

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa

Study of the use of lunar materials to produce rocket propellants

Document: Appendix

Author: Maria Valero Sánchez

Director /Co-director: Miquel Sureda Anfres / Lluís Soler i Turú

Degree: Bachelor's degree in Aerospace Vehicle Engineering

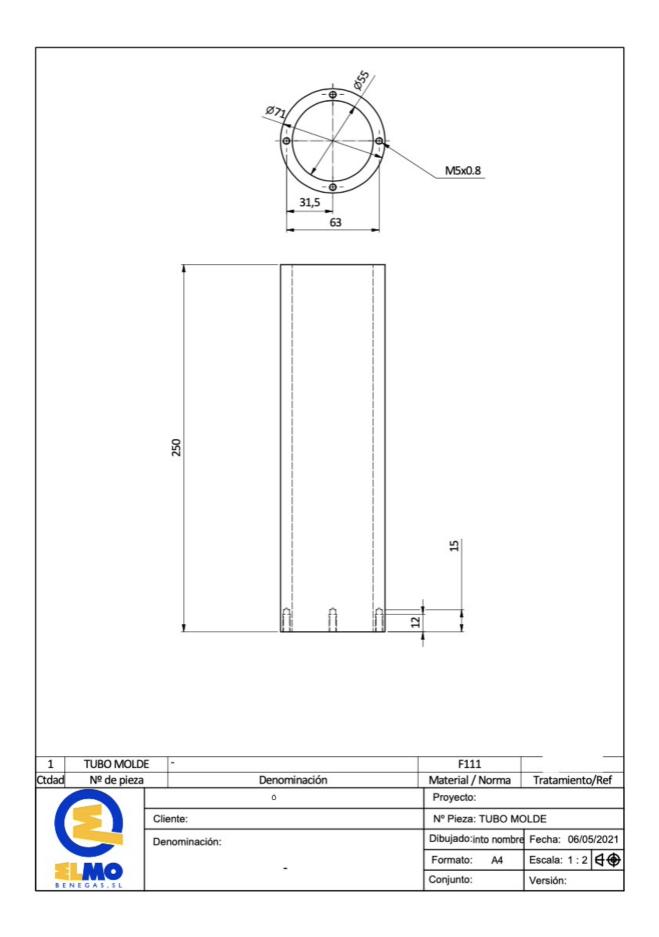
