A door to the GTD methodology

Final deliverable

Final Degree thesis

Thesis director GEP tutor

Xavier Burgueés llla Marcos Eguiguren Huerta

Author: Marc Ferreiro Aliberch

University: Universitat Politécnica de Barcelona
Specialty: Software Specialty

Date: Barcelona, 18th October 2021

CONTENTS

LIST Of FIGUIES .evveiiieieeeeecieee ettt ettt e ettt e e eetbe e e ee bt e e esetbeeeeebbaeeeentsaeeeabaeeeessaeesansaeeesassseesensraeesansreeennns 6
LISt OF TABIES ettt ettt e bt e bt e e at e e st e e s beeebee e bee e aeeenaeas 10
CONEEXEUANIZATION ...ttt ettt et e e st e e s bt e s bt e e bt e e sabeesabeesbeeeaneeenns 11
INEFOTUCTION <.ttt ettt st e st e et e st e st e e sane e e neeeameeesareesanee s 11

(G anT oY= I Y1 aY =<3 B L] o U SUPN 12
WOTKFIOW / PIINCIPIES ettt ettt ettt ettt e teeete e te e beeebe e teeebeeeseesean 13

B0 LSS =] o T T L] 11 SRS 14
From theory t0 PracliCe ..t e e e e e e e e e e e e e e araaaee e e e e e nnnaaaeeens 15

IMIY WOTKFIOW ...ttt eere e et e e et e e e eaaeeeeeabeee s sbeeeeensaeesensreeeennsaeeenssaeeenn 15
What are the benefits of this methodology?..........cooeiiiieiei e 16
SEAKENOIARTS ...ttt et e b e et e e st e e st e e s bt e e bt e e s abeesbeesbeeeaneeenns 16
GTD INtereSted PEOPIEttt e e e e e e e e e e e e e e naaaeaeeeeeernssaaaeaeeeaanen 16
TRESIS DIFECTON ...ttt ettt et st e it e st e st e s bt e bt e e e ae e e sabeesanee e seeesmneesaneenn 16
Myself, as a user and as undergraduate StUdeNnt.........ccueeeeeiiie e 16
JUSHIFICAtiON & RESEAICNcieiiiiee ettt ettt st e b s 17
TOOOIST ettt ettt et e st e st e st e e bt e e s as e e sabe e s be e e bt e e e ae e e s bt e snee e neeeenneesanee s 17
Al N EW TN ES ittt e e e e e e et e e e e e e e s abaaeeeeeeee s assaaaaeeeeeesnnssaaaeeeseennnssaneaeas 17
OMINITOCUS .ttt ettt ettt et e b e et e e st e e st e e et e e e beeeabeeeabeesabeesaneesneeanateenaes 17

(6o 70Tl [T 1T] o FO O OO O RUS PP UPPUPPR 17

1Y 00 1= 19
(0] oY [T 1 17T PR 19

B =Tl 1Yo o == S 19

1Y/ Te] o1 FT Y o o U 19

L AT L] o T AN o RSP 19
ON-ClOUA DACKENG. ...ttt et et e et e st e e st e s bt e e aeeesaeeeeaeas 20

B =L] = 2P PPPUPPPRIN 20
Functional and non-functional reqUIrEMENTS.........veiiecveeieceee et eeeree e e 20
1Y/ 1= d g oo o]l -V AP PR 21
MICTOSOTt AZUIE DEVOIPS ...eeeieiiieeeeiieeeecttte e eitee e e e tee e setree e eataesseataeesassaeeeessaeesenssaeeennseneesnnseesann 21

IMICFOSOTE AZUIE .o 22

B oY= =4 I I - ol RS 22

TemMPOral PlanifiCatioNciiccieee ettt e et e e e re e e eeraee e eabeeeeeabaeeessaseeesearaeesennreeennns 24
I S0 (3l 1] 4 oo PSRN 24
Project Management — PVl ittt ettt e e e e e siree e e e e s s s s aaan e e e e e s s s anbaaaaeeas 25
Platform DESIZN = PD ..ececereeeeecieee ettt ecteee e eettee e et e e eetvee e etraeeeeabeeesenseeeeesseeesesseeeennsaeeesnssaeeenn 26
Story Book implementation =SB ...t e e e e e e 27
Mobile APP Creation — IMIA ..o ettt et e e et e e s et e e s asa e e e esaeeeseanteeeennsaeeesnnaeeann 28
WED APP Creation = WAottt et e et e e e e te e e et e e e saeaeeeessee e s ssaeesenssaeesnnneeeannnns 30
Back ENd Creation - BE........oo ettt e e s 31
Thesis extension MOIfiCatiONS........cevuiiriiiriiiiieieeeee ettt et et be e b eae s 32
Modifications: Tasks deSCrIPLIONcecciiiiicciee e e e e e e e e e e reaee s 32
GaANTL & @STIMATIONS ...ttt ettt ettt e ettt e e e bt e e e at e e e s e abe e e e e bt e e saaneeeeeanseeeeenreeesaaneeas 34
Thesis extension MOIfiCatiONS........eeviiriiriiiieeeee ettt et be e b e sbeenae s 34
Alternative plans & ODSTACIESciii e e e e e e e e e e e e e e e e e e e nnnnes 35
ECONOMIC MaNaZEIMENT ..ciiiiiiiiiteeee ettt e s e e e e e s st aeeeeesssasbteaeeeesesssnssaaaaeessennas 36
HUM@N RESOUICES ...ttt ettt e e s et e e e e s e s b et e e e e s e snnse e e e e e e s eesnnnneeeeess 36
ACTIVITIES COSTS weriinniiiiiiiiiee ettt e e s e e e s e e e s e e e seneeeesenneees 36
Project Management ..., 37
Mobile APP IMPIEMENTALION......cciciiee e e e e e e e et e e e eraraeeeenraeeean 38
Web App IMPIEMENTALIONeiiiieiie e et e e re e e e rr e e e e ntae e s naeeeeanns 40
Story BooK ImMplementation ...t e e e e e e e e e e e 41
Back ENd IMpPlementation..........uiiieei ettt ettt e e e e e et e e e e e e e e e e s e e nnaaaaee s 42
GBNBIIC COSES. ottt iuuttee et te e ettt e e ettt e e ettt e e ettt e e e ubtee s e abtteeeab e e e e e anbeeesaaneeeeeambeeeeaanseeeeaaneeeesnneeeeanraeeaan 44
IMAEEITAI COSES ettt ettt ettt e e e s bt e s bt e e s aee e sab e e sabeesbeeesnteesabeesaneean 44
=T or (g Tl AV o0 1] YRR 44

8 Lol o] Y=Y o USSP OPPPPRR 46
[T aF= Y I o T8 e =] S 47
Yo=Y o(=T 0 aT=T g LA @] o1 o] IS SPR 48
ACLIVITIES COSES CRANEES .t e e e e et e e e e e e e e et aaee e e e e e e nnnsaaeeens 48
(C1=T =T Tl ole 1y € el g =1 V= <L RS 48
Thesis extension MOdifiCatioNs.coiii i 49

MoOdifiCatioNs: HUMEAN FESOUICES.......coieeeeeeee ettt e eeetre e e e e e e earee e e e s e e s aarereeeeseeesnssaeeeeeas 49

Modifications: ACLIVITIES COSES ...oovviiiiiiiiiiiiie 49

Modifications: FINAl BUAEETccoeiuvieieiriie ettt eeree e et e e e tree e eabe e e eenreeeesasaeeesnraeeean 49

YU =10 =1 o1 LRV 2T oL SR 50
AMDIENTAL. ..ttt ettt e et e st e et e e bt e e a b e e et e e e bt ebeeeateesateeebee s 50
oo o To] 0 o ol PP P PP RPPPPOPI 50
Yool - F PO PP P PO PRPRPSTIPPROPRIN 51
o) =Totd ad = i ot- 1 o] o ST 52
INEFOTUCTION ...ttt ettt e bt e e bt e et e e st e e s bt e sbeeenteesateesabeesanee s 52
PN o] o] [Tor: | ToT s Yol a =11 4 F- PSSR 52
DESIZNING USEI STOTIES i iiiei e, 53
2T (=T Yo I =T 0o oo 1} £ 57

B 153 o U o TSRS 58
LISTS GrOUP co e, 58
USEIS GIOUP coiiiieiee e 59
XU o T o U o PSSRSOt 60

BT eI C o U« PP RPUPPPPPPPRIN 61

1 1SR] o 10T J U 62
Y= Te I G o T U o P USRS 62

PN o] o] LTor=1d ToT W [T F={g NSRS 63
ThE .SKEECH FIl@ ...ttt ettt e st e st e et e e st e e sanee s 63

Bl TSI T ol g I e [T =g PSSP 63

B oo E N Yol £ =TT o e 13 = PSSP 64

Ta] oo) @Yol oY= g e {1 1 [66
AT Aol =Y =T o Je [Ty F=d TS 67
Code reusability INVESTIGAtION..........uiiii i e e e e e e e e e araaaeee s 67

Y g1 g=Te IoloTa'0] o o] g T=T o L €30 USRS 68

B I TSIV T] o SRS 68
FEACT-NATIVE-WED ... st 69
L6070 To [T] o HO PSPPSR UPPPPPO 69
Backend API IMPIEMENTALIONccceiiii e et e e e e e e s ata e e s e ntee e e neaeeeennnaeeean 70
JLIC=Tel 31T] fo =4 =Y USSR 70

2 To 11T o] P2 TSP 70

F Y o] g L =Tt (U 71

FEATUIES ..t ettt e e s e s e e e s e e e s enra e e s s nreee e 72
YV Tod oo (o TolN] g 1T o = (o] o USRS 74
Swagger final IMPIEMENTAtIONooi e e e e e e e e e e araeeean 79

F T o 1 = oYU o PR 79
USBIS BIOUP e iiiii e 81

[£ {0 T o PP 84

B T3 =0TV o TS 88
TIPS Bl OUD ciiiiiiii i 93
11T ={ o U T J PP 95
YT =4 o 1U T o SRSt 96
Mobile & Web Application IMplementation...........ceeiiieieciee e 98
Project iNTHIAliZationeeee i e e e e e e e e e e e e e e e e nrraaaee s 98
Installing expo and ItS dEPENAENCIES.......uuiiiieii i e e e e e e e e e e e rareeee s 98
INitialize the @XPO PrOJECT ..ci i e et e e et e e e te e e s e sre e e e asaeeesneaeeean 99

RUN L FrOm TIMINGL ..ttt ettt et st e st e snee s 99
(@] o] gT=To1 fh ot g LI o o] Tor= 1 4[] o SRS 102
Cares about merging Mobile and Web projects.......ccccveieeeiieeiiciiieeee et e e e e 102
IMIEIEE ISSUBS vtieeeiiieiiiiittee e e e ettt et e e e e e sttt e e e e e e e s e e abteaaeeesesaasareaaaeeeesasssseaaaaeessnssssnseaaeeesensansnnns 103
DEVEIOPMENT PrOCESS ..uvvieeeeiiieeeiiteeeectteeeecteeeestteeeesteeeessteeesaasseeeessseesasssaeesanseeseassnessnssnesannns 107
Yo g1 o 0] o111 ' 1T = [o TSRS 107
User stories implementation ... e e et re e e e e e e arra e e e e e e e nnnnees 111
CONCIUSIONS .ttt ettt ettt b e et e e bt e e ae e e e ab e e e bt e s abee e ateeaabeeeaseesabaeebeeeanbeenabaesaneean 119
23] o [ToT =4 =T o] o1 RS 120
PN o 01T Lo LSRR 121
APPENDIX A: Gantt Chart — Part L......coooei ittt 121
APPENDIX B: Gantt Chart — Part 2. ..coouiioieeieeeee ettt ettt st s 122
APPENDIX C: Gantt chart after thesis extension —Part 1cccccoeveriiriiniieniienee et 123

APPENDIX D: Gantt chart after thesis eXtension — Part 2cccooeeeueeeeeieiieeiieeeeeee e eeereeeeee e 124

LIST OF FIGURES

Figure 1: Flow chart illustrating the review process of a taskccccecveeeeiiieiecciiee e, 13
Figure 2: Tools to be used on project ManagemMENTt.........cocccieeieciiee et e aee e 21
Figure 3: Microsoft Azure DevOps DashbOard............occveiieiieeeieiieec e et eerree e areee e 22
Figure 4: Microsoft Azure Dashboardc.eei et e e e e e e raee e 22
Figure 5: TOZEl TraCk WED @ «.uuvrieieiiiieiiiiiieee ettt e ettt e e e e e e e errr e e e e e e e e s aaaaaeeeeeeesnnnsaaaeeeaennen 23
=V N ST WoY={~d B I - [(o [T g o] = o] o IS 23
Figure 7: Tasks defined in DeVOPS PlatfOrmcccueiiiiiieeiecieee ettt eere e et e e e raeeeenreeeean 24

Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24.
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:

Project Management Epic Features & Taskscccccvviveieiieeiiiiiiieee et 26
Platform Design WED TasKSeceeiiiieieiiieeeiiiie e ectee e eeritee e e ete e e esnae e e eaaae s eennraeeennaesesnsaeeans 27

Platform Design MoODiIle TasKS.......ccviiieiveeieiiiee ettt eeree e et e e eerreeeeeareeeeenreeessaneeeens 27
Story Book Implementation Epic Features & Tasksccccvevieciieiiciiee e 28
Mobile App Creation Epic Features & Tasksccccvrieeeiiieeiiiiiieeee e e e 29
Web App Creation Epic FEatures & TasKS......ccccvieeieiiieieiiiie et e eree e e evee e seeree e 30
Back End Creation Epic FEatures & TasKScciiiiccciiiiiiee it e e 31
Application Navigation SChEMAcoo i 52
User story - quick add task by title sequence diagram........ccccoeecieeeriiiee e, 54
User story - quick add task by voice record sequence diagram.........cccccveeeeeeeecccineeeeeeeenne 54
User story 2 - List creation sequence diagrami........ccccccuieeeeiiiee e e eeree e seeee e 55
User story 2 - List remove sequence diagram.......cccuveeeeeieeciiiiieeeeeeeeceereeee e e eeecenneeeeeeeenas 55
User story 3 - Edit task sequence diagram.......cccccueeeeeciiieicciiee e 56
User story 4 - Review inbox task sequence diagramcccccvvvveeeeieeciiiiieeee e ceccrreeee e 57
API Tasks Sroup = fIOW CRArTocuvieiieeeee et et e ee e e e baee e 58
API Lists roup - fIoW Chartooeeiii et aae e 59
API USErs group = flOW Charteeiceeeee ettt e e et ee e eraee e 59
APl Users group - boilerplate flow chart.........ccoooiie i 60
APl Auth group - initial floOW Chart.......ccveiieeiee et e 60
APl Auth group - boilerplate flow chart...........oooiie e 61
API TIPS roup - FIOW Chart.......ciieieee et etree e e aree e earaee e 61
API Files group - flOW CRartooociiei ettt et e et e e e enree e eeareeeenraeeean 62
APl Seed group - FIOW Chartooeeeeee e e e e aaee e 62
(VT o F- TolV AN =] ol =T [o ol SPPN 63
Y Y g o oY= o o [T = TSRS 63
Today screen design - eXampPle L......c.eeeiiiiiie e e e e e e erraae e e e e e eeaas 64
Today screen design - @XaMPIE 2.....ccceeeiee ettt e e e e et e e e sra e e e enaaeeean 65
Today screen design - eXampPle 3. i e e e e e 65
Today screen design - €XamMPIE 4eeeiiieeeee e e e e e e e rrara e e e e e eeaas 66
18] oTo)l Y=Y o e [Ty T o TS 66
A A Yol Y=Y o W [Ty F= o TSRS 67

Sharing components between react and react NAtiVe.........coeecvveeicciee e 68

Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74.
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:

REACE NAtIVE WEDVIEBW ..ttt ettt ettt e s saee e 68
Backend techNologies StACKuuiiiii i e e e e e e e 70
APl simple route definitioncocuiei i e 72
APl complex route definitioNncccueeiiecieee ettt eeere e e eear e e e eereeeeenreeeean 72
APl validation definition. ..o e 73
AP Models’ definitioN......coiiiiiiieeeeee e e s 74
API sWagger definitioNncocciiie e e e e e raeeean 75
APl swagger model definitioNc.eee i 75
APl swagger authentication definitioncccceeeciieeeeiiiee e e 76
Swagger 108N €NAPOINTvvii i e e e e e e rae e e e e rae e e s ereeeennns 76

Swagger 10gin eNdPOINt FESPONSE......uuviiieieieeicirriieee e e eecccrree e e e e e ercrrreeeeeeeesesreeeeesseessnnnnes 77
APl swagger bearer tOKEN SBL........uvi i e e 77
APl swagger calling authorized endpoint.........occcciiieiee e 77
Swagger documentation blocks t0 eXPlaincc.eeeeiieiicciiie s 78
Swagger documentation - endpoint blocks to explaincoccoveiiecieeicccie e, 78
APl QULN SrOoUD SWaAEEET .. ceeieeeee e ettt e eecttee e e e e e e e rare e e e e e e e e nnasaeeeeeeesennssaaeeaeeeaan 79
Swagger test - register USEr DOAYccuvii i 80
Swagger test - regiSTEr USEI FESPONSE.....uuuuueeeeeeeeeiueeeeeeeeteaaennnnaaanaanaenanannaaaa—————————————————————— 80
Swagger test - [0ZIN FESPONSEeeiiciiieecciiee ettt et e et e e e etre e e s saeeeessaaeesanseeeeennns 80
Swagger test - 0GOUL DOAYeviiiiieieee e e e e 80
Swagger test - [0ZOUL FESPONSE.......ciiiuiieeciiiee et et e et e e eerre e e e e e e e e rtee e seneraeeennns 81
APL USEIS GrOUD SWaAEBET e eiieeeieeeeeeeeeeeeieeeeeeeeeeeeeeeeseeeaseaaaeaasaaasaasassasassssssasssssssassasasaseaasenannns 81
Swagger test - Create USEr DOAYcc.uuviiiieii et e e e e e rrrr e e e e e e e nnaes 81
Swagger test - create user without authorization responsecccccceeecviereeciieecccieeeens 82
Swagger test - Create USEI MESPONSE.....uuuueeeeeeeeeeeeeeeettteuttetaaaaaaaaaaaaaaaaaananaaaaaaa—a——aa————————————— 82
Swagger test - Zet liSt USEIS r@SPONSE....ccccuuiiieectieecciee et et e erree e e rree e e e e e s serreeeenns 82
Swagger test - get user information ParamMeEtercceeeecvveeeeecieee et 83
Swagger test - get user information reSPONSE........ccccviiiieciiir e 83
Swagger test - update user parameter and bodycocccviiieiiiii i, 83
Swagger test - UPdate USEI FESPONSE ...vveeiiieecciiieeeeeeeecccrrreeeeeeeescrrreeeeeeeeseasraeeeeeseessnnnnes 83
Swagger test - reMOVE USEr PAramMETEr e it 84
SWagger test - FEMOVE USEI FESPONSE. ...ccuuuteiueeerrierreeeteeeiteesteesreesreesareesaseeesseeesseesneens 84
Swagger test - get all USErs rESPONSE....cciccuieeecciiee ettt e ee e ree e e reee e e e raee s seereeeenns 84
APL iStS SrOUP SWaBEE ceeiiieeieriiieeeeeeeeciitteeeeeeeeseirtraeeeeeeesasssraeeeeseessassraaeeeesessanssssseeeseeanan 85
Swagger test - create list DoAYcceeiiiiiee e e 85
Swagger test - create list FESPONSEueiccuiii e e e e ar e e e 85
Swagger test - get all listS reSPONSEuviiiii i 86
Swagger test - get list by id PAarametersooccviee e e 86
Swagger test - get list DY id rE@SPONSE ...eveeii i e erre e e e e e e e 86
Swagger test - edit list parameters and bodycoccvviieiiiii e 87
Swagger test - edit list FESPONSEuuuiiiiieee e e e e e e e e e e e ennaes 87

