Mobile App Creation – MA 103 High

Web App Creation – WA 54 Low

Back End Creation - BE 61 Medium

Total 229-305 Medium

Table 4: Project Epics Hours and Risk

Thesis extension modifications
The thesis has undergone an extension, and the temporal planification did change. The thesis did
start on 16th February and was supposed to be finished at 28th June. This changed as the thesis
stopped from 26th May until 13th September. That means that the new finish date is 25th October.
This changes the weeks of work from 17-18 to 10. The initial planification defines 330 hours of
work. This changed to 212 hours available to finish the project, more or less.

MODIFICATIONS: TASKS DESCRIPTION
In order to be able to manage this work time reduction, we removed not mandatory tasks and
achieved the merge of two epics in one. Let’s list the changes on tasks planification/description:

Merge epics Web and Mobile App Implementation
With the discovery of a special library called react-native-web (we’ll explain it later), we achieved
how to use the same project code for both platforms. Besides this, we decided to use expo to build
our app. This keeps away almost all the tasks related to make the app working on each platform,
which is the most complex part of this epic. With all these changes we went from the original work
time of 103 hours for the Mobile App Implementation epic plus 54 hours for the Web App
Implementation (157 hours in total), to 118 hours.

Remove the epic Storybook
The main goal of this epic was to act as components bridge between Web and Mobile applications.
As now both are included in the same project, a bridge is not necessary, so we decided to remove
it. This epic was planned to be 60 hours approx.

So, finally, we went from 5 epics to 3 epics in the backlog and from 330 hours to 212 hours:

GANTT & ESTIMATIONS

We have created a Gantt chart using TeamGantt (Gantt Diagram created with
https://teamgantt.com) in order to make the planification more visual. We’ve split it in two figures,
as it’s too big. You can reach them in: APPENDIX A: Gantt chart – Part 1 and APPENDIX B: Gantt
chart – Part 2

Thesis extension modifications
The thesis extensions and the modifications on tasks also affected on this Gantt. We have modified
it. You can reach both parts in the appendix: APPENDIX C: Gantt chart after thesis extension – Part
1 and APPENDIX D: Gantt chart after thesis extension – Part 2.

https://teamgantt.com/

ALTERNATIVE PLANS & OBSTACLES

During the execution of the project, we could have a lot of obstacles. As we have very well
separated epics, let’s analyze the possible obstacles in each one:

- Project Management: No important obstacles
- Story Book Implementation: The sharing of components between web & mobile apps is

not enough explored, so we have a lot of unknown variables that could increase the time
needed to finish this epic.

o The solution: In this case we will reduce the features that will be implemented in
both the mobile & web apps.

- Back End Implementation: In this epic, we have two important possible obstacles:
o Microsoft Azure: As we are using on-cloud services, trying to work with all free

plans, we could get some bottlenecks during the development.
 The solution: If this happens, we will invest some money to avoid those

bottlenecks.
o Knowledge: Knowledge is another unknown variable in this epic. As my

experience goes around Front End, I could need to invest more time in the
learning process.
 The solution: If the learning process needs to be increased, we will reduce

the amount of features/testing that is planned for the apps.
- Web App Implementation: No important obstacles.
- Mobile App Implementation: This is maybe the most difficult part of the project. Develop

a single app that should work on iOS & Android platforms seems to be easy, but the
configuration of both projects usually is quite complicated. Sometimes, find what is
causing an issue is almost impossible, so we’re forced to try and failure multiple times until
the solution is found. That’s why this epic is planned with more than 100 hours.

o The solution: To show the powerful of sharing components with “three” apps
(web, iOS & Android), having the mobile app working on both platforms is a good
to have, but, if we found too much problems making it working, we can discard
the platform that is giving us those issues.

ECONOMIC MANAGEMENT

In this section we will talk about the budget that the thesis will need in order to be executed. We
will divide it in four different sections:

- Activities costs
- Generic costs
- Contingencies
- Unforeseen

Finally, we will add a table with the summary of all the costs.

Human Resources
This thesis will be fully managed and implemented by a single developer, so this simplifies a lot the
human resources costs as we just need to consider one developer.

Based on the payscale.com website the average of a senior developer is 50€/hour. Being between
28 and 80€/hour. We had chosen 30€ per hour for the developer. With the estimated work load of
330 hours for the whole project, we get 9900€. But, let’s split this amount in the different tasks:

Activities costs
As we have seen in the previous delivery, the Gantt diagram was showing that we planned the
project in 5 different epics. First of all, we will summary how are they organized:

- Project Management
o Total work: 18 tasks
o Total time: 33 hours
o Total cost: 990€

- Mobile App Implementation
o Total work: 17 tasks
o Total time: 103 hours
o Total cost: 3090€

- Web App Implementation
o Total work: 17 tasks
o Total time: 54 hours
o Total cost: 1620€

- Story Book Implementation
o Total work: 11 tasks
o Total time: 79 hours
o Total cost: 2370€

- Back End Implementation
o Total work: 7 tasks
o Total time: 61 hours
o Total cost: 1830€

PROJECT MANAGEMENT
The total epic time is 33 hours with a total cost of 990€

Tasks:

Scope & Contextualization
Task title Time (hours) Total price

Write Scope section 2 60

Write Contextualization section 2 60

Review document 2 60

Deliver Scope & Contextualization document 0,5 15

Total 6,5h 195€

Table 5: Scope & Contextualization Hours & Cost

Temporal Planification
Task title Time (hours) Total price

Write Planification Summary action 2 60

Create project known tasks 2 60

Create Grantt diagram from created tasks 2 60

Review document 2 60

Deliver Temporal Planification document 0,5 15

Total 8,5h 255€

Table 6: Temporal Planification Hours & Cost

Economic Management and Sustainability
Task title Time (hours) Total price

Write Budget (cost identification) section 2 60

Write Budget (cost estimate) section 2 60

Write Budget (management control) section 2 60

Write Sustainability Report section 2 60

Review document 2 60

Deliver Economic Management & Sustainability
document

0,5 15

Total 10,5h 315€

Table 7: Economic Management and Sustainability Hours & Cost

Final Delivery
Task title Time (hours) Total price

Join all previous documents into the final one 3 90

Final review of the document 4 120

Deliver Final Document 0,5 15

Total 7,5h 225€

Table 8: Final Delivery Hours & Cost

MOBILE APP IMPLEMENTATION

The total epic time is 103 hours with a total cost of 3090€

Tasks:

Project Scaffolding
Task title Time (hours) Total price

Create main project files using create-react-native-app 5 150

Make it fully work on iOS 10 300

Make it fully work on android 10 300

Set up testing environment 6 180

Total 31h 930€

Table 9: Mobile App Project Scaffolding Hours & Cost

Design Implementation
Task title Time (hours) Total price

Implement inbox’s new task procedure 5 150

Implement review inbox’s tasks 5 150

Implement user’s tour 5 150

Implement interaction with different lists 5 150

Implement login screen 5 150

Total 25h 750€

Table 10: Mobile App Project Design Implementation Hours & Cost

Enable Continuous Integration
Task title Time (hours) Total price

Create azure devops pipeline 5 150

Total 5h 150€

Table 11: Mobile App Project Enable Continuous Integration Hours & Cost

Design App Workflow
Task title Time (hours) Total price

Design all basic components 20 600

Design the introduction of the user into the GTD 2 60

Design the best way to add tasks into the inbox list 4 120

Design the process of review tasks from the inbox 5 150

Design the way to interact with others lists 3 90

Design login process 3 90

Create the first mock up 5 150

Total 42h 1260€

Table 12: Mobile App Project Design App Workflow Hours & Cost

WEB APP IMPLEMENTATION
The total epic time is 54 hours with a total cost of 1620€

Tasks:

Project Scaffolding
Task title Time (hours) Total price

Create main project files using create-react-app 2 60

Set up testing environment 3 90

Total 5h 150€

Table 13: Web App Implementation Project Scaffolding

Design Implementation
Task title Time (hours) Total price

Implement inbox’s new task procedure 3 90

Implement review inbox’s tasks 3 90

Implement user’s tour 3 90

Implement interaction with different lists 3 90

Implement login screen 5 150

Total 17h 510€

Table 14: Web App Implementation Design Implementation Hours & Cost

Enable Continuous Integration
Task title Time (hours) Total price

Create azure devops pipeline 2 60

Create azure free web service 2 60

Implement automatic deploy 4 120

Create ARM template 2 60

Total 10h 300€

Table 15: Web App Implementation Enable Continuous Integration Hours & Cost

Design App Workflow
Task title Time (hours) Total price

Create the first mock up 5 150

Design the introduction of the user into the GTD 2 60

Design the best way to add tasks into the inbox list 4 120

Design the process of review tasks from the inbox 5 150

Design the way to interact with others lists 3 90

Design login process 3 90

Total 22h 660€

Table 16: Web App Implementation Design App Workflow Hours & Cost

STORY BOOK IMPLEMENTATION
The total epic time is 79 hours with a total cost of 2370€

Tasks:

Mobile
Task title Time (hours) Total price

Create storybook app 15 450

Synchronize with web app storybook 5 150

Total 20h 600€

Table 17: Story Book Implementation Mobile Hours & Cost

Web
Task title Time (hours) Total price

Create storybook web app 10 300

Synchronize with mobile app storybook 5 150

Total 15h 450€

Table 18: Story Book Implementation Web Hours & Cost

Storybook
Task title Time (hours) Total price

Investigate how to share components between web &
mobile apps

20 600

Develop texts components 3 90

Develop layout components 2 60

Develop basic form components 3 90

Develop Data Viz. components 6 180

Develop notification components 3 90

Develop section-specific components 7 210

Total 44h 1320€

Table 19: Story Book Implementation Storybook Hours & Cost

BACK END IMPLEMENTATION
The total epic time is 61 hours with a total cost of 1830€.

Tasks:

Implement Microservice
Task title Time (hours) Total price

Investigate how to implement a microservice in azure 5 150

Define which endpoints will be needed 6 180

Implement endpoints & needed logic 20 600

Total 31h 930€

Table 20: Back End Implementation Implement Microservice Hours & Cost

Integrate CI into the microservice
Task title Time (hours) Total price

Investigate how to integrate the CI in the microservice 5 150

Develop the .yml file defining the pipeline 10 300

Implement the deployment ARM file 5 150

Implement a deployment pipeline for a single
environment

10 300

Total 30h 900€

Table 21: Back End Implementation Integrate CI into the microservice Hours & Cost

Generic costs

MATERIAL COSTS
As this is a software project, we will need some specific hardware and software to execute the
project:

- Hardware
o Computer: As we are planning to implement an iOS application, a MAC OS X

computer is mandatory to build the app in this platform. The best choice in terms
of budget and performance is the new Mac mini with the new M1 CPU, which is
799€.

o Set up: As we want to improve the performance of the developer, we will be using
a full setup with 2 screens (160€), keyboard (30€) and mouse (30€). Everything for
220€.