Examination session: Extension, 2021

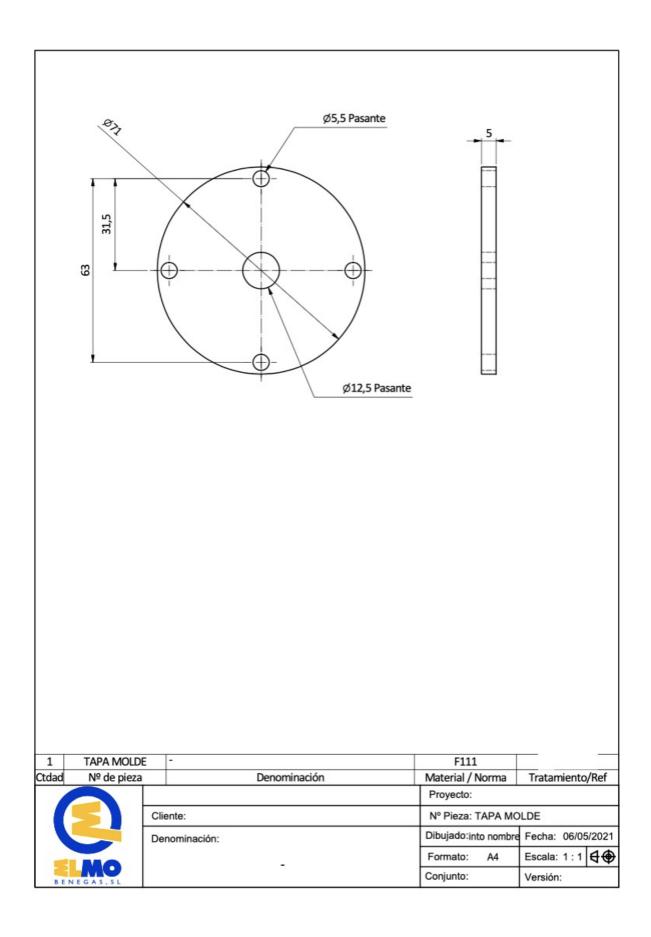
APPENDIX

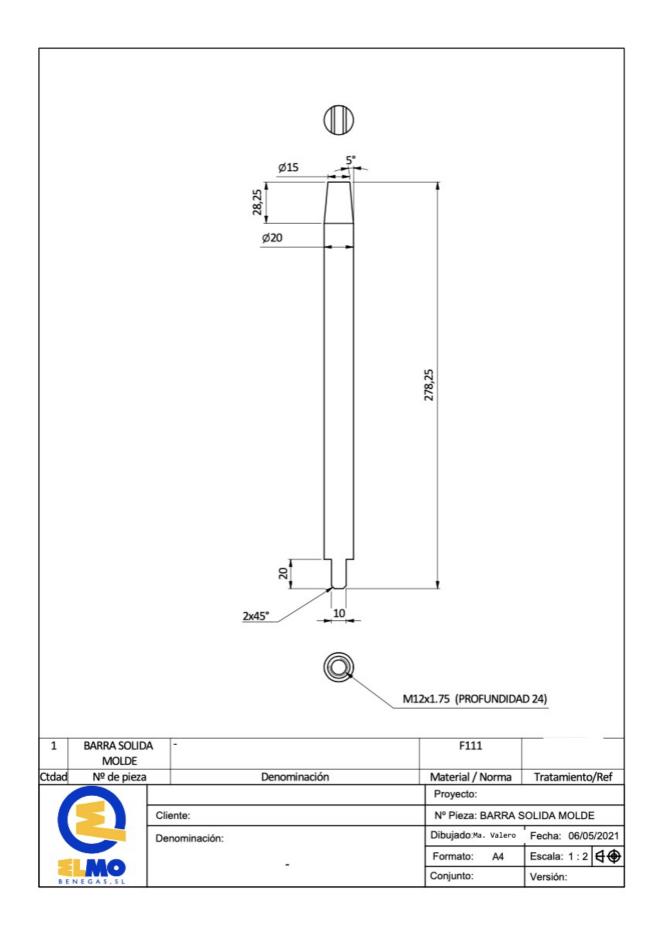
Study of the use of lunar materials to produce rocket propellants

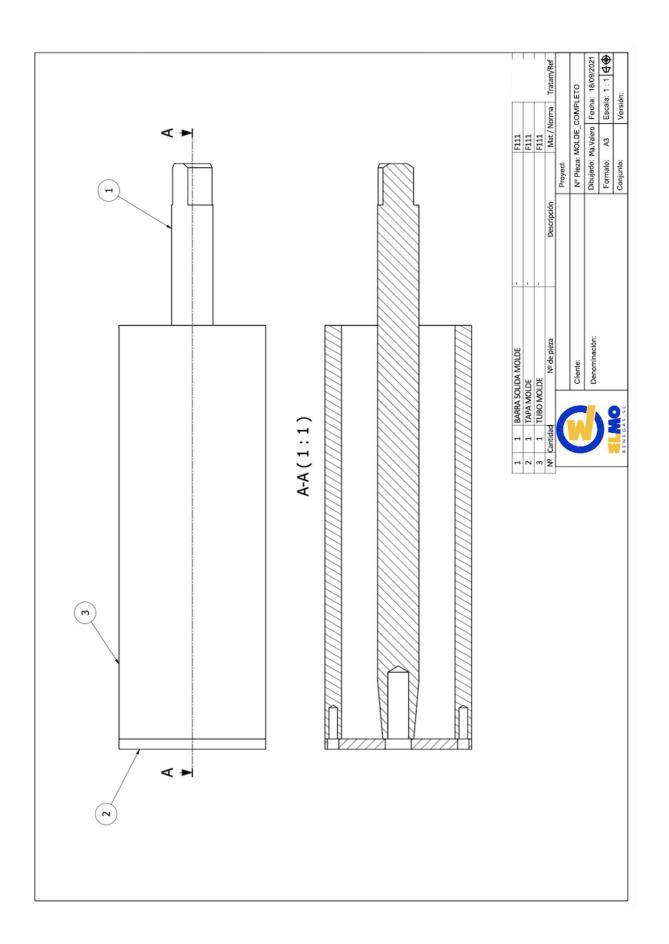
Maria Valero Sánchez

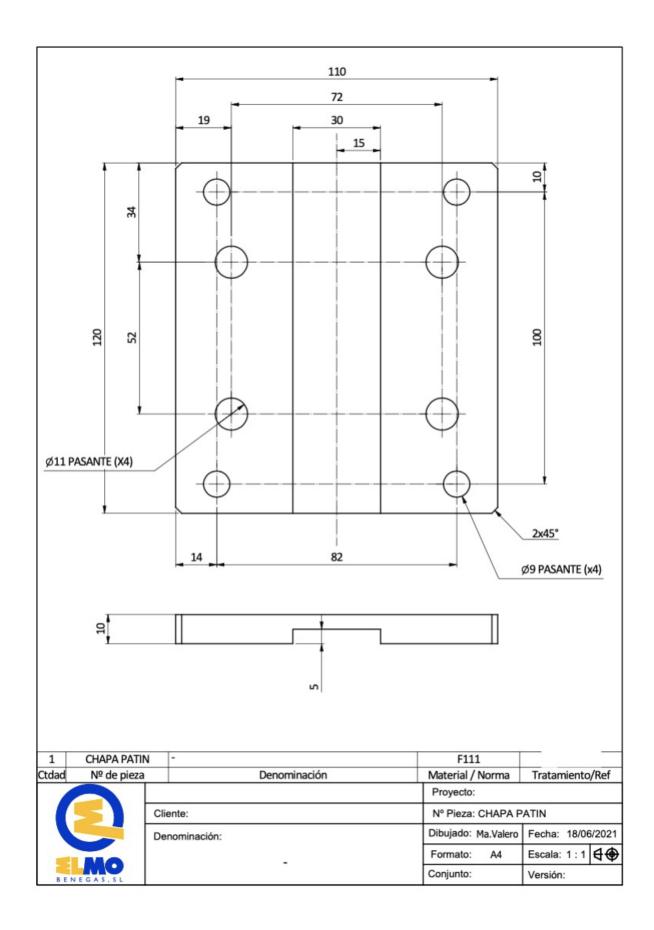
Director: Sureda Anfres, Miquel **Co-Director:** Soler i Turu, Lluís