Swagger test - get list tasks ParameEter.......occciiiiie e 87

Figure 82: Swagger test - get list tasks re€SPONSEceicuiiiieiiiee e e 88

Figure 83: Swagger test - remove list Parameter ... 88
Figure 84: Swagger test - remove liSt FESPONSE.......ceiiccuiiiieciee e ecre e et e e e ere e e e aaaeeeas 88
Figure 85: APl tasks SrOUP SWAEEEN ...ccccuueriiieeeeeeeiciitteeeeeeeecetreeeeeeeeesnsraeeeeeeeesasssasaeessessanssseaaeesananan 89
Figure 86: Swagger test - create task DoAYooocuveei i e 89
Figure 87: Swagger test - create task reSPONSEuiieeiiiieciiiiieeee e e e e e e e ereeeee e e e e 89
Figure 88: Swagger test - get all tasks rE€SPONSEceeicuieieeiiiee et et rre e e e aaee e 90
Figure 89: Swagger test - get task by id parameter......c..ooociee e 91
Figure 90: Swagger test - get task DY id rESPONSE......uviiiii i i e e e e e e e 91
Figure 91: Swagger test - edit task by id parameter and bodyccccvveriiieiiciiei e, 91
Figure 92: Swagger test - edit task by id r€SPONSEeveeiiicecciiieee e 92
Figure 93: Swagger test - move task to list Parametersccccceeecieee e e e 92
Figure 94: Swagger test - move task to list rESPONSE ...ccciieeeiiiiieeei e 92
Figure 95: Swagger test - remove task by id parameter.......c.ccooevei e 93
Figure 96: Swagger test - remove task by id reSPONSEcccvvevieciiei i 93
Figure 97: AP TIPS BroUP SWaABEET .cceii i 93
Figure 98: Swagger test - NEW tip DOAYoeeceeiir e 94
Figure 99: Swagger test - NeW Lip re@SPONSE...ccciii i i i, 94
Figure 100: Swagger test - get all tips r@SPONSEoeieviieieceee et aee e 94
Figure 101: Swagger test - remove tip by id parameter........ccuveeeei e e 94
Figure 102: Swagger test - remove DY id r@SPONSE......c.uuiiieiiiee ettt e e e eere e e e aaaee e 94
Figure 103: APl fil€S SroUP SWaAEEEI ...cccceieeeeiiieeeeiteeeeetteeeestreeeetteeesstreesesnsaeeesssaeesasteessnssseeesnssaneans 95
Figure 104: Swagger test - Upload file PAramMeELErccveiieciiiee et rre e e ereee e 95
Figure 105: Swagger test - upload file reSPONSE........ccccuiieieiiee e et aaee e 95
Figure 106: Swagger test - upload file URL ChECKcccuviiieiiiee ittt e 96
Figure 107: APl SEEU SrOUP SWaAEEEI ..ccccueeeeeitieeeeeireeeeeieteeeeitreeeessreeeessreesesnseeeeassssessassresssnsseeessssseeans 96
Figure 108: Swagger test - get database content reSPONSE.......vvveeiieecciiiieeeee e 97
Figure 109: Swagger test - reseed database validationccoccvvei e 97
Figure 110: EXPO-Cli iNStAllationueeiiieiee ettt e erre e e tr e e s nre e s e e e e e eanaeeeas 98
Figure 111: EXPO 80 ON APP STOTE. .o, 99
Figure 112: EXPO GO ON Play STOIE....iii et ccees ettt ettt e e te e e e rae e e s aa e e s ntee s eanaeeeennnneeean 99
Figure 113: Expo initialization project CoOmMmMaNdS.........cceieeccciiiiiiee i e e e 99
Figure 114: Start commands after Project iNit.........ccceccveriecciee e e e 99
Figure 115: yarn start reSpoNnSe lINKING........ueeiiieeiciiiiieee et e e eeecrr e e e s e e rrareeeeeeeaas 100
Figure 116: yarn start response Version l0OKUPceeeiiieeciiiiiieee e ceeccireeee e ceccrrre e e e e e e ennereee e e e 100
Figure 117: yarn start reSPoNSe QReuiiiiiiiiiiiiiiieee e e e e s re e e e s s s s e e e e e e e eeas 100
Figure 118: yarn start reSponse COMMANGSccccuviiiiieeeieeiiiiiee e e eeecrrre e e e e eeesrrereeeeseeeansaaeeeeeeenas 101
Figure 119: EXPO deVEIOPEI tOOISeiiieieee ettt ettt e et e e et e e et e e e eta e e e eanaee e e aneeas 101
Figure 120: EXpo app running 0N iOS.......ccoiiiiiii i, 102
Figure 121: EXpo app running on Wb DrOWSENccoccuiiieiiiieeciiee et eeree e eree e tee e e eae e e e 102
Figure 122: NavigationContainer code eXampPle.........eeeiiieeiiiiiiieeeeceeccirreee e e e e e e errrreee e e e 103
Figure 123: Linking configuration code eXample........cccueeiicreeeeiiieie et 103

Figure 124.
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144.
Figure 145:

Apply platform sPeCific SLYIES ..oiieviie e e s 104
Applying styles t0 @ COMPONENT......ccciiiiiiee et e e e e arae e e e e e e 104
Applying styled with styled-components.........ccccuveveeciee e 105
Using props on styled-CompPoNnENt...........oeiiiieeiciiiiiee e e e e erree e e e e e 105
o {1 Yol 1= o O UPPUR R 107
Expo's calendar library compatibility.....c..ccoeeiveeiieiiieeeceee e 108
Today Screen - Calendar iNtegrationccceeeeeiie e e 108
Today Screen - Calendar With tasksooovieiiiiie e 108
Today Screen - FINAl d@SIZN.....uuuieii ittt ecrrre e e e e e e arareee e e eenas 109
ReVIEW SCreen - Tasks [iStcocieiiiiiee ettt et et 109
Review Screen fiNal deSIZN ..occuveii ittt et e e e et e e eearr e e eebre e e senseeeeennes 110
Lists Screen final deSIZNoeccuiiee et e e e e e e e erae e eaans 110
Settings Screen FiNal deSIZN.....uui i 111
Add quick task by text - Unfilled ... 112
Add quick task by teXt — FIilledoeeeeiiee e s 112
Add quick task by VOICE rE€COId ... rare e e e e 113
Add QUICK tasK FESUILSeeeeeeiiee et e e e e e e e 113
Manage lists - Create NEW liStueeeii i araeee s 114
Manage lists - SWIPe t0 delETE ...cccuevieeeee e e 115
Lists with swappable disabled..........cooo i 115
Edit already created taskccueeeiciie e e 116

Review task qUESTIONS tO @NSWET.......ccccuiiiiecieee et e et e e e e e s eree e 116

LIST OF TABLES

Table 1: Todoist research CoONItIONSccouieiiiiiiie e 17
Table 2: All-New Things research coNditioNS..........cocccieeiiiiiie e e e 17
Table 3: Omnifocus research CONAItIONS.c.eiiuiirieirieiieieeee et ae s 17
Table 4: Project Epics HOUIS @and RiSKccccuieiieiiieeciee ettt e et e e e e nre e e 31
Table 5: Scope & Contextualization HOUrs & COSt.........ceiciiiieiciiieecciee et eeree e ecree e e e e e aree e 37
Table 6: Temporal Planification HOUTIS & COSt.......ueicicuuieeiiireeeeeiieeeecreeeeecreeeeetreeeesreeeeeareeesenreeeenns 37
Table 7: Economic Management and Sustainability Hours & Cost.......cccecvuveeiecieeiciciee e eeree s 38
Table 8: Final Delivery HOUIS & COSt......uuuiiiii ettt e ettt e e e e e eaner e e e s e e e e naaaeeeeseeennnnnns 38
Table 9: Mobile App Project Scaffolding HOurs & CoSt.........ueviecuiiiiiciiee et 39
Table 10: Mobile App Project Design Implementation Hours & CosSt.........cccccvuvvveeeeieecciiiieeeee e 39
Table 11: Mobile App Project Enable Continuous Integration Hours & Costcccceveeiiieeeccveeennns 39
Table 12: Mobile App Project Design App Workflow Hours & COStcccuveeiecieeeeiiiee e 40
Table 13: Web App Implementation Project Scaffolding.........ccoveveeeiieeieiiiee et 40
Table 14: Web App Implementation Design Implementation Hours & Cost........cccccveeevcveeeeccveeeenns 40
Table 15: Web App Implementation Enable Continuous Integration Hours & Costccccceeeeennnnees 41
Table 16: Web App Implementation Design App Workflow Hours & CoSt.......ccceevvcvieeeciiieeeccineeeenns 41
Table 17: Story Book Implementation Mobile Hours & Cost.........ccccuiiieeiiieciciiieeee e 41
Table 18: Story Book Implementation Web Hours & Costcccvvieiiieeieiiiee e 42
Table 19: Story Book Implementation Storybook Hours & COSt........c.ueeeeiiieeieiieeecciieeeceeee e 42
Table 20: Back End Implementation Implement Microservice Hours & Cost........ccceeeeecuireeeeeeeeccnnns 42
Table 21: Back End Implementation Integrate Cl into the microservice Hours & Cost.........ccveeeneee 43
B [T o] = == g = o Tl oo 1] USRS 46

Table 23: FINAI BUAZET.....coi ettt e et e et e e st e e e et e e e sensteeesnsaeeeennsaeesnnnrneennnns 47

CONTEXTUALIZATION

This is a Bachelor thesis for the Computer Engineering Degree, with specialization in Software, at
Facultat d’Informatica de Barcelona (FIB) of the Universitat Politécnica de Catalunya. This thesis is

directed by Xavier Burgués Illa, member of the ESSI department at FIB.

Introduction

I’'m 26 years old, and one of my worst qualities over the years has been in organizational aspects.
I’'m a very restless person, so | have my mind full of small and big things all day. I'm always trying to

not forget something that | should or must do, but it’s impossible to avoid it.

Once | got my first phone, | started learning how to use the amazing apps that a smartphone offers
us. I’'m fan of the “Productivity” category in the app store. But, download an app, install it and learn
how to use is not the whole solution. There’s a lot more related with attitude, methodology and
habits. Well, it’s all habits. But, to get a habit, you need attitude, perseverance and motivation. All
investing in a methodology in which you believe. A methodology that will give you the how in the

way you do things.

So, yes. I'm bad organizing the “tasks” of my life. Why? | think that’s because | have too much
inputs in my mind. Coming from everywhere, since a small noise, to my work tasks, passing through
all the notifications | get every day in my phone. Our dear social networks. How they helped us this

quarantine, keeping us near out most loved people.
Well, let’s make a list of all the inputs | receive every day:

- Clock alarm

- Reminders scheduled for the day

- My mom asking me how to send a WhatsApp with this tiny bear

- The time to start work

- The first meeting of the day (let’s ignore the big amount of inputs in each meeting)

- My stomach asking me about the breakfast

- More alarms related with tasks that | had to be doing

- New email about some stuff

- Another meeting

- Calendar event remembering that I’'m late to my doctor’s appointment

- Another reminder, remembering me to get this paper to the doctor

- Ateam member asking me something that he forgot (yes, for sure, I'm out of my working
hours)

- A new unexpected bill arrived to my bank account

- Time to do some exercise

- Aclient suggesting me that his website is maybe down (run to solve it)

- Areminder to send a bill to a client

- Time to take the dog for a walk

- Aclient calling you for something related with a job that had to be done 2 days ago (...)

- Time to go sleep! (let’s ignore it, | need to finish more stuff)

- New budget should be done for a possible drone production

- I now remembered 3 more things that need to be done. Let’s write them down to do it
tomorrow.

- Time to go bed! Perfect, I'll sleep less than 8 hours again...

- No! There is an exam tomorrow!

Yes, | know. We can call it chaos. With all these things to keep in mind, is impossible to pretend to

remember everything.

This situation just finishes in one thing: Stress and anxiety. For a person like me with organizational
problems this is really hard. | always have the feeling that I’'m forgetting something. | think that |

repeat the phrase “I think I’'m forgetting something...” at least... | don’t remember it.

I've been living in this situation in the last 5 years ago until | discovered one amazing thing, a
methodology. It’s called GTD (Getting Things Done). It appeared in a David Allen’s book published
in 2001 (Allen, Getting Things Done: The Art of Stress-Free Productivity, 2015), with the incoming of

the “new technologies”.

Getting Things Done

As said, Getting Things Done is an activities organizational methodology inspired by David Allenin a
book with the same name, published in 2001 where he explains that, as opposed to other time
management experts, you should not center on set priorities but in the creation of different lists
defined by its context, for example, a list of pending phone calls or things to do in the city. It also

suggests that every task that can be done in less than two minutes should be immediately done.

The psychology of GTD is based on do easy the storage, tracking and review of all the information

related with the things that you need to do.

A small description of GTD (Allen, Ready for Anything: 52 Productivity Principles for Getting Things
Done, 2004):

KEEP EVERYTHING OUT OF YOUR MIND. DECIDE
WHICH ACTIONS ARE REQUIRED BY YOUR TASKS ONCE
THEY APPEAR NOT WHEN THEY EXPIRE. ORGANIZE
REMINDERS OF YOUR PROJECTS AND YOUR NEXT
ACTIONS IN THE APPROPRIATE CATEGORIES. KEEP
YOUR SYSTEM UPDATED, COMPLETED AND ENOUGH

REVIEWED TO UNDERSTAND THE OPTIONS YOU HAVE
ABOUT WHAT YOU ARE DOING (AND NOT DOING) IN
ANY MOMENT.

WORKFLOW / PRINCIPLES

The GTD workflow consists of five stages: capture, clarify, organize, reflect and engage.

Once all the material (“stuff”) is captured in the inbox, each item is clarified and organized by
asking and answering questions about each item in turn as shown in the black boxes in the logic

tree diagram below. As a result, items end up in one of the eight oval end points in the diagram.

Next, reflection occurs. Multi-step projects identified above are assigned as desired outcome and a
single “next action”. Finally, a task from your task list is worked on engage step unless the calendar
dictates otherwise. You select which task to work on next by considering where you are (context),

time available, energy available and priority.

. Collect

. Process
. Organize,
. Plan

. Do
Is it actionable? Someday/maybe

Yes

p— Reference
: o ingle step

Yes

—— |tem of ‘stuff’ in inbox

More than
2 minutes?

Yes

‘Waiting For’ task

Yes

Yes Specific No : 0

Figure 1: Flow chart illustrating the review process of a task

THE STEPS IN DETAIL

Capture

Deposit in external “cubes”, everything that we need to remember, do to keep tracked. The goal is

to get everything out of our mind and storage it in any of these “cubes” to, then, clarify it. After the

“Clarification”, all cubes should be emptied, at least once a week.

Clarify

When you are processing your “cube”, you should follow strictly this order:

1. Start always from the beginning.
2. Don’t process more than one element at time.
3. Don’t sent an element back to the “cube”.
4. If an element requires an action to be finished.
a. Ifit takes less than 2 minutes, do it
b. If not your task, delegate it properly.
c. Postponeit.
5. If an element doesn’t require an action
a. Archive it.
b. Discard it if it's not appropriate.
Keep it in quarantine if cannot be done at this moment.
d. If cannot be delegated properly, notify to the specific area that it’s waiting for a
revision.
Organize

Allen describes the suggested lists that you can use to keep a tracking of the elements waiting for

attention:

Upcoming actions: For every element that requires your attention, decide which is the
next action that needs to be done in order to complete the element.

Projects: Every open loop task in your life (a task that requires multiple actions) is
considered a “project”. You will need to review those actions in order to ensure that the
project will be finished correctly.

Waiting: When you delegate an action to somebody or you’re waiting for an event to
occurs before keep going with a specific task, it needs to be tracked and reviewed
periodically.

Someday/Maybe: things that you want to do, but, nowadays is not possible.

A calendar is also super important to keep tracking of your appointments and commitments, but

it's recommended to only use it for hard landscapes (things that must be done in a specific moment

or a specific term).

Review

All actions list will be completely useless if we don’t review them at least daily or as long as we
have a free moment. Given the time, the energy and the resources we have in a specific moment,
we should decide which is the most important thing to do in this moment and do it. If neglect
dominates you, you maybe will be finishing easy tasks first, keeping more difficult ones for the end.

You can solve this by forcing you to execute tasks in the same order you processed them.

The GTD discipline also require to review at least weekly all features actions, projects and items

“waiting for”, to ensure that all new tasks or events are included in your system and it’s updated.

Engage
Any organization system is not good if we waste too much time organizing the tasks instead of

doing them. So, keep it simple is the main goal to success in this method usage.

FROM THEORY TO PRACTICE

In theory everything is easy to understand, but, in practice, everyone is different, and prefers things
his way. That’s why I've been using this methodology in a different way but always keeping its

essence of simplicity.

For me, contexts are a little bit complicated. Maybe it’s a next level in GTD implementation but |

still working on the first level. Let me explain how I've been using it:

Keep it simple, get out things of my head, let me focus on what | should be focusing on. So, simple.

The enumeration of the tasks lists I'm using:

- Inbox: You remember something that needs to be done. Is less than 2 minutes? Do it. No?
Add it to your inbox.
- Actionable: Things to be done. This is the only list you will focus on during your day.
- Incubator: Things that you want to do, someday, but don’t know when you will be able to
do it.
- Ticker files: This is a list of lists. Here | have three different lists.
o Recurrent: All tasks that will repeat on time are added here.
o Long term: All tasks that needs to be handled in long term will be added here.
o Short term: All tasks that needs to be handled in short term will be added here.
- The calendar: This is not a list as such, but it’s a super important part of your
organizational system. It will let you know when you have time to do tasks, when you

organize yourself daily.

MY WORKFLOW

The goal of “my system” is that during a day, once | have time to do tasks, I’ll go to Actionable list,

and do all tasks there, in the same order as they appear in the list.

During the day, all new tasks that appears or | remember, will be added in the Inbox list. Then, I'll

forget about them. The capture process of a task is the following:

1. It will take less than 2 minutes?
2. Ifyesdoit. | cannot do it, answer No.
3. If no. Add it to the Inbox list.

Easy, simple. It won't take less than 20 seconds to add a new task.

At the end of the day, my goal is to empty the Inbox list, by organizing each item in the properly

way. Here I still working in a strict process, but the idea is the next one:

- It will take less than 2 minutes? Do it.

- It needs more than one tasks to be completed? Organize it as a “project”.

- It's a time fixed task? For example, “I meet a friend on Friday at 17h”, “I have doctor’s
appointment tomorrow 8 a.m.”. If yes, add it to the calendar as you won’t be the owner of
your time during this period.

- Is atask that you would like to do, but don’t know when you will be able to do it? You can

add it in the Incubator list, waiting to be moved to the Actionable list.

- Is atask that you cannot do any action yet? Add it in one of your Tickler files lists.

WHAT ARE THE BENEFITS OF THIS METHODOLOGY?

The main goal of GTD is to keep your mind clear. Allowing you to focus on what you need to do,
without being all time thinking on what you are not remembering. Trust in your system is all you

need to be relaxed, free of stress and, the most important thing, never forgot anything.

| know that at the beginning, implement this methodology could be complicated. You need to

create habits, but nowadays, automations can do its implementation and tracking easy.

Stakeholders

GTD INTERESTED PEOPLE

People interested in GTD methodology are direct stakeholders as they could be potentially

interested in this platform, finding an easy way to implement this methodology.

THESIS DIRECTOR

My director is an indirect stakeholder, as I'm a direct stakeholder.

MYSELF, AS A USER AND AS UNDERGRADUATE STUDENT

I’'m the first stakeholder of this project as I’'m trying to improve my organizational abilities

implementing GTD. Also, I'll be finally graduated once this project is finished.

Justification & Research

There are tons of applications focused on TODO's lists in the market. | did a research about some
apps that are already in the market. The result is that there is no app/platform which is

multiplatform, free and focused on GTD methodology. Let’s check some of the best ones:

TODOIST

Multiplatform GTD Focused Free

X X

This is a really good app, it’s super complete, but is not free. It has a lot of features, but this means

that you cannot explode the possibilities without pay.

ALL-NEW THINGS

Multiplatform GTD Focused Free

X X X

This is also a really good app, but it’s limited to the Apple ecosystem. It’s also not focused on GTD

methodology and it’s not free too.

OMNIFOCUS

Multiplatform GTD Focused Free

X X X

This app is more focused on the Mac OS X platform, but also available in iOS. Anyway, it’s only

available in the Apple ecosystem. It’s also not focused on GTD and also not free to use.

CONCLUSION

As we have seen in the previous research, there isn’t any app/platform focused on the GTD
methodology implementation. All the apps are focused on TODO’s tasks. Making the GTD
implementation more complicated. This thesis pretends to implement a GTD focused platform

which makes its implementation really easy.

| also want to make this app free to use, and this is the hard part of this project. As this platform is

GTD focused, the user target group is smaller than with a TODOQ’s tasks focused app.

SCOPE

Objectives

The objectives of the thesis are to build a fully ready to production ecosystem based on React.js
and Node.js, with a mobile app, a website app and an on-cloud backend. Identifying the most
optimal way to implement both apps using the same technology and trying to share as much code

as possible. Always keeping a good user experience and a good development experience:

- Implement a multiplatform application focused on GTD methodology implementation.

- Develop an optimized way to share components between web and mobile apps.

After the general objectives, we can go deeper into sub-objectives:

TECHNOLOGIES

The objective in technologies scope is to reuse as much code as possible, unifying front-end
components to be used in both platforms. Keeping a good behavior in multiple devices, responsive

terms, accessibility, etc.

MOBILE APP

The objective in mobile app scope is to build a fully functional application that will works in both

platforms (iOS & android), always using the same components as the web app.

This mobile app will let the users to start with a quick guide over GTD methodology, also an easy

implementation of the basic tasks lists (Inbox, Actionable, Incubator, Tickler files).

The implementation of custom lists is a good to have.

Update

During the development process, we discarded the “quick guide over GTD” feature as we preferred

to focus on daily features that add value to the user.

WEB APP

The objective in the web app is to build a fully functional app that will reuse the same components

as the mobile app.

The web app will let the user to start with a quick guide over GTD methodology, also an easy

implementation of the basic tasks lists (Inbox, Actionable, Incubator, Tickler files).

The implementation of custom lists is a good to have.

Update

During the development process, we discarded the “quick guide over GTD” feature as we preferred

to focus on daily features that add value to the user.

ON-CLOUD BACKEND

The objective in the on-cloud backend scope is to deploy all the backend automatically, using
technologies as ARM templates which let you deploy all the services with the selected plans and

configurations automatically.

The code repositories will have Continuous Integration, to automatically deploy the services as

soon as you push some code changes, while ensuring your code is not broken and is pretty enough.

The backend will ensure that all the user tasks is safely stored in databases and the web and mobile

apps can synchronize and work smoothly.

Update

At the finishing date of this thesis documentation, the on-cloud feature couldn’t not be completed
as we reduced the available time to spend on the thesis. Until thesis presentation, we will work on

it in order to finish this feature and demo it.

TESTING

The objective in the testing scope is to have the most important parts of the process perfectly

tested and integrated with the Continuous Integration.

Update

At the finishing date of this thesis documentation, the testing objectives was not accomplished as
we prioritized the application functionality instead the testing. We know that in a real project, this
objective would be mandatory, but taking advantage that we are in a non-real environment, we

took this decision.