- Software: As all the Apple computers has the operating system included and all the
software used in this thesis is free, there is no extra cost in the software category.

- Environment: The work place is an important thing to keep in mind, as we will need a
place to work in. A good place to work costs around 300€ per month, for 4 months, we will
pay 1200€ for it.

ELECTRICITY COSTS
Now, we have to calculate the electricity expenses we will spend with the computer and all the
setup:

Computer
After reading an article from Tom’s Hardware (Shilov, 2021), we get that the computer we will use
consumes 39W/hour under high load. Considering that the price of electricity is 0,31€/Kwh per
hour we can calculate what we will spend during our 330 hours of work scheduled. The operation
would be: 0,31 * 0,039Kw * 330 = 4€ on working hours. The computer will be turned on all the
time. That means that, considering that the thesis will extends 4 months, we will work 4 hours a
day. The rest hours (20 hours) the computer will be in idle mode. Simplifying to 20 work days per
month and 10 free days per month. So, we will be working 4 hours * 20 work days = 80 working
hours per month, that means 0,31*0,039Kw*80 = 1€/month. And the computer will be in idle
mode 20 hours * 20 work days + 24 hours * 10 free days = 640 hours. Considering that from Tom’s
Hardware article, this computer consumes 7W/hour. That means that we will spend 0,31€
*0,007Kw*640 = 1,4€/month.

Summarizing, we have a computer that will spend 2,4€/month. Considering we will extend the
thesis by 4 months, we will be spent 9,6€ of electricity.

Screens
Now, let’s calculate the power expenses of both screens:

- Max power consumption: 25W/hour (we will consider that the screen consumes the
maximum power while being used).

- Working hours per month: 80 hours (calculated in the previous section).
- Price per Kwh: 0,31€

With that numbers we have: 0,025Kw * 0,31€ * 80 h/month = 0,63€/month each screen.

Considering the duration of the thesis (4 months) and that we have two screens we know that the
electricity expenses for both screens will be: 0,63€/month * 4 months * 2 screens = 5,1€ in total

Amortizations
Now, let’s calculate the Annual Amortization Expense, using the following formula having the
Salvage Value as the cost the asset will have at the end of their useful life, the Cost of the Asset as
the initial Cost of the Asset and the Useful Life of the Asset as the time in years of the estimated
time the asset will be useful:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐸𝐸 =
(𝐶𝐶𝐴𝐴𝐸𝐸𝐴𝐴 𝐴𝐴𝑜𝑜 𝐴𝐴ℎ𝐸𝐸 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴 − 𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝐸𝐸 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸)

𝑈𝑈𝐸𝐸𝐸𝐸𝑜𝑜𝐴𝐴𝐴𝐴 𝐿𝐿𝐴𝐴𝑜𝑜𝐸𝐸 𝐴𝐴𝑜𝑜 𝐴𝐴ℎ𝐸𝐸 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴

Computer

The Cost of the Asset is 799€ and we have computed the Salvage Value to 300€, due to be an Apple
product, it has a low depreciation.

The Useful Life of the Asset has been established to 4 years, as it will be a lot of hours under usage
during a day.

With these variables, the result of the formula for the Computer is 124,75€.

Setup

For the screens, the Cost of the Asset is 80€, the computed Salvage Value is 30€ due to a minimal
price for a 1080p screen. The Useful Life of the Asset is estimated to be 5 years so, the result of the
formula is: 10€. Having 2 screens, the Annual Amortization Expense would be 20€ / year for the
two screens.

For the Keyboard and the Mouse together, the Cost of the Asset is 30€ x 2 = 60€. The Salvage Value
is estimated to 10€ and the Useful Life of the Asset is estimated to 7 years. So, the result of the
formula would be 7,14€ / year.

Total generic costs
ASSET PRICE
Computer 124,75€
Setup: screens 20€

Setup: peripherals 7,14€
Software 0€
Environment 1200€
TOTAL 1351,89€

Table 22: Total generic costs

Unforeseen
As in any project, unforeseen can appear during the thesis, so we must prepare for them. Let’s
check out the possible unforeseen by category

- Hardware:
o Computer: We can have issues with the computer, so we can increment the

budget to be able to buy two computers (799€ more) in order to avoid stopping
the thesis execution.

o Set up: As we have two screens, a mouse and a keyboard, we can save 30€ to
avoid an issue with any peripheral.

o Cloud: We pretend to use all free web services available in azure. But it could be
too poor sometimes. We may need to pay a little bit for a better web service plan.
We will increment in 500€ the budget for the cloud platform to avoid being stuck.

- Human resources:
o Developer time: As the project may be delayed or more time will be needed to

complete the thesis, we will prepare 1500€ for a possible delay.

Finally, the total amount that we’ve prepared for possible unforeseen is 2829€.

Final budget
Activity Price (€) Observations

Project Management 990 €

Mobile App Implementation 3.090 €

Web App Implementation 1.620 €

Story Book Implementation 2.370 €

Back End Implementation 1.830 €

TOTAL CPA 9.900 €

SS Costs (30%) 2.970 €

TOTAL CPA + SS 12.870 €

Computer 124,75 €

Screen 10 €

Screen 10 €

Keyboard & Mouse 7,14 €

Environment 1200 €

Computer electricity 9,6 €

Screens electricity 5,1 €

Total GC 1366,59 €

Total costs 14236,59 €

Contingency (15%) 2135,5€

Total with contingency 16372,09€

Possible computer failure 799€

Possible peripheral failure 30€

Possible cloud bottleneck 500€

Possible time delay (50 hours) 1.500€

Total unforeseen 2.829€

TOTAL 19201,09€

Table 23: Final Budget

Management Control
We have to define a methodology that helps us to manage all economic changes affecting the
original budget. Let’s list the different kind of economic expenses we defined for the project and
how economic changes will be managed in each one:

ACTIVITIES COSTS CHANGES
There are different possible changes that can occurs here. Each one will have a specific way to
calculate the deviation on the initial estimated budged. Let’s check the both possible causes.

The total deviation of the activities costs is the sum of both causes deviation.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸 𝐶𝐶𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸 𝐷𝐷𝐸𝐸𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀 𝐴𝐴𝐴𝐴𝐸𝐸𝑡𝑡𝐸𝐸 𝑀𝑀𝐸𝐸𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐴𝐴𝑀𝑀 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝑀𝑀 𝑀𝑀𝐸𝐸𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

Tasks missed in the initial scheduling
Missing a task in a big project is a common issue that happens in almost all projects. This usually
adds a big deviation to the initial project budget. Calculate it in the correct way is mandatory. The
way we will calculate is through the following formula:

𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀 𝐴𝐴𝐴𝐴𝐸𝐸𝑡𝑡𝐸𝐸 𝑀𝑀𝐸𝐸𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �(𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝑀𝑀𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸 × 𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝑐𝑐𝐸𝐸𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴)

The function is basically a summation of the total spent hours multiplied by the costs per hour, for
each missed task completed.

Bad estimation on initially scheduled tasks
This is also a common deviation on a project, which means that the estimated time planned some
tasks was not accurate enough, so me spend more or less time on some tasks than expected.

The function used to calculate this deviation would be:

𝐵𝐵𝐴𝐴𝑀𝑀 𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝑀𝑀 𝑀𝑀𝐸𝐸𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �((𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝑀𝑀𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸) × 𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝑐𝑐𝐸𝐸𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴)

This function will take only the initially scheduled tasks.

GENERIC COSTS CHANGES
The generic costs deviation is practically non-existent, as we would only cover electricity
consumption deviations based on the extra hour. Considering that we will spend more or less 15€
in electricity by working 4 months on this thesis, we’ve considered that the possible deviation here
in not enough big to consider it.

Thesis extension modifications
After the thesis extension, some sections in economic management has undergone changes.

MODIFICATIONS: HUMAN RESOURCES
As the epics has changed, now we reduced the amount time hours from 330 to 212, so, considering
that we decided to set 30€/hour the price of the developer, we went from 9.900€ to 6.360€.

MODIFICATIONS: ACTIVITIES COSTS
If we split the costs by epics, we get the price of each epic:

- Project Management
o Total work: 18 tasks
o Total time: 33 hours
o Total cost: 990€

- Mobile&Web App Implementation
o Total work: 22 tasks
o Total time: 118 hours
o Total cost: 3.540€

- Backend Implementation
o Total work: 7 tasks
o Total time: 61 hours
o Total cost: 1.830€

MODIFICATIONS: FINAL BUDGET
As the human resources costs changed, the final budget goes from 19201,09€ to 14.532,09€

SUSTAINABILITY REPORT

Ambiental
We planned a forecast of the resources needed to develop this thesis. Starting from the unique
developer that will be working on this project ending into the Cloud that we will need to deploy our
back end.

We discarded the reutilization of a MAC computer, as this last generation of CPU’s that Apple
released will be needed soon to develop apps for Apple devices and seems that these computers
performs much better that the old ones. Anyway, the computers needed to develop this thesis can
be reused once the thesis finishes.

We also considered the ambient impact as a variable to choose the computer, as the new
generation of Apple CPU’s performs better with less power consumption.

After reading the interesting article called Apple: Mac Mini M1 Consumes 3X Less Power Than
Intel from Tom's Hardware website, we calculated the power consumption that this computer
will have:

- Daily usage: 8 hours
- Month work days (avg): 20 days
- Computer idle power consumption: 6,8W
- Computer max power consumption: 39W

Let’s consider we have the computer turned on, every time, having 4 hours * 20 days of max power
consumption (39W): 3.120W/month

So, idle time: 20 hours per day, for the 20 work days, and 24 hours for the 10 free days: 400 hours
work days + 240 hours free days. To finish, the idle power consumption is 6,8W, so: 4.352W/month
for the idle time

It’s a total of 7.472W per month (7,472kW per month). Considering we will work on this thesis for
4 months, we get 29.888 kW

Economic
As we talked in the Economic Management section, we have a team of 1 people with a single
computer, two screens and basic peripherals. In the previous section we’ve considered all possible
unforeseen to be sure we won’t have problems with the budged needed to execute this project.
The final budged for this thesis is 19201,09€.

Social
We’ve been working with GTD some months ago, and stills working on a good organizational
methodology for our personal life. Develop this whole thesis by myself will give us a tool to use in
this GTD process, but also a internalize thing that we’ve been working with for the past few years
as back end microservices, deployments, etc. When you work in a team, each member has its own
responsibility. Here we all worked in multiple disciplines. That’s why we improved a lot our
development skills.