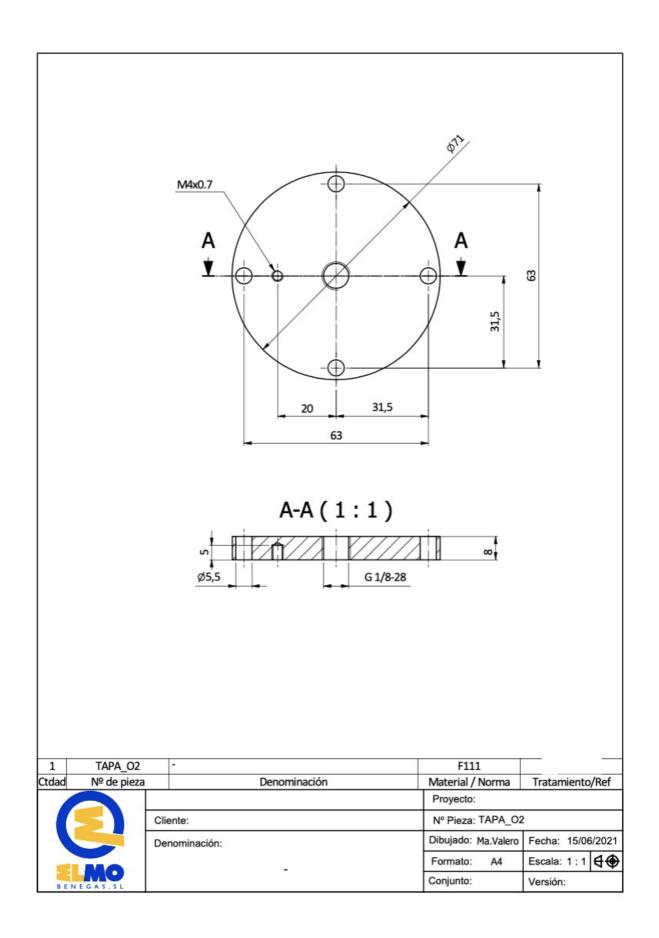

Bachelor's Degree Thesis in Aerospace Vehicle Engineering Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa Universitat Politècnica de Catalunya September 2021