Functional and non-functional requirements

After the specific objectives and sub-objectives of the project, we have to specify the functional

and non-functional objectives, which are really clear and user related:

- The user should be able to implement the GTD methodology efficiently.
o The user should be able to introduce ideas to the Inbox list in a super easy and fast
way.
o The user should be able to review the tasks in the inbox moving each element to

wherever it should go.

o The user should be able to add remaindered tasks in order to be notified.
o The user should be able to add recurrent tasks in order to create repetitive tasks.
- The user should be able to manage do the same action in the web and in the mobile app.
- The user should be able to synchronize the tasks created in any of the platform (mobile or
web) automatically.
- The user should be able to work offline, without worrying about the automatic

synchronization once the networks is recovered.

Methodology

The thesis will be executed under the rules of an Agile methodology, as almost all the software

companies uses nowadays.

The sprints will be of 7 days, from Monday to Sunday. Each Monday, the sprint will be prepared

and it will be reviewed each Friday.
I'll define Epics, that will be broken in PBI’s, that will be broken in different kind of tasks.
The size of a task will be defined in hours (this is not like Agile rules say, | now).

Each sprint end, a report with the project status will be analyzed, to keep tracking if the

development is going well, or not.
The tools that will be used in this project are:

- Microsoft Azure DevOps for the sprints and tasks management.
- Microsoft Azure as the cloud service provider.

- Toggle to track the time spent in each task.

G I Azure DevOps /_s Microsoft Azure
© toggl

MICROSOFT AZURE DEVOPS

This tool is the one chosen to manage all the tasks and all the sprints. It also gives us the ability to
centralize the repositories and the pipelines, plus the deployment of everything. It’s fully

connected with Microsoft Azure.

) Azure DevOps Contoso ¢ AdventureWorks Mobile / Boards / FabrikamFiber Q = 6 @

B AdventureWorks Mobile

FabrikamFiber Board =
& ovenview . |
Now Active 55 Staging 155 Deployed i

B soaras

1 Work ltems
| % Boards

B Backlogs

£, sprints

S Queries

[Plans 8 Scaich comporens comple eatees

CecilFolk
I NFC open docr ®

Repos

N ® Cocil Fosc

o Fipelines -y i

Room Tk & Carole poland =
& TestPlans I fcom Tab
@ colestepurion
B itacts
W roticatns st
& Caroe rlenc

£ Project settings

Figure 3: Microsoft Azure DevOps Dashboard

MICROSOFT AZURE

This tool is the Cloud Computing Service Provider chosen. It’s fully connected with Microsoft Azure

DevOps and is the one I've been using the last months.

Microsoft Azure O Search resources, services and docs b c°""'°(‘2ﬁ'fo°£ 3

Azure services

11} n T — - =)
+ HH & =) < & -
Create a All resources Virtual App Services Storage SQL databases ~ Azure Database Azure Cosmos Kubernetes More services
machines accounts for PostgreSQL DB services

resource

Recent resources

Name Type Last Viewed
> arm API Connection Just now
@ BuildApp App Service Just now
[+] Al-Downtown-bc93 Application Insights 3 min ago
= adventure-vm-3-ip Public IP address 3 min ago
[«] adventure-vm Virtual machine 6 min ago
Navigate
Subscriptions [4) Resource groups EEE Al resources Dashboard
9 HH LU
Tools
A Microsoft Learn o @ Azure Monitor 0 Security Center 9 Cost Management
5
S5 Leam Azure with free online Monitor your apps and Secure your apps and Analyze and optimize your
training from Microsoft infrastructure infrastructure cloud spend for free

Figure 4: Microsoft Azure Dashboard

TOGGL TRACK

This tool is the one selected to track the time spent in each task. Is has a good interface and a
Chrome extension that allows you to start a timer from the Microsoft Azure DevOps page directly.
It has a web app and also a desktop application. | fully recommend to use the desktop application
because it tracks your idle time and avoids the tracking of this time. It also has a multiplatform

mobile app to track your time using your phone.

This week >

MON 06.07

lllustrations
 AdBrochures
Firestone Labs
Goncept Meeting
& Video Productien
1.00-3:00

200- 400

Wireframing

Paperwork

Storyboarding

® Video Production

® Wiebsite Redesign

Pickle Studios

400-545
Moodboard
Video Production

121 with Alfred
500-8:00 700-800

300-5:00

Standup Meeting

0:00:00

]
L d
@

InDesign
® Ad Brochures
Firestone Labs

Ul Concepts 100-230
Website Redesign
Pickle Studios Scheduling

6:30-8:00

Client Meetings:

Ul Concept
® Website Redesign
Pickle Studios

530705 et

7:00-8:00

Figure 5: Toggl Track web app

[Toggl

Record activity

10:00
AM

11:00
AM

Wednesday, 1/15,

Checking Emails

Copy Review
® Rebranding

* 3

Landing page update
® UX

Timeline

/2020

0 h 27 min

@

10:45 - 11:00
06:53 Sketch

01:57 Google Chrome

01:00 Slack

Figure 6: Toggl Track desktop app

TEMPORAL PLANIFICATION

The Project, from the outset, aims to be completed in about 17-18 weeks, starting from the 16 of
February, until 14t of June. We’re going to dedicate 330-346 hours to the project more or less.

Including the Project Management tasks and the thesis itself.
The presentation of the thesis is planned from the 28% of June, 2021.

Keep in mind that we are using Microsoft Azure DevOps platform to manage all the tasks, so,

starting here, we will refer to it as DevOps Platform.

Tasks description

All the known tasks are currently defined in the DevOps Platform, so we already have 70 tasks

defined, with its dependencies, expected time & descriptions:

= Getting Things Done Team ~ £

Backlog Analytics -+ NewWork ltem (3 View as Board /2 Column Options

[order Work ltem Type Title State Original Es... Effort Busin.. Vslue Area
Epic ~ W Project Management New 33 Business
Feature > W Scope & Contextualization New 6,3 Business
Feature ~ W Temporal Plannification New 8,5 Business
Task Write Plannification Summary section New 2
Task Create project known tasks Mew 2
Task Create grantt chart from created tasks Mew 2
Task Review document New 2
Task Deliver Temporal Planification document New 0,5
Feature > '® Economic Management & Sustainability New 105 Business
Feature > "W Final Delivery MNew 7.5 Business
Epic » W Style Book Implementation New 75 Business
Epic » W Backend Implementation 61 Business
Epic » W Web App Implementation MNew 54 Business
Epic ~ W Mobile App Implementation New 103 Business
Feature ~ W Project Scaffolding New 31 Business
Task Create main project files using create-react-native-app Mew 5
Task Make it fully work on ios New 10
Task Make it fully work on android New 10
Task Set up testing environment New [
Feature > "W Dessign Implementation New 25 Business
Feature > "W Enable Continuous Integration New 5 Business

+ Feature > ¥ Dessign App Workflow New 42 Business

We're starting with 5 different epics:

- Project Management
- Story Book implementation
- Back End implementation

- Web app implementation

- Mobile app implementation

Each one epic has multiple Features inside, and the Feature has Tasks inside.

PROJECT MANAGEMENT — PM

It’s super important to have all the initial documentation prepared as it helps us to have all the
ideas clear. We will spend 33 hours more or less to prepare all this documentation, through the

following tasks:

Scope & Contextualization — PM 1

This task pretends to contextualize the project and define the scope of it. We will spend 6,5 hours

on it.

Temporal Planification — PM?2

This task pretends to document the temporal planification of the project, forcing us to think about
the tasks that we will need to do, the temporality of each one and evaluating the risks of each one.

We will spend 8,5 hours on it.

Economic Management 6 Sustainability — PM3

This task pretends to document the budget of the project, in general words, do the economic
management of the project. It also requires to write a sustainability document. We will spend 10,5

hours on it.

Previous documents union — PM4

This task will handle all the time we will spend in the join of the previous written documents. This

will take 7,5 hours.

Epic tasks:

Epic
Feature
Task
Task
Task
Task
Feature
Task
Task
Task
Task
Task
Feature
Task
Task
Task
Task
Task
Task
Feature
Task
Task

Task

« W Project Management

v ¥

-4

' 4

- ¥

Scope & Contextualization

Write Scape section

Write Contextualization section

Review document

Deliver Scope & Contextualization document
Tempaoral Plannification

Write Plannification Summary section
Create project known tasks

Create grantt chart from created tasks
Review document

Deliver Temporal Planification document
Economic Management & Sustainability

Write Budget (cost identification) section
Write Budget (cost estimate) section

Write Budget (management control) section
Write Sustainability Report section

Review Document

Deliver Economic Management & Sustainability docu...

Finzl Delivery
Join all previous documents into the final one
Final review of the document

Deliver Final Document

Figure 8: Project Management Epic Features & Tasks

PLATFORM DESIGN - PD

As we’ll be creating a full web/app platform, so everything should be aligned in terms of design.

This is why this is maybe one of the most important tasks in the thesis. The output of this tasks

Mew

New

New

New

New

MNew

MNew

Mew

Mew

Mew

Mew

Mew

Mew

Mew

Mew

Mew

Mew

New

New

New

New

MNew

MNew

ra

ra

ra

0,5

ra

ra

ra

ra

0,5

ra

ra

ra

ra

ra

0,5

0,5

23

6,5

8,5

7.5

would be a .sketch file with all the components and designs of each part of the web/mobile app.

Is mandatory that the components created in these tasks are as much reused as possible, making

the implementation easy.

We will spend 47 hours more or less in this task, which are placed in two different epics: Web app

implementation (22 hours) & Mobile app implementation (25 hours).

Epic tasks:

Feature « W Dessign Web Workflow New 22
Task Create the first mock up New 5

Task Dessign the introduction of the user into the GTD New 2

Task Dessign the best way to add tasks into the Inbox list Mew 4

Task Dessign the process of review tasks from the inbox Mew 5

Task Dessign the way to interact with others lists Mew 3

Task Dessign the login process Mew 3

Feature ~ W Dessign App Workflow Mew 42
Task Dessign all basic components Mew 20

Task Dessign the introduction of the user into the GTD Meaw 2

Task Dessign the best way to add tasks into the Inbox list Mew 4

Task Dessign the process of review tasks from the inbox Mew 5

Task Dessign the way to interact with others lists Mew 3

Task Dessign the login process Mew 3

Task Create the first mock up Mew 5

STORY BOOK IMPLEMENTATION - SB

Remembering that the goal of this thesis is to arrive to the most optimal way to share components
between mobile and web react apps, a good components library is mandatory, to let us centralize
the components that both parts uses and its styles. This whole app is estimated between 44 and 60

hours.

This task has two big parts:

Components Sharing Investigation — SB1

The goal of this first part is to output the best way to share components between both web &

mobile react apps. We will be dedicating 20 hours to this investigation.

Story Book Implementation — SB2

The goal of this second part is to implement all the components designed in the first task “Platform
Design” in order to be consumed by both apps. We originally have estimated this task in 24 hours,

keeping it open up to 40 hours.

Epic tasks:

Feature ~ W Mobile New 20
Task Create storybook app Mew 15

Task Syncronize with web app storybook Mew 5

Feature ~ W Wsab MNew 15
Task Create storybook web app Mew 10

Task Syncronize with mobile app storybook Mew 5

Feature v W Storybook Mew 44
Task Investigate how to share components between web & ... & Neaw 20

Task Develop text components Mew 3

Task Develop layout components Mew 2

Task Develop Basic form compeonents Mew 3

Task Develop Data Viz. components Mew 6

Task Develop notification components Mew 3

Task Develop section-specific components Mew 7

Figure 11: Story Book Implementation Epic Features & Tasks

MOBILE APP CREATION — MA

This task is focused on creating the mobile app, for both iOS & android platforms. It will be done
with CRNA (Create-React-Native-App) using typescript template, using cocoa pods on iOS and basic
configuration in Android. React Native has the hardest configuration at the beginning of the
development. Is really complicated to have a project working perfectly and smoothly in both
platforms so this will be the longest epic in the thesis. That’'s why we will spend 103 hours on this

epic.

Epic tasks:

Feature
Task
Task
Task
Task
Feature
Task
Task
Task
Task
Task
Feature
Task
Feature
Task
Task
Task
Task
Task
Task

Task

~ W Project Scaffolding
Create main project files using create-react-native-app
Make it fully work on ios
Mzke it fully work on android
Set up testing enviranment

~ "W Dessign Implementation
Implement inbox's new task procedure
Implement review Inbox's tasks
Implement user's tour
Implement interaction with different lists
Implement login screen

~ "W Enable Continuous Integration
Create azure devaps pipeline

~ "W Dessign App Workflow
Dessign zll basic components
Dessign the introduction of the user into the GTD
Dessign the best way to add tasks into the Inbax list
Dessign the process of review tasks from the inbox
Dessign the way to interact with others lists
Dessign the login process

Create the first mock up

Figure 12: Mobile App Creation Epic Features & Tasks

MNew

Mew

Mew

New

MNew

Mew

Mew

MNew

Mew

Mew

Mew

MNew

Mew

Mew

New

MNew

Mew

Mew

New

MNew

Mew

20

3

25

42

WEB APP CREATION - WA

The creation of a React Web Application is really easy and straightforward, using more or less the
same script to create the web app (Create-React-App) using the typescript template. That’s why we

will spend 54 hours in this epic task.

Epic tasks:

Epic ~ Wd Web App Implementation Mew 54
Feature « W Project Scaffolding New 5
Task Create main project files using create-react-app Mew 2

Task Set up testing environment Mew 3

Feature « W Dessign Implementation Mew 17
Task Implement inbox's naw task procadure New 3

Task Implement review Inbaox's tasks MNew 3

Task Implement user's four Mew 3

Taszk Implement interaction with different lists Mew 3

Task Implement login screen Mew 5

Feature « W Enable Continuous Integration New 10
Task Create azure devops pipeline Mew 2

Task Create azure free web service MNew 2

Task Implement the automatic deploy Mew 4

Task Create ARM template New 2

Feature « W Dessign Web Workflow MNew 22
Task Create the first mock up Mew 5

Taszk Dessign the intraduction of the user into the GTD Mew 2

Task Dessign the best way to add tasks into the Inbox list Mew 4

Task Dessign the process of review tasks from the inbox New 5

Task Dessign the way to interact with others lists Mew 3

Task Dessign the login process Mew 3

Figure 13: Web App Creation Epic Features & Tasks

BACK END CREATION - BE

This task focuses on create the back end and deploy it. It includes tasks as Investigating the best

way to implement the microservice which will be created using node.js, test it and deploy it on

Microsoft Azure. We will spend 61 hours in this task.

Epic tasks:
Epic v Wi Backend Implementation MNew
Feature « W Implement microservice M
Task Investigate how to implement 2 microservice in azure .. MNew
Task Define with endpoints will be needed M
Task Implement endpoints & needed logic MNew
Feature « W Integrate Cl into the microservice M
Task Investigate how to integrates the Clin the project MNew
Task Develop the .yml file defining the pipeline Mew
Task Implement the deployment ARM file MNew
Task Implement a deployment pipeline for a single environ... Mew

Figure 14: Back End Creation Epic Features & Tasks

Tasks Hours

Platform Design — PD 47
Story Book Implementation — SB 24-40
Mobile App Creation — MA 103
Web App Creation — WA 54
Back End Creation - BE 61
Total 229-305

Table 4: Project Epics Hours and Risk

5
8
20
5
10
5
10
Risk
Low
Medium
High
Low
Medium
Medium

61

31

30

Thesis extension modifications

The thesis has undergone an extension, and the temporal planification did change. The thesis did
start on 16™ February and was supposed to be finished at 28t June. This changed as the thesis
stopped from 26t May until 13t September. That means that the new finish date is 25™ October.
This changes the weeks of work from 17-18 to 10. The initial planification defines 330 hours of

work. This changed to 212 hours available to finish the project, more or less.

MODIFICATIONS: TASKS DESCRIPTION

In order to be able to manage this work time reduction, we removed not mandatory tasks and

achieved the merge of two epics in one. Let’s list the changes on tasks planification/description:

Merge epics Web and Mobile App Implementation

With the discovery of a special library called react-native-web (we’ll explain it later), we achieved
how to use the same project code for both platforms. Besides this, we decided to use expo to build
our app. This keeps away almost all the tasks related to make the app working on each platform,
which is the most complex part of this epic. With all these changes we went from the original work
time of 103 hours for the Mobile App Implementation epic plus 54 hours for the Web App

Implementation (157 hours in total), to 118 hours.

~ W Mobile&Web App Implementation == @ Active 18

v W Dessign App Workflow ® Active 42
Dessign 2ll basic components ® Active 20 10
Dessign the introduction of the user into the GTD Mew 2
Dessign the best way to add tasks into the Inbox list Mew 4
Dessign the process of review tasks from the inbox Mew 5
Dessign the way to interact with others lists Mew 3
Dessign the login process Mew 3
Create the first mock up New 5
~ W Project Scaffolding ® Active 36
Create main project files using create-react-native-app @ Closed 5
Make it fully wark on ios ® Clozed 10
Make it fully work on android ® Closed 10
Make it fully work on web ® Clozed 5
Set up testing enviranment ® Active 6 3
~ W Dessign Implementation ® Active 25
Implement inbox's new task procedure Mew 5
Implement review Inbox's tasks Mew 5
Implement user's tour Mew 3
Implement interaction with different lists ® Clozed 5
Implement login screen Mew 5
« W [CI] Mobile New 5
Create azure devops pipeline Mew 5
« W [CI] web New 10
Create azure devops pipeline Mew 2
Create zzure free web service New 2
Implement the automatic deploy Mew 4
Create ARM template Mew 2

Remove the epic Storybook

The main goal of this epic was to act as components bridge between Web and Mobile applications.
As now both are included in the same project, a bridge is not necessary, so we decided to remove

it. This epic was planned to be 60 hours approx.

So, finally, we went from 5 epics to 3 epics in the backlog and from 330 hours to 212 hours:

Waork ltem Type Title Effa
Epic W Mobile&Web App Implementation 118
Epic Wi Backend Implementation 61

Epic Wd Project Management 33

GANTT & ESTIMATIONS

We have created a Gantt chart using TeamGantt (Gantt Diagram created with
https://teamgantt.com) in order to make the planification more visual. We've split it in two figures,
as it’s too big. You can reach them in: APPENDIX A: Gantt chart — Part 1 and APPENDIX B: Gantt
chart —Part 2

Thesis extension modifications

The thesis extensions and the modifications on tasks also affected on this Gantt. We have modified
it. You can reach both parts in the appendix: APPENDIX C: Gantt chart after thesis extension — Part
1 and APPENDIX D: Gantt chart after thesis extension — Part 2.

https://teamgantt.com/

ALTERNATIVE PLANS & OBSTACLES

During the execution of the project, we could have a lot of obstacles. As we have very well

separated epics, let’s analyze the possible obstacles in each one:

- Project Management: No important obstacles

- Story Book Implementation: The sharing of components between web & mobile apps is
not enough explored, so we have a lot of unknown variables that could increase the time
needed to finish this epic.

o The solution: In this case we will reduce the features that will be implemented in
both the mobile & web apps.

- Back End Implementation: In this epic, we have two important possible obstacles:

o Microsoft Azure: As we are using on-cloud services, trying to work with all free
plans, we could get some bottlenecks during the development.

= The solution: If this happens, we will invest some money to avoid those
bottlenecks.

o Knowledge: Knowledge is another unknown variable in this epic. As my
experience goes around Front End, | could need to invest more time in the
learning process.

= The solution: If the learning process needs to be increased, we will reduce
the amount of features/testing that is planned for the apps.

- Web App Implementation: No important obstacles.

- Mobile App Implementation: This is maybe the most difficult part of the project. Develop
a single app that should work on iOS & Android platforms seems to be easy, but the
configuration of both projects usually is quite complicated. Sometimes, find what is
causing an issue is almost impossible, so we’re forced to try and failure multiple times until
the solution is found. That’s why this epic is planned with more than 100 hours.

o The solution: To show the powerful of sharing components with “three” apps
(web, i0S & Android), having the mobile app working on both platforms is a good
to have, but, if we found too much problems making it working, we can discard

the platform that is giving us those issues.

ECONOMIC MANAGEMENT

In this section we will talk about the budget that the thesis will need in order to be executed. We

will divide it in four different sections:

- Activities costs
- Generic costs
- Contingencies

- Unforeseen

Finally, we will add a table with the summary of all the costs.

Human Resources

This thesis will be fully managed and implemented by a single developer, so this simplifies a lot the

human resources costs as we just need to consider one developer.

