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Abstract

Tensegrity structures are pin-jointed truss structures compones of cables in tension and bars
in compression. Due to their lightweight, complex shape topology and storage ability they
can be a grate option for many application.

This project deals with computation method and analysis of tensegrity structures. The
aim is to determine how this structures are developed in practice. To do so, different
form-finding methods are used to determine a geometry without the necessity of knowing
the nodal coordinates, just the connectivities between elements. This allows the user to find
new shapes for this type of strutures.

As they are pre-stressed structures, it is important to determine their equilibrium position in
absence of external forces. This process is called initial self-stress design. Once this initial
state is known, it is possible to determine the structural behavior under external loads.
For that reason, a non-linear Finite Element Analysis method for large displacements has
been used to determine the response of the structure for a given structural load. This has
been used then compare the pre-stressed structures to the normal pin-jointed structures by
comparing the results of a linear method with the non-linea rone.

Finally, a small review about the possible applications of tensegrity structures for space
applications is given. Specifically, the case of a two-stage tensegritic mast has been studied
to give an idea about how these structures can be used for this purpose.

Resumen

Las estructuras de tensegridad son estructuras de articuladas con pasadores compuestas de
cables en tensión y barras en compresión. Debido a su topología de forma compleja, peso, y
su capacidad de almacenamiento, pueden ser una opción principal para muchas aplicaciones.

Este proyecto trata sobre el método de cálculo y el análisis de estructuras de tensegridad.
El objetivo es determinar cómo se desarrollan estas estructuras en la práctica. Para ello,
se utilizan diferentes métodos de búsqueda de formas para determinar una geometría sin
la necesidad de conocer las coordenadas nodales, solo las conectividades entre elementos.
Esto permite al usuario encontrar nuevas formas para este tipo de estructuras.

Al tratarse de estructuras pretensadas, es importante determinar su posición de equilibrio en
ausencia de fuerzas externas. Este proceso se denomina diseño de autoesfuerzo inicial. Una
vez conocido este estado inicial, es posible determinar el comportamiento estructural bajo
cargas externas. Por esa razón, se ha utilizado un método de análisis de elementos finitos
no lineal para grandes desplazamientos para determinar la respuesta de la estructura para
una carga estructural determinada. Esto se ha utilizado para luego comparar las estructuras
pretensadas con las estructuras normales unidas por pasadores comparando los resultados
de un método lineal con el no lineal.

Finalmente, varias pinceladas sobre las posibles aplicaciones de estas estructuras en aplica-
ciones aeroespaciales son presentadas. Concreatemente, se ha estudiado el caso de un mástil
tensegrítico de dos etapas para dar una idea de como estas estructuras se pueden usar para
este fin.
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Chapter 1

Introduction

Tensegrity structures have emerged as an architectural concept in the 1950s and nowadays
they have many beneficial applications in science and engineering. This structures can be
categorized as pre-stressed pin-jointed structures. They are composed of different material
members or elements that can be bars or cables. The presence of pre-stress leads to cables
in tension and bars in compression allowing the structure to be in self-equilibrium state. The
concept of a self-stable structure is not new, but when the tensegrity concept is introduced,
it becomes completely different.

The wide range of possibilities for geometrical design, lightness, material saving and great
resistance that this structures offer, have made it easier to carry out varied and colorful
works such as those made by the sculptor Kenneth Snelson.

On the other hand, deployable structures have emerged as a well option for easy storage
and transportation. This idea has potential benefits both in Earth and in Space. For space
application they are a need as the constant growing industry develop larger spacecrafts
while the launch vehicles did in a different rate. For the future it is assumed that the launch
vehicles capacity will remain unchanged while the need to launch larger spacecrafts (e.g
Next Generation Space Telescope (NGST)) is constantly growing [30]. That is why tenseg-
rity structures appear as a new way to design foldable structures for space applications.

Furthermore, tensegrities are suitable alternatives regarding conventional structures are
suitable for the design of structural system with high complex topology and variable topo-
logical configurations [1]. Their structural modification (shape morphing) and adaptation
might be easier for this type of structures. Other advantages of this structures from an
engineering point of view, as already mentioned are: the mass efficiency, modularity,
scalability, deployability and shape/stiffness flexibility.

In this project, the idea of tensegrity is structure is presented and a further research about
this structures and the main ideas are explained such as the numerical computation of this
structures and resolution.

The objectives of this project are:

1. Develop an algorithm for the form-finding of tensegrity structures. The form-finding
is a key part for the design of this structures. This algorithm can be used for simple
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and complex configuration by just knowing the desired shape (how bars and cables
are connected).

2. Develop another method where some geometrical properties are know, not only con-
nectivities and type of material. This involves also the development of a method to
identify the initial self-stress state of a given structure, it there is some.

3. Investigation and test of the static properties of this type of structure under compres-
sion, traction and bending loads. Use this objective to compare them with the conven-
tional pin-jointed truss structures and determine how pre-stress can help to improve
the structural behavior.

4. Study of a possible application on space of this type of structure. A two stage mast will
be studied under external loads and some data will be given regarding its deployability.

The present chapter contains a definition for tensegrity structures and their background. The
actual applications of this structures are presented and their possible application into space
environment is introduced.

1.1 Definition of Tensegrity Structures
The concept of tensegrity structure date back to the end of 1962s when Buckminster Fuller
used the word tensegrity as a contracted form of tensile and integrity to Kenneth Snelson‘s
structure [8]. Fuller describes a tensegrity structure as

“an assemblage of tension and compression components arranged in a discontinuous
compression system...”

while Hanaor [11] gives a more specific definition which is

“internally pres-tressed, free-standing pin-jointed networks, in which the cables or tendons
are tensioned against a system of bars or struts”

The mechanical principle of this structures can be deduced to be a set of cables in traction
and bars in compression interconnected to generate self-stressed structure. Tensegrity struc-
tures are pre-stressed structures and then they are obtained from an optimal arrangement
of materials, which must be in tension or compression. They consist of two components
or structural elements, namely the tensile and compressive members, which are cables (or
strings) and bars (or struts) respectively.
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FIGURE 1.1: Tensegrity structure with 3 bars (red) and 9 cables (blue). Side view in left side and
top view at the right side.

Fig. 1.1 shows a simple tensegrity structure and it is noticeable that the bars does not
touch between them and they are not connected through the nodes while the cables are
interconnected at every node forming a network. That is why traditionally tensegrity
structures are described as "islands of compression inside an ocean of tension" [15]. In a
pure tensegrity (Class I), which is the case shown in Fig. 1.1, the structure is defined by a
set of independent elements which are connected through nodes (as pin-jointed structures).
This excludes conventional structures and those ones with cables but with connected bars.
A more specific definition to tensegrity structure is defined as systems "whose rigidity is the
result of a state of self-stress equilibrium between cables under tension and compression
elements and independent of all fields of action" [18].

Additionally, since the bars can be considered as inelastic rigid bodies, the structural
system is only stabilized by the presence of internal tension through the cables (inducing
a compression in bars) and in the absence of external forces [27]. This means that the
structural system must remain in equilibrium although no external loads are acting on it. If
a small perturbation is introduced to system, it must return to its initial state.

There are also tensegrity structures where the bars are interconnected, but they are called
false tensegrities or Class II tgensegrities. However, there are cases where this type of
tensegrities can be of great interest as we will see in later chapters.

1.2 Research and Application
The sculptors, artists, and architects have long been fascinated by the magnificence of
tensegrity structures ever since their appearance and notoriety. In art, tensegrity structures
are of high interest due to their aesthetic value. They have been used to create unique
geometrical arrangements of bars and cables with striking beauty and complex configu-
rations [9]. This system is not only used as an artistic expression, great referents in the
structural field(civil engineering,architecture,etc) have promoted the use of tensegrity in
the last decades. Among others, the Georgia Dome inaugurated in 1992 is one of the
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most important although not being a pure tensegrity as the dome is anchored to a concrete
ring. Another example is the Kurilpa Bridge in Australia, which is considered the longest
tensegritic pedestrian bridge in the world. It was inaugurated in 2009 over the Brisbane
River.

The concept of tensegrity is also present in some areas such as science (e.g-structure of
spider fibre) and, in man and many types of animals, bones (rigid bodies) and tendons
(elastic bodies) are connected together and can be moved from one equilibrium position to
another by only tensile forces in tendons. That is why in osteology different configurations
are classified as different tensegrity structures [27].

In mechanical engineering, the concept of tensegrity has been used for the manufacturing
of furniture, robots [25], electrical transducers [4], among others. From an engineering
perspective, tensegrities are ideal candidates for deployable structures as they can undergo
large displacements and be very lightweight. With the development of numerical models and
folding process[9], the use of tensegrity as deployable structures opened up significantly.
This deployability has been of important interest in space industry. The actual applications
of tensegrity structures in space application are treated in the following section.

1.3 Deployable Structures for Space Applications
One of the biggest problems when dealing with space missions is the storage capability
for the given payloads, restricting their weight and volume. A solution to that problem in
common situations is the use of devices which configuration changes from a packaged,
compact state to a deployed, large state [30]. Deployable structures have been used
widely in space applications and missions for several decades due to their easy storage and
transportation.