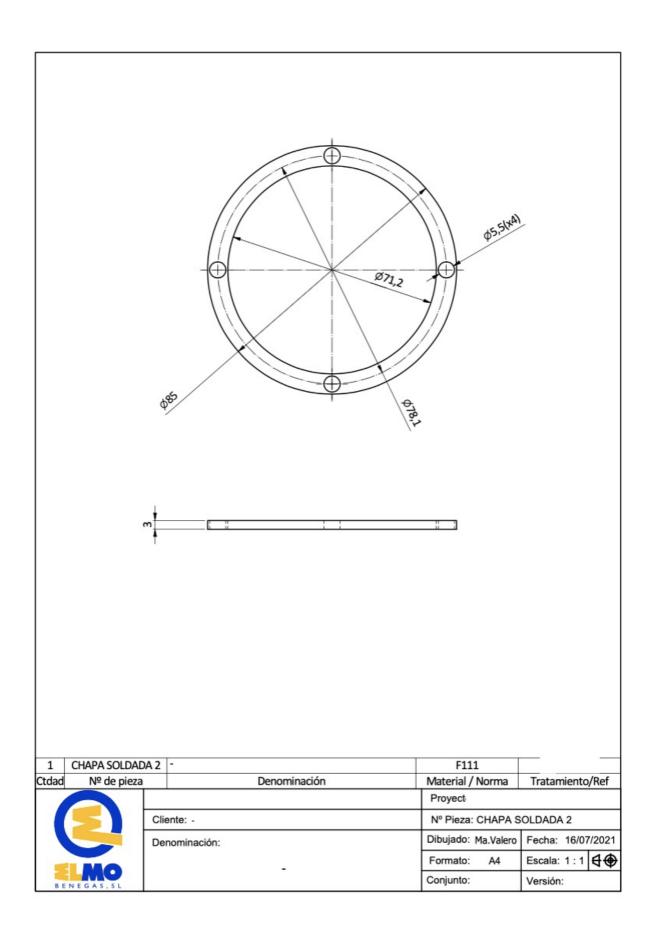

Contents

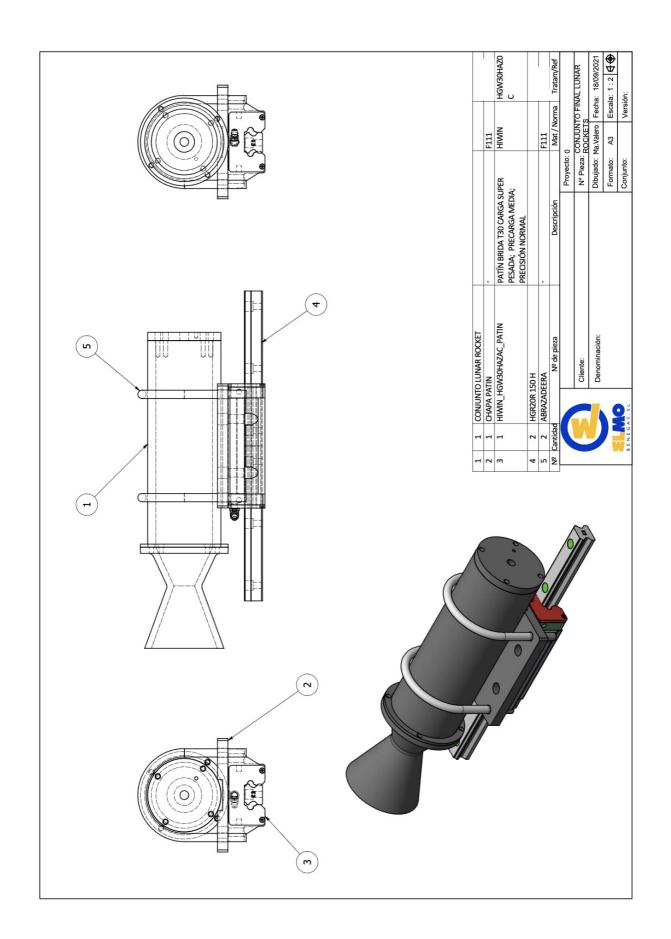

Α	Drawings of rocket engine components	1
в	TSTP	13

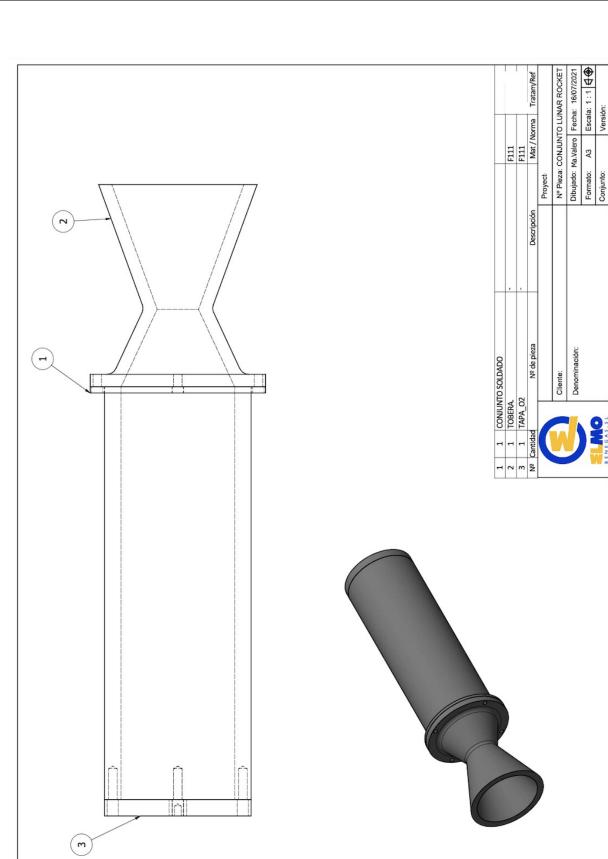

Appendix A

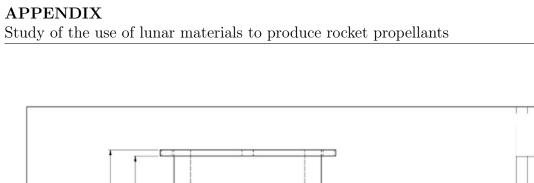

Drawings of rocket engine components

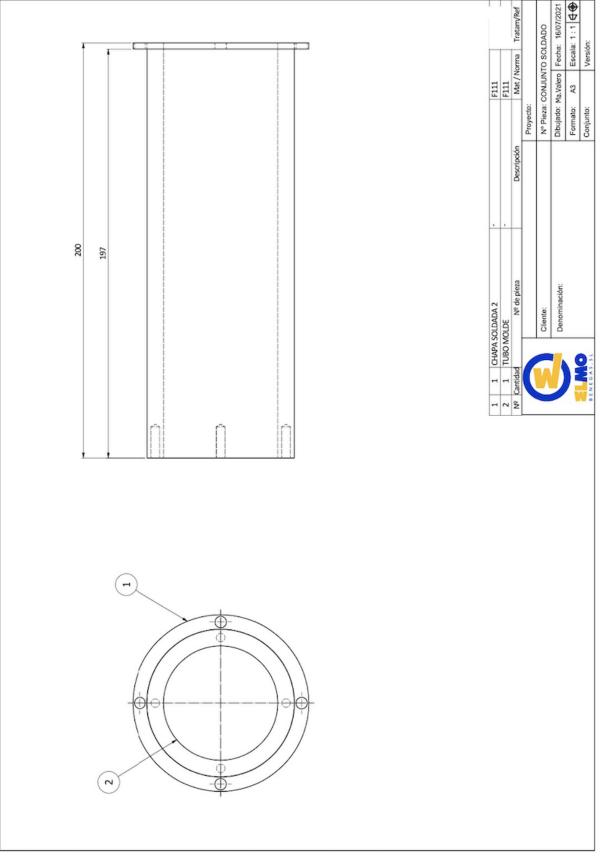


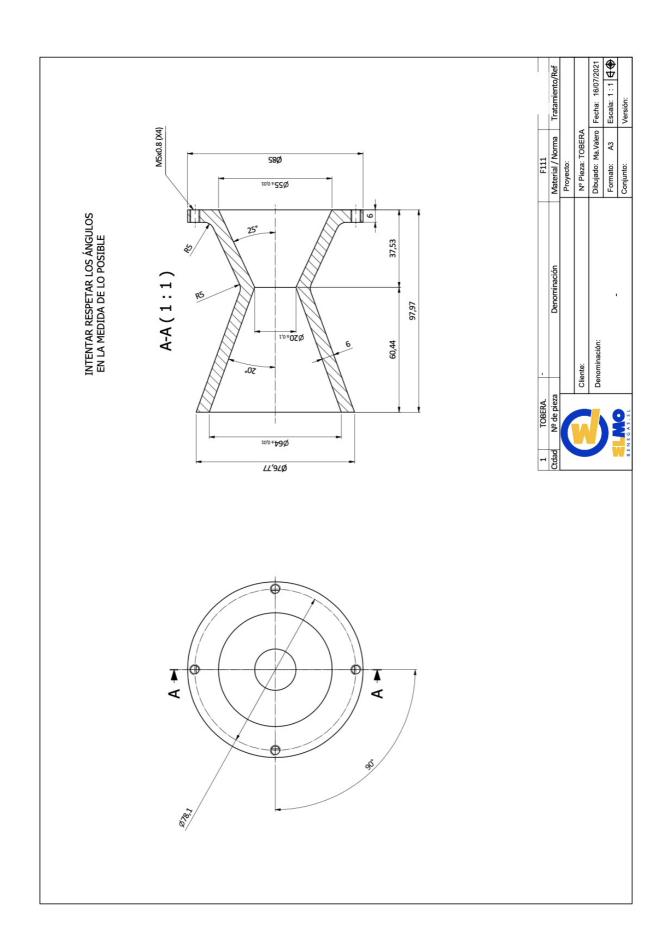












Tratam/Ref

Appendix B

TSTP

Study of the use of lunar materials to produce rocket propellants

Test Specifications and Test Procedures

University Name: Universitat Politècnica de Catalunya (UPC)

Date: 28/09/2021

Table of contents

1.	Doc	ument Scope	ii
2.	Igni	tion testi	ii
	2.1.	Test Description and Objectivesi	ii
	2.2.	Test Requirements i	ii
	2.3.	Test Organization and Schedulei	ii
	2.4.	Test Set-upi	V
	2.5.	Step-by-Step Procedure	v
3.	Prop	pulsive performance test	x
	3.1.	Test Description and Objectives	x
	3.2.	Test Requirements	x
	3.3.	Test Organization and Schedule	ĸi
	3.4.	Test Set-up	ĸi
	3.5.	Step-by-Step Procedurex	ii

Author

First Name	Last Name	Contact
Maria	Valero Sánchez	maria.valero.sanchez@estudiantat.upc.edu

1. Document Scope

This document defines the tests and procedures to perform the ignition and propulsive characterization tests of the fuel composed only of lunar material.

Both the ignition test and the propulsive performance test must be performed in a controlled environment with plenty of ventilation. The test setup is described below.

Three basic components are necessary for the ignition test: the combustion chamber, the test bench and the ignition system. However, it is also necessary to take into account several safety elements such as tongs that withstand high temperatures for handling hot material, high temperature resistant gloves, protective goggles and non-flammable clothing. An oxygen tank will also be needed to provide the oxidizer to the combustion chamber in order to produce the combustion

For the propulsive characterization test four main elements will be necessary: the rocket engine composed by the combustion chamber and the nozzle, the test bench, the ignition system and a balance to measure the thrust generated by the propellant. As in the first part, the oxygen tank and the safety elements will also be necessary.