Based on the payscale.com website the average of a senior developer is 50€/hour. Being between
28 and 80€/hour. We had chosen 30€ per hour for the developer. With the estimated work load of
330 hours for the whole project, we get 9900€. But, let’s split this amount in the different tasks:

Activities costs

As we have seen in the previous delivery, the Gantt diagram was showing that we planned the

project in 5 different epics. First of all, we will summary how are they organized:

- Project Management
o Total work: 18 tasks
o Total time: 33 hours
o Total cost: 990€
Mobile App Implementation

o Total work: 17 tasks

o Total time: 103 hours

o Total cost: 3090€
Web App Implementation

o Total work: 17 tasks
o Total time: 54 hours
o Total cost: 1620€

Story Book Implementation
o Total work: 11 tasks
o Total time: 79 hours
o Total cost: 2370€

- Back End Implementation
o Total work: 7 tasks
o Total time: 61 hours
o Total cost: 1830€

PROJECT MANAGEMENT

The total epic time is 33 hours with a total cost of 990€

Tasks:

Scope & Contextualization

Task title

Write Scope section

Write Contextualization section

Review document

Deliver Scope & Contextualization document

Total

Temporal Planification

Task title

Write Planification Summary action
Create project known tasks

Create Grantt diagram from created tasks
Review document

Deliver Temporal Planification document

Total

Time (hours)

2

0,5

6,5h

Time (hours)

2

0,5

8,5h

Total price
60
60
60
15

195€

Total price
60
60
60
60
15

255€

Economic Management and Sustainability

Task title Time (hours) Total price
Write Budget (cost identification) section 2 60
Write Budget (cost estimate) section 2 60
Write Budget (management control) section 2 60
Write Sustainability Report section 2 60
Review document 2 60

Deliver Economic Management & Sustainability

0,5 15
document
Total 10,5h 315€
Final Delivery
Task title Time (hours) Total price
Join all previous documents into the final one 3 90
Final review of the document 4 120
Deliver Final Document 0,5 15
Total 7,5h 225€
MOBILE APP IMPLEMENTATION
The total epic time is 103 hours with a total cost of 3090€
Tasks:
Project Scaffolding
Task title Time (hours) Total price
Create main project files using create-react-native-app 5 150

Make it fully work on iOS 10 300

Make it fully work on android
Set up testing environment

Total

Design Implementation

Task title

Implement inbox’s new task procedure
Implement review inbox’s tasks
Implement user’s tour

Implement interaction with different lists
Implement login screen

Total

Enable Continuous Integration

Task title
Create azure devops pipeline

Total

Design App Workflow

Task title

Design all basic components

Design the introduction of the user into the GTD
Design the best way to add tasks into the inbox list
Design the process of review tasks from the inbox
Design the way to interact with others lists

Design login process

10

31h

Time (hours)

5

25h

Time (hours)
5

5h

Time (hours)

20

300
180

930€

Total price
150
150
150
150
150

750€

Total price
150

150€

Total price
600

60

120

150

90

90

Create the first mock up 5

Total 42h

WEB APP IMPLEMENTATION

The total epic time is 54 hours with a total cost of 1620€

Tasks:

Project Scaffolding
Task title Time (hours)
Create main project files using create-react-app 2
Set up testing environment 3
Total 5h

Design Implementation

Task title Time (hours)
Implement inbox’s new task procedure 3
Implement review inbox’s tasks 3
Implement user’s tour 3
Implement interaction with different lists 3
Implement login screen 5
Total 17h

Enable Continuous Integration

Task title Time (hours)
Create azure devops pipeline 2

Create azure free web service 2

150

1260€

Total price
60
90

150€

Total price
90

90

90

90

150

510€

Total price
60

60

Implement automatic deploy
Create ARM template

Total

Design App Workflow

Task title

Create the first mock up

Design the introduction of the user into the GTD
Design the best way to add tasks into the inbox list
Design the process of review tasks from the inbox
Design the way to interact with others lists

Design login process

Total

STORY BOOK IMPLEMENTATION

The total epic time is 79 hours with a total cost of 2370€

Tasks:

Mobile

Task title
Create storybook app
Synchronize with web app storybook

Total

Web

Task title

10h

Time (hours)

5

22h

Time (hours)

15

20h

Time (hours)

120
60

300€

Total price
150

60

120

150

90

90

660€

Total price
450
150

600€

Total price

Create storybook web app
Synchronize with mobile app storybook

Total

Storybook

Task title

Investigate how to share components between web &

mobile apps

Develop texts components

Develop layout components

Develop basic form components
Develop Data Viz. components
Develop notification components
Develop section-specific components

Total

BACK END IMPLEMENTATION

The total epic time is 61 hours with a total cost of 1830€.

Tasks:

Implement Microservice

Task title

Investigate how to implement a microservice in azure
Define which endpoints will be needed

Implement endpoints & needed logic

Total

10

15h

Time (hours)

20

44h

Time (hours)

5

20

31h

300
150

450€

Total price

600

90
60
90
180
90
210

1320€

Total price
150
180
600

930€

Integrate Cl into the microservice

Task title

Investigate how to integrate the Cl in the microservice
Develop the .yml file defining the pipeline

Implement the deployment ARM file

Implement a deployment pipeline for a single

environment

Total

Time (hours)
5

10

10

30h

Total price
150
300

150

300

900€

Generic costs

MATERIAL COSTS

As this is a software project, we will need some specific hardware and software to execute the

project:

- Hardware
o Computer: As we are planning to implement an iOS application, a MAC OS X
computer is mandatory to build the app in this platform. The best choice in terms
of budget and performance is the new Mac mini with the new M1 CPU, which is
799€.
o Set up: As we want to improve the performance of the developer, we will be using
a full setup with 2 screens (160€), keyboard (30€) and mouse (30€). Everything for
220€.
- Software: As all the Apple computers has the operating system included and all the
software used in this thesis is free, there is no extra cost in the software category.
- Environment: The work place is an important thing to keep in mind, as we will need a
place to work in. A good place to work costs around 300€ per month, for 4 months, we will
pay 1200¢€ for it.

ELECTRICITY COSTS

Now, we have to calculate the electricity expenses we will spend with the computer and all the

setup:

Computer

After reading an article from Tom’s Hardware (Shilov, 2021), we get that the computer we will use
consumes 39W/hour under high load. Considering that the price of electricity is 0,31€/Kwh per
hour we can calculate what we will spend during our 330 hours of work scheduled. The operation
would be: 0,31 * 0,039Kw * 330 = 4€ on working hours. The computer will be turned on all the
time. That means that, considering that the thesis will extends 4 months, we will work 4 hours a
day. The rest hours (20 hours) the computer will be in idle mode. Simplifying to 20 work days per
month and 10 free days per month. So, we will be working 4 hours * 20 work days = 80 working
hours per month, that means 0,31*0,039Kw*80 = 1€/month. And the computer will be in idle
mode 20 hours * 20 work days + 24 hours * 10 free days = 640 hours. Considering that from Tom’s
Hardware article, this computer consumes 7W/hour. That means that we will spend 0,31€
*0,007Kw*640 = 1,4€/month.

Summarizing, we have a computer that will spend 2,4€/month. Considering we will extend the

thesis by 4 months, we will be spent 9,6€ of electricity.

Screens

Now, let’s calculate the power expenses of both screens:

- Max power consumption: 25W/hour (we will consider that the screen consumes the
maximum power while being used).

- Working hours per month: 80 hours (calculated in the previous section).

- Price per Kwh: 0,31€

With that numbers we have: 0,025Kw * 0,31€ * 80 h/month = 0,63€/month each screen.

Considering the duration of the thesis (4 months) and that we have two screens we know that the

electricity expenses for both screens will be: 0,63€/month * 4 months * 2 screens = 5,1€ in total

Amortizations

Now, let’s calculate the Annual Amortization Expense, using the following formula having the
Salvage Value as the cost the asset will have at the end of their useful life, the Cost of the Asset as
the initial Cost of the Asset and the Useful Life of the Asset as the time in years of the estimated

time the asset will be useful:

(Cost of the Asset — Salvage Value)
Useful Life of the Asset

Annual Amortization Expense =

Computer

The Cost of the Asset is 799€ and we have computed the Salvage Value to 300€, due to be an Apple

product, it has a low depreciation.

The Useful Life of the Asset has been established to 4 years, as it will be a lot of hours under usage

during a day.
With these variables, the result of the formula for the Computer is 124,75€.

Setup

For the screens, the Cost of the Asset is 80€, the computed Salvage Value is 30€ due to a minimal
price for a 1080p screen. The Useful Life of the Asset is estimated to be 5 years so, the result of the
formula is: 10€. Having 2 screens, the Annual Amortization Expense would be 20€ / year for the

two screens.

For the Keyboard and the Mouse together, the Cost of the Asset is 30€ x 2 = 60€. The Salvage Value
is estimated to 10€ and the Useful Life of the Asset is estimated to 7 years. So, the result of the

formula would be 7,14€ / year.

Total generic costs

ASSET PRICE
Computer | 124,75€
Setup: screens ‘ 20€

Setup: peripherals ‘ 7,14€

Software 0€

Environment 1200€

TOTAL | 1351,89¢€
Unforeseen

As in any project, unforeseen can appear during the thesis, so we must prepare for them. Let’s

check out the possible unforeseen by category

- Hardware:

o Computer: We can have issues with the computer, so we can increment the
budget to be able to buy two computers (799€ more) in order to avoid stopping
the thesis execution.

o Set up: As we have two screens, a mouse and a keyboard, we can save 30€ to
avoid an issue with any peripheral.

o Cloud: We pretend to use all free web services available in azure. But it could be
too poor sometimes. We may need to pay a little bit for a better web service plan.
We will increment in 500€ the budget for the cloud platform to avoid being stuck.

- Human resources:
o Developer time: As the project may be delayed or more time will be needed to

complete the thesis, we will prepare 1500€ for a possible delay.

Finally, the total amount that we’ve prepared for possible unforeseen is 2829€.

Final budget
Activity
Project Management
Mobile App Implementation
Web App Implementation
Story Book Implementation
Back End Implementation
TOTAL CPA
SS Costs (30%)
TOTAL CPA +SS
Computer
Screen
Screen
Keyboard & Mouse
Environment
Computer electricity
Screens electricity
Total GC
Total costs
Contingency (15%)
Total with contingency
Possible computer failure
Possible peripheral failure
Possible cloud bottleneck

Possible time delay (50 hours)

Table 23: Final Budget

Price (€) Observations
990 €
3.090 €
1.620 €
2.370€
1.830 €
9.900 €
2970 €
12.870 €
124,75 €
10€

10€

7,14 €
1200 €

9,6 €

51€
1366,59 €
14236,59 €
2135,5€
16372,09€
799€

30€

500€

1.500€

19201,09€

Management Control

We have to define a methodology that helps us to manage all economic changes affecting the
original budget. Let’s list the different kind of economic expenses we defined for the project and

how economic changes will be managed in each one:

ACTIVITIES COSTS CHANGES

There are different possible changes that can occurs here. Each one will have a specific way to

calculate the deviation on the initial estimated budged. Let’s check the both possible causes.
The total deviation of the activities costs is the sum of both causes deviation.

Activites Costs Deviation = Missed tasks deviation + Bad estimated deviation

Tasks missed in the initial scheduling

Missing a task in a big project is a common issue that happens in almost all projects. This usually
adds a big deviation to the initial project budget. Calculate it in the correct way is mandatory. The

way we will calculate is through the following formula:
Missed tasks deviation = Z(completedHours X costPerHour)

The function is basically a summation of the total spent hours multiplied by the costs per hour, for

each missed task completed.

Bad estimation on initially scheduled tasks

This is also a common deviation on a project, which means that the estimated time planned some

tasks was not accurate enough, so me spend more or less time on some tasks than expected.

The function used to calculate this deviation would be:
Bad estimated deviation = Z((originalH ours — completedHours) X costPerHour)

This function will take only the initially scheduled tasks.

GENERIC COSTS CHANGES

The generic costs deviation is practically non-existent, as we would only cover electricity
consumption deviations based on the extra hour. Considering that we will spend more or less 15€
in electricity by working 4 months on this thesis, we’ve considered that the possible deviation here

in not enough big to consider it.

Thesis extension modifications

After the thesis extension, some sections in economic management has undergone changes.

MODIFICATIONS: HUMAN RESOURCES

As the epics has changed, now we reduced the amount time hours from 330 to 212, so, considering

that we decided to set 30€/hour the price of the developer, we went from 9.900€ to 6.360%€.

MODIFICATIONS: ACTIVITIES COSTS

If we split the costs by epics, we get the price of each epic:

- Project Management
o Total work: 18 tasks
o Total time: 33 hours
o Total cost: 990€

- Mobile&Web App Implementation
o Total work: 22 tasks
o Total time: 118 hours
o Total cost: 3.540€

- Backend Implementation
o Total work: 7 tasks
o Total time: 61 hours
o Total cost: 1.830€

MODIFICATIONS: FINAL BUDGET

As the human resources costs changed, the final budget goes from 19201,09€ to 14.532,09€

SUSTAINABILITY REPORT

Ambiental

We planned a forecast of the resources needed to develop this thesis. Starting from the unique
developer that will be working on this project ending into the Cloud that we will need to deploy our
back end.

We discarded the reutilization of a MAC computer, as this last generation of CPU’s that Apple
released will be needed soon to develop apps for Apple devices and seems that these computers
performs much better that the old ones. Anyway, the computers needed to develop this thesis can

be reused once the thesis finishes.

We also considered the ambient impact as a variable to choose the computer, as the new

generation of Apple CPU’s performs better with less power consumption.

After reading the interesting article called Apple: Mac Mini M1 Consumes 3X Less Power Than
Intel from Tom's Hardware website, we calculated the power consumption that this computer
will have:

- Daily usage: 8 hours
- Month work days (avg): 20 days
- Computer idle power consumption: 6,8W

- Computer max power consumption: 39W

Let’s consider we have the computer turned on, every time, having 4 hours * 20 days of max power
consumption (39W): 3.120W/month

So, idle time: 20 hours per day, for the 20 work days, and 24 hours for the 10 free days: 400 hours
work days + 240 hours free days. To finish, the idle power consumption is 6,8W, so: 4.352W/month

for the idle time

It's a total of 7.472W per month (7,472kW per month). Considering we will work on this thesis for
4 months, we get 29.888 kW

Economic

As we talked in the Economic Management section, we have a team of 1 people with a single
computer, two screens and basic peripherals. In the previous section we’ve considered all possible
unforeseen to be sure we won’t have problems with the budged needed to execute this project.
The final budged for this thesis is 19201,09€.

Social

We've been working with GTD some months ago, and stills working on a good organizational
methodology for our personal life. Develop this whole thesis by myself will give us a tool to use in
this GTD process, but also a internalize thing that we’ve been working with for the past few years
as back end microservices, deployments, etc. When you work in a team, each member has its own
responsibility. Here we all worked in multiple disciplines. That’s why we improved a lot our

development skills.

Thinking about the impact we can cause, we think that this platform can helps a lot of people that’s
trying to start using GTD methodology by making the process simpler and better. We don’t think

that this project could cause any negative impact to the life of anybody.

PROJECT PLANIFICATION

Introduction

To start the development of the project, is important to plan what we want exactly to do. Build it
from scratch, by designing some kind of charts in order to make clear what to implement later. We

will be following the next steps:

- Prepare the schema of the application.

- Prepare some diagrams about the most important user stories.
- Prepare some designs for the application.

- Prepare the schema of the Backend API.

After that, we will have everything to start with the development.

Application Schema

First of all, we need to understand which screens we will implement in the application and which

are the paths the user will be able to navigate through. We’ve prepared a flow chart with this:

Logged in
// e
Today Lists Review User not 'logged in Settings User logged in
(\ l Logged out
New List List's Tasks Review Task B Login
New Task

You will notice that, for example, we only have one screen related with user authentication, the
one in the yellow square with title “Logged Out”. That’s because the user authentication is not an
important part on this thesis, but it’s important to have all information split between users, so the

Login screen is the only mandatory as we would be able to create everything manually in the API.

Also, you will notice that there are two kind of arrows in the chart, the solid one and the dotted

one.

- Solid arrows: Is a voluntary action of the user.

- Dotted arrow: Is an involuntary navigation of the user. It happens when something
happens that forces this navigation. In this case, the login and logout action will trigger

those navigations.

If we try to read the chart we will see that we will have 4 main screens: Today, Lists, Review,

Settings.

The Lists screen will have two children: New List and List’s Tasks. At the same time, the screen

List’s Tasks will have one child: New Task screen.

We will decide in the development process if we will convert the screens New List and New Task

into an element inside others screens, as a modal or a bottom sheet.
By the other hand, the screen Review will have only one child: The Review Task screen.

It’s good to clarify that the user will be sent to the Login screen when he’s logged out or its session
expires. It doesn’t matter in which screen he is. At the same time, when the user Logs in he will be

sent to the first screen under Main, which is the Today screen.

DESIGNING USER STORIES

Once we understand the screens and the navigation paths, we will design some sequence diagrams
to explain how the user will interact with the app in order to execute specific actions. We will cover
four user stories. The ones we though are the most important ones, because, without them, the

application won’t cover what we initially wanted to cover:

Quickly add new task
o Bytitle

o By voice record

Manage lists

o Creating new one

o Removing existing one
Edit a task

- Review new task in the inbox

User Story 1: Quickly add new task

This user story is the beginning of the whole experience of the user inside the application. Is where

everything starts, with the task creation, and this must be fast and nice to use.

This user story is separated in two different sub stories, as the user will have two possibilities to

create the new task: By title or by voice record.

Let’s check the sequence diagram of the first sub story: Quick add new task by title:

Application

User
Press create quick task button

- A

Show text input

Fill text input and press ok button

Create the task into inbox list

Application

User
Figure 16: User story - quick add task by title sequence diagram

Now let’s check the diagram for the second sub story: Quick add new task by voice record:

Application

User

Press and keep pressing new task button

Starts recording

Stops pressing new task button

Stop recording & creates the task

Application

User
Figure 17: User story - quick add task by voice record sequence diagram

There is a specific requirement for this user story that must be accomplished. The user should be
able to do it as quick as possible. The sequence diagrams suppose the quickest implementation of

this user story.

User story 2: Manage lists

This user story is not the most important one, as we can suppose that the application will offers the
user specific predefined lists that will be unremovable. But we think that offer the possibility to the

user to customize a little bit its experience would be really grateful.
We will split this user story in two sub stories: List creation and list remove.

Let’s start with the first one: Manage lists: Creation. We pre-defined a basic model for a list, which

is composed by: A title, a color, an icon.

With that, let’s check the sequence diagram:

Applicafion Lists Screen MNew List Screen

Press lists screen icon in the bottom bar

¥

Sends user to lists screen

L

Show list of user’s lists

Press "New List™ button

Y

Sends user to new list screen

Show "new list" creation form

A

Fill name, color and icon

Press OK button

¥

Sends user to Lists Screen

Update list of lists with the new list

Applicafion Lists Screen MNew List Screen

Figure 18: User story 2 - List creation sequence diagram

As you can see, we are also specifying the navigations through screens as well as all the actions the

user will be doing.

Let’s go with the second sub story: Manage lists: Remove:

Application Lists Screen

User
Press lists screen icon in the bottom bar

h J

Sends user to lists screen

Show list of user's lists

Swipe the list to delete to the left

Show delete action

Press delete list action button

Show updated lists

Application Lists Screen

User
Figure 19: User story 2 - List remove sequence diagram

This sub story is important if we want to keep the creation sub story. That’s because the main

application lists won’t be removable by the user, because are mandatory for the right functioning

of the system. But the ones created by the user, should be removable, because if not, the user will

be accumulating customizes lists over time.

User story 3: Edit a task

This user story in mandatory in order to be able to implement the last user story. This one will

allow the user to edit tasks previously created. Remember that, the only way to create a task would

be the “quick way”. This means that the task will miss a lot of attributes that should be filled later.

This user story will allow the user to do this job. Let’s check the sequence diagram:

Application New Task Screen

User
Press edit task button on the task to update

Sends user to new task screen

Show task creation form prefilled with selected task

Edit fields to update

A J

Press OK button

A J

Sends user wherever he was

Show updated task

ry

Application New Task Screen

User

You will notice that we avoid to specify all editable fields in the diagram. We though in a possible
first approached model for a task, which simplifies the management of them. A task would be

composed by:

- Title

- Record
- Notes
- List

- Date

- Time

User story 4: Review new task in the inbox

Finally, the most important user story. This one will close the first phase of the user interaction
with the app, which is the creation and organization of new tasks. This review process is basically a
list of questions, with its answers. The app will guide the user through this process, and will
propose some actions depending on the responses of the user. The actions are basically move the
task to a specific list, do the task, remove the task, etc. Take care when reading the sequence
diagram as we included a simplified version of the user story 1 in it. Also, you should know that the
actors in this diagram are the user and all the pre-defined lists in the app. We may simplify this

process by removing lists that may need some extra implementations at the development time:

User Inbox Trash Tickler list References Project Waiting For Calendar Next acsions
loop [Every idea]
Quick add 1 inbax

Arive 1o the end of the day

Fleview procadure
foop [Each item in inbox]
Review idea

... ea o review

alt [is not actionable?]

alt s rash?]

Send vash

© -
[Want io do it someday?|
18 Add o specific ickler list
L
Disa reference?]
1y Add in the comect references list
L4
[is not a single step?]

alt [Project exists?]
& Add the task io the project
L
o Create a new project & add the task o the project. o

[is less than 2 minutes?]

D&Il

—

[1s not for me?]

Add 1o waiing for list

[Needs 1o be done in a specific date or ume?]

Add it to the calendar

L

Add 10 the next actions list

L]

Usar Inbox Trash Ticklor list Refurencas Progct Waaitng For Calundar Next acsons

All this process will take place between two screens: Review screen and Review Task screen. But
we will decide during the development process if both are different screens or they will be merged

in one single screen.

Backend endpoints

After design the application, we know exactly which functionalities the backend APl must cover.
We are going to group endpoints based on resource groups. For example, we initially propose the
groups “Lists” and “Tasks”. Considering that the user will needs to log in, we will propose a “Users”
group and also an “Auth” group. We will think about showing some organizational tips in the
application, so we will design a “Tips” group too.

Also, as we will be uploading voice records to create tasks, we will design a “Files” group.

Finally, we will be creating the Seed group, only as development utils. There we will put some

endpoints to execute initialization actions.
So, for now, we have those groups

- Tasks
- Lists
- Users
- Auth

- Tips
- Files
- Seed

Let’s walk through the previous list, by showing some flow charts we’ve prepared to make those

groups more visible.

Notice that we named all groups in plural, but when designing the API, the groups will be singular,

as API Rest recommends when referring to a resources group.