Several research has been done over the past five decades in the field of deployable space
structures. Among the existing concepts: some structures can be retracted after they are
deployed, other relay on stored strain energy for deployment, and some structures are stiff
during deployment. The retraction of the structure in space is not a direct necessity, but
may be required in some cases[30]. The structures that are not dependent of stored energy
are deployed through external tools (e.g. motor, actuator). Normally, deployable structures
are not stiff during deployment but some other can immediately carry loads.

Actually, there are three types of devices where the structure deployability concept is
present.

• Masts: they are normally used to separate electronic instruments to reduce interfer-
ence[17] or to support solar arrays[13].

• Antennas: the need of communication with orbiting objects (satellites) provokes the
need of some antenna. Among the different set of antennas, the parabolic reflector
antennas are the most common used due to their high gain, enabling high data trans-
mission at low power [30].

• Solar Panels: The actual capacity of the solar arrays is not enough for increasing
electrical needs of actual satellites. That is why some system to pack the solar arrays
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in launcvh and deploy them in space is required.

Both deployable antennas and solar panels are not in the outline of this project and they
will not be reviewed. However, deployable antennas are studied in detail by Tibert and
Pellegrino [29, 30] and their relation to tensegrity. Also there are a lot of deployable masts
that will not be commented, but a further explanation can be found in [17].

Deployable Masts

According to [17], deployable masts can be divided into the following four groups:

1. Thin-walled tubular booms,

2. Teslescopic masts,

3. Coilable masts, and

4. Articulated trusses

1- Thin-walled tubular booms

Thin-walled tubular booms are considered the earliest types of deployable and retractable
structures. Their principle of work is by taking advantage of the elastic deformability of
thin-walled cells.

The first thin-walled tubulars are the Storable Tubular Extendible Member (STEM), in-
vented in Canada in the 1960s. This systems were stiff axially and in bending, but they
had low torsional stiffness due to the open tubular cross-section. This lack in torsional stiff-
ness can be solved if enough friction is produced in the overlap region [30]. The Collapsi-
ble Tubular Mast (CTM) is the composition of two STEM bonded at the edges, providing
higher torsional stiffness. CTMs where developed by the German Aerospace Centre (DLR)
and they are made of Carbon Fibre Reinforced Plastic (CFRP).

2- Telescopic Masts

This type of mast is normally composed by a series of thin-walled cylindrical tubes nested
one inside another. Their limiting factor resides in the tube thickness and overlap length.
This mast are deployed through a spindle-and-nut technique (sequential deployment), or
adding cables and pulleys (synchronous deployment) as shown in Fig. 1.3. Dornier [14] and
Tethered Satellite [20] have developed a 40 m and a 2.4 m long telescopic masts respectively.
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(A) STEM booms: (a) STEM, (b) bi-STEM, and (c)
interlocking bi-STEM [30]

(B) Collapsible Tubular Mast [16]

FIGURE 1.2: STEM and CTM thin-walled tubular booms[30]

FIGURE 1.3: Telescopic masts deployment techniques: (a) sequential and (b) synchronous

As it can be seen from Fig. 1.3, a motor drives the spindle and in each stage there is a nut
which is dragged outward until reaching the spindle height.

3- Coilable Masts

In 1967, the Astro Research Corporation developed the Coilable Mast (CM). Thi type
of mast is a lattice truss that normally consist of three types of elements, called battens,

12



A study on Tensegrity Structure and their Applications to Space

longerons and bracing cables. The connection between elements consists of members
perpendicular to the longitudinal ones and diagonal cables [30]. Coiling the longerons is
the way in which this mast is stowed. They are design in a way that the lateral battens
always carry compression, and inducing pre-stress in the structure.

Coilable masts can be deployed through two ways:

• Self driven extension: this method uses the stored elastic energy in the longerons.
The rate of deployment is controlled through a lanyard (i.e. using a cable attached to
the top of the mast in order to control the deployment and retraction). The stiffness of
the mast is lower during deployment than when deployed, and then it is not suitable
for masts longer than 3 m.

• Motor driven extension: this method is used for longer masts and, as in Fig. 4.11, the
mast is confined in a special canister (which contains a motor driven rotating nut). The
transition where a stage goes from stowed to deployed is inside the canister ensuring
full strength to the deployed part.

FIGURE 1.4: Coilable mast concept (left) [34] and application inside a canister and deployed through
a rotating nut (right) [30]

The coilable masts are really efficient in terms of packing or stowage as they can be stowed
about 2–3% of the deployed length.
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4-Articulated Trusses

Articulated trusses are types of masts widely used for space applications and can be found
in different configurations. They present higher stiffness than the other types of deployable
masts as long as a better structural efficiency. The Folding Articulated Square Truss
(FAST) mast, developed by AEC-Able Engineering Company is an example of this type of
structure. It is composed by revolute hinges along the longerons and two pairs of diagonal
cables at each face of the bay, Fig. 1.5. The cables are supposed to be pre-stressed through
two lateral bows.

FIGURE 1.5: Folding Articulated Square Truss deployment description [29]

FIGURE 1.6: FAST mast for the ISS [30]
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During deployment process, as the bows bend, half of the cables become slack and the
strain energy stored in the bows deploys one bay of the mast (see Fig. 1.5(b,c)). As for the
CMs part of the mast is enclosed in a special canister, ensuring the total stiffness of the
deployed part of the mast. Two FAST masts, of 1.09 m diameter and 34.75 m length are
used to support the solar arrays on the International Space Station (ISS), Fig. 1.6

FIGURE 1.7: Deployment of ADAM mast [30]

Another notorious example of articulated truss mast is the Able Deployable Articulated
Mast (ADAM) as it has used in the Shuttle Radar Topography Mission (STRM), an Earth
mapper. The main function of this mast is to separate two radar antennas. The STRM
ADAM is 60 m long and has a diameter of 1.12 m and 87 bays. The deployment sequence
is shown in Fig. 1.7 and it can be noticed that some special latches are used on the diagonal
cables in order to stop the deployment and stiff the corresponding bay.

Now that tensegrity structures are introduced and their applications are presented, it is time
to start studying the mathematical development of this type of structures.
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Chapter 2

Mechanics and Analysis Methods of
Tensegrity Structures

A tensegrity structure follows the same fundamental idea as any conventional pin-jointed
structure: the condition of static equilibrium exist if the net sum of forces acting at any
point of the structure must be zero. This leads to a governing equation where the internal
forces compensate the external loads. Tensegrity structures are composed of truss elements
and this condition must be applied at the end of each element, called node.

The initial issue when dealing with the design of tensegrity structure, as for any other struc-
ture, is to determine the optimal structural form, the form-finding process. The majority of
the research done in the field of tensegrity structures is dedicated to the form-finding process.

In this chapter the equilibrium equations for a tensegrity structure are presented and two
different methods used to determine the form-finding of tensegrity structure are presented.

2.1 Equilibrium Equations
Imagine that there are 3 nodes in a 3-dimensional space, called j, k and h, connected to
another node i through a structural element that may only experience axial force. This
situation can be directly interpreted as an element of a tensegrity structure and that the nodes
are connected through elements such as cables or bars. 2.1 show the situation described
above where the force in red f is an external force applied over the node i.

FIGURE 2.1: Node i connected to nodes j, k and h and over an external force f
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The following assumptions are made in order to determine the equilibrium equations:

• The members are connected through ideal ball joints.

• The weight of the structure is neglected.

• The external forces act directly at the nodes.

• The connectivity of the system are known.

The equilibrium in Node i is given by the condition that the internal forces from the three
jointed members or elements balance with the applied external forces.

~ti, j + ~ti,k + ~ti,h +~f =~0 (2.1)

where~t denotes each member force or internal tension, also known as pre-stress force vector.
If the coordinates of each node are known the vectors pointing from one point to another
can be easily computed. With this the direction of the internal forces can be found but not
the magnitude. This can be solved normalizing this vector by the current member length in
order to have a unity vector along each member that can be then multiplied by a parameter
representing the internal force magnitude [7]. An example for the internal force coordinate
representation of the member i j

{
t j,i
}
=

ti, j
li, j


xi− x j
yi− y j
zi− z j

 (2.2)

where ti, j is the magnitude of the internal force, li, j the element length and x,y and z the
coordinates of both element nodes. Then, the equilibrium equations for the Node i is:

ti, j
li, j


xi− x j
yi− y j
zi− z j

+
ti,k
li,k


xi− xk
yi− yk
zi− zk

+
ti,h
li,h


xi− xh
yi− yh
zi− zh

+


fx
fy
fz

=


0
0
0

 (2.3)

Note that in order to be the members in tension the internal force magnitude must be negative
by convention (positive for compression and negative for tension). This will only change
the current direction to the opposite one. Rearranging terms the above system of equations
can be expressed in matrix form as:

 xi− x j xi− xh xi− xk
yi− y j yi− yh yi− yk
zi− z j zi− zh zi− zk




ti, j
li, j
ti,h
li,h
ti,k
li,k

=


fx
fy
fz

 (2.4)

Note that the variable ti,n/li,n denotes the internal force carried by each member per unit
length, which is the definition of force density or tension coefficient. Regarding the first
term of the equation one can deduce that the columns of the matrix correspond to a member
while the rows are the conditions for nodal equilibrium in different directions. For a given
node there must be d rows, being d the space dimension. If this equilibrium equations are
written for each node the equilibrium equation of the whole structure can be found. In a
generalized form, given a structure with n nodes and b elements, the matrix will take an
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order of dn rows and b columns. If a member m connects node i and j, in the mth column
only 2d rows corresponding to node i and j projections are to be filled in, while all the other
entries are set to 0. For an extended structure Eq. (2.4) becomes:

· · · 0 · · ·
· · · ... · · ·
· · · xi− x j · · ·
· · · yi− y j · · ·
· · · zi− z j · · ·
· · · 0 · · ·
· · · ... · · ·
· · · −

(
xi− x j

)
· · ·

· · · −
(
yi− y j

)
· · ·

· · · −
(
zi− z j

)
· · ·

· · · 0 · · ·
· · · ... · · ·




...

qi, j
...