2. Ignition test

2.1. Test Description and Objectives

This test consists of an ignition test of the combustion between aluminum and oxygen. The purposes are to recreate the reaction in a combustion chamber designed to see how the system acts, to study its behavior to see its controllability using a constant flow of oxidant and to check that the material selected to manufacture the combustion chamber containing it withstands the duration of the experiment without deforming due to the heat and stresses of the reaction.

2.2. Test Requirements

The main requirements of this experiment are as follows:

- The material from which the combustion chamber is constructed must withstand high temperatures to ensure that the reaction can take place.
- The test bench must allow a rectilinear movement.
- The reaction must be ignitable with an external ignitor.
- It must be ensured that the aluminum is covered by an outer layer to protect the reaction environment.
- A material is needed as a base for the test bench in order to protect the surface where the experiment is performed from possible burns.
- Handling of the components should be done using safety elements during and after the test.

2.3. Test Organization and Schedule

The test at least requires three operators:

- Test runner responsible to perform the test following procedures.
- An operator in charge of opening and closing the oxygen valve.
- Quality member to note the results.

The test is composed mainly by two phases:

- Test bench setup
- Execution of test steps

2.4. Test Set-up

Mold Assembly

First it is necessary to place the cover with the central through hole and to fix it to the end of the combustion chamber delimiting tube. The cover is fixed to the pipe with M5 metric screws. Once in place, the bar that will act as the inner cavity of the grain is inserted and fixed with an M10 metric screw through the cover. All screws have been fastened using wrenches suitable for the specified screws.

Before starting the test, it is necessary to use this setup in order to create the propellant grain. Then the test is carried out using the test bench setup below.

Test bench with the combustion chamber

For this test the cover with the threaded hole for the insertion of the male fitting for the insertion of the oxidizer into the end of the combustion chamber is placed and the linear guide and the necessary fasteners for fixing the combustion chamber to the linear guide are added.

It is necessary to insert washers between the screws that are in the cover and the cover itself. They are grower washers and their purpose is to maintain axial tension with their spring effect between the nut and the fixed part.

For this assembly, both nuts and bolts have been fixed with wrenches. An inlet fitting with male thread G 1/8 and with the other end in the form of a spigot to allow the union of a conduit through which the oxygen will be introduced and the tube of the combustion chamber to avoid leaks is already placed on the cover.

A methacrylate plate is placed as the base of the test bench, acting as an additional barrier in case of high temperature residues coming out of the reaction, in order to protect the surface where it is carried out.

2.5. Step-by-Step Procedure

The following table presents the different steps that have to be done in order to execute this test.

TSTP – Ignition Test (IT)

Date:

Location: UPC – Campus Besós

Activity description: Test to recreate the reaction in a combustion chamber designed to see how the system acts.

Operators:

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	PA
TSTP-IT -010-010	Perform mold configuration	Mold assembled as		If passes the mold is			
		expected		performed			
TSTP-IT -010-020	Insert the aluminum foil in the mold to	To achieve the desired		If passes the mold is			
	obtain the propellant grain leaving	geometry of the		filled with aluminum			
	approximately 30mm of margin in order to	propulsive grain		foil			
	ensure a safety zone for later ignition						
TSTP-IT -010-030	Removing the aluminum grain from the	To obtain the propulsive		If passes it is			
	mold	grain		obtained the			
				propellant grain			
TSTP-IT -010-040	Prepare the set-up for the ignition test	All set-up must be mounted		If passes the set-up			
		as detailed		is done			
TSTP-IT -010-050	Place the test bench on an elevated surface	The test table is placed		If passes the test			
	to facilitate handling	on a high surface.		bench will be placed			
				on an elevated			
				surface			

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	РА
TSTP-IT -010-060	Introduce the aluminum grain into the	To have the combustion		If passes the			
	combustion chamber	chamber with the		combustion			
		aluminum grain inside it		chamber will be			
				with the propulsive			
				grain inside			
TSTP-IT -010-070	Place the oxygen tank near the test bench	The oxygen tank should		If passes the oxygen			
		be close to the test		tank will be placed			
		bench		near the test bench			
TSTP-IT -010-080	Connect a rubber hose to the tank outlet	The combustion chamber		If passes the oxygen			
	and to the combustion chamber inlet fitting	must be connected to		tank will be			
		the oxygen tank by		connected to the			
		means of the rubber		combustion			
		hose		chamber			
TSTP-IT -010-090	Set-up the ignition system. The welding	The ignition system must		If passes the ignition			
	equipment is connected to the power	be ready for use		system will be ready			
	supply and then the positive terminal is			for use			
	connected to the electrode and the						
	negative terminal to the base of the linear						
	guide						