TASKS GROUP

Here we have all the endpoints to be implemented in the tag TASK.

Getting Things Done API

I

task

Create new task Get all tasks\ﬂy id

/{taskid}

Getfask{letask Deteﬁ

/list

|

by id
/{listid}

Change task list

Walking the tree, we will be constructing the endpoints:

- POST /task: This endpoint creates a new task in the API.

- GET /task: This endpoint gets all the user’s tasks from the API.

- GET /task/{taskld}: This endpoint gets a specific task by its ID.

- PATCH /task/{taskld}: This endpoint updates a specific task by ID.

- DELETE /task/{taskld}: This endpoint removes a specific task by its ID.

- POST /task/{taskld}/list/{listld}: This endpoint moves the task to a new list.

LISTS GROUP

Now let’s walk through the Lists group:

Getting Things Done API

l

list
Get all lists Create new list
/{listld}

Get tasks Update list Delete list

/tasks

Get list tasks

- GET /list: This endpoint gets all user’s lists.

- POST /list: This endpoint creates a new list in the API.

- GET /list/{listld}: This endpoint gets a specific list by ID.

- PATCH /list/{listld}: This endpoint updates a specific list by ID.

- DELETE /list/{listld}: This endpoint removes a specific list by ID.

- GET /list/{listld}/tasks: This endpoint will be used to get all tasks in a specific list by ID.

USERS GROUP

The group Users will have all the user related endpoints. Nothing related with the authentication of

the user. Let’s check the needed endpoints:

Getting Things Done API

l

User

Create user

So, we will only need one endpoint here:

- POST /user: This endpoint will let us to create a new user.

Update: After choose a boilerplate

After choosing the boilerplate to use as our backend API, we noticed that it already has
implemented all user related and auth related endpoints. So, let’s see the updated endpoints that

we have now:

Getting Things Done API ‘

l

User

RN

Create user Get all users By id
/{userld} /info
Get user’ Update user Delete user Get user info

Consider that we won’t be using all of them. For now, we will use only the create user one, but it’s

interesting to understand which endpoints we have available:

- POST /users: This endpoint creates a new user in the API.

- GET /users: This endpoint gets all users in the API.

- GET /users/{userld}: This endpoint gets a specific user by ID.

- PATCH /users/{userld}: This endpoint updates a specific user by ID.
- DELETE /users/{userld}: This endpoint deletes a specific user by ID.

- GET /users/info: This endpoint gets the information of the currently logged user.

AUTH GROUP

This group is super important, as it’s the one that will handle the authentication of the user into the
app. It will be based on an JWT authentication and we won’t be using a complex authentication

system, with session expirations, token refreshes, etc. So, let’s check what we need:

Getting Things Done API

l

Auth

!

Login user

We only need one endpoint to login the user. Once the user’s session expires, he will need to login

again.

Update: After choose a boilerplate

As well as the “users” group, after choosing the boilerplate that we will use as out backend API, we
notice that it already has some implemented endpoints relates with authentication. Although not

all of them will be used, let’s check what we have:

Gemng Thvngs Done API ‘

fregisler flogm /Iogcut Irefresh-tokens fforgot-password Ireset password /send-verification-mail iverify-email

Reg:sler user Lngm user Lngnut user Refresh user token User forgot password Reset user password Send versﬂ:atmn email Verify user email

- POST /auth/register: This endpoint registers a new user into the API.

- POST /auth/login: This endpoint logs in the user into the API.

- POST /auth/logout: This endpoint logs out the user from the API.

- POST /auth/refresh-token: This endpoint refreshes the access-token of the user with the
refresh-token.

- POST /auth/forgot-password: This endpoint sends a forgot password email to the user.

- POST /auth/reset-password: This endpoint resets the password of the user.

- POST /auth/send-verification-email: This endpoint sends the verification email to the user.

- POST /auth/verify-email: This endpoint verifies the user’s email.

TIPS GROUP

This group will contain all endpoint needed to manage the tips of que system. It would be simpler

that others as there are some actions that are not needed. Let’s check the endpoints in this group:

Getting Things Done API

!

Tip

]

Get all tips Create new tip By id

/{tipld}

Remove tip

- GET /tip: This endpoint gets all tips in the API.
- POST /tip: This endpoint creates a new tip in the API.
- DELETE /tip/{tipld}: This endpoint removes a specific tip in the API.

FILES GROUP

This is the simplest group in the API, as we only want to be able to upload files and get the URL

once uploaded. Let’s see the flow chart:

Getting Things Done API

l

File

Upload new file

v

- POST /file: This endpoint will allow to upload a file to the API storage. Then, it’ll returns the
download URL.

SEED GROUP

This group will contain some endpoints for development purposes. The goal is to prepare some

endpoints to initialize the database and clean it of all created data. Let’s see what we plan to

implement here:

Getting Things Done API

l

Seed

Seed database l

/reseed /content

Reseed database Show database content

v v

- POST /seed: This endpoint will allow us to seed the database. We will prepare a document
with the initial data that the database must have in order to see all the features of the
application, like initial users, initial tasks, initial lists, etc.

- POST /seed/reseed: This endpoint uses the previous endpoint functionality, but, before
that, it drops all the collections in the database, in order to roll back the database to its
initial state. After dropping it, it seeds the database again.

- GET /seed/content: This endpoint returns all the collections in the database and the

number of documents existing in each one.

Application design

Now, with all the application schema defined, we will start make some sketches designs in order to
get a clear vision of what we'll exactly implement. Let’s understand what is exactly a sketch file and

the tool we will use for that:

THE .SKETCH FILE

A sketch file is (from sketchplugins.com) a group of zipped folders containing JSON files that
describe the document data, plus a number of binary assets (bitmaps images, document preview,
etc....). This file format was introduced by an impressive designing tool called Sketch. This sketch
format based on zipper folders was introduced by the version 43 of this design app in order to

expand the possibilities to read the design files by third party applications.

The Sketch application is only available in Mac OS, but thanks to this new .sketch format, new

applications appeared like Lunacy, the one we will be using to create our sketch files. And yes. It's

free.
Lunacy 71 - m* a .
Graphic design "
software with e

system or measurable human
interaction. * a

0@ %>

built-in assets

Built-in icons, photos, vector illustrations, and more.

Full compatibility with Sketch. . N —— y
', = 5 o " g

=R Free on the Windows Store a7 @ Direct download x64 | x86 .] L] --::7 L} =
— un

o0 Dm0 d@DBOO R
B EPNBDEOBIDENEO
=

“pUo
H]
o
l -
4 x
-]

4

THE .SKETCH DESIGNS

We designed multiple versions of the main pages for the mobile app, but them also helps us to

have a clear vision of which kind of design we will implement.

Let’s remember which are the main screens that we will design and the goal of each screen:

Today screen H Inbox screen ——w Review screen H Lists screen

- Today screen: This is the only screen that the user will check during his day. Here he will
find the things to do each day. In GTS methodology, you only need to check 2 things during
your day: The calendar, and the actionable list.

- Inbox screen: The user will be able to access this screen to check the ideas that has added
during the day.

- Review screen: This screen is the most important at evening. As we will give the user the
tools to review each task in the inbox list and help his to review it in the best way.

- Lists screen: This screen will contain all the lists created by the user. We're not sur that this

page will be implemented.

TODAY SCREEN DESIGNS

Let’s start with the Today screen and let’s check some design examples:

Example 1

Summary

Calendar events

Tasks for Today

+

T
L]}
£
i

Figure 33: Today screen design - example 1

The first example is an amazing start as we already decided the main colors of the app. This
background works perfectly with the idea of the app, and the typography is a really good example.
We also love the way to split vertically the calendar and the tasks in the actionable list. But, it not

enough.

Example 2

Summary

Calendar events

Tasks for Today

+

§
S

3

&
%

Figure 34: Today screen design - example 2
This example is a small variation of the first one, just tried to make is looks more “modern” with
those sections near the edges of the screen. We keep thinking that the colors in the titles “Calendar

events” and “Tasks for Today” doesn’t work well enough. The gradient background is working well,

but the main gradient colors doesn’t work well yet.

Example 3

wil 9:41

Summary

[MIERCOLES, 21 ABR

Let's work

5= TODAY'S TASKS

 Let's work
(~ Let's work

[y Let's work

+

Figure 35: Today screen design - example 3

The third example works really well! There are some things that doesn’t like us yet, so we will make

another example and we will choose between them.

Example 4

Today

A MIERCOLES, 21 ABR

Let's wark

Let's wark

A= TODAY'S TASKS

-y Let's work
-, Let's work

-, Let's work

+

£
T}
£

g

E

Figure 36: Today screen design - example 4

This one is the good one. Beautiful as the 3™ one, but simpler, more minimalist and with tips!

Once we have chosen the main look and feel of the app, we will make some designs of the other

screens.

INBOX SCREEN DESIGNS

This screen pretends to be the simplest one. The user shouldn’t be distracted with anything, just
focused on add new tasks. In a future we will implement a “Quick add” in the big plus button in the

navigation tab at the bottom and then, the user will need to check the added tasks during the day:

Inbox

 Thisisan example task

) Thisis an example task

+
11}

Figure 37: Inbox screen design

As you can see, the inbox will be able to add text notes but also record voice notes, so the user will

be able to talk fast instead of stop to use the smartphone keyboard.

Update: During development process

While developing the application, we noticed that this screen could be substituted by the Review
screen, as the tasks to be reviewed are the ones in the Inbox list. So, we’ve removed this one and

we added a new Settings screen.

REVIEW SCREEN DESIGNS

We have some doubts about this screen. We don’t know which would be the perfect “Review

screen”:

A. Super guided screen, which “forces” user to use exactly the GTD suggestions.
B. Keep it “open”, so user will receive the correct GTD decision, but allowing him to take any

decision.

We implemented a design for the B option which seems to be the complex one (in terms of design):

Review

Tasks to review

Review

Tasks to review

~ This is an example task

~~ This is an example task

() This is an example task (> This is an example task

TASK DETAILS
This is an example task

Actionable

RSN s =

|

-
=
E

Figure 38: Review screen design

Code reusability investigation

One of the main goals of this project was to reuse as much code as possible. There are some tools /

technologies we can use in order to reduce the amount of code to develop. The first focus would

be sharing almost all the components or, at least as much component’s parts as possible. Let’s

investigate which one would be the best option:

SHARED COMPONENTS

Shared components between both projects: As both projects are based on the same technology,
we have a possibility to reuse part of the code of a component. React is used for web applications
and is based on HTML, so, we can use HTML directly inside a react component. But we cannot do
the same in a react-native project. Both are structured in the same way, based on tags (as html),

but react-native uses its own components while react uses html-based components.

Figure 39: Sharing components between react and react native

As you can see, react-native generates native apps, which means that the components you can use

to build your application will be translated to the similar native component in the build process.

That’s why it’s not as easy as it seems. The option to share components will let us to share the logic
of the component, but not the view, and we will need to implement the view two times in order to

build a reusable component.

THE VIEWPORT

The second option is to not really build a mobile app so, build a full web app with React, and then,
build a react-native app that’s only a viewport to the react app, so, the user would be using all time

the web app based on react.

React Native Web Webview

Figure 40: React Native WebView

No code sharing needed. Worst experience, as it’s not completely native and adds a lot of

complexity when working with responsiveness.

REACT-NATIVE-WEB

We arrived to this article (https://blog.bitsrc.io/how-to-react-native-web-app-a-happy-struggle-

aea7906f4903), which introduced us react-native-web. This library supposedly allows us to develop

a react-native app and use it as a web app too! This is enormous, as we would be able to discard
the development of an entirely project (the web one) and only build one in react-native.
There are some limitations of this library, as it gives you a components library (basically, almost all

the basic components that React offers you), but all of them are translated to an HTML component.

CONCLUSION
A lot of components libraries was offering compatibility with react-native and react apps. All of
them are using react-native-web as a “compatibility” layer between React DOM (web) and React

Native (mobile), and it works really well. So, we will be using react-native-web library.

https://blog.bitsrc.io/how-to-react-native-web-app-a-happy-struggle-aea7906f4903
https://blog.bitsrc.io/how-to-react-native-web-app-a-happy-struggle-aea7906f4903

BACKEND API IMPLEMENTATION

The backend project will be the one to handle all the logic of the application, perform operations

and store all data. The main features planned to be implemented here are:

- Login
- Tasks management
- Lists management

- Seed database

Technologies

We will work with a super known stack based on Node JS, Express and MongoDB.

EXOress

nede
0 moﬁgoDB

Let’s remember the main fact of each one:

- Node JS: This is the server itself. The definition of node.js, from it's webpage: “Node.js is a
JavaScript runtime built on Chrome’s V8 JavaScript engine”.

- Express: This is basically a framework for node.js, that gives a lot of characteristics focused
on web application developments. From its website: “Fast, unopinionated, minimalist web
framework for Node.js”.

- MongoDB: Is one of the databases of reference in the world. Based in documents, it is a

no-SQL database.

Boilerplate

For start this project, we decided to find the perfect boilerplate. A boilerplate is basically a started
project, with a lot of already implemented features, that saves you a lot of time, as the scaffolding
of a project usually takes you most of the time. It also includes some features and characteristics
that are a little bit complicated to implement the first time.

The boilerplate we decided to use is one called node-express-boilerplate. It's developed by

hagopj13 user in GitHub (https://github.com/hagopj13/node-express-boilerplate).

Let’s check the amount of features it offers us, from the GitHub project readme:

https://github.com/hagopj13/node-express-boilerplate

- NoSQL database: MongoDB object data modeling using Mongoose
- Authentication and authorization: using passport
- Validation: request data validation using Joi

- Logging: using winston and morgan

- Testing: unit and integration tests using Jest
- Error handling: centralized error handling mechanism

- APl documentation: with swagger-jsdoc and swagger-ui-express

- Process management: advanced production process management using PM2
- Dependency management: with Yarn

- Environment variables: using dotenv and cross-env

- Security: set security HTTP headers using helmet

- Sanitizing: sanitize request data against xss and query injection
- CORS: Cross-Origin Resource-Sharing enabled using cors

- Compression: gzip compression with compression

- Cl: continuous integration with Travis Cl

- Docker support

- Code coverage: using coveralls

- Code quality: with Codacy

- Git hooks: with husky and lint-staged

- Linting: with ESLint and Prettier

- Editor config: consistent editor configuration using EditorConfig

Those are a lot of amazing features in a ready to use project. So, it’ll be just: install and start
implementing the endpoints we want.

ARCHITECTURE

Let’s check the architecture that the boilerplate offers us, as we may take this one and work over it.

It’s split in 3 different layers:

- Controller layer
- Datalayer

- Service layer
This boilerplate proposes 8 different elements:

- Config: stores configurations for everything in the project.

- Route: defines the routes that the API will have implemented. It also contains Swagger
configurations of each route and apply the needed middleware’s to each one.

- Controller: is the main logic where an endpoint will arrive.

- Middleware: custom express middleware’s which are used to apply modular
functionalities to specific routes.

- Model: definitions of the mongo DB schema using mongoose. It’s like a class, but it handles
the database operations automatically.

- Service: services contains the business logic and talks directly with models.

- Util: pieces of code that should be shared through all the project.

https://www.mongodb.com/
https://mongoosejs.com/
http://www.passportjs.org/
https://github.com/hapijs/joi
https://github.com/winstonjs/winston
https://github.com/expressjs/morgan
https://jestjs.io/
https://github.com/Surnet/swagger-jsdoc
https://github.com/scottie1984/swagger-ui-express
https://pm2.keymetrics.io/
https://yarnpkg.com/
https://github.com/motdotla/dotenv
https://github.com/kentcdodds/cross-env#readme
https://helmetjs.github.io/
https://github.com/expressjs/cors
https://github.com/expressjs/compression
https://travis-ci.org/
https://coveralls.io/
https://www.codacy.com/
https://github.com/typicode/husky
https://github.com/okonet/lint-staged
https://eslint.org/
https://prettier.io/
https://editorconfig.org/

- Validation: schemas based on Joi library, which can be used with the validation

middleware in order to add in/out data validation for each endpoint.

Finally, let’s check the project structure, from the boilerplate’s webpage in GitHub:

Project Structure

srch\
--configh # Environment variables and configuration related things
--controllersh # Route controllers (controller layer)
--docsh # Swagger files
--middlewares\ # Custom express middlewares
--models), # Mongoose models (data layer)
--routes # Routes
--services) # Business logic (service layer)
--utils\ # Utility classes and functions
--validationsh # Reguest data validation schemas
--app.js # Express app
--index.js # App entry point

FEATURES

We've chosen the boilerplate that will be used, we analyzed the features it offers and the
architecture that it proposes. Let’s not see how some of those features are implemented, just to

understand if use this boilerplate will be complex or simple.

Routes definition

There is a specific folder for routes, there we open the file auth.route.js to see how it’s written:

", validate(authvalidation.register), authController.register);

If we do focus on the first line we see that starting from left to right, we have the following parts:

- Router.post: It means that this route expects a POST HTTP method call.

- “[register”: It's the name of the endpoint. Calling http://[api-hosting-address]/register will
arrive there.

- Validate(authValidation.register): Here they’re using the validate middleware, which
takes the value of authValidation.register to check the data received is well formatted and
is valid.

- authController.register: This is the route controller. It will decide what to do with the

received data.

With the analysis already did, we can now check a complex one:

.get(auth tU i e(fali i r), userCont g

.patch(auth('n q e(uservalidation.u 0 Controller.updateU
.delete(auth(m: validate(uservValidation.c) rController.delete

This is basically the same as the previous one, but, the difference is that it now starts with
.route(“/:userld”), because it’s specifying multiple HTTP methods for the same endpoint. We can
also see that :userld would be an URL param which will be available later in the controller. The rest

is exactly equal. Validating data and specifying the controller that will handle it.

Validation definition

Validations are super important in an API, as we must ensure that received data is well formatted
and is what the API was expecting. We have seen how the validation middleware is used in the
route’s definition, but let’s now see how to define the validation schemas. Let’s take the /register

endpoint as an example:

eys({
quired().email(),
ring().required().custom({password),

() .required(),

Joi is the library used to define those validation schemas. As we can see, the schema starts with a
body property. It’s because body is the data container for an HTTP call. Let’s see what’s inside
body:

- email: joi offers some specific validations as here, we’re telling joi that this prop is a string,
is required and should be a valid email.

- password: here string type is also specified, but now, we’re using a custom validator for
this property in order to customize the limitations of user passwords.

- name: this property is basically of type string and required.

Models definition

In order to create documents in the database we have to create models. Models are created with
mongoose. This library handles all the communication with mongo DB, creating collections, writing

documents, removing documents, etc. Let’s see the List model, as it was created in the boilerplate:

néqui 3
default:

default:

requi
se

timestamps: true
1

Let’s enumerate all properties in this schema:

- name: the list’s name, of type string, required to be present and trimmed. The trim
process consists on remove useless spaces, for example: “ hello” will be trimmed to
“hello".

- color: list’s color is of type string and is required.

- icon: list’s icon is of type string and required.

- removable: list's removable property is of type Boolean and is required. It’s also defaulted
to true.

- immutable: list’s immutable property is of type Boolean, not required and defaulted to
false. This model’s property also has a property called “select”. This property to value false,
tells mongoose to not retrieve it when finding this model in the database.

- userld: this is the last property of the model, this is how we define references, by

specifying the type Object ID and the reference to the specified model.

SWAGGER DOCUMENTATION

Swagger is one of the best tools when developing an API. It’s a visual tool that allows the developer
to test the API.

This boilerplate has a tool implemented called swagger-jsdoc and swagger-ui-express. With these
libraries we can add the swagger code in the code, so it will be autogenerated. Let’s see how we

will do it:

Swagger endpoints definition

In each route file, we will find a comment block, started with a @swagger decorator, which will be

transformed to the final swagger:

Here we can see two blocks with the @swagger decorator. The first one is defining a new Tag for
the swagger (we will learn what is a tag in a swagger file now). The second one is defining the

endpoints that will be created in this tag.

Swagger model’s definition

In almost all the endpoints we are using, they use models to tell what they expect or what they

return. To define all these models, we have to go the file src/docs/components.yml:

This is only an example of how a swagger model could look like. The example property also

“prefills” the swagger when you are trying to test an endpoint, so is interesting to make the API

manual testing faster.

Swagger authentication

As we are creating a platform that works with data associated to each user. In order to be able to
do that, this boilerplate comes with authentication process incorporated using the library Passport.
For now, we will handle the login with mail and password. The API will have JWT login, specifically

login over Bearer token.
Let’s learn how to:

- First, we need to define the new endpoint with the correct property

- Second, we will login with the swagger, getting a specified access token, which we will add

into the Authorize button.

/auth/login Login ey
S
No parameters

“mferreiroaliber ch@gnail.con”,
": "Marc12345678"

Responses

curl

url -x "PosT*
*http: //localhost: 3000/v1/auth/login’ \
H

Liberct

"password": "Marc12345678"

Response body

mferreiroaliberchggmail .com™,
6146129842 cFd30a8F99a01"

yINbGC104 I TUZ TNITSTNRS CCIGTKPXVCID. ey zdWI 101 I2HTR INTTSO0GY@MMNMZDMAY ThmOT LKNDE i1 CIpYXQi0] E2MzQz0THNzMsTmVACCTEMTYZNDMSNDK 3Mywr dH18Z STE TmF §Y2Vzcy9 . TXVSCIGKBHL uBhyhc825xXN 265y XB

2021-10-16714:36:13.3372"

b6 0 I TUZ TINTSTNRS CCTETKPXVCIY. £y]2dWI 104 T2HTRIMTT50GY@MRNNZDMY ThnOT LhNDE 1L CIpYXQi0FE2MzQz0 THxNzMs TmV4cCTGMTYZN k40DC 3Mybrd dH1wZ STEINI1ZnT1 c2g1 FQ. XOHILQyIRhs8ebVUYIE 5GBAPS

21-11-15T15:06:13 .3372"

Figure 50: Swagger login endpoint response

Available authorizations x

bearerauth (http, Bearer)
Value:

eyJhbGciOiJIUZINilsInR5cC

Figure 51: APl swagger bearer token set

- Finally, we will be able to use all endpoints that requires authentication freely.