=



...
fi,x
fi,y
fi,z
...


(2.5)

In compact vector-matrix form the system becomes:

Aq = f (2.6)

Where [A] ∈ Rdn×b is known as equilibrium matrix, {q} ∈ Rb the force density vector
and {f} ∈ Rdn the vector of external forces [7].

To represent the equilibrium equations a connectivity matrix defining the topology of the
tensegrity structure can be used [23, 19, 32]. This matrix [C] ∈ Rn×b has many columns
as nodes and many rows as elements. If element k connects node i and j the entry of ith
node-column takes a value of +1 while the jth column takes the value of −1.

C(k,p) =


1 if p = i
−1 if p = j
0 if otherwise

(2.7)

Assuming that x,y and z are the nodal coordinate vectors of a given structure, the equilibrium
matrix A can be written as:

A =

 CT diag(Cx)
CT diag(Cy)
CT diag(Cz)

 (2.8)

The equilibrium equation in Eq. (2.33) can be expressed in an alternative form just rear-
ranging the terms in a different manner. Scheck [23] gave the following relationship for any
general pin-jointed structure:

D [x y z] = [fx fy fz] (2.9)

The matrix [D] ∈Rb×b is also called force-density matrix [2, 29] and with a known connec-
tivity matrix is can be expressed as follows through the Gaussian transformation

D = CTQC (2.10)
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where [Q] ∈ Rb×b is a diagonal matrix containing the members force densities.

Q = diag(q) (2.11)

And elements of the force-density matrix D interpretation is [10]:

D(i, j) =


−qb if member b is connected with nodes i 6= j,
∑qb sum up for all members b connected to nodes i

when i = j,
0 if nodes i and j are not connected

 (2.12)

As a tensegrity structure has to remain in static equilibrium in absence of external loads, the
equilibrium condition becomes:

Aq = 0 (2.13)

and consequently

D [x y z] = [0 0 0] (2.14)

Note that both expressions in Eq. (2.13) and Eq. (2.14) are the same but with different
representation. The first one represents the self-equilibrium equations as a function of
the nodal coordinates, while the second one does in terms of the element force densities.
Even they are the same, both must be fulfilled for a tensegrity structure in order to be in
self-equilibrium state in absence of external forces.

Note that a trivial solution becomes as the first solution for this scenario. Nevertheless this
does not match with the definition of tensegrity as the cables need a pre-stress to be taut
and the structure remains in equilibrium (for a structure to exist in a real physical space,
q , cannot be zero). That is why in order to satisfy the condition of equilibrium under
self-stress conditions, A has to be singular. As no kinematic considerations are made, the
shape of the matrix normally has more rows than rows, being rectangular and not square.
Then it is also necessary that the matrix A has no full column rank. As the matrix is rank
deficient this matrix cannot be generated randomly. Even if a matrix with this conditions is
obtained, the force densities q for each element can only be chosen from its null space.

Another interpretation that can be given to the previous equation is that the shape of the
structure, described by the equilibrium matrix, is not arbitrary (desire nodal coordinates).
Then it is necessary to find a particular shape for the structure in order to satisfy the
initially defined connectivity (nodal coordinates). Solving this system is what it is called
form-finding process.

2.1.1 Rank Conditions
As mentioned before, for a d-dimensional structure that is a state of self-stress two but
not sufficient rank conditions must be satisfied [2, 19, 5]. They are directly related to the
equilibrium and the force-density matrices where the solution(nodal coordinates and inter-
nal force-densities) for the self-stressed tensegrity are obtained. The first rank deficiency
conditions ensures at least one state of self-stress for the given structure if
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rA = rank(A)< b (2.15)

which is necessary for a non-trivial solution of the Eq. (2.13) to be found from the null-space
of the equilibrium matrix. In previous expressions, b represent the number of members or
elements.

The second rank conditions is related to the semi-definite matrix D as follows for a geometric
embedding in Rd:

rD = rank(D)< n−d (2.16)

where d is the space dimension and n the number of nodes. With this condition, d-particular
solutions for Eq. (2.14) exist generating a d-dimensional structure [34]. For an embedding
of maximal affine space [5] the largest possible rank of D is (n−d−1). This means that
the matrix has a nullity of (d +1).

2.1.2 Static and Kinematic Indeterminacy
A structure is said to be in statically and kinematically determinate when the equilibrium
equations are sufficient to determine the internal forces in the elements (number of eq.
equations is equal to number of unknown forces). Otherwise, if some additional structural
members than the ones strictly needed are added, additional stresses will be internally
introduced in general. Since there are more unknowns than then ones than can be obtained
from the equilibrium equations, more than one solution for the internal tensions in members
will be obtained. The structural system then becomes statically indeterminate and the
structure is said to be in a sate of self-stress.

On the other hand, if some element is removed from the structural system, the structure
geometry cannot be specifically determined and a set of independent infinitesimal mechanics
appear in the assembly [1, 24]. The system is then said to be kinematically indeterminate.
The introduction of infinitesimal mechanisms means that the nodes of the structure can move
infinitesimally without changing the member lengths.
The static and kinematic determinacy is directly governed by the generalized Maxwell’s rule

dn−b− rbm = m− s (2.17)

were rbm is the number rigid body motions. If s or m is determined, the Maxwell’s rule can
be used to compute the other one. However, with the first rank condition explained before,
the number of structural independent states of self stress and the number of infinitesimal
mechanisms can be obtained from the equilibrium matrix rank rA as studied by Calladine in
its investigation for a generalized Maxwell’s rule for tensegrity structures [3].

s = b− rA ≤ 1 (2.18)

m = dn− rA (2.19)

Through this two parameters, pin-jointed structures can be classified as follows [3, 22]:

20



A study on Tensegrity Structure and their Applications to Space

Assembly
Type Condition Static and Kinematic

Properties

I s = 0
m = 0

Statically determinate and
Kinematiically determinate

II s = 0
m > 0

Statically determinate and
Kinematiically indeterminate

III s > 0
m = 0

Statically indeterminate and
Kinematiically determinate

IV s > 0
m > 0

Statically indeterminate and
Kinematiically indeterminate

TABLE 2.1: Classification of structural systems

The group of tensegrity structures is the 4th one as they present static indeterminacy for self-
equilibrium theory. On the other hand, they normally are kinematically indeterminate thus
reducing the overall stiffness of the structure due to infinitesimal mechanisms [34]. Then the
initial configuration is not unique but one can still set up an initial configuration to obtain
the equilibrium matrix by assuming that small-deflection theory [1].

2.1.3 Physical Interpretation of the SVD
Similar to other assemblies, a wealth of information can be obtained from the four funda-
mental spaces (the row space, column space and left null space) of the equilibrium matrix
A. This spaces are obtained from the factorization of the equilibrium matrix through a Sin-
gle Value Decomposition as shown in Fig. 2.2 [22, 21]. Then, SVD is a factorization of a
positive semidefinite matrix (e.g a symmetric matrix with positive eigenvalues) to any m×m
through and extension of the polar decomposition. That is why is useful for electrical appli-
cations and structural mechanics. The SVD decomposition for the equilibrium matrix A is
given as follows:

Am×n = Um×mΣm×nVT
n×n (2.20)

where U ∈ Rm×m is a real unitary matrix, Σ ∈ Rm×n a rectangular matrix with positive real
numbers in its diagonal, and V ∈ Rn×n is a real unitary matrix. The entries in the diagonal
of Σ, called σii in Fig. 2.2, are called the singular values of A. The columns of U and
the columns of Σ are called the left-singular vectors and the right-singular vectors of A,
respectively.
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38

 A A V U U V V Vn m
T

m n n n n m
T

m m
T

m m m n n n
T

n n n m
T

m n n n
T

× × × × × × × × × × × ×= =ΣΣ ΣΣ ΣΣ ΣΣ  (2.44)

and horizontal matrix (n > m)

 A A U V V U U Um n n m
T

m m m n n n
T

n n n m
T

m m
T

m m m n n m
T

m m
T

× × × × × × × × × × × ×= =ΣΣ ΣΣ ΣΣ ΣΣ  (2.45)

2.6.1  An Inverse of a Matrix Using SVD

By using the orthogonality conditions of both eigenvectors

 

V V V V I

U U U U I

× = × =
× = × =

T T

T T

 
(2.46)

the inversions and transpose are given by the following relationships:

 

V V V V

U U U U

= ( ) =

= ( ) =

− −

− −

T T

T T

1 1

1 1

 

(2.47)

Hence, the inverse of (2.43) of a vertical matrix (m > n) can be written as follows:

 
A U V V Un m m m m n n n

T
n n n m m m

T
×

−
× × ×

−

× ×
−

×= ( ) =1 1 1ΣΣ ΣΣ
 

(2.48)

by inserting a unit matrix I in the form Im m m n
T

n m
T

× ×

−

×= ( )ΣΣ ΣΣ
1

 and

 
A V I U V Un m n n n m m m m m

T
n n n m m n

T
n m
T

m m
T

×
−

× ×
−

× × × ×
−

×

−

× ×= = ( )1 1 1 1
ΣΣ ΣΣ ΣΣ ΣΣ

 
(2.49)

followed by inserting a unit matrix I in the form I V Vn n n n
T

n n× × ×=  and

Fig. 2.12 The illustrations of the SVD of a vertical matrix A

2 Linear Algebra for Tensegrity

FIGURE 2.2: Singular value decomposition of the equilibrium matrix. Relationship between m, s, r
and the matrix decomposition U, Σ and V [1]

For a given matrix A ∈ Rm×n, with rank r, the caracteristics from the SVD decomposition
are the following:

• Matrix U ∈ Rm×m shows orthonormality as UT U = I (where I is the identity matrix)
as each column or row are orthogonal unit vectors (u j=1,m).

• Matrix Σ ∈ Rm×n has positive non-zero singular values σii in its diagonal.

• Matrix VT ∈ Rn×n is orthonormal V T V = I and each row vector v j=1,n of matrix V is
orthonomal.

The SVD decomposition is presented here as it will be the basis to get the solution to initial
pre-stress from the null-space of the equilibrium matrix A.

2.2 Form-Finding
One of the most critical parts in the design of a tensegrity structure is the form finding one.
As mentioned in previous sections, the form-finding requires a solution for Eq. (2.13) and
Eq. (2.14) (which means that a geometry shape and force-density at each element is found)
under the rank deficiency conditions.

Form-finding methods for tensegrity structures have been studied along the years and some
remarks are given to the work done by Conelly and Terrell [6], Vassart and Motro [33] and
Sultan et al. [28]. In this section the actual existing methods for form-finding are classified
as done by Tibert in [30] as: static and kinematic form-finding (FF) methods. A summary
of each one of them is given but they will not be explained in further detail as just two one
of them will be used.

• Kinematic FF methods: for this methods, the lengths of the cables are kept constant
while the struts length is increased until reaching a maximum. Same procedure can
be done keeping constant strut length and changing the cable ones until reaching a
minimum. Note that this ensures cables in tension and struts in compression which
mimics the way in which tensegrities are built in practice, without requiring explicitly
a pre-stress in cables [30]. This methods can be solved through:
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– Analytical Solutions

– Non-Linear Programming

– Dynamic Relaxation

• Static FF Methods: this methods are characterized by the set up relation between
equilibrium configurations of a structure with given topology and the member forces.
Various methods can be used for this analysis such as:

– Analytical Solutions

– Force-density Method
– Reduced Coordinates
– Energy Method

An extensive explanation of this methods can be found in the work done by Tibert and
Pellegrino [29, 30]. In this study, the force density method is implemented due to its
intuitive implementation and straight forwardness. Also the reduced coordinates method is
used to determine the nodal locations of a two tensegrity mast, which will be explained in
later sections.

The force density method for cable structures was first proposed by Linkwitz and Scheck
[23], where a simple mathematical trick is used to transform the non-linear equilibrium
equations of each node into a set of linear equations. This has been previously explained but
it is recalled now. For example, the equilibrium equation of a node i in the x direction is

∑
j

ti j

li j

(
xi− x j

)
= fix (2.21)

where node i is connected to no de j through a cable or a strut and ti j is the tension in
the element (or member). Although the equations seems to be linear, the length of the
element li j also depend on the nodal coordinates. That is why the previous expression can
be normalized for the element for-density as

qi j = ti j/li j (2.22)

whose value needs to be known (or approximated) at the beginning of the form-finding.
In the following section will deal with the implementation of this method to determine
super-stable tensegrities with positive semi-definite matrix D with nullity d+1. Vassart and
Motro [33] list three ways to determine a set of force-densities that achieve the required
nullity: (i) intuitive, (ii) iterative and (iii) analytical [30].

From the previous three techniques, the first one is valid for a few element number; the
second one is based in a trial and error research of nodal coordinates and force-density
vector from the nullity of A and D; and the third analysis D in a symbolic or semi-symbolic
form. The second and the latter one are most effective ones and they are studied for a simple
example of tensegrity.
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2.2.1 Numerical Force-Density Method
This method was extensively studied by Estrada et all in [2] and contrary to most existing
form-finding procedures [19, 29], a method where no initial assumptions about the elements
lengths, geometry or symmetry of the structure are not required (but they can be as we
will see later). The unique requirement for this method is that the connectivity between
elements and element type are intuitively set up, use a predefined even number of nodes
and a prototype of force density vector.

The prototype force-density vector is selected to be 1 for elements in tension and −1 for
elements in compression, such that:

q0 = [+1+1 +1︸ ︷︷ ︸
tension

· · · −1−1︸ ︷︷ ︸
compression

]T (2.23)

Then, the force-density matrix D is calculated using Eq. (2.10) and iteratively changed until
the rank condition Eq. (2.16) is satisfied. It is important that during the iteration process the
signs of the prototype force-density vector remain unchanged. Now the coordinates of the
structure can be approximate from the eigenvalue or Schur decomposition of D expressed
by:

D = WYWT (2.24)

If matrix D has maximal rank, i.e, rank(D) = n− d − 1, the first (d + 1) of the unitary
matrix W = [w1 w2 w3 ... wn] contains the basis of the nodal coordinates which solve the
homogeneous equation Eq. (2.14). The diagonal matrix Y has (d + 1) zero eigenvalues.
The nodal coordinates then can only be approximated for and arbitrary q. That is why the
force-density matrix D corresponding to the prototype q0 is not unlikely to satisfy the rank
requirement and therefore the structure is not in self-equilibrium. With this in mind, an
approximate set of eigenvector columns that satisfy the equilibrium condition Eq. (2.14) is
required.

An eigenvector column will be candidate for nodal coordinate if none of the members has
zero length but as short as possible. Considering the problems in terms of length it is possible
to choose an appropriate set of coordinates {wi,w j,wk} in which the total square length of
the entire structure is minimized:

b

∑
e=1

l2
e =

∥∥Cwi +Cw j +Cwk
∥∥2 (2.25)

To do so, the matrix W and the connectivity know matrix C are used to determine the
projected lengths

L = CW =
[(

wA
1 −wB

1

)(
wA

2 −wB
2

)
· · ·
(

wA
n −wB

n

)]
(2.26)

along all n directions for each pair (A.B) of connected nodes. The column vector wi for
which Cwi = 0 can be removed. Now to identify the set {wi,w j,wk} for Eq. (2.25), the
columns of L are identify by their 2-norm [2][

c1 c2 · · ·
]
= argmin

i
‖Li‖ (2.27)
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where the coefficients c1,c2, ... returned by this minimal argument function are the indices in
which the norm vector ‖Li‖ is minimized. The minimal indices are then taken as also their
multiplicity to have a pool of at least d candidate columns. The search of candidates can be
more narrowed up if the reduced matrix W̃ =

[
uc1 uc2 · · ·

]
is then used to factorize the

projected length through a QR decomposition to get acces to the upper triangular matrix R:

CW̃ = QR (2.28)

In that case the projections along each direction are sorted columnwise, i.e Cwi = QRi and
the linear dependent projections have their pivot set to zero. This pivots finally help to
choose the d independent columns as nodal coordinates [x,y,z]. At this point the configura-
tion that predominates along all equivalent ones is found and it has:

• minimal but non zero projection lengths,

• maximal rank condition for D, and

• linearly independent projections [Cx Cy Cz]

Ones the structure nodal coordinates have been found, the equilibrium matrix can be com-
puted using Eq. (2.33) and decomposed using a Singular Value Decomposition (SVD):

A = UΣVT (2.29)

where the matrices U and V have the following null-spaces as

U =
[

u1 u2 · · · |m1 · · · mdn−rΣ

]
(2.30)

and

V = [v1 v2 · · · | q1 · · · qb−rΣ
] (2.31)

where rΣ is the rank of the diagonal matrix Σ, mi ∈ Rd×n the vectors of infinitesimal
mechanisms and q ∈ Rb the states of self-stress, each of which solves the homogeneous
equation Eq. (2.13). However, if the structure is not in self-stress state there is no access to
the null space of A, normally because it has been calculated from approximated coordinates.
it is necessary then to modify A to be rank deficient applying a matrix operation Rnxd −→ Rb

that uses [x y z] to compute and approximation for a new q.