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	PA
TSTP-IT -010-100	Open the tank valve	The oxygen tank should		If passes, the flow of			
		be opened to allow the		oxygen will arrive			
		flow of oxygen to the		from the oxygen			
		combustion chamber		tank to the			
				combustion			
				chamber			
TSTP-IT -010-110	Place the electrode of the ignition system	To ignite the propulsive		If passes the			
	at 150A inside the combustion chamber	grain		combustion will be			
	and establish contact with the aluminum			started			
	grain						
TSTP-IT -010-120	Remove the electrode from the combustion	The combustion should		If passes the			
	chamber and switch off the ignition system	be stable and the ignition		combustion will be			
		system must be turned		stable and the			
		off		ignition system will			
				be off			
TSTP-IT -010-130	Separate from the combustion mechanism	Maintain a safe distance		If passes we will be			
	at least one meter away	from the combustion		at least one meter			
		mechanism		away from the			
				propulsion system			

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	PA
TSTP-IT -010-140	Close the oxygen valve when the	The flow of oxygen to the		If passes there will			
	combustion is completed	combustion chamber is		be no more oxygen			
		cut off		flow through the			
				combustion			
				chamber			
TSTP-IT -010-150	Allow the mechanism to cool	Bring the propulsion		If passes the			
		system to room		propulsion system			
		temperature		will be at room			
				temperature			
TSTP-IT -010-160	Disassemble the combustion chamber to	To be able to analyze		If passes it will be			
	analyze results	results		possible to see the			
				debris inside the			
				fuel chamber			

3. Propulsive performance test

3.1. Test Description and Objectives

The objective of the propulsion performance characterization test is, once the objectives of the first part have been met, to verify that the reaction exhaust gases are able to produce thrust when compressed by the nozzle and thus validate its propulsive quality. If thrust is produced, it will be quantified using an Arduino chip programmed as a scale. Another objective of this second part is to study the results to draw a conclusion on the propulsive characterization of the aluminum formation reaction.

3.2. Test Requirements

The main requirements of this experiment are the same as for the ignition test with some additions:

- The material from which the combustion chamber is constructed must withstand high temperatures to ensure that the reaction can take place.
- The test bench must allow a rectilinear movement.
- The reaction must be ignitable with an external ignitor.
- It must be ensured that the aluminum is covered by an outer layer to protect the reaction environment.
- A material is needed as a base for the test bench in order to protect the surface where the experiment is performed from possible burns.
- Handling of the components should be done using safety elements during and after the test.
- The inner walls of the nozzle must be protected so that the ignition system can reach the propellant grain without getting caught.
- The balance that measures the thrust must be calibrated prior to performing the test.
- A portable device will be necessary to observe the test results.

3.3. Test Organization and Schedule

The test at least requires four operators:

- Test runner responsible to perform the test following procedures.
- An operator in charge of opening and closing the oxygen valve.
- An operator in charge of calibrating the scale and of putting it into operation.
- Quality member to note the results.

The test is composed mainly by two phases:

- Test bench setup
- Execution of test steps

3.4. Test Set-up

Mold Assembly

First it is necessary to place the cover with the central through hole and to fix it to the end of the combustion chamber delimiting tube. The cover is fixed to the pipe with M5 metric screws. Once in place, the bar that will act as the inner cavity of the grain is inserted and fixed with an M10 metric screw through the cover. All screws have been fastened using wrenches suitable for the specified screws.

Before starting the test, it is necessary to use this setup in order to create the propellant grain. Then the test is carried out using the test bench setup below.

Test bench with the combustion chamber

The assembly of the propulsive performance test is very similar to that of the ignition test; however, a welded plate is added to the combustion chamber in order to later add the nozzle.

Therefore, adding the nozzle at the end of the welded plate and the cap for the introduction of oxygen at the other end, the new combustion chamber with nozzle is obtained. The screws used to connect the nozzle to the combustion chamber are ALLEN head M5 metric screws, since only an ALLEN wrench could be used for screwing due to the difficult geometry of the nozzle.

As for the ignition test the cover with the threaded hole for the insertion of the male fitting for the insertion of the oxidizer into the end of the combustion chamber is placed and the linear guide and the necessary fasteners for fixing the combustion chamber to the linear guide are added.

Also, it is necessary to insert washers between the screws that are in the cover and the cover itself. An inlet fitting with male thread G 1/8 and with the other end in the form of a spigot is placed on the cover to allow the connection of a conduit through which the oxygen will be introduced and the combustion chamber tube to avoid leaks.

A ceramic plate is placed as the base of the test bench, acting as an additional barrier in case of high temperature residues coming out of the reaction.

The thrust is made with a load cell and an Arduino chip. It has been specially programmed for use in this test. This cell will be placed in front of the test blench. In order not to damage the balance, the combustion chamber cover has been modified by adding a threaded hole in order to insert a 40 mm long screw so that the head of the screw is the point of contact with the load cell in case of movement.

3.5. Step-by-Step Procedure

The following table presents the different steps that have to be done in order to execute this test.

TSTP – Propulsive Performance Test (PPT)

Date:

Location: UPC – Campus Besós

Activity description: Test to verify that the reaction exhaust gases from the alumina reaction are able to produce thrust when compressed

by the nozzle and thus validate its propulsive quality.