S /1ist Getalllists ~ @

Endpoint that allows you to get all lists in the platform.

Parameters

No parameters

Responses

curl

curl X "6ET' \

*http://1ocalhost: 3000/v1/1ist" \

-H *accept: application/json® \

-H *Authorization: Bearer eyJhbGciOilIUzI1INiIsInRScCIBIKpXVCIS. eyJzdWli0i [2MTR1HTIS0GY@MNmZ DwYThmOT]hNDE S LCIpYX(505E2MzQz0THxNzMsTmyA cCTEMTYZNDMSNDI3Hywi dHLwZST6 InF 5Y2Vz cy 39 . IXVSCHGKBHL uBl hyh(BZS){Mszygﬁl
5

Reqguest URL

http://localhost:3000/v1/1ist

Server response

Code Details

200

Response body

Figure 52: APl swagger calling authorized endpoint

Swagger final aspect

The base of having a swagger is working perfectly. It will be increasing when working on new

routes. But, let’s check how the tool works:

- - ——
node-express-boilerplate APl documentation @
’ 4
Auth Autnentication N
Files Files upioad N
Lists Lists management and retrieval A
| /110t AddanewLin el
/1ist Getalllists o a
GE' /list/{id} Getalist v a
/1list/{id} Updatealist v &
[ore | mrecyeen Emcers Ca
/1ist/{id}/tasks Geta listtasks < 0

Figure 53: Swagger documentation blocks to explain

We have here the main swagger screen, and we will go from top to bottom and from left to right to

explain each red group:

- Group 1: The title of the API

- Group 2: The license of the API

- Group 3: The server. Here some deployed servers could be used.

- Group 4: The authorize, where the bearer token will be added to make the “user logged
in”.

- Group 5: Tags. Is a way to group different endpoints.

- Group 6: List of endpoints inside the tag.

By the other hand, we have the endpoint view. Let’s describe each group.

=

Endpoint that allows you to create a new list to the platform.

2

I/lis‘t Add a new List

Parameters &

No parameters

Request body V"¢ § application/json v

Example Value | Schema

= “RFFEFFF

Responses 6

Code Description

Links
200 No links
Successfully created
405 Tome una captura de pantalia

Invalid input

Figure 54: Swagger documentation - endpoint blocks to explain

- Group 1: The HTTP method of the endpoint. It could be POST, GET, PATCH, DELETE, PUT,
OPTIONS.

- Group 2: The path of the endpoint and the description of it.

- Group 3: The parameters group. If the endpoint has defined some parameters to be sent,
they will appear here.

- Group 4: The try it out button allows you to test the endpoint, by enabling all the
parameters fields to be filled.

- Group 5: Request body. Sometimes an endpoint doesn’t expect parameters but expects a
body. At the right of this group, we have the body type. This is important, as tells the API
clients how the APl expects the body to be.

- Group 6: Responses. This group contains all the possible responses that the endpoint can
answer. Each answer, contains the response code, a description and, if necessary, the body

model.

Swagger final implementation

Finally, once finished all the implementation of the backend, let’s check how the swagger looks,

and test some endpoints:

AUTH GROUP

Remember that this group contains all endpoints related with the authentication of the user in the
application. We don’t have a mail service right now, so all endpoints related to mailing won’t be
tested.

Let’s first check the look and feel of the swagger:

Auth Authentication N
Jauth/register Registeras user v
fauth/login Login wF
/auth/logout Logout v
/auth/refresh-tokens Refresh auth tokens v
fauth/forgot-password Forgol passwerd v

fauth/reset-password Resetpassword -
/auth/send-verification-email Send verification email v B

/auth/verify-email verify email v

This is the battery of tests we will do in those endpoints. Notice that we will create only the

endpoints we will be using in the application:

1. Register a new user
2. Login with new user

3. Logout the user

Test 1: Register a new user
In order to register a new user, we will use the following fake data to create one:

"pame”: "Marc Ferreiro”,
"email"”: "marc.ferreiro@gmail.com"”,
"password": "Passwordl234"

Figure 56: Swagger test - register user body

The response of the user registration has been:

Code Details
Response body
arc Ferreiro®,

c.ferreiroggmail.con”,
: "616c507805F0dac138455064™

yINbGCi04ITUZ [INI TSINRSCCIETPXVCIS . ey ZaWI 101 I2MTZ INTAS0GO1 ZmRKYTYxHzg@NTVKN Q1L CIpYXQi0 E2MzQO0DZONDAS InV 4CCIGMTY ZNDQSMDIOMCI dH1WZ SIGLmF j¥2VZy39 . UQWDR H1DTqO4US FALDYB2TKNZ1D
2021-10-17T17:04:00.4522"

bGCi04ITUzTANi TsTARSCCTETKpXVICIS . ey] zdWI 101 T2HTZ JNTA30GQ1 ZmRkVTYxM zg@NTVKN Q1L CIpYXQi0;jE2M2QBODZONDAS TmVACCTGMTY zNz AANDAGMCuri dH1wZ STETn11ZnT1c2gi £Q. 2t xARhTENS_kpgPOzgcETVcvc
W2vkb1 5QBX!
expil 21-11-16T17:34:00.4542"

3}

Figure 57: Swagger test - register user response

As you can see, the registration already returned an access token. That’s the token that will be used
by the application in order to logs in the user.

Test 2: Login the new user

Now, let’s try to login again with the same user:

Code Details

2o Response body

marc. ferreiroggnail. con”,
CSO78d5Fdda6138455d64"

yIhbGCi04ITUZ IINITsInRS cCTGIKpXVCIS . ey]zdWI 104 I2NTZ NTA30GO1 ZnRkYTV:dizgONTVIN Q1L CIpYXQi0E2MZQB0DEINUS ImVACC IGMTY ZNDQSMDUZNSwi dH1wZ ST6 ImF Y2V zcy 19 . SIxHSEnaYL Ys 2 13wUTYDBMErgyr
21-10-17T17:09: 25.7982"

yINbGCi 01 ITUZ [INITSTNRS CCTGIKPXVCY - ey)ZdWT 101 I2MT7 NTA306Q1 ZnRicYTYxizg@NTVIN Qi1 CIpYXQi0FE2MZQB0DEINFUSTmVACCTGMTYZNZ ASNDM2NSwi dH1wZ ST6 TnJ1Zn)1c2gi Q. J4iQe2910edCROTIBXL 95XE-8
11-16T17:39:25.7982"

Figure 58: Swagger test - login response

Test 3: Logout the logged user

And finally, logout. This endpoint expects the refresh token that we received in the last login
response:

"refreshToken”: "eylhbGciOilIUzIINIIsInRScCIGIkpXVCI9. eylzdWIi0iI2ZMTZNTAS0GOLIZMRKYTYxMzg
8iAqYF97_qgFg3KzueA"
H

Figure 59: Swagger test - logout body

Code Details

- Response headers

The code 204 means no content, but it’s a successful response code, so it worked well.

USERS GROUP

This group needs the user to be logged in in order to has rights to use it. Remember that this
endpoints group contains all endpoints related with the user’s management, we will check the final

look and feel of the swagger and then do some tests with those endpoints:

Users User management and retrieval ~
GET /users/info Get current user info v @
Jusers Create a user v B

S8 Jusers Getall users v 8
GET /users/{id} Getauser v B
Jusers/{id} Update a user v @

‘ IS0 S /users/{id) Delete auser v @

We prepared a tests list in order to know what we want to test:

- Create a new user

- Get list of users

- Get specific user’s information

- Update specific user’s information

- Remove the created user

Test 1: Create new user

This is the data used to create the new user:

{
"name": "Tony",
"email"™: "tony@gmail.com",
"password™: “"Passwordl234®,
“role™: "user"

}

And this is the response of the backend:

Code Details

403
Error: Forbidden

Response body

: "Forbidden™,

: "Error: Forbiddenyn at C:\\Users\\mferr\\Documents\\UPCLW\TFGEL\P

POWTFGA\Project\\gtd-api\\node_modulesy\passport\\lib\\middleware\\authentica
\ilib\\strategy.js:115:41)\n at JutStrategy.jwtVerify [as _verify] (C:\\Use
\n at processTicksAndRejections (internal/process/task_gueues.js:97:5)"

¥

Figure 63: Swagger test - create user without authorization response

That’s why the logged in user is not an admin. Let’s register a new user, but now with admin role:

Code Details

AL Response body

"role": "user",
"isEmailVerified": false,
“Tony™,
tony@gmail .com™,
"616c54a7d5Fddab138455d8b"™

Figure 64: Swagger test - create user response

Now, the user is successfully created.

Test 2: Get list of users

This endpoint doesn’t need any property. In the APl response we can see that we have two users in

the database now. The logged in user and the new user.

Code Details

200 Response body
{
"results": [

"role”: "admin”,
"isEmailVerified": true,
"name”: "Marc”,
i "mferreiroaliberch@gmail . com™,
": "614e1298F42cFfd30aBF9%ad1"

"role": "“user",
"isEmailVerified”: false,
[—
"tonyégmail . com™,
": "616C54a7d5fdda6138455d8b"

~totalResults":

1
¥

Figure 65: Swagger test - get list users response

Test 3: Get specific user’s information

This endpoint expects the identificatory of the user. We take it from previous endpoint response:

jd * required
string
(path)

User id

616c54a7d5fdda6138455d8b

Figure 66: Swagger test - get user information parameter

And this is the response:

Code Details

Sl Response body

“role”: “user”,
"isEmailVerified": false,

Tony™ ,
"tony@gmail .com",
"id": "6l6c54a7d5fdda6138455d8b"

Figure 67: Swagger test - get user information response

Test 4: Update specific user’s information

This endpoint expects two different parameters. The user identification and the fields to be

updated. Let’s update the name of the user:

Parameters

Name Description
jd * require

Steine User id
(path)

616c54a7d5fddat138455d8b

Request body "=

{
"name": "Antonio”

¥

Figure 68: Swagger test - update user parameter and body

And check how successfully the APl changed its name:

Code Details

e Response body

I
L
“role": “user”,
"isEmailVerified": false,

"name": "Antonio”,
"emai "tony@gmail . com™ ,
"id": bc54ald5tddab138455d8b"

Figure 69: Swagger test - update user response

Test 5: Remove created user

This is the last test of the user’s endpoints. By specifying the user identification, we want to remove

it from the database. Let’s execute the DELETE method and then get all users in the database to

check it’s successfully removed:

Parameters

Name Description
id * required

e User id
(path)

616c54a7d5fddab138455d8b

Figure 70: Swagger test - remove user parameter

Check that the API responded with a 204 which means that is has been successfully removed:

Code

204

Figure 71: Swagger test - remove user response
Finally check the response of the get all users endpoint:
Code Details

200 Response body

'mferreiroaliberch@gmail. com™,
14e1298f42cfd38a8T99a41"

"totalResults™:
1
.

Figure 72: Swagger test - get all users response

LISTS GROUP
This group needs the user to be logged in in order to has rights to use it. Remember that this group
contains all endpoints related with lists operations. We will check the final look and feel of the

swagger and then do some tests with those endpoints:

Lists Lists management and retrieval N

(oL /1ist Add anew List v a8
SR /list Getalllists v a
GET /list/{id} Getalist v @
/list/{id} Updatealist v &

| =N /list/{id} Deletealist v i
GET [list/{id}/tasks Geta list tasks v @

Figure 73: API lists group swagger

Let’s prepare a list with the tests we want to execute on this group:

- Create a new list

- Getalllists

- Getlistbyid

- Editlist by id

- Get tasks assigned to this list

- Remove list by id

Test 1: Create new list

Let’s create a new list by specifying the name, color and icon:

{

"name”: "Supermarket”,

"color": “#ffffff",

"icon": "accessibility-outline"
h

Figure 74: Swagger test - create list body

And the API response:

Code Details

Response body

"removable”: true,
"immutable®: false,
: "Supermarket”,

"g#FFEEFET,
ccessibility-outline”,
"614e1298f42c fd3BaBFI%ad1" ,

Bc5caid5fddabl38455dat™

Figure 75: Swagger test - create list response
We can see that the API responded with the list object already created in the database. Notice that

it has more parameters that the three we sent to create the list. The list is also assigned to the

current logged used, as you can see in the userld property.

Test 2: Get all lists
Let’s get all the lists in the database. This endpoint will only retrieve the lists assigned to the

current logged user:

Code Details

200

Response body

"removable”: true,
: "Supermercado”,
FFR000™,
"basket-outline”,
": "614e1298F42cfd30aBFo9a45"

"removable”: true,
upermarket”,
FEEEFE",
ccessibility-outline”,
16c5cafd5fddab138455daf™

Figure 76: Swagger test - get all lists response

Notice that there are more lists from previous tests. The interesting thing here is the “removable”
property of each list. Check that the first two items in the screenshot have this property to false as
the lists are pre-defined by the platform. The other two lists are custom lists created by the user.

That’s why they have the removable property to true.

Test 3: Get list by id

We will take the id of the previously created list, and will try to get this specific list with this id:

Name Description

jd * required
string
(path)

List id

616c5ca7d5fdda6138455daf

Figure 77: Swagger test - get list by id parameters

The response of the API:

Code Details

e Response body

1
"removable™: true,
“name" : "Supermarket”,
“color™: “Effffffe,
"icon "accessibility-outline”,
*id": "616c5cafd5Fdda6l38455daf"

1
X

Figure 78: Swagger test - get list by id response

Test 4: Edit list by id

With the same id, we will change, for example, the color of the list:

Name Description
jd * required
ETEanE List id

(path)
616chcardafddab138455daf

Request body ="

"color": "#ffpooa"

Figure 79: Swagger test - edit list parameters and body

And the response of the APl is the same list, after updating it and saving it to the database:

Code Details

21t Response body

“removable™: true,

Supermarket”,
“#froeea”,
accessibility-outline”,
616c5cal d5Fddab138455daf"

Figure 80: Swagger test - edit list response

Test 5: Get tasks assigned to this list

This test needs some tasks to be added to this list in order to receive a valid response. For now,
let’s jump to the Tasks group testing, and, after completes al tests unless the delete operation, we

will jump back here to check this is working.

Well, now back here, let’s check if the task we just added to this list is being shown:

Name Description
j = required
e List id

(path)
616c5card5sfddat138455daf

Figure 81: Swagger test - get list tasks parameter

And the response:

Code Details

200 Response body

q
i
“results":

ample title®,
-

is a note",

138",

upermarket”,

#ffeeee”,

ccessibility-outline™,
"id": "616cSca7d5fdda6138455daf”

“id": "616¢5FcF26decdf2cdTab27e”

"totalPages™: 1,
“totalResults":

Figure 82: Swagger test - get list tasks response

Notice that the task is exactly the one we created in the task group testing.

Test 6: Remove list by id

Finally, let’s remove the list:

Name Description
id * required

S List id
(path)

616c5cardbfddat138455daf

Figure 83: Swagger test - remove list parameter

And the response should be a 204 code:

Figure 84: Swagger test - remove list response

TASKS GROUP

This group needs the user to be logged in in order to has rights to use it. Remember that this
endpoints group contains all endpoints related with tasks operations. We will check the final look

and feel of the swagger and then do some tests with those endpoints.

Tasks Tasks management and retrieval

POST /task Addanew task

B task Getalltasks

GE’ /task/{id} Gettaskbyid

/task/{id} Update atask

| ISR /task/{id} Delete atask

POST /task/{taskId}/list/{listId} Update atask list

Figure 85: API tasks group swagger

Let’s prepare the list of tests to execute:

- Create a new task

- Getall tasks

- Gettask byid

- Edit task by id

- Move task to another list

- Remove task by id

Test 1: Create a new task

The first test is to create a new task, but we will simulate the user interaction with the application,

so, for now, we will create the task as the “quick add” user story suggests. With only the title:

{
"title": "Example title"
H

Figure 86: Swagger test - create task body

And check the APl response:

Code Details

614e1298f42cfd30a8f0%ad1",
= "616c5FcF26dec962c4TablTe”

Figure 87: Swagger test - create task response

Notice that the new task has been assigned to the current logged user and its status property has

been set to “todo” automatically.

Test 2: Get all tasks

After create the task, we will get all user’s tasks in the database. Consider that there are some tasks
already created in the database. That's because previous tests. We will scroll down to the last

created one, so we can check if it matches with the created one:

Code Details

210 Response body
"id": "614e1298F42cfd30a8f9%a43"
18
“date™: "2021-18-16",
"id": "61689dcfd9719e5138628c%a"
b
{

"status": "todo",
"record”: “http://192.168.0.1684:3000/uploads/file-1634246181563.caf",
"listId": {

£ chive-outline”,
"id": "614e1298f42cfd308a8f99a43"

b
"id": "61689dd5d9719e5138628c%e"

Example title®,
™: "61bco5Fcf2b6dec9o2cdiab2ie”

"1,
"limit™: 10,
"totalPages™: 1,
“totalResults”:

Figure 88: Swagger test - get all tasks response

Here you can see multiple interesting things:

1. Notice that the last task in the response list is the one that we have just created. But
there’s a small difference. The property userld is not present here. That’s because what we
explained in the section where model’s definition was explained. Remember that property
called “select” that removes automatically a property from the object when finding it in
the database.

2. The penultimate task in the response was created using the voice record feature. As you
can see, it has a “record” property with a URL.

3. Check how the pagination feature included in the boilerplate works. The last parameters in
the response tells you which page you are requesting, the limit is the size of the page (it
means 10 items per page), the total pages tells you how many pages you have taking into
account the size of each page and the total elements in the database and, finally, the

totalResults, which tells you the total amount of tasks that exists in the database.

Test 3: Get task by id

Now, let’s get the id of the task we just created and try getting its details:

Name Description

id * required
TEE Task id

(path)
616c5fcf26dec9b62c47ab27e

Figure 89: Swagger test - get task by id parameter

And the response:

Code Details

2ig Response body

I

L8
"status™: "todo",
"title" xample title™,
“userId"

"mferreiroaliberch@gmail .com”,
4el1298f42cfd38aBfI9adl”™

: "6lecSTcf2edecd62c47ab2ie”

Figure 90: Swagger test - get task by id response
This response also introduces an interesting thing, the population. This is a specific feature coming
from no-SQL databases and, also, from mongo DB, which is the database we are using. The
population is used in properties that are a reference to other models. In this case the userld is a

reference to the model User, so, populating this property will go to the Users collection, will get the

referenced user and will put the result as the value of the property userld.

Test 4: Edit task by id

Let’s now add the properties that we didn’t added at the creation of the task:

Name Description
|d * required

string Task id
(path)

616cHfcf26dec962c47ab27e

Request body 9=

{
"notas": "This is a note",
"date": "2821-28-18",
"time": "16:38"

Figure 91: Swagger test - edit task by id parameter and body

And the response:

Code Details

e Response body

"status": "todo",
"title": "Example title",
"userId”
"role™: "admin”,
"isEmailVerified": true,
name™: "Marc”,
"email "mferreiroaliberch@gmail . com”,

"id": "614e1298f42cfd3paBfIvadl”
1

I»
"notas”: "This is a note”,

“time 138",

"id": "616c5Ffcf26decd62cdTablTe™
1
|

Figure 92: Swagger test - edit task by id response

Test 5: Move task to another list

Now, if you are here because of the list test that makes you jump here we will take this list id. If you

arrived here directly before read the lists group tests, we will take the id of the list we created

there:
Name Description
taskld * required
T Task id
(path)

616c5fcf26dec962c47ab27e

I|St|d * required
string
(path)

New list id

616c5cardbfddat138455daf

Figure 93: Swagger test - move task to list parameters

And now the API response:

Code Details

g Response body

"Example title”,
{
"role": "admin",
"isEmailVerified”: true,

"mferreiroaliberch@gmail .com”,
14e1298+42cfd38aBF99a41"™

: "2821-28-18",
"This is a note™,
8:30",

accessibility-outline”,
": "6lecScafd>fddabl3ig455dat™

1
I E]
"id": "616c5fcf26dec962c47ab27e™

1
¥

Figure 94: Swagger test - move task to list response

Notice that now, not just the userld is populated so the listld is also populated, so, we can see that

the list has been perfectly assigned.

As told before, if you arrived here from the lists test, you can jump there to test the delete

procedure.

Test 6: Remove task by id

Finally, let’s remove the task by specifying the id:

Name Description

jd * requires
string
(path)

Task id

616c5fcf26dec962c47ab27e

And the response should be a 204 code:

Code

204

TIPS GROUP

This group doesn’t need the user to be logged in to use it. This group contains all endpoints related
with tips operations. We will check the final look and feel of the swagger and then do some tests

with those endpoints.

T|ps Tips management and retrieval ~
Jtip Add anew tip ~
/tip Getalltips ~

‘ stip/{id} Deleteatip v

This is the list of tests:

- Create a new tip
- Getall tips
- Remove tip by id

Test 1: Create new tip

First test, create a tip. We will specify the tip’s content, as it’s the only parameter it requires:

"content”: "This is an exmaple tip

Figure 98: Swagger test - new tip body

And the response will return the new created tip:

Code Details

201

Undocumented

Response body

I
1

"content™: "This is an exmaple tip",
"id": "616c657626decd62cdTablal™

1
¥

Figure 99: Swagger test - new tip response

Notice that this endpoint returns the 201 code, that means “Created”.