Thinking about the impact we can cause, we think that this platform can helps a lot of people that’s
trying to start using GTD methodology by making the process simpler and better. We don’t think
that this project could cause any negative impact to the life of anybody.

PROJECT PLANIFICATION

Introduction
To start the development of the project, is important to plan what we want exactly to do. Build it
from scratch, by designing some kind of charts in order to make clear what to implement later. We
will be following the next steps:

- Prepare the schema of the application.
- Prepare some diagrams about the most important user stories.
- Prepare some designs for the application.
- Prepare the schema of the Backend API.

After that, we will have everything to start with the development.

Application Schema
First of all, we need to understand which screens we will implement in the application and which
are the paths the user will be able to navigate through. We’ve prepared a flow chart with this:

Figure 15: Application navigation schema

You will notice that, for example, we only have one screen related with user authentication, the
one in the yellow square with title “Logged Out”. That’s because the user authentication is not an
important part on this thesis, but it’s important to have all information split between users, so the
Login screen is the only mandatory as we would be able to create everything manually in the API.

Also, you will notice that there are two kind of arrows in the chart, the solid one and the dotted
one.

- Solid arrows: Is a voluntary action of the user.

- Dotted arrow: Is an involuntary navigation of the user. It happens when something
happens that forces this navigation. In this case, the login and logout action will trigger
those navigations.

If we try to read the chart we will see that we will have 4 main screens: Today, Lists, Review,
Settings.

The Lists screen will have two children: New List and List’s Tasks. At the same time, the screen
List’s Tasks will have one child: New Task screen.

We will decide in the development process if we will convert the screens New List and New Task
into an element inside others screens, as a modal or a bottom sheet.

By the other hand, the screen Review will have only one child: The Review Task screen.

It’s good to clarify that the user will be sent to the Login screen when he’s logged out or its session
expires. It doesn’t matter in which screen he is. At the same time, when the user Logs in he will be
sent to the first screen under Main, which is the Today screen.

DESIGNING USER STORIES
Once we understand the screens and the navigation paths, we will design some sequence diagrams
to explain how the user will interact with the app in order to execute specific actions. We will cover
four user stories. The ones we though are the most important ones, because, without them, the
application won’t cover what we initially wanted to cover:

- Quickly add new task
o By title
o By voice record

- Manage lists
o Creating new one
o Removing existing one

- Edit a task
- Review new task in the inbox

User Story 1: Quickly add new task
This user story is the beginning of the whole experience of the user inside the application. Is where
everything starts, with the task creation, and this must be fast and nice to use.

This user story is separated in two different sub stories, as the user will have two possibilities to
create the new task: By title or by voice record.

Let’s check the sequence diagram of the first sub story: Quick add new task by title:

Figure 16: User story - quick add task by title sequence diagram

Now let’s check the diagram for the second sub story: Quick add new task by voice record:

Figure 17: User story - quick add task by voice record sequence diagram

There is a specific requirement for this user story that must be accomplished. The user should be
able to do it as quick as possible. The sequence diagrams suppose the quickest implementation of
this user story.

User story 2: Manage lists
This user story is not the most important one, as we can suppose that the application will offers the
user specific predefined lists that will be unremovable. But we think that offer the possibility to the
user to customize a little bit its experience would be really grateful.

We will split this user story in two sub stories: List creation and list remove.

Let’s start with the first one: Manage lists: Creation. We pre-defined a basic model for a list, which
is composed by: A title, a color, an icon.

With that, let’s check the sequence diagram:

Figure 18: User story 2 - List creation sequence diagram

As you can see, we are also specifying the navigations through screens as well as all the actions the
user will be doing.

Let’s go with the second sub story: Manage lists: Remove:

Figure 19: User story 2 - List remove sequence diagram

This sub story is important if we want to keep the creation sub story. That’s because the main
application lists won’t be removable by the user, because are mandatory for the right functioning
of the system. But the ones created by the user, should be removable, because if not, the user will
be accumulating customizes lists over time.

User story 3: Edit a task
This user story in mandatory in order to be able to implement the last user story. This one will
allow the user to edit tasks previously created. Remember that, the only way to create a task would

be the “quick way”. This means that the task will miss a lot of attributes that should be filled later.
This user story will allow the user to do this job. Let’s check the sequence diagram:

Figure 20: User story 3 - Edit task sequence diagram

You will notice that we avoid to specify all editable fields in the diagram. We though in a possible
first approached model for a task, which simplifies the management of them. A task would be
composed by:

- Title
- Record
- Notes
- List
- Date
- Time

User story 4: Review new task in the inbox
Finally, the most important user story. This one will close the first phase of the user interaction
with the app, which is the creation and organization of new tasks. This review process is basically a
list of questions, with its answers. The app will guide the user through this process, and will
propose some actions depending on the responses of the user. The actions are basically move the
task to a specific list, do the task, remove the task, etc. Take care when reading the sequence
diagram as we included a simplified version of the user story 1 in it. Also, you should know that the
actors in this diagram are the user and all the pre-defined lists in the app. We may simplify this
process by removing lists that may need some extra implementations at the development time:

Figure 21: User story 4 - Review inbox task sequence diagram

All this process will take place between two screens: Review screen and Review Task screen. But
we will decide during the development process if both are different screens or they will be merged
in one single screen.

Backend endpoints
After design the application, we know exactly which functionalities the backend API must cover.
We are going to group endpoints based on resource groups. For example, we initially propose the
groups “Lists” and “Tasks”. Considering that the user will needs to log in, we will propose a “Users”
group and also an “Auth” group. We will think about showing some organizational tips in the
application, so we will design a “Tips” group too.
Also, as we will be uploading voice records to create tasks, we will design a “Files” group.

Finally, we will be creating the Seed group, only as development utils. There we will put some
endpoints to execute initialization actions.

So, for now, we have those groups

- Tasks
- Lists
- Users
- Auth

- Tips
- Files
- Seed

Let’s walk through the previous list, by showing some flow charts we’ve prepared to make those
groups more visible.

Notice that we named all groups in plural, but when designing the API, the groups will be singular,
as API Rest recommends when referring to a resources group.

TASKS GROUP
Here we have all the endpoints to be implemented in the tag TASK.

Figure 22: API Tasks group - flow chart

Walking the tree, we will be constructing the endpoints:

- POST /task: This endpoint creates a new task in the API.
- GET /task: This endpoint gets all the user’s tasks from the API.
- GET /task/{taskId}: This endpoint gets a specific task by its ID.
- PATCH /task/{taskId}: This endpoint updates a specific task by ID.
- DELETE /task/{taskId}: This endpoint removes a specific task by its ID.
- POST /task/{taskId}/list/{listId}: This endpoint moves the task to a new list.

LISTS GROUP
Now let’s walk through the Lists group:

Figure 23: API Lists group - flow chart

- GET /list: This endpoint gets all user’s lists.
- POST /list: This endpoint creates a new list in the API.
- GET /list/{listId}: This endpoint gets a specific list by ID.
- PATCH /list/{listId}: This endpoint updates a specific list by ID.
- DELETE /list/{listId}: This endpoint removes a specific list by ID.
- GET /list/{listId}/tasks: This endpoint will be used to get all tasks in a specific list by ID.

USERS GROUP
The group Users will have all the user related endpoints. Nothing related with the authentication of
the user. Let’s check the needed endpoints:

Figure 24: API Users group - flow chart

So, we will only need one endpoint here:

- POST /user: This endpoint will let us to create a new user.

Update: After choose a boilerplate
After choosing the boilerplate to use as our backend API, we noticed that it already has
implemented all user related and auth related endpoints. So, let’s see the updated endpoints that
we have now:

Figure 25: API Users group - boilerplate flow chart

Consider that we won’t be using all of them. For now, we will use only the create user one, but it’s
interesting to understand which endpoints we have available:

- POST /users: This endpoint creates a new user in the API.
- GET /users: This endpoint gets all users in the API.
- GET /users/{userId}: This endpoint gets a specific user by ID.
- PATCH /users/{userId}: This endpoint updates a specific user by ID.
- DELETE /users/{userId}: This endpoint deletes a specific user by ID.
- GET /users/info: This endpoint gets the information of the currently logged user.

AUTH GROUP
This group is super important, as it’s the one that will handle the authentication of the user into the
app. It will be based on an JWT authentication and we won’t be using a complex authentication
system, with session expirations, token refreshes, etc. So, let’s check what we need:

Figure 26: API Auth group - initial flow chart

We only need one endpoint to login the user. Once the user’s session expires, he will need to login
again.

Update: After choose a boilerplate
As well as the “users” group, after choosing the boilerplate that we will use as out backend API, we
notice that it already has some implemented endpoints relates with authentication. Although not
all of them will be used, let’s check what we have:

Figure 27: API Auth group - boilerplate flow chart

- POST /auth/register: This endpoint registers a new user into the API.
- POST /auth/login: This endpoint logs in the user into the API.
- POST /auth/logout: This endpoint logs out the user from the API.
- POST /auth/refresh-token: This endpoint refreshes the access-token of the user with the

refresh-token.
- POST /auth/forgot-password: This endpoint sends a forgot password email to the user.
- POST /auth/reset-password: This endpoint resets the password of the user.
- POST /auth/send-verification-email: This endpoint sends the verification email to the user.
- POST /auth/verify-email: This endpoint verifies the user’s email.

TIPS GROUP
This group will contain all endpoint needed to manage the tips of que system. It would be simpler
that others as there are some actions that are not needed. Let’s check the endpoints in this group:

Figure 28: API Tips group - flow chart

- GET /tip: This endpoint gets all tips in the API.
- POST /tip: This endpoint creates a new tip in the API.
- DELETE /tip/{tipId}: This endpoint removes a specific tip in the API.

FILES GROUP
This is the simplest group in the API, as we only want to be able to upload files and get the URL
once uploaded. Let’s see the flow chart:

Figure 29: API Files group - flow chart

- POST /file: This endpoint will allow to upload a file to the API storage. Then, it’ll returns the
download URL.

SEED GROUP
This group will contain some endpoints for development purposes. The goal is to prepare some
endpoints to initialize the database and clean it of all created data. Let’s see what we plan to
implement here:

Figure 30: API Seed group - flow chart

- POST /seed: This endpoint will allow us to seed the database. We will prepare a document
with the initial data that the database must have in order to see all the features of the
application, like initial users, initial tasks, initial lists, etc.

- POST /seed/reseed: This endpoint uses the previous endpoint functionality, but, before
that, it drops all the collections in the database, in order to roll back the database to its
initial state. After dropping it, it seeds the database again.

- GET /seed/content: This endpoint returns all the collections in the database and the
number of documents existing in each one.