Supposing the equilibrium is not rank deficient after an approximate nodal coordinates are
computed. In this case, none of the V columns is a solution for Eq. (2.13). Nevertheless, the
column force-density vector qi whose sign entries match with the prototype q0 is selected
as possible solution. If any column has this property then it is necessary to select more than
column of solution until the signs match the prototype ones (positive + for tension elements
and negative − for compression elements). This update in the force density q that best fits
q0 can be obtained using a least square fit to calculate the vector coefficient q̃ that minimized
the following quantity: ∥∥[vj · · ·wb

]
q̃−q0∥∥2

(2.32)
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for a block of columns
[
vj · · ·vb

]
, such that q =

[
vj · · ·vb

]
q̃. the procedure starts taking the

two right most columns of q and the sign property is checked. If the signs does not match
with the prototype q0 another column is selected and the process is repeated until the sign
property is fulfilled.

At this point, a new q is obtained for the approximated coordinates which states

A =

 CT diag(Cx)
CT diag(Cy)
CT diag(Cz)

≈ 0. (2.33)

and ensures at least one state s = 1 of self-stress for the system. The process is repeated
again for the new force-densities until the two rank conditions in Eq. (2.16) and Eq. (2.15)
are satisfied. In summary, the form-finding procedure consists on iterating Eq. (2.27),
Eq. (2.28) and Eq. (2.32) until this rank conditions are satisfied. The potential null spaces
in D and A are exploited as to impose the existence of at least one solution[2].

Algorithm Flowchart

The flowchart describing the iterative algorithm used for the numerical form-finding of
tensegrity structures is presented in Fig. 2.3. A tensegrity can be then obtained for a d-
dimensional space just having an intuitive idea of the nodal connectivity’s and type of ele-
ments(necessary to build the prototype force-density vector q0).

input

(b) (c)

no

i=i+1

i=i+1

(a)

output

(e)

(d)

iterations

C

D

A

FIGURE 2.3: Flow chart for the numerical form-finding procedure for tensegrity structures[2]
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FIGURE 2.4: Nodes and elements forming a 3-strut tensegrity prism

A Matlab code has been implemented where the previous algorithm can be used to build
new tensegrity shapes and forms. Due to the interests of this project, the method is used
for demonstration purposes on form-finding of tenserities. It is used to determine the shape
of 3-strut prism (also known as tensegrity simplex), which is the simplest pure tensegrity
structure. Fig. 2.4 shows the way in which the elements are connected for this extensively
studied structure:

A tensegrity simplex is composed by 3 bars and 9 cables, interconnected through 6 nodes.
The connectivity matrix C ∈ R12×6 for this structure can be intuitively constructed as:

C =



1 −1 0 0 0 0
0 1 −1 0 0 0
1 0 −1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 1 0 −1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 1 −1 0 0



(2.34)

Where for each row representing an element, the two column nodes connected to this el-
ement are set to 1 and −1 respectively. Due to the symmetry properties of tensegrities, it
is preferivle to set the different groups of structural elements by groups. In this case, the
top and bottom cables are the first 6 rows of the matrix, the following 3 rows represent the
vertical cables and the last 3 ones are the struts. The initial prototype force density vector
q0 can be constructed then with this consideration as:
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q0 =
[

1 1 1 1 1 1 1 1 1 −1 −1 −1
]T (2.35)

The struts or bars are then forced to be in compression while the cables in tension. It will
be preferable, due to the mentioned symmetry, that the values for the vertical cables, the
force density value takes a different value. Nevertheless, as the objective is to determine the
real value of q, the prototype hypothesis will not be changed. The final input is the problem
dimension, which in this case is 3.

At this point, the iterative process starts and the force density matrix D can be constructed,
and in this case

D =


2 −1 −1 −1 1 0
−1 2 −1 0 −1 1
−1 −1 2 1 0 −1
−1 0 1 2 −1 −1
1 −1 0 −1 2 −1
0 1 −1 −1 −1 2

 (2.36)

The rank of this matrix is 4, which does not satisfy the rank deficiency condition Eq. (2.16)
as (4 <= 6−3−1). This is due to the initial prototype force-density vector. The matrix
is then decomposed into its eigenvectors and eigenvalues. Remember that the eigenvector
columns are the basis of nodal coordinates to satisfy the equilibrium condition. The potential
nullity of the eigenvalues is checked and in this case only two nullity columns are available.
Then, the number of columns is incremented at list to d+1= 4 to have enough candidates to
nodal coordinates. This candidates are reduced through the QR decomposition to compute
the projected length and 2-norm to determine the coordinates for minimum length elements.
Finally, from this first part of the iterative process, the set of candidates to nodal coordinates
is:

[xyz] =


−0.5543 −0.0253 0.5768
−0.5543 0.5122 −0.2665
−0.5543 −0.4869 −0.3103
0.1614 0.2665 0.5122
0.1614 0.3103 −0.4869
0.1614 −0.5768 −0.0253

 (2.37)

The effectiveness of the reduction method used to determine the candidates to nodal co-
ordinate shows a possible state of self-stress s = 1 fulfilling the rank condition Eq. (2.16).
The Singular Value Decomposition of A gives the tensegrity state of self stress for the given
connectivities and coordinates. As only one state of self-stress exists, the last column of
possible self stress states is selected, which is:
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q =



0.2041
0.2041
0.2041
0.2041
0.2041
0.2041
0.3536
0.3536
0.3536
−0.3536
−0.3536
−0.3536



(2.38)

This self-stress vector now leads to a rank deficient force-density matrix D and then the
tensegrity structure is determined directly in the first iteration. The obtained force density
vector, can be normalized for example, dividing by the first element, such that

q =



1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.7321
1.7321
1.7321
−1.7321
−1.7321
−1.7321



(2.39)

The previous results have been compared with the analytical solution for a simplex tenseg-
rity regarding verification purposes, which is [30]

q =



1
1
1
1
1
1√
3√
3√
3

−
√

3
−
√

3
−
√

3



(2.40)

which matches with the normalized values obtained from the numerical form-finding
method.
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Now this normalized internal force-density coefficients can be multiplied by a pre-stress
coefficient ps0 (in units of N/m) to set an initial level of pre-stress for the structure. Note
that the symmetry behavior of tensegrities is notable. The top and bottom cables are
subjected to the same force-density while the vertical cables and struts are subjected to
the same but opposite internal force. The latter ensures that the bars are in compression
as needed. The visualization of the obtained tensegrity is shown in Fig. 2.5. The obtained
structure is exactly the same as shown in Fig. 2.4 and the coordinates can be now placed
as desired in space (i.e to have a defined geometry with the 1-2-3 triangle is at the z = 0
plane). The found force-density vector is the internal forces that makes the structure
self-equilibrated, an then it is mandatory for any structural analysis. As mentioned before,
it is possible to normalize it and then scale by a pre-stress factor α to increase the structural
rigidity under external loads, as here they are not considered.

To show more demonstrative cases, the developed code was tested for different know or al-
ready existing tensegrities. First, adding more struts to the same type of prismatic tensegrity
and then, overlapping the 3-strut prism to generate a mast.

(A) Lateral View (B) Top View (C) Side View

FIGURE 2.5: Different views from the obtained tensegrity structure

The increase the number of struts, it is necessary to intuitively include the new connectivities
to generate new C matrix. The connectivity for this type of structures is easy to define using
programming software, allowing to simplify the intuitive part of this analysis. For a 4-strut
tensegrity prism and an 8-strut one, the bottom an top surfaces still have the same area rotate
an angle as it can be seen from Fig. 2.6.
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FIGURE 2.6: Results from the form finding of a 4-strut and 8-strut prism

For the case of 4-strut prism, the force-density vector q states that, in order for the structure
to be in equilibrium: bottom and top cables have a normalized force density coefficient
of qt,b = 1 while lateral cables and struts have a coefficient of ql,s = 1.4142 and −1.4142
respectively. The level of internal force-density in the lateral cables (tension) and struts
(compression) has been reduced with respect the 3-strut case. For the case of 8-strut prism,
top and bottom cables are normalized to qt,b = 1 while lateral cables and struts have a
force-density coefficient of ql,s = 0.7654 and −0.7654 respectively. Again, the traction
in lateral cables and compression in struts has been reduced as the number of structural
elements is increased (the internal loads are distributed along more elements, reducing the
one carried by each of them).

The program has been exploited to determine its ability to develop structures that are
coupled to form a mast. To do so, considering the 3-strut prism analyzed before a new
connectivity is determined where two of them superimposed to form a two-stage mast. To
visualize the impact on the addition of elements during the task of form finding, the follow-
ing experiment is proposed: initially the simplex structures are directly superimposed using
cables (names saddle) to unify both stages and the verical cables of a simplex tensegrity.
Then, new cables (namelly diagonal) are introduced in the previous connectivities. Same
procedure is finally done by adding a new set of cables into the bottom stage (reinforcing
cables).
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For the case where only the two simplex are overlapped, the desired form is shown in Fig. 2.7
while the obtained geometry through the form finding process shows the results in Fig. 2.10

FIGURE 2.7: Shape of the desired two stage mast with only vertical cables

The dark lines represent the top and bottom cables, the cyan ones are the saddle cable, the
dark ones represent the vertical cables and the struts are repented by the red lines. The
implemented form-finding method leads to a solution for this connectivity topology at the
first iteration. Although the structure fulfilling the equilibrium conditions is found, its shape
is quasi 2-dimensional, without any interest. However, the bars seems to no intersect or
collide between them and then can be considered a tensegrity structure. Fig. 2.8 shows the
obtained structure and there are some difficulties to understand it.
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FIGURE 2.8: Results for the shape of a two stage mast with only vertical cables
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The same structure is now provided by diagonal cables (green lines in Fig. 2.9) to provide
more stiffness to the structure. The results given by the implemented algorithm are shown
in Fig. 2.10.