Test 2: Get all tips

Now, we will get all tips. I'm going to anticipate you that we just have one in the database:

Code Details

— Response body

"comtent "This is an exmaple tip",

"id": "616c657626decd62c47ab2al"

Figure 100: Swagger test - get all tips response

Test 3: Remove tip by id

Finally, let’s remove the created tip by its id:

Name Description
i(’ * required

string Tlp id
(path)

616c657626dec962c47ab2a2

Figure 101: Swagger test - remove tip by id parameter

And the response:

Code Details

200 Response body

I
L
"content™: "This is an exmaple tip”,

"id": "616c657626dec962c47ab2a2™
1
¥

Figure 102: Swagger test - remove by id response

Notice that this endpoint is returning the removed item instead of a 204-http code.

FILES GROUP

This group needs the user to be logged in in order to has rights to use it. This group contains only
one endpoint in charge of upload a file and returns its URL. We will check the final look and feel of

the swagger and then do some tests with those endpoints.

Files Files upload ~

/¥ile Upload new file v @&

Let’s check the list of tests:

- Upload an image

- Check the URL received allows us to see the image

Test 1: Upload an image

To test this endpoint, we will update one of the flow charts we saw in this document, as is easy to

show you here that the upload is working well:

Request body 94"

file

TR | Seleccionar archive | mermai...0924.png

Send empty value

And the response is:

Code Details

<l Response body

I
L
"url™: "htitp://localhost:3008/uploads/file-1634494144147 . png™

We are receiving localhost as the URL because we’re working in our localhost now. This will change

once we publish the API to the cloud.

Test 2: Check the returned URL

Let’s check if the previous received URL is the really the image URL:

@ file-1634494144147 png (430=4 X +

<« C @ localnost:3000/uploads/file-1634494144147png ¥r Gy @ T O =l g e P

35 Aplicaciones Chia Network FIE Fixed UST Fixed Axa Fixed Cheat-sheets » Otros favoritas | [E] Lista de lectura

Getting Things Done API

l

Seed database l

Ireseed /content

Reseed database Show database content

v v

Here you can see the browser with the URL open and the image loaded by the browser itself.

SEED GROUP

The last group of endpoints. This one also needs the user to be logged in in order to has rights to
use it. This group contains all endpoints in charge of manage the database content, that means,

drop the database and fill it with all initial pre-defined data.

Seed seed operations A
/seed Seed database N a
/seed/reseed Reseed database collections 7 ﬂ

/seed/content Get content of all database collections v @

As this will remove the database completely, we are testing this group at the end of the testing.

The endpoint POST /seed won’t be tested as it’s dependent of another endpoint that we missed in
the planification process. That endpoint would be in charge of dropping all collections in the

database, but we have the “reseed” endpoint which does both actions.
Let’s check the list of tests:

- Get current content in the database

- Reseed the database

Test 1: Get current content in database
Let’s finish with the tests of the seed group. We'll start with the read of the contents in the
database:

Code Details

200

Response body

As you can see here, we have 5 collections in the database. Tips, users, task lists and tokens.

- We have 0 tips because we removed the one we created in the tests.

- We have one user because the same as tips collection.

- We have 8 tasks and 4 lists because of other tests

- We have 165 tokens, which means that we are not logging out the user never. Because the
simplification we’re doing, we are accumulating all tokens created in each login process.

These tokens will be removed when them starts expiring.

Test 2: Reseed the database

The reseed procedure does two actions:

1- Clean all collections in the database.

2- Creates all initial data in each collection.

As all collections will be dropped, we will need to log in again, so we will create the first token. The

initial created data would be:

- Users collection: 2 documents
- Lists collection: 4 documents

- Tasks collection: 5 documents
Let’s see what we receive in the “Get current database content” after the reseed process:

Code Details

200

Response body

MOBILE & WEB APPLICATION IMPLEMENTATION

Now, we have everything to start working on this part of the project. The first thing we have to do

is initialize the project.

Project initialization

So, we will start the project over expo, to allow a fast development. If we check out what is expo

from its website (https://docs.expo.dev), we get this:

Expo is a framework and a platform for universal React applications. It is a set of
tools and services built around React Native and native platforms that help you
develop, build, deploy, and quickly iterate on iOS, Android, and web apps from
the same JavaScript/TypeScript codebase.

Expo helps you from the project initialization until the build of the app natively in each platform
(Android, iOS and Web). So, let’s start with the initialization of the project and the main
dependencies.
There are 3 steps to complete in order to get the application running into your phone.

1. Install expo and its dependencies

2. Initialize the expo project

3. Runit from terminal

INSTALLING EXPO AND ITS DEPENDENCIES

With this line we are installing in our computer, in the global scope, the expo-cli tools that will let

us work with our expo application.

We also need to install the Expo Go mobile app, in both of our devices (as we are working with an

iOS device and an Android device).

https://docs.expo.dev/
https://expo.dev/

App Store Preview
This aop is avallab only on the App Store for IPhone and IPad

Expo Go (=

Nametag

Expo
Expo Project Productivity KA kA L6196 &
o € Everyone

Let’s explain these both lines:

- expo init my-app: With this line, we are creating a boilerplate application, well, expo-cli
does it for us. The procedure is the following:
o Choose a template
o Download the template files
o Install all dependencies using Yarn
- cd my-app: After the initialization, we will move into the new created folder by using this

command.

RUN IT FROM TERMINAL

The previous initialization gives us an interesting list of commands we should use in order to run

the project. Let’s check it out:

$ expo init testingProject
(hoose a template: blank a minimal app as clean as an empty canvas
Downloaded and extracted project files.

©Using Yarn to install packages. Pass --npm to use npm instead.
Installed JavaScript dependencies.

¥ Your project is ready!

To run your project, mavigate to the directory and run one of the following yarn commands.

- _od_testineProdect

- yarn start # you can open i05, Android, or web from here, or run them directly with the commands below.
- yarn android

- yarn ios # requires an i05 device or macO5 for access to an i05 simulator

- yarn web

- yarn start: Is the main command we will use to run the project. This start command runs a
visual interface on out browser so we will be able to manage the running instance of the
project.

- yarn android: This command runs the project directly in a detected Android device
connected to the computer.

- yarniOS: Does exactly the same as previous command, but running into an iOS device.

- yarn web: Does exactly the same as previous command, but running into the browser.

We will use yarn start in order to be able to handle all running instances. Once it finishes, we will

get a message into the terminal, which we will split to explain it piece by piece:

$ yarn start
yarn run v1.22.18
£ expo start

First of all, we know that, what the yarn start command does is execute the expo start command,

so, it’s a shortcut simply.

Developer tools running on hitp://localhost:19882
Opening developer tools in the browser...
Starting Metro Bundler

Then, expo notifies us about the current expo-cli library version we’re using and tell us how to
update it, in case it’s outdated. After that, will tell us where is the project being run (host & port)

and will log the execution of some procedures.

O

Let me split the last piece in two pieces, as this QR is super big in the terminal window. Spoiler
about this QR, it’s the one we have to scan to run the application in our devices. It’s basically an
App Link. A URL that tells the operating system that should be opened in a specific app. So,

scanning this QR will definitively open the previous installed Expo Go application.

» Waiting on exp://192.168.0.184:19008
» Scan the QR code above with Expo Go (Android) or the Camera app (i05)

*» Press a | open Android
> Press w | open web

> Press r | reload app

» Press m | toggle menu in Expo Go

> Press d | show developer tools

» shift+d | topgle auto opening developer tools on startup (enabled)

+ Press ? | show all commands

Logs for your project will appear below. Press Ctrl+C to exit.

Finally, some information about what kind of actions we can do over the running platform through

the terminal.

Let’s check out the expo developer tools that has been launched on the browser:

Metro Bundler

@ FRoceEss (1) - 1:23:46 M

Starting Metro Bundler

Run on Andreid device/emulator
Run on i0S simulator
Run in web browser
send link with email

Publish o republish project.

& exp://152 166 @ 184:15282

m|&r[m

| have drawn four different squares (each one has its own number), to make it easy to refer to a

specific section when explaining its purpose.

1. The first square shows us the instances running the application. An instance, for example,
would be the iOS device, the Android device or a tab in the browser running the
application.

2. The second square shows different actions related with run the project in a device.

3. The third square is more related with connection as lets us to change the type of
connection and shows the QR for the choose connection.

4. The fourth and last square is basically the log of the selected instance in the first square.
We will be able to see there all the console logs, errors and warnings that react or react

native will “print”.

CONNECT TO THE APPLICATION
This is how it looks like when we scan the QR in a mobile device:

< Cdmara ol T 13:59 v Walvm

Open up App.js to start working on your app!

In order to run it into the browser, we have to click the button Run in web browser we have in the
expo developer tools. And this is how it looks:
@ testingProject x o+ o

C @ localhost:19006 % @y 0 QT ol e s e ®

1 Aplicaciones Chia Network FIE Fixed UST Fixed Aoa Fixed Cheat-sheets » Ctros favoritos Lista de lectura

Open up Appijs te start working on your app!

Cares about merging Mobile and Web projects

We have managed to merge both projects. Thanks to react-native-web library, we will save a lot of
time on the development, as we will be able to use the same scaffolding, same libraries, exactly
same components in both mobile and web projects. There are some facts that has to be

considered.

MERGE ISSUES

Everything will go well, if we use the components that react native offers. Third party libraries may
not work with both platforms, and we need to use third party libraries, as we don’t have enough
time to develop everything from scratch (as | would recommend in a real production environment).
Luckily, react native provides some utils to fight against those possible issues, for example,

Platform, that allows us to identify where is the application being ran (iOS, android, web, etc.).

Navigation

Navigation is also an issue that needs to be handled. In web environments we have URL’s, that tells
the website which screen should be rendered. But not in mobile.
NavigationContainer component from React Navigation library will allow us to map web routes

with mobile screens. Reading their documentation, we’ve check out how to implement it:

The whole application must be covered with the NavigationContainer component. Then, we will
define a linking, which will tell NavigationContainer how this mapping should be managed. Let do a

quick check of this linking:

prefixes: [Linking.makeUrl("/"}].

screens: {
Root: {
screens: {
Today:

This is only a portion of the file. Check the pathing we have in the configuration: Root -> screens ->

Today -> screens -> TodayScreen -> “/today”.

The pathing from Root to TodayScreen is basically how the navigation has been implemented in the
code. But, the important thing starts in “Today”, which is the main navigation of the Today Screen,
the one we’re assigning to “/today” path in the URL. So, what this piece of code tells is: When you

(react native) navigates towards TodayScreen, the browser will navigate towards /today URL.

Styling
Styling is a little bit different in in mobile than in web. But we’re limited to the styling that react

native offers. Anyway, sizes, viewports... a lot of things are different between a mobile and a

desktop computer.

Sizes

Sizes are unitless in react native, while in web we have a lot of units. If we check the website of

w3schools, we can understand that there are two main groups of units:

- Absolute units: It doesn’t matter in which screen we will show the content, it will always
measure exactly the same if we use absolute units. It's commonly used when we know the
output of the content, like a print. The most common absolute units are: centimeters (cm),
millimeters (mm), inches (in), pixels (px), points (pt) and picas (pc).

- Relative units: They're relative to the screen sizing. Relative units always scale better than
absolute ones. The most common relative units are: em, ex, ch, rem, vw, vh, vmin, vmax,
%.

We sometimes have to apply different styles to mobile and web platforms. Here we have an

example about this, by using the Platform utility from react native:

default: {

Hils
fontWeight: "bold",

Styled components

In the scope of styling, we are using a library called styled-components. This library offers us a lot
of things related with “how to apply styles to a component”. Normally, this is the way we apply

styles to a component:

color: "

fontWeight:

This means that, if you want to create a component with a specific styling, you need to create a

new component, managing all the props, apply the styles you want and export it to let other use it.

With styled-components, this would be the way to create a new component with specific styling:

import styled from

Checking styled-components documentation website, basically this library is the result of
wondering how we could enhance CSS for styling React component systems. It optimizes the
experience for developers as well as the output for end users. Apart from that, styled-components

provides a lot of incredible features. Let’s check the most important ones:

- Automatic critical CSS: It loads only the needed stylings, where and when it should be
loaded. This means better load times.

- No class name bugs: The library generates automatically unique names that will be placed
instead of the typical class names known in CSS.

- Easier deletion of CSS: It makes easy to identify where a style is being applied and makes it
easy to remote it.

- Use props: Take advantage of props while creating styled components.

[(props: I

color:

Third party libraries

T

One of the main rules of a developer is: “Reuse as much code as possible”, “If it’s already done,

why do it again?”. In this way we introduce this last section of the merging issues.

Third libraries are practically essential in any development. That’s what allows us to make huge
developments in a very short time. But, sometimes they could give you some headaches. Let’s

compare benefits versus disadvantages:
Benefits:

- Optimize a lot the time spent to develop new stuff, as you are using what others has
already implemented.

- Forget about bug fixing those features. Third party library author takes care about that.

- Improve the quality of your implementation, as usually those third-party libraries have

been developed during years.
Disadvantages:

- Their bugs will affect you

- Practically impossible to implement evolutive over the third-party library.

- You will have less flexibility. You have to adapt your development to the third-party library.
- You may be forced to not update your app, as it may stop working because the third-party

library is not compatible with next versions.

Apart of these possible issues, we have to keep in mind that we’re using a limited library to be able
to run the application in web browsers, react-native-web. But there’s a way to be able to use those

third-party libraries while using react-native-web. Using webpack.

Webpack is, from their website: “A static module bundler for modern JavaScript applications”.
What webpack does is to create less bigger files, packing all code from your project inside. It allows
quick load times, secure code inspection, etc....

Using webpack, we found a way to use some of those third-party libraries event they’re not directly
compatible with react native, by telling webpack to “dangerously” add specific modules to the

path. This, usually will let us take advantage of these libraries.

Development process

With all the documentation we have prepared on past sections, we will start with the development
of the application. We don’t have exhaustive designs of the application, as we will be taking
decisions during the development. But with the sequence diagrams and the first designs, it will be

easy.

SCREENS IMPLEMENTATION

We will organize the development based on screens. Once we have a basic version of each screen,

we will start by implementing all the user stories.

Login Screen
This is maybe the simplest screen in the application as it’s basically a way to specify which user is
using the app, in order to see its database information. It’s basically composed with two text inputs

and a button to login.

Get’\ru::TﬂquDome

Figure 128: Login screen

Today Screen

The final thoughts about this screen are:

- Be able to see the calendar tasks for today.
- Be able to see the tasks planned for today.

- Show some tips to the user in order to help him complete all the planned tasks.

Calendar integration

We have used the calendar library from expo, called expo-calendar. There is a small problem with

this library, that it’s not compatible with web, as we can see in their documentation:

Calendar

Provides an API for interacting with the device's system calendars, events, reminders, and associated records.

Platform Compatibility

Android Device Android Emulator i0S Device i0S Simulator Web

© o o (] (<]

Figure 129: Expo's calendar library compatibility

So, this feature will only be available in mobile in the first app version. This is how it looks once

implemented:

«1l vodafone ES & 7 28MN%H)

Today

THURSDAY, 14 OCT

Let's work!

Lunch

Figure 130: Today Screen - Calendar integration

The goal of this screen is that it should be the only screen to check out during the day. So, we want
all the important staff here. First, calendar events. Remember that a calendar event means a time
period that doesn’t owns you. Is not free time, its reserved to a specific event. Meet something, a

doctor appointment, etc.

Today’s tasks

The second most important thing are the tasks planned for today. The Actionable list is the one

that will contain all the tasks planned for today. Let’s check the final design:

il vodafone ES &

Today

THURSDAY, 14 OCT

Let's work!

Lunch

TODAY'S TASKS

Llamar a Antonio Machado

Anotar las referencias del TFG

Figure 131: Today Screen - Calendar with tasks

Tips
We want to help the user a little bit to organize as good as possible. That’s why we will show

different tips to him, recommending some things that bring him closer to the goal.

We have implemented the view where all the tips will be shown. Following the design, we’re using

in the rest of the screen, let’s see how it would look like:

il vodafone ES =

Today

FRIDAY, 15 OCT

Let's work!

Lunch

i= TODAY'S TASKS

Llamar a Antonio Machado

Anotar las referencias del TFG

co + = 3

Figure 132: Today Screen - Final design

Review Screen

In the review screen we will be able to see all the tasks pending to be reviewed. All those tasks will

come from the Inbox list and they should be touchable, in order to be able to view/edit each task.

Let’s see the implementation for now:

A

Crear lista de la compra
)

Tarea de prueba
)

Bajar al perro
)

> 00:03
[]

Figure 133: Review Screen - Tasks list

As the user should be able to review the tasks in this screen, we will add a button to start the

review process. The review process itself will be implemented later.

Let’s see it:

w11/ vodafone ES & 7 &= 80100 % H)

Review

DG Review 4 tasks

Crear lista de la compra
°

Tarea de prueba
®

Bajar al perro
°

[>00:03
[)

Figure 134: Review Screen final design

Lists Screen

This screen will show all the created lists associated to the current user. We will have the list of lists

and a button to create new lists. The new list creation will be implemented later.

Let’s check the design of this screen:

all vodafone ES & < B WG 00 %

Lists

Inbox
Actionable

Tickler

Supermercado

New list

Figure 135: Lists Screen final design

Settings Screen
The goal of this screen is to keep some user configurations, the logout action, etc. The styling of
this screen will be a little bit different, as the goal is different. We will use a white background, with

black text with some icons near each item in the list. Let’s see the final design of this screen:

wil vodafone ES & 20:50 72851%%

Settings
@ Dark theme

Show completed tasks

e

[:—> Logout

El
8
L
ii
<

We will work later in the items in this screen. For now, the Log out action is the only one that will

be working. The other two actions are there as a demo.

USER STORIES IMPLEMENTATION

With all sequence diagrams we designed before starting with the app development, we are able to

start building each user story. Let’'s remember the main user stories we will be implementing:

- Add new task quickly by title or by voice record.
- Manage lists (create, remove).
- Edit already created tasks.

- Review new tasks in the inbox.

As you can see, the review new task in the inbox user story will be the last one, as it’s the most

important and complex one.

User Story 1: Add new task quickly

This user story needs to cover the following needs:

- The user should be able to accomplish this user story as quick as possible.
- The user should be able to create the task with only specifying the title.

- The user should be able to create the task by recording his voice.

Since the first’s designs, we put a big “add” button in the bottom tab bar thinking in this user story.
We will use two props of this button in order to accomplish the two main tasks that covers this user
story:

Short press on the button: This user action will start the creation task with title.
Long press on the button: As other apps introduced to their users, long press means

record. So, with a long press, the user will start recording. The recording process will stop
on the press release action.

Let’s check both actions, starting with the short press. We will see two images. The first one is

when the user press the “big add” button. The second one is, after that, when he types something
in the text input.

Today

£ FRIDAY, 15 0CT

Let's work! 08:00

Lunch 15:00

No El La
QWERTY U I OFP
Als|D|F|GJH]J|K]|L|IN
44 Z X CVBNM &

122 ©@ ¢ espacio intro

Figure 137: Add quick task by text - Unfilled

FRIDAY, 15 OCT

Let's work!

Lunch

New task title|

Cancel

o Vv = B
«title» titled titles.
g wer tyuiop
als|dlflalh]ilk]!']A

Bz | x|c|v|b|n|m K

123 @ ¢ espacio intro.

Figure 138: Add quick task by text — Filled

Now let’s check the long press action, or the voice audio record:

Today

FRIDAY, 15 0CT

Let's work!

Lunch

i= TODAY'S TASKS

Llamar a Antonio Machado

Anotar las referencias del TFG

\7
00:07

B o = 3

Figure 139: Add quick task by voice record

The result of this creation is the following, with the task with title above, and the one with voice

record below:

Bajar al perro
)

[>00:03
P

Figure 140: Add quick task results

Those tasks are assigned directly to the Inbox list, as they’re pending to be reviewed by the end of
the day.

User story 2: Manage lists

We want to let the user manage their lists, by allowing him to create new lists and removing

already created ones. We will cover this “management actions” by now.

In order to pre-design those actions, we will split the user story in two actions and cover them

separately:

- Action 1: Create a new task.
- Action 2: Remove existing lists. We will consider that user won’t be able to remove system

created lists, as Inbox, Actionable, Tickler, etc.

Starting with the action 1, we are thinking in a kind of modal, to avoid sending the user to another
screen, and then moving him back again.
Some months ago, Apple released a new Ul element, called Bottom Sheet, which could work really

well here.

After some effort, we reach the final design:

il vodafone ES & 7 2 889%H)

Lists

Cancel New list Ok

Filled Outlined Sharp Logos i0s

co =

Figure 141: Manage lists - create new list

As you can see, there are three main sections here:

- The list title definition
- The list color definition

- The list icon definition

All colors and icons are predefined: Icons comes from a library called lonicons. They also have React
Native components to use their icons, so it’s a perfect approach for us. As you can see, we used all

icons families they have (filled, outlined, sharp, logos and iOS families).
After the user fills everything, “Ok” button is enabled and could be pressed to create the list.

Then, with action 2, we thought about the swappable interaction which is usually used by all apps
in the market. It consists on swipe the element you want to act on, to the left or to the right

discovering the actions available for the specific element.

There’s a third-party library, recommended by React Native, called React Native Gesture Handler.
The motivation to use this library instead the Gesture Responder System included in React Native is
because this last one has some performance limitations and is a little bit more complicated to

implement it.