Application design
Now, with all the application schema defined, we will start make some sketches designs in order to
get a clear vision of what we’ll exactly implement. Let’s understand what is exactly a sketch file and
the tool we will use for that:

THE .SKETCH FILE
A sketch file is (from sketchplugins.com) a group of zipped folders containing JSON files that
describe the document data, plus a number of binary assets (bitmaps images, document preview,
etc.…). This file format was introduced by an impressive designing tool called Sketch. This sketch
format based on zipper folders was introduced by the version 43 of this design app in order to
expand the possibilities to read the design files by third party applications.

The Sketch application is only available in Mac OS, but thanks to this new .sketch format, new
applications appeared like Lunacy, the one we will be using to create our sketch files. And yes. It’s
free.

Figure 31: Lunacy .sketch editor

THE .SKETCH DESIGNS
We designed multiple versions of the main pages for the mobile app, but them also helps us to
have a clear vision of which kind of design we will implement.

Let’s remember which are the main screens that we will design and the goal of each screen:

Figure 32: Main screens design

- Today screen: This is the only screen that the user will check during his day. Here he will
find the things to do each day. In GTS methodology, you only need to check 2 things during
your day: The calendar, and the actionable list.

- Inbox screen: The user will be able to access this screen to check the ideas that has added
during the day.

- Review screen: This screen is the most important at evening. As we will give the user the
tools to review each task in the inbox list and help his to review it in the best way.

- Lists screen: This screen will contain all the lists created by the user. We’re not sur that this
page will be implemented.

TODAY SCREEN DESIGNS
Let’s start with the Today screen and let’s check some design examples:

Example 1

Figure 33: Today screen design - example 1

The first example is an amazing start as we already decided the main colors of the app. This
background works perfectly with the idea of the app, and the typography is a really good example.
We also love the way to split vertically the calendar and the tasks in the actionable list. But, it not
enough.

Example 2

Figure 34: Today screen design - example 2

This example is a small variation of the first one, just tried to make is looks more “modern” with
those sections near the edges of the screen. We keep thinking that the colors in the titles “Calendar
events” and “Tasks for Today” doesn’t work well enough. The gradient background is working well,
but the main gradient colors doesn’t work well yet.

Example 3

Figure 35: Today screen design - example 3

The third example works really well! There are some things that doesn’t like us yet, so we will make
another example and we will choose between them.

Example 4

Figure 36: Today screen design - example 4

This one is the good one. Beautiful as the 3rd one, but simpler, more minimalist and with tips!

Once we have chosen the main look and feel of the app, we will make some designs of the other
screens.

INBOX SCREEN DESIGNS
This screen pretends to be the simplest one. The user shouldn’t be distracted with anything, just
focused on add new tasks. In a future we will implement a “Quick add” in the big plus button in the
navigation tab at the bottom and then, the user will need to check the added tasks during the day:

Figure 37: Inbox screen design

As you can see, the inbox will be able to add text notes but also record voice notes, so the user will
be able to talk fast instead of stop to use the smartphone keyboard.

Update: During development process
While developing the application, we noticed that this screen could be substituted by the Review
screen, as the tasks to be reviewed are the ones in the Inbox list. So, we’ve removed this one and
we added a new Settings screen.

REVIEW SCREEN DESIGNS
We have some doubts about this screen. We don’t know which would be the perfect “Review
screen”:

A. Super guided screen, which “forces” user to use exactly the GTD suggestions.
B. Keep it “open”, so user will receive the correct GTD decision, but allowing him to take any

decision.

We implemented a design for the B option which seems to be the complex one (in terms of design):

Figure 38: Review screen design

Code reusability investigation
One of the main goals of this project was to reuse as much code as possible. There are some tools /
technologies we can use in order to reduce the amount of code to develop. The first focus would

be sharing almost all the components or, at least as much component’s parts as possible. Let’s
investigate which one would be the best option:

SHARED COMPONENTS
Shared components between both projects: As both projects are based on the same technology,
we have a possibility to reuse part of the code of a component. React is used for web applications
and is based on HTML, so, we can use HTML directly inside a react component. But we cannot do
the same in a react-native project. Both are structured in the same way, based on tags (as html),
but react-native uses its own components while react uses html-based components.

Figure 39: Sharing components between react and react native

As you can see, react-native generates native apps, which means that the components you can use
to build your application will be translated to the similar native component in the build process.

That’s why it’s not as easy as it seems. The option to share components will let us to share the logic
of the component, but not the view, and we will need to implement the view two times in order to
build a reusable component.

THE VIEWPORT
The second option is to not really build a mobile app so, build a full web app with React, and then,
build a react-native app that’s only a viewport to the react app, so, the user would be using all time
the web app based on react.

Figure 40: React Native WebView

No code sharing needed. Worst experience, as it’s not completely native and adds a lot of
complexity when working with responsiveness.

REACT-NATIVE-WEB
We arrived to this article (https://blog.bitsrc.io/how-to-react-native-web-app-a-happy-struggle-
aea7906f4903), which introduced us react-native-web. This library supposedly allows us to develop
a react-native app and use it as a web app too! This is enormous, as we would be able to discard
the development of an entirely project (the web one) and only build one in react-native.
There are some limitations of this library, as it gives you a components library (basically, almost all
the basic components that React offers you), but all of them are translated to an HTML component.

CONCLUSION
A lot of components libraries was offering compatibility with react-native and react apps. All of
them are using react-native-web as a “compatibility” layer between React DOM (web) and React
Native (mobile), and it works really well. So, we will be using react-native-web library.

https://blog.bitsrc.io/how-to-react-native-web-app-a-happy-struggle-aea7906f4903
https://blog.bitsrc.io/how-to-react-native-web-app-a-happy-struggle-aea7906f4903

BACKEND API IMPLEMENTATION

The backend project will be the one to handle all the logic of the application, perform operations
and store all data. The main features planned to be implemented here are:

- Login
- Tasks management
- Lists management
- Seed database

Technologies
We will work with a super known stack based on Node JS, Express and MongoDB.

Figure 41: Backend technologies stack

Let’s remember the main fact of each one:

- Node JS: This is the server itself. The definition of node.js, from it’s webpage: “Node.js is a
JavaScript runtime built on Chrome’s V8 JavaScript engine”.

- Express: This is basically a framework for node.js, that gives a lot of characteristics focused
on web application developments. From its website: “Fast, unopinionated, minimalist web
framework for Node.js”.

- MongoDB: Is one of the databases of reference in the world. Based in documents, it is a
no-SQL database.

Boilerplate
For start this project, we decided to find the perfect boilerplate. A boilerplate is basically a started
project, with a lot of already implemented features, that saves you a lot of time, as the scaffolding
of a project usually takes you most of the time. It also includes some features and characteristics
that are a little bit complicated to implement the first time.
The boilerplate we decided to use is one called node-express-boilerplate. It’s developed by
hagopj13 user in GitHub (https://github.com/hagopj13/node-express-boilerplate).

Let’s check the amount of features it offers us, from the GitHub project readme:

https://github.com/hagopj13/node-express-boilerplate

- NoSQL database: MongoDB object data modeling using Mongoose
- Authentication and authorization: using passport
- Validation: request data validation using Joi
- Logging: using winston and morgan
- Testing: unit and integration tests using Jest
- Error handling: centralized error handling mechanism
- API documentation: with swagger-jsdoc and swagger-ui-express
- Process management: advanced production process management using PM2
- Dependency management: with Yarn
- Environment variables: using dotenv and cross-env
- Security: set security HTTP headers using helmet
- Sanitizing: sanitize request data against xss and query injection
- CORS: Cross-Origin Resource-Sharing enabled using cors
- Compression: gzip compression with compression
- CI: continuous integration with Travis CI
- Docker support
- Code coverage: using coveralls
- Code quality: with Codacy
- Git hooks: with husky and lint-staged
- Linting: with ESLint and Prettier
- Editor config: consistent editor configuration using EditorConfig

Those are a lot of amazing features in a ready to use project. So, it’ll be just: install and start
implementing the endpoints we want.

ARCHITECTURE
Let’s check the architecture that the boilerplate offers us, as we may take this one and work over it.
It’s split in 3 different layers:

- Controller layer
- Data layer
- Service layer

This boilerplate proposes 8 different elements:

- Config: stores configurations for everything in the project.
- Route: defines the routes that the API will have implemented. It also contains Swagger

configurations of each route and apply the needed middleware’s to each one.
- Controller: is the main logic where an endpoint will arrive.
- Middleware: custom express middleware’s which are used to apply modular

functionalities to specific routes.
- Model: definitions of the mongo DB schema using mongoose. It’s like a class, but it handles

the database operations automatically.
- Service: services contains the business logic and talks directly with models.
- Util: pieces of code that should be shared through all the project.

https://www.mongodb.com/
https://mongoosejs.com/
http://www.passportjs.org/
https://github.com/hapijs/joi
https://github.com/winstonjs/winston
https://github.com/expressjs/morgan
https://jestjs.io/
https://github.com/Surnet/swagger-jsdoc
https://github.com/scottie1984/swagger-ui-express
https://pm2.keymetrics.io/
https://yarnpkg.com/
https://github.com/motdotla/dotenv
https://github.com/kentcdodds/cross-env#readme
https://helmetjs.github.io/
https://github.com/expressjs/cors
https://github.com/expressjs/compression
https://travis-ci.org/
https://coveralls.io/
https://www.codacy.com/
https://github.com/typicode/husky
https://github.com/okonet/lint-staged
https://eslint.org/
https://prettier.io/
https://editorconfig.org/

- Validation: schemas based on Joi library, which can be used with the validation
middleware in order to add in/out data validation for each endpoint.

Finally, let’s check the project structure, from the boilerplate’s webpage in GitHub:

FEATURES
We’ve chosen the boilerplate that will be used, we analyzed the features it offers and the
architecture that it proposes. Let’s not see how some of those features are implemented, just to
understand if use this boilerplate will be complex or simple.

Routes definition
There is a specific folder for routes, there we open the file auth.route.js to see how it’s written:

Figure 42: API simple route definition

If we do focus on the first line we see that starting from left to right, we have the following parts:

- Router.post: It means that this route expects a POST HTTP method call.
- “/register”: It’s the name of the endpoint. Calling http://[api-hosting-address]/register will

arrive there.
- Validate(authValidation.register): Here they’re using the validate middleware, which

takes the value of authValidation.register to check the data received is well formatted and
is valid.

- authController.register: This is the route controller. It will decide what to do with the
received data.

With the analysis already did, we can now check a complex one:

Figure 43: API complex route definition

This is basically the same as the previous one, but, the difference is that it now starts with
.route(“/:userId”), because it’s specifying multiple HTTP methods for the same endpoint. We can
also see that :userId would be an URL param which will be available later in the controller. The rest
is exactly equal. Validating data and specifying the controller that will handle it.