FIGURE 2.9: Desired shape of a tensegrity structure with vertical and diagonal cables

The computed structure this time is entirely 2-dimensional and it cannot be considered a
tensegrity structure as the bars and cables are colliding. This fact seems to be corrected
when reinforcing cables (dashed lines in Fig. 2.12).
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FIGURE 2.10: Results from the form finding of a 2 stage tensegrity mast with vertical cables and
diagonal cables
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For the case where reinforcing cables are included in the first stage of the structure, the solu-
tion becomes 3-dimensional and takes a geometry similar to the one displayed in Fig. 2.11.
However, as the algorithm is not constrained to all the possible conditions (location in space,
length of elements) the structure found is not symmetric and the self-stress state does not
fulfill unilateral behavior. This means that some cables are in tension and compression as
well as struts.

FIGURE 2.11: Desired shape of a tensegrity structure with vertical cables, diagonal cables and
reinforcing cables
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FIGURE 2.12: Results from the form finding of a 2 stage tensegrity mast with vertical cables, diag-
onal cables and reinforcing cables

Normalized force-density q Element connectivities
for Structure 3

Element Struct 1 Struct 2 Struct 3 Node 1 Node 2

1 1.0000 1.0000 1.0000 1 2
2 1.0000 1.0000 0.2016 2 3
3 1.0000 1.0000 0.1901 3 1
4 1.0000 1.0000 0.3548 10 11
5 1.0000 1.0000 0.0441 11 12
6 1.0000 1.0000 0.2132 12 10
7 1.0000 1.0000 0.9281 1 5
8 1.0000 1.0000 0.2891 2 6
9 1.0000 1.0000 0.3558 3 4
10 1.0000 1.0000 -0.0050 7 12
11 1.0000 1.0000 0.0980 8 10
12 1.0000 1.0000 0.2621 9 11
13 1.0000 1.0000 0.7878 4 7
14 1.0000 1.0000 0.5663 5 8
15 1.0000 1.0000 -0.2290 6 9
16 1.0000 1.0000 0.4372 4 9
17 1.0000 1.0000 0.4241 5 7
18 1.0000 1.0000 -0.0629 6 8
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19 1.0000 1.0000 0.4386 1 7
20 1.0000 1.0000 0.6973 2 8
21 1.0000 1.0000 -0.3715 3 9
22 -1.0000 1.0000 0.3123 4 12
23 -1.0000 1.0000 0.5288 5 10
24 -1.0000 1.0000 0.0869 6 11
25 -1.0000 -1.5000 -0.8771 1 8
26 -1.0000 -1.5000 0.9818 2 9
27 -1.0000 -1.5000 -0.4960 3 7
28 -1.5000 -0.7563 1 4
29 -1.5000 -0.9472 2 5
30 -1.5000 -0.0158 3 6
31 -0.4389 7 10
32 -0.3181 8 11
33 -0.1963 9 12

TABLE 2.2: Normalized pre-stress coefficient for different structures.

Although this method is a fast way where a simple algorithm is needed to determine the
form-finding of a tensegrity structure, it suffers from different drawbacks [1], which are:

• As the vectors of tension coefficients and coordinates are selected from the null-space
o the equilibrium matrices A and D, we do not have control over the length units.

• By defining the tensegrity configuration by using a incidence matrix C and ensuring
that the initial tension coefficient vector q (i.e a prototype vector where the cables
have a coefficient of 1 and bars a coefficient of -1), the procedure finds a tensegrity
structure in the first iterations (first iteration for 3D Class 1 structures), otherwise
the model fails by not leading to a valid structure for the defined dimension (i.e a 3D
structure collapses into a 2D one). Also, for non-uniform tension vectors the iterations
required by the program to find a tensegrity are increased.

• For complex tensegrities, the aesthetics of the structure is notably reduced and then
symmetry properties are lost.

Regarding this drawbacks it is necessary to define other methods which allow us to build
tensegrities with a desired shape and structural value. This is way normally analytical and
semi-analytical models are used for this purpose. In this project, the reduced coordinates
method is also studied to generate a tensegrity mast composed by two 3-strut simplex tenseg-
rities overlapped. For this method, the initial location of the nodes is introduced in symbolic
form and for a given design parameters, the solution is found for the overlap. This method
is extensively explained in Section 2.4.

2.3 Initial Self-Stress Design
In most of the existing method for form-finding of tensegrity structures, the previous
methodology and similar ones have been used to determine novel shapes in view of
aesthetic and mechanical properties. The determination of the stress distribution to
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appropriately stabilize the structure for a given shape is called initial self-stress design [31].

Normally a tensegrity structure can have more than one states of self-stress (s > 1). Due
to this, the member forces can be expressed as linear combination of this self-stress states.
Sometimes, the vectorial bases obtained from the null space of the equilibrium matrix does
not take into account unilateral behavior. As a consequence, it is necessary to determine
a suitable state of self-stress for a given topology. When the initial state of self-stress is
determined, the structure can be analyzed (statically, dynamically).

For a known structure shape (nodal coordinates) and connectivities, the equilibrium matrix
A can be constructed and decomposed using Singular Value Decomposition. The number
of states of self-stress is given by the rank of this matrix.

A = UΣVT (2.41)

As already seen, the last s columns of matrix V represent the right null-space vector of the
equilibrium matrix A. According to the number of self-stress states, two situations are given.

CASE I - (s = 1)

If the number of states of self-stress is equal to 1, then no extra calculations have to be
made as only one right null-space vector solution (satisfying self-equilibrium equations) is
given. This is the situation for the studied structures in the numerical form-finding. The
force-density q obtained from this solution may force the cables to carry tensions while
the bars carry compression. Since this force-density vector values are relative, it can be
multiplied by −1 to carry unilateral behavior.

CASE II - (s > 1)

If there is more than one number of states of self-stress (s > 1), there are s number of
independent states of self-stress, and they do not necessarily satisfy the unilateral behavior of
elements. In such case, the force density vector has to be determined as a linear combination
of the last s columns of matrix V.

q = c1vm−s+1 + c2vm−s+2 + c3vm−s+3 + · · ·+ csvm (2.42)

where c is the vector coefficients for s independent self-stress modes. For convenience and
simplicity, the matrix G is defined as:

c =
{

c1 c2 · · · cs
}

(2.43)

V =
[

v1 v2 · · · vrA | vm−ns+1 vm−ns+2 · · · vm
]

(2.44)

G =
[

g1 g2 · · · gs
]
=
[

vm−s+1 vm−s+2 · · · vm
]

(2.45)

the force density vector q can be now written as
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q = Gc (2.46)

As the matrix G does not carry the elements information type, it does not take into account
the unilateral behavior between elements. This problem can be solved if we consider sym-
metry groups of elements which carry the same amount of force-density. This geometric
symmetry can be found by identifying the members in similar positions, same length and
carrying integral force-density. Then, h symmetry groups can be created and the force-
density vector can be expressed as:

q =
{

q1 q1 · · · qi qi · · · qh qh
}T

=



1 0 0 0 0
... 1 0 0 0

0
... 1 0 0

0 0
... 1

...

0 0 0
... 1




q1
...

qi
...

qh

 (2.47)

and more compactly as

q =
{

q1 · · · qi · · · qh
}T

=
[

e1 · · · ei · · · eh
]


q1
...

qi
...

qh

 (2.48)

where qi represents the force-density value for the group of symmetry i, and ei represents a
column vector which entries are 1 for the ith group of symmetry while the others are zero.
Introducing Eq. (2.48) into Eq. (2.46) yields

c1g1 + c2g2 + · · ·+ cnsgns− e1q1− e2q2−·· ·− ehqh = 0 (2.49)

and in matrix form

Gc = 0 (2.50)

where

G =
[

g1 g2 · · · gns −e1 · · · −ei · · · −eh
]

(2.51)

and

c =
{

c1 c2 · · · cns q1 · · · qi · · · qh
}T (2.52)

The solution for this system lies in the null-space of matrix G. This solution is normally a
vector column with the ci coefficients and the force-densities for each group of symmetry.
The last step is to set the adequate values for each element depending on its group of
symmetry. This ensures unilateral behavior along the entire structure.

The initial self-stress design or force-finding method has been used in static analysis of
tensegrity structures. It allows us to determine an initial state of self-stress for a given
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structure without the influence of external loads.

In the following section, another method for form-finding is presented. This method is used
to determine the self-equilibrium condition for a given tensegrity structure topology. It
different from analytical form-finding because the structure is already known and the length
of the bars and cables can be controlled for design purposes.

2.4 Reduced Coordinates Method
The numerical form-finding studied in the previous section has some disadvantages due
to constraint which are not considered. This problem can be solved by the reduced
coordinates methods for form-finding, introduced by sultan et al. [28]. Imagine that
we have a tensegrity structure with b elements (M cables and O struts). The struts are
supposed to be a set of bilateral constraints acting on a structure of cables. Then, a set of N
independent generalized coordinates g = (g1 g2 ... gN)

T is introduced to define the position
and orientation of the struts.