Operators:

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	PA
TSTP-PPT -010-010	Perform mold configuration	Mold assembled as		If passes the mold is			
		expected		performed			
TSTP-PPT -010-020	Insert the aluminum foil in the mold to	To achieve the desired		If passes the mold is			
	obtain the propellant grain leaving	geometry of the		filled with aluminum			
	approximately 30mm of margin in order	propulsive grain		foil			
	to ensure a safety zone for later ignition						
TSTP-PPT -010-030	Removing the aluminum grain from the	To obtain the propulsive		If passes it is			
	mold	grain		obtained the			
				propellant grain			
TSTP-PPT -010-040	Weight all the components of the set-up	The components of the set-		If passes all the			
		up must be weighted		components of the			
				set-up will be			
				weighted			

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	PA
TSTP-PPT -010-050	Prepare the set-up for the propulsion	All set-up must be mounted		If passes the set-up			
	performance test without the nozzle	as detailed but without the nozzle		is done but without			
		nozzie		the nozzle			
TSTP-PPT -010-060	Place the test bench on an elevated	The test table is placed		If passes the test			
	surface to facilitate handling	on a high surface.		bench will be placed			
				on an elevated			
				surface			
TSTP-PPT -010-070	Introduce the aluminum grain into the	To have the combustion		If passes the			
	combustion chamber	chamber with the		combustion			
		aluminum grain inside it		chamber will be			
				with the propulsive			
				grain inside			
TSTP-PPT -010-080	Attach the nozzle to the combustion	The complete set-up for		If passes the final			
	chamber	the propulsion		set-up is done			
		performance test must					
		be mounted as detailed					
TSTP-PPT -010-090	Protect the inside of the nozzle with black	The surface inside the		If passes the surface			
	adhesive tape	nozzle must be protected		inside the nozzle will			
		so that the electrode		be protected from			
		does not get stuck		the ignition system			

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	PA
TSTP-PPT -010-100	Place the balance to measure the thrust	The scale must be in		If passes the scale			
	in front of rocket engine	front of the fuel chamber		will be located in			
				front of the fuel			
				chamber ready to			
				take test			
				measurements			
TSTP-PPT -010-110	Place a 40 mm screw into the new	The screw will be placed		If passes the 40mm			
	threaded hole in the cover and align it	in the threaded hole and		will be placed in the			
	with the load cell	aligned with the load cell		threaded hole of the			
				cover			
TSTP-PPT -010-120	Place the oxygen tank near the test bench	The oxygen tank should		If passes the oxygen			
		be close to the test		tank will be placed			
		bench		near the test bench			
TSTP-PPT -010-130	Connect a rubber hose to the tank outlet	The combustion chamber		If passes the oxygen			
	and to the combustion chamber inlet	must be connected to		tank will be			
	fitting	the oxygen tank by		connected to the			
		means of the rubber		combustion			
		hose		chamber			

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	PA
TSTP-PPT -010-140	Set-up the ignition system. The welding	The ignition system must		If passes the ignition			
	equipment is connected to the power	be ready for use		system will be ready			
	supply and then the positive terminal is			for use			
	connected to the electrode and the						
	negative terminal to the base of the linear						
	guide						
TSTP-PPT -010-150	Open the tank valve	The oxygen tank should		If passes, the flow of			
		be opened to allow the		oxygen will arrive			
		flow of oxygen to the		from the oxygen			
		combustion chamber		tank to the			
				combustion			
				chamber			
TSTP-PPT -010-160	Place the electrode at of the ignition	To ignite the propulsive		If passes the			
	system at 150A inside the combustion	grain		combustion will be			
	chamber and establish contact with the			started			
	aluminum grain						
I							

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	PA
TSTP-PPT -010-170	Remove the electrode from the	The combustion should		If passes the			
	combustion chamber and switch off the	be stable and the ignition		combustion will be			
	ignition system	system must be turned		stable and the			
		off		ignition system will			
				be off			
TSTP-PPT -010-180	Separate from the combustion	Maintain a safe distance		If passes we will be			
	mechanism at least one meter away	from the combustion		at least one meter			
		mechanism		away from the			
				propulsion system			
TSTP-PPT -010-190	Close the oxygen valve when the	The flow of oxygen to the		If passes there will			
	combustion is completed	combustion chamber is		be no more oxygen			
		cut off		flow through the			
				combustion			
				chamber			
TSTP-PPT -010-200	Allow the mechanism to cool	Bring the propulsion		If passes the			
		system to room		propulsion system			
		temperature		will be at room			
				temperature			

Step ID	Instruction	Expected	Actual	Pass/Fail Criteria	Passed[Y/N]	Time	PA
TSTP-PPT -010-210	Disassemble the combustion chamber to	To be able to analyze		If passes it will be			
	analyze results	results		possible to see the			
				debris inside the			
				fuel chamber			
TSTP-PPT -010-220	Re-weigh all the components of the set-	The components of the set- up must be re-weighted		If passes all the			
	up			components of the			
				set-up will be			
				weighted			