Validation definition
Validations are super important in an API, as we must ensure that received data is well formatted
and is what the API was expecting. We have seen how the validation middleware is used in the
route’s definition, but let’s now see how to define the validation schemas. Let’s take the /register
endpoint as an example:

Figure 44: API validation definition

Joi is the library used to define those validation schemas. As we can see, the schema starts with a
body property. It’s because body is the data container for an HTTP call. Let’s see what’s inside
body:

- email: joi offers some specific validations as here, we’re telling joi that this prop is a string,
is required and should be a valid email.

- password: here string type is also specified, but now, we’re using a custom validator for
this property in order to customize the limitations of user passwords.

- name: this property is basically of type string and required.

Models definition
In order to create documents in the database we have to create models. Models are created with
mongoose. This library handles all the communication with mongo DB, creating collections, writing
documents, removing documents, etc. Let’s see the List model, as it was created in the boilerplate:

Figure 45: API models’ definition

Let’s enumerate all properties in this schema:

- name: the list’s name, of type string, required to be present and trimmed. The trim
process consists on remove useless spaces, for example: “ hello” will be trimmed to
“hello".

- color: list’s color is of type string and is required.
- icon: list’s icon is of type string and required.
- removable: list’s removable property is of type Boolean and is required. It’s also defaulted

to true.
- immutable: list’s immutable property is of type Boolean, not required and defaulted to

false. This model’s property also has a property called “select”. This property to value false,
tells mongoose to not retrieve it when finding this model in the database.

- userId: this is the last property of the model, this is how we define references, by
specifying the type Object ID and the reference to the specified model.

SWAGGER DOCUMENTATION
Swagger is one of the best tools when developing an API. It’s a visual tool that allows the developer
to test the API.

This boilerplate has a tool implemented called swagger-jsdoc and swagger-ui-express. With these
libraries we can add the swagger code in the code, so it will be autogenerated. Let’s see how we
will do it:

Swagger endpoints definition
In each route file, we will find a comment block, started with a @swagger decorator, which will be
transformed to the final swagger:

Figure 46: API swagger definition

Here we can see two blocks with the @swagger decorator. The first one is defining a new Tag for
the swagger (we will learn what is a tag in a swagger file now). The second one is defining the
endpoints that will be created in this tag.

Swagger model’s definition
In almost all the endpoints we are using, they use models to tell what they expect or what they
return. To define all these models, we have to go the file src/docs/components.yml:

Figure 47: API swagger model definition

This is only an example of how a swagger model could look like. The example property also
“prefills” the swagger when you are trying to test an endpoint, so is interesting to make the API
manual testing faster.

Swagger authentication
As we are creating a platform that works with data associated to each user. In order to be able to
do that, this boilerplate comes with authentication process incorporated using the library Passport.
For now, we will handle the login with mail and password. The API will have JWT login, specifically
login over Bearer token.

Let’s learn how to:

- First, we need to define the new endpoint with the correct property

Figure 48: API swagger authentication definition

- Second, we will login with the swagger, getting a specified access token, which we will add
into the Authorize button.

Figure 49: Swagger login endpoint

Figure 50: Swagger login endpoint response

Figure 51: API swagger bearer token set

- Finally, we will be able to use all endpoints that requires authentication freely.

Figure 52: API swagger calling authorized endpoint

Swagger final aspect
The base of having a swagger is working perfectly. It will be increasing when working on new
routes. But, let’s check how the tool works:

Figure 53: Swagger documentation blocks to explain

We have here the main swagger screen, and we will go from top to bottom and from left to right to
explain each red group:

- Group 1: The title of the API
- Group 2: The license of the API
- Group 3: The server. Here some deployed servers could be used.
- Group 4: The authorize, where the bearer token will be added to make the “user logged

in”.
- Group 5: Tags. Is a way to group different endpoints.
- Group 6: List of endpoints inside the tag.

By the other hand, we have the endpoint view. Let’s describe each group.

Figure 54: Swagger documentation - endpoint blocks to explain

- Group 1: The HTTP method of the endpoint. It could be POST, GET, PATCH, DELETE, PUT,
OPTIONS.

- Group 2: The path of the endpoint and the description of it.
- Group 3: The parameters group. If the endpoint has defined some parameters to be sent,

they will appear here.
- Group 4: The try it out button allows you to test the endpoint, by enabling all the

parameters fields to be filled.
- Group 5: Request body. Sometimes an endpoint doesn’t expect parameters but expects a

body. At the right of this group, we have the body type. This is important, as tells the API
clients how the API expects the body to be.

- Group 6: Responses. This group contains all the possible responses that the endpoint can
answer. Each answer, contains the response code, a description and, if necessary, the body
model.

Swagger final implementation
Finally, once finished all the implementation of the backend, let’s check how the swagger looks,
and test some endpoints:

AUTH GROUP
Remember that this group contains all endpoints related with the authentication of the user in the
application. We don’t have a mail service right now, so all endpoints related to mailing won’t be
tested.

Let’s first check the look and feel of the swagger:

Figure 55: API auth group swagger

This is the battery of tests we will do in those endpoints. Notice that we will create only the
endpoints we will be using in the application:

1. Register a new user
2. Login with new user
3. Logout the user

Test 1: Register a new user
In order to register a new user, we will use the following fake data to create one:

Figure 56: Swagger test - register user body

The response of the user registration has been:

Figure 57: Swagger test - register user response

As you can see, the registration already returned an access token. That’s the token that will be used
by the application in order to logs in the user.

Test 2: Login the new user
Now, let’s try to login again with the same user:

Figure 58: Swagger test - login response

Test 3: Logout the logged user
And finally, logout. This endpoint expects the refresh token that we received in the last login
response:

Figure 59: Swagger test - logout body

Figure 60: Swagger test - logout response

The code 204 means no content, but it’s a successful response code, so it worked well.

USERS GROUP
This group needs the user to be logged in in order to has rights to use it. Remember that this
endpoints group contains all endpoints related with the user’s management, we will check the final
look and feel of the swagger and then do some tests with those endpoints:

Figure 61: API users group swagger

We prepared a tests list in order to know what we want to test:

- Create a new user
- Get list of users
- Get specific user’s information
- Update specific user’s information
- Remove the created user

Test 1: Create new user
This is the data used to create the new user:

Figure 62: Swagger test - create user body

And this is the response of the backend:

Figure 63: Swagger test - create user without authorization response

That’s why the logged in user is not an admin. Let’s register a new user, but now with admin role:

Figure 64: Swagger test - create user response

Now, the user is successfully created.

Test 2: Get list of users
This endpoint doesn’t need any property. In the API response we can see that we have two users in
the database now. The logged in user and the new user.

Figure 65: Swagger test - get list users response

Test 3: Get specific user’s information
This endpoint expects the identificatory of the user. We take it from previous endpoint response:

Figure 66: Swagger test - get user information parameter

And this is the response:

Figure 67: Swagger test - get user information response

Test 4: Update specific user’s information
This endpoint expects two different parameters. The user identification and the fields to be
updated. Let’s update the name of the user:

Figure 68: Swagger test - update user parameter and body

And check how successfully the API changed its name:

Figure 69: Swagger test - update user response

Test 5: Remove created user
This is the last test of the user’s endpoints. By specifying the user identification, we want to remove
it from the database. Let’s execute the DELETE method and then get all users in the database to
check it’s successfully removed:

Figure 70: Swagger test - remove user parameter

Check that the API responded with a 204 which means that is has been successfully removed:

Figure 71: Swagger test - remove user response

Finally check the response of the get all users endpoint:

Figure 72: Swagger test - get all users response

LISTS GROUP
This group needs the user to be logged in in order to has rights to use it. Remember that this group
contains all endpoints related with lists operations. We will check the final look and feel of the
swagger and then do some tests with those endpoints:

Figure 73: API lists group swagger

Let’s prepare a list with the tests we want to execute on this group:

- Create a new list
- Get all lists
- Get list by id
- Edit list by id
- Get tasks assigned to this list
- Remove list by id

Test 1: Create new list
Let’s create a new list by specifying the name, color and icon:

Figure 74: Swagger test - create list body

And the API response:

Figure 75: Swagger test - create list response

We can see that the API responded with the list object already created in the database. Notice that
it has more parameters that the three we sent to create the list. The list is also assigned to the
current logged used, as you can see in the userId property.

Test 2: Get all lists
Let’s get all the lists in the database. This endpoint will only retrieve the lists assigned to the
current logged user:

Figure 76: Swagger test - get all lists response

Notice that there are more lists from previous tests. The interesting thing here is the “removable”
property of each list. Check that the first two items in the screenshot have this property to false as
the lists are pre-defined by the platform. The other two lists are custom lists created by the user.
That’s why they have the removable property to true.

Test 3: Get list by id
We will take the id of the previously created list, and will try to get this specific list with this id:

Figure 77: Swagger test - get list by id parameters

The response of the API:

Figure 78: Swagger test - get list by id response

Test 4: Edit list by id
With the same id, we will change, for example, the color of the list:

Figure 79: Swagger test - edit list parameters and body

And the response of the API is the same list, after updating it and saving it to the database:

Figure 80: Swagger test - edit list response

Test 5: Get tasks assigned to this list
This test needs some tasks to be added to this list in order to receive a valid response. For now,
let’s jump to the Tasks group testing, and, after completes al tests unless the delete operation, we
will jump back here to check this is working.

Well, now back here, let’s check if the task we just added to this list is being shown:

Figure 81: Swagger test - get list tasks parameter

And the response:

Figure 82: Swagger test - get list tasks response

Notice that the task is exactly the one we created in the task group testing.

Test 6: Remove list by id
Finally, let’s remove the list:

Figure 83: Swagger test - remove list parameter

And the response should be a 204 code:

Figure 84: Swagger test - remove list response

TASKS GROUP
This group needs the user to be logged in in order to has rights to use it. Remember that this
endpoints group contains all endpoints related with tasks operations. We will check the final look
and feel of the swagger and then do some tests with those endpoints.

Figure 85: API tasks group swagger

Let’s prepare the list of tests to execute:

- Create a new task
- Get all tasks
- Get task by id
- Edit task by id
- Move task to another list
- Remove task by id

Test 1: Create a new task
The first test is to create a new task, but we will simulate the user interaction with the application,
so, for now, we will create the task as the “quick add” user story suggests. With only the title:

Figure 86: Swagger test - create task body

And check the API response:

Figure 87: Swagger test - create task response

Notice that the new task has been assigned to the current logged user and its status property has
been set to “todo” automatically.