For the said structure, consider a state of self-stress and let t j denote the axial force in a
generic cable element j. The force in the cables t = (g1 g2 ... gM)T are in equilibrium
with the adequate forces in the struts and no external loads. From virtual work, a set of
equilibrium equations relating the forces in the cables, but without showing explicitly the
forces acting inside the struts can be obtained.

Consider a virtual displacement δg on the structure which does not involve extension of the
struts. The length of the cable j will change so that

δ l j =
N

∑
i=1

∂ l j

∂gi
δgi (2.53)

and considering all cables

δ l = AT
δg (2.54)

where the element of the N×M equilibrium matrix A are:

Ai j =
∂ l j

∂gi
(2.55)

As the struts are considered rigid inelastic bodies, their extension is zero and the virtual
work in the struts is also zero. The total internal work then comes by hand of the cables,
which is defined as

tT
δ l = (At)T

δg (2.56)

As already mentioned, the equilibrium condition is achieved when the previous expression
is zero for any virtual displacement δg, and then:

At = 0 (2.57)
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where t is the normalized internal force vector. The previous equation has no trivial solution
if and only if

rankA < M (2.58)

Where only entirely positive solutions are of interest, i.e

t j > 0 for j = 1,2, . . . ,M (2.59)
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Chapter 3

Static Analysis of Truss Structures

3.1 Linear Finite Element Method
In this section the classical FEM for truss structures is presented by implementing the Direct
Stiffness Method. The equations in matrix form for a pin-jointed structure can be obtained
from the individual equilibrium study of the different members. Fig. 3.1 shows an isolated
truss element e, of length le subjected only to axial forces Fe

1 and Fe
2 .

FIGURE 3.1: Truss element with 2 nodes in a 2D space

Same notation as in the 3-D algorithm bars for Computational Engineering notes is used
here. The strain at any point along the element is defined by the strength of the material, i.e

ε =
∆le

le =
ue

2−ue
1

le (3.1)

where ue
1 and ue

2 are the nodal displacements at nodes 1 and 2. The strain along the element
is related to the strain through the Hooke’s law [REF] as:

σ = Ee
ε = Ee ue

2−ue
1

le (3.2)

where Ee is the material Young Modulus. If we cut transversely the bar element e, the axial
force N at that section can be obtained by integrating the stress over the cross sectional area.
This axial force in a structure is transmitted along to the adjacent bars through the joints. If
the material is homogeneous then:

N = A(e)
σ = (EA)(e)

u(e)2 −u(e)1

l(e)
(3.3)
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The equilibrium nodal equations for the bar in Fig. 3.1 is simply:

Fe
1 +Fe

2 = 0 (3.4)

with

Fe
2 = N = (EA)e ue

2−ue
1

le = κ
e (u2−u1) (3.5)

where κ = EeAe/le and the previous equilibrium equations for the element written in matrix
form become:

Fe =

{
Fe

1
Fe

2

}
= ke

[
1 −1
−1 1

]{
ue

1
ue

2

}
= Keue (3.6)

where Ke is the bar stiffness matrix, which depends on the geometry of the bar (le, Ae) and
its mechanical properties (Ee). ue = [u1,u2]

T and Fe = [F1,F2]
T are the small displacements

and the joint equilibrium force vector for the bar element, respectively.

It is possible to write the equilibrium equations for an entire structure by imposing the
equilibrium of forces at each of the n joints, i.e

ne

∑
e=1

Fe
i = Fj , j = 1,n (3.7)

The summation on the left hand side of (3.7) extends over all the ne bars sharing the joint
point with the global number j and Fext

j is the external load acting on that joint. The values
of the bar end forces Re

i can be expressed in terms of the joint displacement, leading to the
following global equilibrium equation:

K11 K12 · · · · · · K1n
K21 K22 · · · · · · K2n

...

...
Kn1 Kn2 · · · · · · Knn





u1
u2
...
...

un


=



f1
f2
...
...
fn


(3.8)

which in vector-matrix form is:

Ku = f (3.9)

where K is known as the global stiffness matrix, u and f the nodal global displacements and
global force vectors respectively. The computation of the global stiffness matrix is known
as assembly process.

The stiffness matrix derived in Eq. (3.6) corresponds to a 1D linear elastic truss. This stiff-
ness matrix can be derived for a 2D or 3D truss element using the a transformation matrix.
For a 3D element with 3 degrees of freedom per node:

Re =
1
le

[
xe

2− xe
1 ye

2− ye
1 ze

2− ze
1 0 0 0

0 0 0 xe
2− xe

1 ye
2− ye

1 ze
2− ze

1

]
(3.10)

and the stiffness matrix in global coordinates for this case becomes then from
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Ke = Re>Ke′Re (3.11)

where

Ke′ =
AeEe

le

[
1 −1
−1 1

]
(3.12)

and the element length is found through the coordinates x, y and z of nodes 1 and 2.

le =

√(
xe

2− xe
1
)2

+
(
ye

2− ye
1
)2

+
(
ze

2− ze
1
)2 (3.13)

For this method, it is possible to include the pre-stress by modeling it as an internal force.
In local coordinates, the internal force vector is:

Fint
e′ = fi

[
1
−1

]
(3.14)

where fint is the internal tension in each element. This can be expressed in terms of global
coordinates using the same transformation matrix Re.

Fe
int = Re>Fe′

int (3.15)

The objetive of this project is not to explain the entire FEM method and some parts will
be assumed to be know. The next step now is to assemble the global stiffness matrix, the
global internal force vector and global external force vector if there is. The solution for the
dispalcements is determined by a mandatory set of boundary conditions. Some degrees of
freedom are fixed (they will not suffer displacements) and then, the reduced stiffness and re-
duced force vector for the non-fixed DOFs are used to determine the structure displacements.

3.2 Extension to Non-Linear FEM
Classically, spatial reticulated system are studied with the hypothesis of small deformations
and displacements which leads to a linearization of their behavior under external loads.
Then the study explained in the previous section is considered sufficient. However,
depending upon mechanical properties the elements, levels of external loads or just
structural specifications, other hypothesis have to be taken into account for: (i) the material
behavior and (ii) the magnitude of the displacements [12]. The study then remain into the
geometrical and non-linear analysis of the structure.

When talking about tensegrity structures, they are considered as spatial reticulated systems.
Due to the presence of pre-stress between the elements to stabilize the structure, they
exhibit geometric non-linearity.

The development of a nonlinear has the same basis the model for a truss structure but now
including the geometric non-linearity of the system. The assumptions for this model are:

• The elements composing the structure can only carry axial loads.

• Cables can only carry tension while struts or bars carry compression loads. This
ensures a unilateral element behavior.
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FIGURE 3.2: Truss element with two nodes in a 3-D space

• The loads are applied at the nodes.

• From the form-finding part, the nodal coordinates of the structure and the normalized
force-density vector are known. This allows us to determine initial pre-stress of the
structure under no loads but with a self equilibrated structure.

Imagine the 3-dimensional space truss shown in Fig. ??, with two nodes at each end and the
local axes are x̂, ŷ and ẑ. The strain energy of the element is written as

Ue =
1
2

∫ le

0
σx̂εx̂Adx̂ (3.16)

where le and A are the length and cross-sectional area of the element respectively, σ is the
axial stress and ε the axial strain. The relation between the strain and stress has been seen
in Eq. (3.2). The strain energy becomes then:

Ue =
1
2

∫ L

0
EAε

2
x̂ dx̂ (3.17)

where E is the Young Modulus or elasticity modulus of the element. To account for large
deformations and displacements quadratic terms must be introduced. The exial strain is then
written as

ε =
∂ û
∂ x̂

+
1
2

[(
∂ û
∂ x̂

)2

+

(
∂ v̂
∂ x̂

)2

+

(
∂ ŵ
∂ x̂

)2
]

(3.18)

where ûi, û j and ûk represent the nodal displacement in x̂, ŷ and ẑ directions respectively.
Along the truss element the nodal displacement have a linear variation and then the deriva-
tion in Eq. (3.18) can be written as:

∂ û
∂ x̂

=
∆û
∆x̂

=
x̂2− x̂1

L
∂ v̂
∂ x̂

=
∆v̂
∆x̂

=
ŷ2− ŷ1

L
∂ ŵ
∂ x̂

=
∆ŵ
∆x̂

=
ẑ2− ẑ1

L
Substituting back into Eq. (3.18) and ignoring the cubic and higher order terms:
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Ue =
1
2

EAL

[(
x̂2− x̂1

L

)2

+
∂ û
∂ x̂

{(
x̂2− x̂1

L

)2

+

(
ŷ2− ŷ1

L

)2

+

(
ẑ2− ẑ1

L

)2
}]

(3.19)

At this point, the partial derivative ∂ û/∂ x̂ can be approximated as:

∂ û
∂ x̂
≈ εx̂ =

σx̂

E
=

T
EA

(3.20)

where T is the element pre-stress force. The value of T will depend on the element type
(positive for cables in tension and negative for bars in compression). Rearranging terms, the
strain energy of the two node struss element becomes