Using the Swappable component from this library we get the following solution:

&7 Supermercado

& Supermercado

Supermercado

Figure 142: Manage lists - swipe to delete

In this case, we disabled this behavior for the lists that are no removable as they’re system

dependent, for example, Inbox, Actionable and Tickler. To give this feedback to the user, we added

a lock in the list render:

‘ Inbox

/) Actionable

& Tickler

%7 Supermercado

Figure 143: Lists with swappable disabled

User story 3: Edit already created tasks
Edit tasks is an important user story, as we will need it for the last user story (the review one).
We're planning to use the same component as in the second user story, the Bottom Sheet. As we

enjoyed the user experience we got in this user story.

We have implemented a first version of this, simplifying the editable fields of a task. For now, the

editable fields are: Title, Notes, List, Date and Time:

il vodafone ES & Y 728051 %@)

Toda

Cancel Task details Ok

Anotar las referencias del TFG

9 Actionable

16 Oct 2021

| @
02:32 [@)

Figure 144: Edit already created task

User story 4: Review new tasks in the inbox

NOTE: We won’t be able to show screenshots of this part, as its not already implemented. We will

explain how we will implement it, and we will show a working demo the presentation day.

This is the most important task in the application, as it’s the last step in the first phase of the user
interaction with the application. This user story will start when the user presses the “Review tasks”

button and the application will guide the user in the following way:

- The application will start asking questions to the user.

- As the user keeps answering the questions, depending on his answers, the application will
keep asking more questions or will suggests some actions to the user.

- The user will choose between all actions, and will be requested by the application to

complete the missing task information.

Let’s remember the questions that the application will ask the user and which actions will it

suggests:

No— Trash, Someday, References

New Thing Actionable?

No— Project

Single step?

No——— Doit!

NUF—DI Waiting for... l
No—p Nextaction
Due date?
"“Yes-+p Calendar

Let’s go through each question, understanding the actions that the application will suggests to the

Yes--

Figure 145: Review task questions to answer

user:

Question 1: Is actionable?

This question allows the application to understand if the task is actionable. Actionable means that
the task could be executable by the user. For example: “Concert of C. Tangana in one month”
couldn’t be executed by the user. In one month, the user should decide what to do, but not now.
By the other hand, the task “Ask my friend Dani about his holidays” is an actionable task that could

be executed now.
If the user answers YES: The application will go to the next question.
If the user answers NO: Then the application will suggest the following actions to the user:

- Send it to trash.
- Move to someday list.

- Move to references.

Question 2: Is a single step?

This question is needed to identify if the task corresponds to a project. We determine that a task is
a project when multiple tasks needs to be done in order to complete the initial task.

If the user answers YES: The application will go to the next question.

If the user answers NO: Then the application will suggest to convert the task into a project, that’s

basically a task with subtasks.

Question 3: Takes more than 2 minutes to be executed?

This question is used to filter too small tasks. When the user arrives here we know that the task is

actionable and that’s not a project. So, it's something we can do now and only requires one step.
If the user answers YES: The application will go to the next question.

If the user answers NO: Then application will suggest the user to do it now. According to GTD all

tasks that takes less than 2 minutes to be done, should be done in the review moment.

Question 4: Is it for me?

With this question, we will delegate the tasks that cannot be done by the user. We will have a
specific list for these tasks called “Waiting for...”. Here, we will put all tasks that depends on a
different person. In a future, we could improve the application by adding some “event listeners”,

so, for example, a task could wait until the user receives an email from a specific person.
If user answers YES: The application will go to the next question.

If user answers NO: Then the application will ask the user for the “who” in order to complete the

sentence “Waiting for ...” and will move the task to this list.

Final question: Does the task have a due date?
This is the final question. It's important to know if the task has a due date, because if it does, the
user will need to block free time to complete the task at time. GTD throw away all tasks that blocks

free time, and delegates this management to the calendar. So, the conclusion is:

If the user answers YES: The application will suggest the user to set the “When” of the task and add

it to the calendar.

If the user answers NO: Then the application will move the task to the “Next Action” list, which is
where all executable tasks are placed, waiting to be moved to the Actionable list, where the user

will be taking tasks to complete.

CONCLUSIONS

The main goal of this thesis was to study what is the best solution to share as much code as

possible between React Native and React projects.

The best technical approach nowadays to this code sharing was to use react-native-web. We said
“nowadays” because those technologies change a lot in short time lapses, so, what today is a good

decision, maybe next month won’t be.

What react-native-web library does is to, internally, transform the components exported by React
Native to HTML native elements, for example: React Native View component would be
transformed to <div> element in HTML. By doing this, this library makes all React Native

components compatible with web environments.

But, this approach adds some complexity to the project development. For example, when working
with React Native project, you sometimes need to take care about android and iOS separately, that
means that you sometimes should wrote platform independent code. Now, we also must take care
of web dependent code. So, in conclusion we will sometimes implement a piece of code for
android, another piece of code for iOS and another piece of code for web. It’s not a really bad thing

if you use the correct architecture but it definitively adds complexity to the project.

Even so, the time you gain by using it is greater that the time you would spend if you don’t use it.

So, the complexity is worth it.

BIBLIOGRAPHY

Allen, D. (2004). Ready for Anything: 52 Productivity Principles for Getting Things Done. Penguin

Books.
Allen, D. (2015). Getting Things Done: The Art of Stress-Free Productivity. Penguin Books.

Europa Press. (2020, December 14). Heraldo. Retrieved from Heraldo:
https://www.heraldo.es/noticias/nacional/2020/12/14/el-estres-en-la-adolescencia-
empeora-el-aprendizaje-y-la-memoria-y-aumenta-la-ansiedad-en-la-vida-adulta-segun-

estudio-1410131.html?autoref=true

Mermaid JS. (2021, October 1). Mermaid JS. Retrieved from Mermaid JS: https://mermaid-
js.github.io/mermaid/#/

Microsoft. (2021). Azure. Retrieved from Azure: https://azure.microsoft.com

Payscale. (2021, September 1). Payscale. Retrieved from Payscale:
https://www.payscale.com/research/ES/Job=Sr._Software_Engineer_%2F Developer_%2F

_Programmer/Salary

Shilov, A. (2021, February 01). Apple: Mac Mini M1 Consumes 3X Less Power Than Intel. Retrieved
from Apple: Mac Mini M1 Consumes 3X Less Power Than Intel:

https://www.tomshardware.com/news/mac-mini-power-apple-m1-soc

Styled Components. (2021). Styled Components. Retrieved from Styled Components: https://styled-

components.com/docs

Teangaantt.com. (2021). Online Gantt Chart Software & Project Planning Tool. Retrieved from

TeamGantt: https://www.teamgantt.com
w3schools. (2021). w3schools. Retrieved from w3schools: https://www.w3schools.com/

Wikipedia. (2021, February 2). Retrieved from Wikipedia:
https://es.wikipedia.org/wiki/Getting_Things_Done

APPENDIX

APPENDIX A: Gantt chart — Part 1

Getting Things Done

Project Management

Scope & Contextualization
Write Scope section
Write Contextualization section
Review document

Deliver Scope & Contextualization ...

Temporal Plannification

Write Plannification Summary secti...

Create project known tasks

Create grantt chart from created t...

Review document

Deliver Temporal Planification doc.
Economic Management & Sustal

Write Budget (cost identification) s...

Write Budget (cost estimate) sect

Write Budget (management control...

Write Sustainability Report section

Review Document

Deliver Economic Management & ...
Final Delivery

Join all previous documents into th...

Final review of the document
Deliver Final Document

Mobile App Implementation

Dessign App Workflow
Dessign all basic components

Dessign the introduction of the use...
Dessign the best way to add tasks ...
Dessign the process of review task...
Dessign the way to interact with ot...

Dessign the login process
Create the first mock up
Project Scaffolding

Create main project files using crea...

Make it fully work on ios

Make it fully work on android

Set up testing environment
Dessign Implementation

Implement inbox's new task proce...

Implement review Inbox's tasks

Implement user's tour

Implement interaction with differen...

Implement login screen
Enable Continuous Integration
Create azure devops pipeline

Web App Implementation

11 15

22

3/21
15 22 29

5/21
10 17

24

M

] Project
Scope & C i
Write Scope section
ontextualization section
view document
Deliver Scope & Contextualization document

Create project known tasks

Review document
Deliver Temporal Plani
—

p
Write Plannification Summary section

Create grantt chart from created tasks

iflcation document
&

{TH Write Sustainabilit;

Final D

Write Budget (cost identification) section
Write Budget (cost estimate) section
[l Write Budget (mandgement control) section

Review Document|
[Deliver Economic Management & Sustainability docunt

Join all previous documents into the final one
h&Final revie
| Deliver

y [Report section

elivery

of the document
Final Document

nent

obile App

F
s Dessign App Workflow
D

ssign all basic components
Dessign the introduction of the user i
Dessign the best way to add tasks int
Dessign the process of review tasks
Dessign the way to interact with o
Dessign the login process
Create the first mock up

Create main project files usil

to the GTD
the Inbox list
from the inbox
hers lists

g create-react-native-appy
Make it fully work on i
Make it fully work on ar}
Set up testing eny|

Implement revi

ronment [

Implement inbox's new fask procedur,
w Inbox's ta

s Project Scaffolding

Dessign

n)

Create azure de

Implement interactiop with differe
\plement logi

ops pipeline

user's|

¥ |[Enable Continuous Integration

i ——1

Web App

APPENDIX B: Gantt chart — Part 2

11 15 22 8 15 22 29 12 9 26 3 10 7 24 3 7 14 21 28
Dessign Web Workflow 0% s Dessign Web Workflow
Dessign the introduction of the use... 0% Dessign the introduction of the user into the GTD
Dessign the best way to add tasks ... 0% Dessign the best way to add tasks into the Inbox list
Dessign the process of review task... 0% Dessign the process of review tasks from the inbox|
Dessign the way to interact with ot... 0% Dessign the way to interact with others lists
Dessign the login process 0% Dessign the login pro¢ess
Create the first mock up 0% Create the first mock up
Project Scaffolding 0% = Pproject Scaffolding
Create main project files using crea... 0% Crepte main project files using create-react-app
Set up testing environment 0% Set up testing environment
Enable Continuous Integration 0% Enabl¢ Continuous Integration
Create azure devops pipeline 0% Create azure devops pipeline
Create azure free web service 0% Create azure free web serpi
Implement the automatic deploy 0% Implement the automatic deploy
Create ARM template 0% Create ARM tgmplate
Dessign Implementation 0% ion
Implement inbox's new task proce... 0% Implement inbox's new task grocedure
Implement review Inbox's tasks 0% Implement review Inpox's tasks
Implement user's tour 0% Implement user's tour
Implement interaction with differen... 0% Implement interagtion with different lists
Implement login screen 0% Implenent login screen @
Story Book Implementation 0% I |Story Book Implementation
Mobile 0% Emm Mobile
Create storybook app 0% ~|Create storybgok app
Syncronize with web app storybook 0% Syncronize with web|app storybook
Web 0% Web
Create storybook web app 0% Create storybook|web app
Syncronize with mobile app storyb... 0% Syncronize with mobile app storybook
Storybook 0% e |Storybook
Investigate how to share compone... 0% Investigate how to share components petween web & mobile apps
Develop text components 0% Develop text components |
Develop layout components 0% Develop layout components
Develop Basic form components 0% Develop Basic form components 5
Develop Data Viz. components 0% Develop Data Viz. components H
Develop notification components 0% Develop notification component; 1
Develop section-specific componen... 0% Develop section-specific compone| 4
Back End Implementation 0% Back End itatign F 1
Implement Microservice 0% i Vi
Investigate how to implement a mi... 0% Investigate hqw to implement a microservice in azure environmel
Define with endpoints will be need... 0% Define with endpointg will be needed
Implement endpoints & needed log... 0% Implement endpoints & heeded los
Integrate Cl into the microservice 0% Integrate Cl into the microservice
Investigate how to integrates the C... 0% Investigate how to integrates the Cl in the project
Develop the .yml file defining the p... 0% Develop the .yml file|defining the pipeline
Implement the deployment ARM file 0% Implement the deployment ARM file
Implement a deployment pipeline f... 0% Implement a deployment pipeling for a single environment

Getting Things Done

Project Management
Scope & Contextualization
Write Scope section
Write Contextualization section
Rewview documant
Deliver Scope & Contextualization ...
Temporal Plannification
Write Plannification Summary secti...
Create project known tasks
Create grantt chart from created t...
Review document
Deliver Tempaoral Planification doc...
Economic Management & Sustai...
Write Budget (cost identification) s.
Write Budget (cost estimate) secti...
Write Budget (management control...
Write Sustainability Report section
Review Document
Deliver Economic Management & ...
Final Delivery
Join all previous documents into th...
Final review of the document
Deliver Final Document

Mobile&Web App Implementation
Dessign App Workflow
Dessign all basic components
Dessign the introduction of the use...
Dessign the best way to add tasks ...
Dessign the process of review task...
Dessign the way to interact with ot...
Dessign the login process
Create the first mock up
Project Scaffolding
Create main project files using crea...
Make it fully work on ios
Make it fully work on android
Make it fully work on web
Set up testing environment
Dessign Implementation
Implement inbox's new task proce...
Implement review Inbox's tasks
Implement user's tour
Implement interaction with differen...
Implement login screen
[CI1] Web

cooSecococceBececccBoceccBs B

ScoceocBeoooccofecnccacl B

APPENDIX C: Gantt chart after thesis extension — Part 1

100% | | Project
100% i Scope & Contextudlization
100% cope section
100% Write Contextualization seclion
100% fauiaw BoCUMEnt
100% Deliver Scope & Corgextualization docurment
100% Temporal Plannification
100% Write Plannification] Summary section
100% Create praject krpwn tasks
100% Create grantt ghart from created tasks
100% Review docunpent
100% Dreliver Temgoral Planification document
100% — &
100% Write Budgdt (cost identification) gection
100% Wirite Budget cost estimate) section
100% Write Budhyet (management cortral) section
100% Write Sugtainability Report section
100% Review Document
100% Delivef Ecanomic Management & Sustainability docliment
100% Final Delivery
100% Jain al previous decuments inta the final one
100% Fingl review of the docurrjant
100% Dgliver Final Document
Web App Imp

ZF3FRFIFRERFIERERRER

S—— Dessign App Workflow
Dessign all besic cdmpanents

Dessign the best way to add tasks inb
rocess af réview tasks

he login process
Ehe first mock up
BN Project Scaffo
te main project files ws
lake it Fully work on ios
Make it fully work on
Make it fully work
Set up besting

Desgign the introghection of the user intg the GTD

the Inbox list
frafn the inbas

& way to interact with gthers lists

Iding

ndroid

o weals

Trvianient

lign Implementation
box's new task proced
review Inbox's tasks
I USer's baur

hent interaction with di
prrefit lagin screen

ng create-react-nativeiapp

ferent lists

[CI] We

APPENDIX D: Gantt chart after thesis extension — Part 2

721
s @2 B 15 22 29| 5 12 QA% 26 |2 @m0 17 M s 7 14 1 B[5 @2 a8 @6 g 0@ 0 pE @3 pf 6 Q3 20 27 (4 AL 1B
Create azure devops pipeline 1] 0% Create azure devops pipeline
Create azure free web service a 0% reste-armrefreewnabr e
Implement the automatic deploy i} 0% Implement the sutomalic deploy
Create ARM template i} 0% Create ARM template
[CI] Mobile ah 0% €11 Mebile
Create azure devops pipeline a 0% Create azure dévops pipelinge
Back End Implementation oh 0% Back End Implementation
Implement Microservice Oh 0% Implement Microservice
Investigate how to implement a mi... a 0% Irvestigate how to implement a microservice in azdre environment
Define with endpoints will be need... a % Define with endpoihts will be nesdad
Implement endpoints & needad log... a 0% Implement endpoints & nesded ngic
Integrate Cl into the microservice oh 0% Integrate Cljinto the microservic
Investigate how to integrates the C... a 0% Igvestigate how ta integrates the C1 in the projes
Develop the .yml file defining the p... a % Develop the yehl file defining the pipefi
Implement the deploymeant ARM file a 0% Impledent the deployment Al
Implement a deployment pipaline f... a 0% Implement a deployment gipeling fer a single env

	List of Figures
	List of Tables
	Contextualization
	Introduction
	Getting Things Done
	Workflow / principles
	The steps in detail
	Capture
	Clarify
	Organize
	Review
	Engage

	From theory to practice
	My workflow
	What are the benefits of this methodology?

	Stakeholders
	GTD Interested people
	Thesis Director
	Myself, as a user and as undergraduate student

	Justification & Research
	Todoist
	All-new Things
	Omnifocus
	Conclusion

	Scope
	Objectives
	Technologies
	Mobile App
	Update

	Web App
	Update

	On-Cloud backend
	Update

	Testing
	Update

	Functional and non-functional requirements
	Methodology
	Microsoft Azure DevOps
	Microsoft Azure
	Toggl Track

	Temporal Planification
	Tasks description
	Project Management – PM
	Scope & Contextualization – PM1
	Temporal Planification – PM2
	Economic Management 6 Sustainability – PM3
	Previous documents union – PM4
	Epic tasks:

	Platform Design - PD
	Epic tasks:

	Story Book implementation - SB
	Components Sharing Investigation – SB1
	Story Book Implementation – SB2
	Epic tasks:

	Mobile App Creation – MA
	Epic tasks:

	Web App Creation - WA
	Epic tasks:

	Back End Creation - BE
	Epic tasks:

	Thesis extension modifications
	Modifications: Tasks description
	Merge epics Web and Mobile App Implementation
	Remove the epic Storybook

	Gantt & estimations
	Thesis extension modifications

	Alternative plans & obstacles
	Economic Management
	Human Resources
	Activities costs
	Project Management
	Scope & Contextualization
	Temporal Planification
	Economic Management and Sustainability
	Final Delivery

	Mobile App Implementation
	Project Scaffolding
	Design Implementation
	Enable Continuous Integration
	Design App Workflow

	Web App Implementation
	Project Scaffolding
	Design Implementation
	Enable Continuous Integration
	Design App Workflow

	Story Book Implementation
	Mobile
	Web
	Storybook

	Back End Implementation
	Implement Microservice
	Integrate CI into the microservice

	Generic costs
	Material costs
	Electricity costs
	Computer
	Screens
	Amortizations
	Computer
	Setup

	Total generic costs

	Unforeseen
	Final budget
	Management Control
	Activities costs changes
	Tasks missed in the initial scheduling
	Bad estimation on initially scheduled tasks

	Generic costs changes

	Thesis extension modifications
	Modifications: Human resources
	Modifications: Activities costs
	Modifications: Final Budget

	Sustainability Report
	Ambiental
	Economic
	Social

	Project Planification
	Introduction
	Application Schema
	Designing user stories
	User Story 1: Quickly add new task
	User story 2: Manage lists
	User story 3: Edit a task
	User story 4: Review new task in the inbox

	Backend endpoints
	Tasks Group
	Lists Group
	Users Group
	Update: After choose a boilerplate

	Auth Group
	Update: After choose a boilerplate

	Tips Group
	Files Group
	Seed Group

	Application design
	The .sketch file
	The .sketch designs
	Today screen designs
	Example 1
	Example 2
	Example 3
	Example 4

	Inbox screen designs
	Update: During development process

	Review screen designs

	Code reusability investigation
	Shared components
	The viewport
	react-native-web
	Conclusion

	Backend API Implementation
	Technologies
	Boilerplate
	Architecture
	Features
	Routes definition
	Validation definition
	Models definition

	Swagger documentation
	Swagger endpoints definition
	Swagger model’s definition
	Swagger authentication
	Swagger final aspect

	Swagger final implementation
	Auth group
	Test 1: Register a new user
	Test 2: Login the new user
	Test 3: Logout the logged user

	Users group
	Test 1: Create new user
	Test 2: Get list of users
	Test 3: Get specific user’s information
	Test 4: Update specific user’s information
	Test 5: Remove created user

	Lists group
	Test 1: Create new list
	Test 2: Get all lists
	Test 3: Get list by id
	Test 4: Edit list by id
	Test 5: Get tasks assigned to this list
	Test 6: Remove list by id

	Tasks group
	Test 1: Create a new task
	Test 2: Get all tasks
	Test 3: Get task by id
	Test 4: Edit task by id
	Test 5: Move task to another list
	Test 6: Remove task by id

	Tips group
	Test 1: Create new tip
	Test 2: Get all tips
	Test 3: Remove tip by id

	Files group
	Test 1: Upload an image
	Test 2: Check the returned URL

	Seed group
	Test 1: Get current content in database
	Test 2: Reseed the database

	Mobile & Web Application Implementation
	Project initialization
	Installing expo and Its dependencies
	Initialize the expo project
	Run it from terminal
	Connect to the application

	Cares about merging Mobile and Web projects
	Merge issues
	Navigation
	Styling
	Sizes
	Styled components

	Third party libraries

	Development process
	Screens implementation
	Login Screen
	Today Screen
	Calendar integration
	Today’s tasks
	Tips

	Review Screen
	Lists Screen
	Settings Screen

	User stories implementation
	User Story 1: Add new task quickly
	User story 2: Manage lists
	User story 3: Edit already created tasks
	User story 4: Review new tasks in the inbox
	Question 1: Is actionable?
	Question 2: Is a single step?
	Question 3: Takes more than 2 minutes to be executed?
	Question 4: Is it for me?
	Final question: Does the task have a due date?

	Conclusions
	Bibliography
	Appendix
	APPENDIX A: Gantt chart – Part 1
	APPENDIX B: Gantt chart – Part 2
	APPENDIX C: Gantt chart after thesis extension – Part 1
	APPENDIX D: Gantt chart after thesis extension – Part 2