Test 2: Get all tasks
After create the task, we will get all user’s tasks in the database. Consider that there are some tasks
already created in the database. That’s because previous tests. We will scroll down to the last
created one, so we can check if it matches with the created one:

Figure 88: Swagger test - get all tasks response

Here you can see multiple interesting things:

1. Notice that the last task in the response list is the one that we have just created. But
there’s a small difference. The property userId is not present here. That’s because what we
explained in the section where model’s definition was explained. Remember that property
called “select” that removes automatically a property from the object when finding it in
the database.

2. The penultimate task in the response was created using the voice record feature. As you
can see, it has a “record” property with a URL.

3. Check how the pagination feature included in the boilerplate works. The last parameters in
the response tells you which page you are requesting, the limit is the size of the page (it
means 10 items per page), the total pages tells you how many pages you have taking into
account the size of each page and the total elements in the database and, finally, the
totalResults, which tells you the total amount of tasks that exists in the database.

Test 3: Get task by id
Now, let’s get the id of the task we just created and try getting its details:

Figure 89: Swagger test - get task by id parameter

And the response:

Figure 90: Swagger test - get task by id response

This response also introduces an interesting thing, the population. This is a specific feature coming
from no-SQL databases and, also, from mongo DB, which is the database we are using. The
population is used in properties that are a reference to other models. In this case the userId is a
reference to the model User, so, populating this property will go to the Users collection, will get the
referenced user and will put the result as the value of the property userId.

Test 4: Edit task by id
Let’s now add the properties that we didn’t added at the creation of the task:

Figure 91: Swagger test - edit task by id parameter and body

And the response:

Figure 92: Swagger test - edit task by id response

Test 5: Move task to another list
Now, if you are here because of the list test that makes you jump here we will take this list id. If you
arrived here directly before read the lists group tests, we will take the id of the list we created
there:

Figure 93: Swagger test - move task to list parameters

And now the API response:

Figure 94: Swagger test - move task to list response

Notice that now, not just the userId is populated so the listId is also populated, so, we can see that
the list has been perfectly assigned.

As told before, if you arrived here from the lists test, you can jump there to test the delete
procedure.

Test 6: Remove task by id
Finally, let’s remove the task by specifying the id:

Figure 95: Swagger test - remove task by id parameter

And the response should be a 204 code:

Figure 96: Swagger test - remove task by id response

TIPS GROUP
This group doesn’t need the user to be logged in to use it. This group contains all endpoints related
with tips operations. We will check the final look and feel of the swagger and then do some tests
with those endpoints.

Figure 97: API tips group swagger

This is the list of tests:

- Create a new tip
- Get all tips
- Remove tip by id

Test 1: Create new tip
First test, create a tip. We will specify the tip’s content, as it’s the only parameter it requires:

Figure 98: Swagger test - new tip body

And the response will return the new created tip:

Figure 99: Swagger test - new tip response

Notice that this endpoint returns the 201 code, that means “Created”.

Test 2: Get all tips
Now, we will get all tips. I’m going to anticipate you that we just have one in the database:

Figure 100: Swagger test - get all tips response

Test 3: Remove tip by id
Finally, let’s remove the created tip by its id:

Figure 101: Swagger test - remove tip by id parameter

And the response:

Figure 102: Swagger test - remove by id response

Notice that this endpoint is returning the removed item instead of a 204-http code.

FILES GROUP
This group needs the user to be logged in in order to has rights to use it. This group contains only
one endpoint in charge of upload a file and returns its URL. We will check the final look and feel of
the swagger and then do some tests with those endpoints.

Figure 103: API files group swagger

Let’s check the list of tests:

- Upload an image
- Check the URL received allows us to see the image

Test 1: Upload an image
To test this endpoint, we will update one of the flow charts we saw in this document, as is easy to
show you here that the upload is working well:

Figure 104: Swagger test - upload file parameter

And the response is:

Figure 105: Swagger test - upload file response

We are receiving localhost as the URL because we’re working in our localhost now. This will change
once we publish the API to the cloud.

Test 2: Check the returned URL
Let’s check if the previous received URL is the really the image URL:

Figure 106: Swagger test - upload file URL check

Here you can see the browser with the URL open and the image loaded by the browser itself.

SEED GROUP
The last group of endpoints. This one also needs the user to be logged in in order to has rights to
use it. This group contains all endpoints in charge of manage the database content, that means,
drop the database and fill it with all initial pre-defined data.

Figure 107: API seed group swagger

As this will remove the database completely, we are testing this group at the end of the testing.

The endpoint POST /seed won’t be tested as it’s dependent of another endpoint that we missed in
the planification process. That endpoint would be in charge of dropping all collections in the
database, but we have the “reseed” endpoint which does both actions.

Let’s check the list of tests:

- Get current content in the database
- Reseed the database

Test 1: Get current content in database
Let’s finish with the tests of the seed group. We’ll start with the read of the contents in the
database:

Figure 108: Swagger test - get database content response

As you can see here, we have 5 collections in the database. Tips, users, task lists and tokens.

- We have 0 tips because we removed the one we created in the tests.
- We have one user because the same as tips collection.
- We have 8 tasks and 4 lists because of other tests
- We have 165 tokens, which means that we are not logging out the user never. Because the

simplification we’re doing, we are accumulating all tokens created in each login process.
These tokens will be removed when them starts expiring.

Test 2: Reseed the database
The reseed procedure does two actions:

1- Clean all collections in the database.
2- Creates all initial data in each collection.

As all collections will be dropped, we will need to log in again, so we will create the first token. The
initial created data would be:

- Users collection: 2 documents
- Lists collection: 4 documents
- Tasks collection: 5 documents

Let’s see what we receive in the “Get current database content” after the reseed process:

Figure 109: Swagger test - reseed database validation

MOBILE & WEB APPLICATION IMPLEMENTATION

Now, we have everything to start working on this part of the project. The first thing we have to do
is initialize the project.

Project initialization
So, we will start the project over expo, to allow a fast development. If we check out what is expo
from its website (https://docs.expo.dev), we get this:

Expo is a framework and a platform for universal React applications. It is a set of

tools and services built around React Native and native platforms that help you

develop, build, deploy, and quickly iterate on iOS, Android, and web apps from

the same JavaScript/TypeScript codebase.

Expo helps you from the project initialization until the build of the app natively in each platform
(Android, iOS and Web). So, let’s start with the initialization of the project and the main
dependencies.
There are 3 steps to complete in order to get the application running into your phone.

1. Install expo and its dependencies
2. Initialize the expo project
3. Run it from terminal

INSTALLING EXPO AND ITS DEPENDENCIES

Figure 110: Expo-cli installation

With this line we are installing in our computer, in the global scope, the expo-cli tools that will let
us work with our expo application.

We also need to install the Expo Go mobile app, in both of our devices (as we are working with an
iOS device and an Android device).

https://docs.expo.dev/
https://expo.dev/

Figure 111: Expo go on App Store

Figure 112: Expo Go on Play Store

INITIALIZE THE EXPO PROJECT

Figure 113: Expo initialization project commands

Let’s explain these both lines:

- expo init my-app: With this line, we are creating a boilerplate application, well, expo-cli
does it for us. The procedure is the following:

o Choose a template
o Download the template files
o Install all dependencies using Yarn

- cd my-app: After the initialization, we will move into the new created folder by using this
command.

RUN IT FROM TERMINAL
The previous initialization gives us an interesting list of commands we should use in order to run
the project. Let’s check it out:

Figure 114: Start commands after project init

- yarn start: Is the main command we will use to run the project. This start command runs a
visual interface on out browser so we will be able to manage the running instance of the
project.

- yarn android: This command runs the project directly in a detected Android device
connected to the computer.

- yarn iOS: Does exactly the same as previous command, but running into an iOS device.
- yarn web: Does exactly the same as previous command, but running into the browser.

We will use yarn start in order to be able to handle all running instances. Once it finishes, we will
get a message into the terminal, which we will split to explain it piece by piece:

Figure 115: yarn start response linking

First of all, we know that, what the yarn start command does is execute the expo start command,
so, it’s a shortcut simply.

Figure 116: yarn start response version lookup

Then, expo notifies us about the current expo-cli library version we’re using and tell us how to
update it, in case it’s outdated. After that, will tell us where is the project being run (host & port)
and will log the execution of some procedures.

Figure 117: yarn start response QR

Let me split the last piece in two pieces, as this QR is super big in the terminal window. Spoiler
about this QR, it’s the one we have to scan to run the application in our devices. It’s basically an
App Link. A URL that tells the operating system that should be opened in a specific app. So,
scanning this QR will definitively open the previous installed Expo Go application.

Figure 118: yarn start response commands

Finally, some information about what kind of actions we can do over the running platform through
the terminal.

Let’s check out the expo developer tools that has been launched on the browser:

Figure 119: Expo developer tools

I have drawn four different squares (each one has its own number), to make it easy to refer to a
specific section when explaining its purpose.

1. The first square shows us the instances running the application. An instance, for example,
would be the iOS device, the Android device or a tab in the browser running the
application.

2. The second square shows different actions related with run the project in a device.
3. The third square is more related with connection as lets us to change the type of

connection and shows the QR for the choose connection.
4. The fourth and last square is basically the log of the selected instance in the first square.

We will be able to see there all the console logs, errors and warnings that react or react
native will “print”.

CONNECT TO THE APPLICATION
This is how it looks like when we scan the QR in a mobile device:

Figure 120: Expo app running on iOS

In order to run it into the browser, we have to click the button Run in web browser we have in the
expo developer tools. And this is how it looks:

Figure 121: Expo app running on web browser

Cares about merging Mobile and Web projects
We have managed to merge both projects. Thanks to react-native-web library, we will save a lot of
time on the development, as we will be able to use the same scaffolding, same libraries, exactly
same components in both mobile and web projects. There are some facts that has to be
considered.

MERGE ISSUES
Everything will go well, if we use the components that react native offers. Third party libraries may
not work with both platforms, and we need to use third party libraries, as we don’t have enough
time to develop everything from scratch (as I would recommend in a real production environment).
Luckily, react native provides some utils to fight against those possible issues, for example,
Platform, that allows us to identify where is the application being ran (iOS, android, web, etc.).

Navigation
Navigation is also an issue that needs to be handled. In web environments we have URL’s, that tells
the website which screen should be rendered. But not in mobile.
NavigationContainer component from React Navigation library will allow us to map web routes
with mobile screens. Reading their documentation, we’ve check out how to implement it:

Figure 122: NavigationContainer code example

The whole application must be covered with the NavigationContainer component. Then, we will
define a linking, which will tell NavigationContainer how this mapping should be managed. Let do a
quick check of this linking:

Figure 123: Linking configuration code example

This is only a portion of the file. Check the pathing we have in the configuration: Root -> screens ->
Today -> screens -> TodayScreen -> “/today”.

The pathing from Root to TodayScreen is basically how the navigation has been implemented in the
code. But, the important thing starts in “Today”, which is the main navigation of the Today Screen,
the one we’re assigning to “/today” path in the URL. So, what this piece of code tells is: When you
(react native) navigates towards TodayScreen, the browser will navigate towards /today URL.

Styling
Styling is a little bit different in in mobile than in web. But we’re limited to the styling that react
native offers. Anyway, sizes, viewports… a lot of things are different between a mobile and a
desktop computer.

Sizes

Sizes are unitless in react native, while in web we have a lot of units. If we check the website of
w3schools, we can understand that there are two main groups of units:

- Absolute units: It doesn’t matter in which screen we will show the content, it will always
measure exactly the same if we use absolute units. It’s commonly used when we know the
output of the content, like a print. The most common absolute units are: centimeters (cm),
millimeters (mm), inches (in), pixels (px), points (pt) and picas (pc).

- Relative units: They’re relative to the screen sizing. Relative units always scale better than
absolute ones. The most common relative units are: em, ex, ch, rem, vw, vh, vmin, vmax,
%.

We sometimes have to apply different styles to mobile and web platforms. Here we have an
example about this, by using the Platform utility from react native:

Figure 124: Apply platform specific styles

Styled components

In the scope of styling, we are using a library called styled-components. This library offers us a lot
of things related with “how to apply styles to a component”. Normally, this is the way we apply
styles to a component:

Figure 125: Applying styles to a component

This means that, if you want to create a component with a specific styling, you need to create a
new component, managing all the props, apply the styles you want and export it to let other use it.

With styled-components, this would be the way to create a new component with specific styling:

Figure 126: Applying styled with styled-components

Checking styled-components documentation website, basically this library is the result of
wondering how we could enhance CSS for styling React component systems. It optimizes the
experience for developers as well as the output for end users. Apart from that, styled-components
provides a lot of incredible features. Let’s check the most important ones:

- Automatic critical CSS: It loads only the needed stylings, where and when it should be
loaded. This means better load times.

- No class name bugs: The library generates automatically unique names that will be placed
instead of the typical class names known in CSS.

- Easier deletion of CSS: It makes easy to identify where a style is being applied and makes it
easy to remote it.

- Use props: Take advantage of props while creating styled components.

Figure 127: Using props on styled-component

Third party libraries
One of the main rules of a developer is: “Reuse as much code as possible”, “If it’s already done,
why do it again?”. In this way we introduce this last section of the merging issues.

Third libraries are practically essential in any development. That’s what allows us to make huge
developments in a very short time. But, sometimes they could give you some headaches. Let’s
compare benefits versus disadvantages:

Benefits:

- Optimize a lot the time spent to develop new stuff, as you are using what others has
already implemented.

- Forget about bug fixing those features. Third party library author takes care about that.
- Improve the quality of your implementation, as usually those third-party libraries have

been developed during years.

Disadvantages:

- Their bugs will affect you
- Practically impossible to implement evolutive over the third-party library.

- You will have less flexibility. You have to adapt your development to the third-party library.
- You may be forced to not update your app, as it may stop working because the third-party

library is not compatible with next versions.

Apart of these possible issues, we have to keep in mind that we’re using a limited library to be able
to run the application in web browsers, react-native-web. But there’s a way to be able to use those
third-party libraries while using react-native-web. Using webpack.

Webpack is, from their website: “A static module bundler for modern JavaScript applications”.
What webpack does is to create less bigger files, packing all code from your project inside. It allows
quick load times, secure code inspection, etc.…
Using webpack, we found a way to use some of those third-party libraries event they’re not directly
compatible with react native, by telling webpack to “dangerously” add specific modules to the
path. This, usually will let us take advantage of these libraries.

Development process
With all the documentation we have prepared on past sections, we will start with the development
of the application. We don’t have exhaustive designs of the application, as we will be taking
decisions during the development. But with the sequence diagrams and the first designs, it will be
easy.

SCREENS IMPLEMENTATION
We will organize the development based on screens. Once we have a basic version of each screen,
we will start by implementing all the user stories.

Login Screen
This is maybe the simplest screen in the application as it’s basically a way to specify which user is
using the app, in order to see its database information. It’s basically composed with two text inputs
and a button to login.

Figure 128: Login screen

Today Screen
The final thoughts about this screen are:

- Be able to see the calendar tasks for today.
- Be able to see the tasks planned for today.
- Show some tips to the user in order to help him complete all the planned tasks.

Calendar integration

We have used the calendar library from expo, called expo-calendar. There is a small problem with
this library, that it’s not compatible with web, as we can see in their documentation:

Figure 129: Expo's calendar library compatibility

So, this feature will only be available in mobile in the first app version. This is how it looks once
implemented:

Figure 130: Today Screen - Calendar integration

The goal of this screen is that it should be the only screen to check out during the day. So, we want
all the important staff here. First, calendar events. Remember that a calendar event means a time
period that doesn’t owns you. Is not free time, its reserved to a specific event. Meet something, a
doctor appointment, etc.

Today’s tasks

The second most important thing are the tasks planned for today. The Actionable list is the one
that will contain all the tasks planned for today. Let’s check the final design:

Figure 131: Today Screen - Calendar with tasks

Tips

We want to help the user a little bit to organize as good as possible. That’s why we will show
different tips to him, recommending some things that bring him closer to the goal.

We have implemented the view where all the tips will be shown. Following the design, we’re using
in the rest of the screen, let’s see how it would look like:

Figure 132: Today Screen - Final design

Review Screen
In the review screen we will be able to see all the tasks pending to be reviewed. All those tasks will
come from the Inbox list and they should be touchable, in order to be able to view/edit each task.

Let’s see the implementation for now:

Figure 133: Review Screen - Tasks list

As the user should be able to review the tasks in this screen, we will add a button to start the
review process. The review process itself will be implemented later.

Let’s see it:

Figure 134: Review Screen final design

Lists Screen
This screen will show all the created lists associated to the current user. We will have the list of lists
and a button to create new lists. The new list creation will be implemented later.

Let’s check the design of this screen:

Figure 135: Lists Screen final design

Settings Screen
The goal of this screen is to keep some user configurations, the logout action, etc. The styling of
this screen will be a little bit different, as the goal is different. We will use a white background, with
black text with some icons near each item in the list. Let’s see the final design of this screen:

Figure 136: Settings Screen Final design

We will work later in the items in this screen. For now, the Log out action is the only one that will
be working. The other two actions are there as a demo.

USER STORIES IMPLEMENTATION
With all sequence diagrams we designed before starting with the app development, we are able to
start building each user story. Let’s remember the main user stories we will be implementing:

- Add new task quickly by title or by voice record.
- Manage lists (create, remove).
- Edit already created tasks.
- Review new tasks in the inbox.

As you can see, the review new task in the inbox user story will be the last one, as it’s the most
important and complex one.

User Story 1: Add new task quickly
This user story needs to cover the following needs:

- The user should be able to accomplish this user story as quick as possible.
- The user should be able to create the task with only specifying the title.
- The user should be able to create the task by recording his voice.

Since the first’s designs, we put a big “add” button in the bottom tab bar thinking in this user story.
We will use two props of this button in order to accomplish the two main tasks that covers this user
story:

- Short press on the button: This user action will start the creation task with title.
- Long press on the button: As other apps introduced to their users, long press means

record. So, with a long press, the user will start recording. The recording process will stop
on the press release action.

Let’s check both actions, starting with the short press. We will see two images. The first one is
when the user press the “big add” button. The second one is, after that, when he types something
in the text input.

Figure 137: Add quick task by text - Unfilled

Figure 138: Add quick task by text – Filled

Now let’s check the long press action, or the voice audio record:

Figure 139: Add quick task by voice record

The result of this creation is the following, with the task with title above, and the one with voice
record below:

Figure 140: Add quick task results

Those tasks are assigned directly to the Inbox list, as they’re pending to be reviewed by the end of
the day.

User story 2: Manage lists
We want to let the user manage their lists, by allowing him to create new lists and removing
already created ones. We will cover this “management actions” by now.

In order to pre-design those actions, we will split the user story in two actions and cover them
separately:

- Action 1: Create a new task.
- Action 2: Remove existing lists. We will consider that user won’t be able to remove system

created lists, as Inbox, Actionable, Tickler, etc.

Starting with the action 1, we are thinking in a kind of modal, to avoid sending the user to another
screen, and then moving him back again.
Some months ago, Apple released a new UI element, called Bottom Sheet, which could work really
well here.

After some effort, we reach the final design:

Figure 141: Manage lists - create new list

As you can see, there are three main sections here:

- The list title definition
- The list color definition
- The list icon definition

All colors and icons are predefined: Icons comes from a library called Ionicons. They also have React
Native components to use their icons, so it’s a perfect approach for us. As you can see, we used all
icons families they have (filled, outlined, sharp, logos and iOS families).

After the user fills everything, “Ok” button is enabled and could be pressed to create the list.

Then, with action 2, we thought about the swappable interaction which is usually used by all apps
in the market. It consists on swipe the element you want to act on, to the left or to the right
discovering the actions available for the specific element.

There’s a third-party library, recommended by React Native, called React Native Gesture Handler.
The motivation to use this library instead the Gesture Responder System included in React Native is
because this last one has some performance limitations and is a little bit more complicated to
implement it.

Using the Swappable component from this library we get the following solution:

Figure 142: Manage lists - swipe to delete

In this case, we disabled this behavior for the lists that are no removable as they’re system
dependent, for example, Inbox, Actionable and Tickler. To give this feedback to the user, we added
a lock in the list render:

Figure 143: Lists with swappable disabled

User story 3: Edit already created tasks
Edit tasks is an important user story, as we will need it for the last user story (the review one).
We’re planning to use the same component as in the second user story, the Bottom Sheet. As we
enjoyed the user experience we got in this user story.

We have implemented a first version of this, simplifying the editable fields of a task. For now, the
editable fields are: Title, Notes, List, Date and Time:

Figure 144: Edit already created task

User story 4: Review new tasks in the inbox
NOTE: We won’t be able to show screenshots of this part, as its not already implemented. We will
explain how we will implement it, and we will show a working demo the presentation day.

This is the most important task in the application, as it’s the last step in the first phase of the user
interaction with the application. This user story will start when the user presses the “Review tasks”
button and the application will guide the user in the following way:

- The application will start asking questions to the user.
- As the user keeps answering the questions, depending on his answers, the application will

keep asking more questions or will suggests some actions to the user.
- The user will choose between all actions, and will be requested by the application to

complete the missing task information.

Let’s remember the questions that the application will ask the user and which actions will it
suggests:

Figure 145: Review task questions to answer

Let’s go through each question, understanding the actions that the application will suggests to the
user:

Question 1: Is actionable?

This question allows the application to understand if the task is actionable. Actionable means that
the task could be executable by the user. For example: “Concert of C. Tangana in one month”
couldn’t be executed by the user. In one month, the user should decide what to do, but not now.
By the other hand, the task “Ask my friend Dani about his holidays” is an actionable task that could
be executed now.

If the user answers YES: The application will go to the next question.

If the user answers NO: Then the application will suggest the following actions to the user:

- Send it to trash.
- Move to someday list.
- Move to references.

Question 2: Is a single step?

This question is needed to identify if the task corresponds to a project. We determine that a task is
a project when multiple tasks needs to be done in order to complete the initial task.

If the user answers YES: The application will go to the next question.

If the user answers NO: Then the application will suggest to convert the task into a project, that’s
basically a task with subtasks.

Question 3: Takes more than 2 minutes to be executed?

This question is used to filter too small tasks. When the user arrives here we know that the task is
actionable and that’s not a project. So, it’s something we can do now and only requires one step.

If the user answers YES: The application will go to the next question.

If the user answers NO: Then application will suggest the user to do it now. According to GTD all
tasks that takes less than 2 minutes to be done, should be done in the review moment.

Question 4: Is it for me?

With this question, we will delegate the tasks that cannot be done by the user. We will have a
specific list for these tasks called “Waiting for…”. Here, we will put all tasks that depends on a
different person. In a future, we could improve the application by adding some “event listeners”,
so, for example, a task could wait until the user receives an email from a specific person.

If user answers YES: The application will go to the next question.

If user answers NO: Then the application will ask the user for the “who” in order to complete the
sentence “Waiting for …” and will move the task to this list.

Final question: Does the task have a due date?

This is the final question. It’s important to know if the task has a due date, because if it does, the
user will need to block free time to complete the task at time. GTD throw away all tasks that blocks
free time, and delegates this management to the calendar. So, the conclusion is:

If the user answers YES: The application will suggest the user to set the “When” of the task and add
it to the calendar.

If the user answers NO: Then the application will move the task to the “Next Action” list, which is
where all executable tasks are placed, waiting to be moved to the Actionable list, where the user
will be taking tasks to complete.

CONCLUSIONS

The main goal of this thesis was to study what is the best solution to share as much code as
possible between React Native and React projects.

The best technical approach nowadays to this code sharing was to use react-native-web. We said
“nowadays” because those technologies change a lot in short time lapses, so, what today is a good
decision, maybe next month won’t be.

What react-native-web library does is to, internally, transform the components exported by React
Native to HTML native elements, for example: React Native View component would be
transformed to <div> element in HTML. By doing this, this library makes all React Native
components compatible with web environments.

But, this approach adds some complexity to the project development. For example, when working
with React Native project, you sometimes need to take care about android and iOS separately, that
means that you sometimes should wrote platform independent code. Now, we also must take care
of web dependent code. So, in conclusion we will sometimes implement a piece of code for
android, another piece of code for iOS and another piece of code for web. It’s not a really bad thing
if you use the correct architecture but it definitively adds complexity to the project.

Even so, the time you gain by using it is greater that the time you would spend if you don’t use it.
So, the complexity is worth it.

BIBLIOGRAPHY

Allen, D. (2004). Ready for Anything: 52 Productivity Principles for Getting Things Done. Penguin
Books.

Allen, D. (2015). Getting Things Done: The Art of Stress-Free Productivity. Penguin Books.

Europa Press. (2020, December 14). Heraldo. Retrieved from Heraldo:
https://www.heraldo.es/noticias/nacional/2020/12/14/el-estres-en-la-adolescencia-
empeora-el-aprendizaje-y-la-memoria-y-aumenta-la-ansiedad-en-la-vida-adulta-segun-
estudio-1410131.html?autoref=true

Mermaid JS. (2021, October 1). Mermaid JS. Retrieved from Mermaid JS: https://mermaid-
js.github.io/mermaid/#/

Microsoft. (2021). Azure. Retrieved from Azure: https://azure.microsoft.com

Payscale. (2021, September 1). Payscale. Retrieved from Payscale:
https://www.payscale.com/research/ES/Job=Sr._Software_Engineer_%2F_Developer_%2F
_Programmer/Salary

Shilov, A. (2021, February 01). Apple: Mac Mini M1 Consumes 3X Less Power Than Intel. Retrieved
from Apple: Mac Mini M1 Consumes 3X Less Power Than Intel:
https://www.tomshardware.com/news/mac-mini-power-apple-m1-soc

Styled Components. (2021). Styled Components. Retrieved from Styled Components: https://styled-
components.com/docs

Teangaantt.com. (2021). Online Gantt Chart Software & Project Planning Tool. Retrieved from
TeamGantt: https://www.teamgantt.com

w3schools. (2021). w3schools. Retrieved from w3schools: https://www.w3schools.com/

Wikipedia. (2021, February 2). Retrieved from Wikipedia:
https://es.wikipedia.org/wiki/Getting_Things_Done

APPENDIX

APPENDIX A: Gantt chart – Part 1

APPENDIX B: Gantt chart – Part 2

APPENDIX C: Gantt chart after thesis extension – Part 1

APPENDIX D: Gantt chart after thesis extension – Part 2

	List of Figures
	List of Tables
	Contextualization
	Introduction
	Getting Things Done
	Workflow / principles
	The steps in detail
	Capture
	Clarify
	Organize
	Review
	Engage

	From theory to practice
	My workflow
	What are the benefits of this methodology?

	Stakeholders
	GTD Interested people
	Thesis Director
	Myself, as a user and as undergraduate student

	Justification & Research
	Todoist
	All-new Things
	Omnifocus
	Conclusion

	Scope
	Objectives
	Technologies
	Mobile App
	Update

	Web App
	Update

	On-Cloud backend
	Update

	Testing
	Update

	Functional and non-functional requirements
	Methodology
	Microsoft Azure DevOps
	Microsoft Azure
	Toggl Track

	Temporal Planification
	Tasks description
	Project Management – PM
	Scope & Contextualization – PM1
	Temporal Planification – PM2
	Economic Management 6 Sustainability – PM3
	Previous documents union – PM4
	Epic tasks:

	Platform Design - PD
	Epic tasks:

	Story Book implementation - SB
	Components Sharing Investigation – SB1
	Story Book Implementation – SB2
	Epic tasks:

	Mobile App Creation – MA
	Epic tasks:

	Web App Creation - WA
	Epic tasks:

	Back End Creation - BE
	Epic tasks:

	Thesis extension modifications
	Modifications: Tasks description
	Merge epics Web and Mobile App Implementation
	Remove the epic Storybook

	Gantt & estimations
	Thesis extension modifications

	Alternative plans & obstacles
	Economic Management
	Human Resources
	Activities costs
	Project Management
	Scope & Contextualization
	Temporal Planification
	Economic Management and Sustainability
	Final Delivery

	Mobile App Implementation
	Project Scaffolding
	Design Implementation
	Enable Continuous Integration
	Design App Workflow

	Web App Implementation
	Project Scaffolding
	Design Implementation
	Enable Continuous Integration
	Design App Workflow

	Story Book Implementation
	Mobile
	Web
	Storybook

	Back End Implementation
	Implement Microservice
	Integrate CI into the microservice

	Generic costs
	Material costs
	Electricity costs
	Computer
	Screens
	Amortizations
	Computer
	Setup

	Total generic costs

	Unforeseen
	Final budget
	Management Control
	Activities costs changes
	Tasks missed in the initial scheduling
	Bad estimation on initially scheduled tasks

	Generic costs changes

	Thesis extension modifications
	Modifications: Human resources
	Modifications: Activities costs
	Modifications: Final Budget

	Sustainability Report
	Ambiental
	Economic
	Social

	Project Planification
	Introduction
	Application Schema
	Designing user stories
	User Story 1: Quickly add new task
	User story 2: Manage lists
	User story 3: Edit a task
	User story 4: Review new task in the inbox

	Backend endpoints
	Tasks Group
	Lists Group
	Users Group
	Update: After choose a boilerplate

	Auth Group
	Update: After choose a boilerplate

	Tips Group
	Files Group
	Seed Group

	Application design
	The .sketch file
	The .sketch designs
	Today screen designs
	Example 1
	Example 2
	Example 3
	Example 4

	Inbox screen designs
	Update: During development process

	Review screen designs

	Code reusability investigation
	Shared components
	The viewport
	react-native-web
	Conclusion

	Backend API Implementation
	Technologies
	Boilerplate
	Architecture
	Features
	Routes definition
	Validation definition
	Models definition

	Swagger documentation
	Swagger endpoints definition
	Swagger model’s definition
	Swagger authentication
	Swagger final aspect

	Swagger final implementation
	Auth group
	Test 1: Register a new user
	Test 2: Login the new user
	Test 3: Logout the logged user

	Users group
	Test 1: Create new user
	Test 2: Get list of users
	Test 3: Get specific user’s information
	Test 4: Update specific user’s information
	Test 5: Remove created user

	Lists group
	Test 1: Create new list
	Test 2: Get all lists
	Test 3: Get list by id
	Test 4: Edit list by id
	Test 5: Get tasks assigned to this list
	Test 6: Remove list by id

	Tasks group
	Test 1: Create a new task
	Test 2: Get all tasks
	Test 3: Get task by id
	Test 4: Edit task by id
	Test 5: Move task to another list
	Test 6: Remove task by id

	Tips group
	Test 1: Create new tip
	Test 2: Get all tips
	Test 3: Remove tip by id

	Files group
	Test 1: Upload an image
	Test 2: Check the returned URL

	Seed group
	Test 1: Get current content in database
	Test 2: Reseed the database

	Mobile & Web Application Implementation
	Project initialization
	Installing expo and Its dependencies
	Initialize the expo project
	Run it from terminal
	Connect to the application

	Cares about merging Mobile and Web projects
	Merge issues
	Navigation
	Styling
	Sizes
	Styled components

	Third party libraries

	Development process
	Screens implementation
	Login Screen
	Today Screen
	Calendar integration
	Today’s tasks
	Tips

	Review Screen
	Lists Screen
	Settings Screen

	User stories implementation
	User Story 1: Add new task quickly
	User story 2: Manage lists
	User story 3: Edit already created tasks
	User story 4: Review new tasks in the inbox
	Question 1: Is actionable?
	Question 2: Is a single step?
	Question 3: Takes more than 2 minutes to be executed?
	Question 4: Is it for me?
	Final question: Does the task have a due date?

	Conclusions
	Bibliography
	Appendix
	APPENDIX A: Gantt chart – Part 1
	APPENDIX B: Gantt chart – Part 2
	APPENDIX C: Gantt chart after thesis extension – Part 1
	APPENDIX D: Gantt chart after thesis extension – Part 2