Ue =
1
2

EA
L

(x̂2− x̂1)
2 +

1
2

T
L

{
(x̂2− x̂1)

2 +(ŷ2− ŷ1)
2 +(ẑ2− ẑ1)

2
}

(3.21)

If a vector of nodal coordinates containing a row with the coordiantes of each node is in-
troduced as u = {x̂1, ŷ1, ẑ1, x̂2, ŷ2, ẑ2}T , the quadratic terms in Eq. (3.21) can be expressed
as:

(x̂2− x̂1)
2 = (x̂2− x̂1)

T (x̂2− x̂1) = uT



−1
0
0
1
0
0


{
−1 0 0 1 0 0

}
u (3.22)

(x̂2− x̂1)
2 =


1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (3.23)

The same procedure is repeated for the other two quadratic terms in ŷ and ẑ directions.
Doing so and substituting in Eq. (3.21), the strain energy is finally expressed as:

Ue =
1
2

uT KLu+
1
2

uT KNLu (3.24)

where KL and KNL are the linear and non linear stiffness matrices respectively [38, 41,
42]. Both components represent the tangent stiffness matrix of the element. The linear
component represents the material stiffness matrix, normally used for small-deformation
truss, and the nonlinear component is the geometrical stiffness matrix caused by pre-stresses,
(Guest, 2006). They are expressed as:
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KL = EA
L


1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0



KNL = T
L


1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1



(3.25)

This new geometric matrix shows the effect of pre-stress in the element and it is isotropic at
each node [53, 54]. The stiffness matrix in local coordinates for the truss element is:

K = KL +KNL (3.26)

For an assembly of elements, the stiffness matrix of the structure is determined by expressing
the local coordinates X in terms of global coordinates X. To do so, explained for the linear
FEM procedure, transformation matrices are needed. The relation between local and global
coordinates is given by

X = TX (3.27)

where the transformation matrix T is given by

T = 1/L


l1 m1 n1 0 0 0
l2 m2 n2 0 0 0
l3 m3 n3 0 0 0
0 0 0 l1 m1 n1
0 0 0 l2 m2 n2
0 0 0 l3 m3 n3

 (3.28)

and the direction cosines for the transformation matrix considering a truss element are

l1 =
x2− x1

L

m1 =
y2− y1

L

n1 =
z2− z1

L

(3.29)

where the other direction cosines are not taken into account since do not appear in the final
stiffness matrix expression. The other four rows can be then set to zero. This procedure can
be also repeated for the external loads in local coordinates so that

Fext = TFext (3.30)

where Fext and Fext are the external loads force vector in local and global coordinates repec-
tively. For a typical structural system, the relation between the external loads and the dis-
placements is given by the relation in Eq. (3.9) as
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Fext = Ku (3.31)

and implementing the transformation matrix as in Eq. (3.30)

TFext = KTu (3.32)

and re-arrenging

Fext = T−1KTu (3.33)

As the transformation matrix is orthogonal, they obey te property T−1 = TT . Therefor,

Fext = TT KTu (3.34)

As a result, the stiffness matrix in global coordinates can be expressed as:

K = TT KT (3.35)

The linear and geometric stiffness matrices for each individual element need to be expressed
in coordinates associated with global axes. After this transformation, this two matrices are
summed as in Eq. (3.36) to represent the overall stiffness of the system. The traditional FEM
assembly process is used to asseble the global stiffness matrix as

K = KL +KNL (3.36)

It is important to note that the geometric matrix is invariant to transformation and then then
KNL is already expressed in global coordinates.

The final consideration to close the nonlinear FEM method is the consideration of the inter-
nal forces acting on a pre-stressed system. For the truss element in figure 3.2, the internal
force vector with respect to local coordinates is:

Fint = T
{
−1 0 0 1 0 0

}
(3.37)

and in global coordinates with the same transformation matrix T

Fint = TT Fint (3.38)

Following the same line as for the global stiffness matrix, the internal force vector can be
assembled for an entire structure. The solution for the displacements is given by imposing
some boundary conditions as already mentioned and solving for the reduced matrices.

3.3 Static Analysis with External Loads
As mentioned before, the study of the behavior of a tensegrity structure under external loads
has a nonlinear solution and then an iterative method is required. If the structure is under
external loads, large deformations and/or deformation in it can occur, and then the structure
stiffness level will be changed. If the loads are huge enough, the cables of a tensegrity
structure may go slack and the structure stiffness will be reduced, or the distribution of
forces in the structure may considerably change, affecting stiffness [34].
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A Newthon Raphson algorithm is considered as best option for this nonlinear analysis. The
process starts setting an external load and iterating for this load until a solution that stabilizes
the system is obtained. For each iteration, the stiffness matrix is recomputed for te deformed
struture. The non-linear relationship between displacements and external forces is then:

KT u = Fext−Fint (3.39)

The condition of equilibrium is achieved when internal forces equal the external ones. This
is then the convergence condition for the resolution of the system.

From the form-finding process, the normalized force-density vector q for the structure to be
in self-equilibrium has been obtained. With this, the initial internal force for element i in a
pre-stressed structure is obtained as:

ps0qiLi = Ti =
EiAi

L0,i
(Li−L0,i) (3.40)

where ps0 is the coefficient of pre-stress force, denoting the level of initial pre-stress of the
structure(units of force per unit length). The rest length of the element L0,i of the element
can be then computed for a given pre-stress level ps0 as

L0,i =
EiAiLi

EiAi +Ti
=

EiAiLi

EiAi + ps0qiLi
(3.41)

At this point, all the required data to build the stiffness matrices and internal force vector
per element in global coordinates is determined. The assembly of the global K and Fint can
be now done considering two nodes per element and 3 degrees of freedom (DOF) per node.

The problem now can be solved just considering the internal forces and the initial displace-
ments can be obtained. This initial displacements will be caused by the internal forces and
the initial pre-stress level ps0 considered. The problem then starts when an external load is
introduced to the system. Note that this external load is considered to be assembled as well
as the internal force vector (the loads are directly set into the corresponding DOF direction).
For this load, the solution for Eq. (3.39) is obtained and the displacements are computed.
The new nodal coordinates due to this displacements are determined as:

X = X0 +u (3.42)

where X0 denotes the initial (or previous) coordinates of the structure and u the displacement
due to influence of an external load (sol for Eq. (3.39)). Again, the length of each element
is computed and the internal forces-densities (force per unit length) updated using Hookes
Law [4] as in Eq. (3.40)

qi =
EiAi

L0,iLi
(Li−L0,i) (3.43)

and the new element pre-stress force T is obtained multiplying by the new length of
elements (force units). Finally, the global stiffness matrix is then assembled such as the
global internal force vector. The force balance for each node is done by computing the norm
of Fext −Fint . The process for the same external load is repeated until the norm is under
a pre-defined tolerance. Then, the external force is increased and the process is repeated
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again. When a number of iterations N is achieved denoting the final range of increasing
external load, the process is finished.

Flow Chart Diagram

A program using Matlab has been developed following the algorithm described and shown
in the following flow chart.

49



A study on Tensegrity Structure and their Applications to Space

Input Data

Initial Self-Stress
Design

   Input Data:
 -Nodal Coordinates
 -Nodal Connectivities
 -Material Connectivitis
 -Material properties
 -Initial pre-stress level
 -External Force type and DOF where it acts.

-Determine the self-stress states and
compute the pre-stress coefficient vector.
-Determine the Internal forces in each
element (Pre-stress forces)
-Determine the rest length of each element
(considering initial pre-stress) and the initial
length (without considering pre-stress)

Initial Self-Stress
Design

-Construct the internal force vector, material
and geometrical stiffness matrices in local
coordinates and transform to global
coordinates.
-Assemble both global stiffness  matrix and
global internal force vector.

Global Force vector
-Set an external load and start iterative
process and assemeble the global external
force vector.

norm(                    )

-Iterate for the same external load until this
condition is fulfilled. For each iteration, the
internal force is updated using Hooke's law.
Then, global stiffness matrix and global
internal force vector are assembles again.

Yes

No

If the internal force vector is approximattely
equal to the external force vector, the
process is restarted increasing the external
load. Otherwise, the new internal force
vector is used for the next iteration.

Once the applied external force has been
achieved, the program stops the Newthon-
Rapson method and return the
displacements for the different levels of
force, the new coordinates and the internal
force vector of each element for each
external load
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FIGURE 3.3: Flowchart Diagram for the non-linear FEM method
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3.3.1 Program Test
The validation of the program has been done following the research of Kebiche et all [12]
where a simple tensegrity cell, composed by four struts and 12 cables. Several external
loads have been applied to the tensegrity in order to determine its behavior against trac-
tion and compression, flexion and torsion loads. The following figure shows the tensegrity
connectivities and the defined scenario:

867K. Kebiche et al. /Engineering Structures 21 (1999) 864–876

behaviour by solving the same non-linear equation sys-
tem (1), whose initial conditions (tangent matrix, internal
stresses) are defined by the self-stress state. The solving
algorithm is then summarised by:

[t
0KL 1 t

0KNL] i 2 1{ Du} i 5 { tR} 2 { t
0F} i 2 1 (9)

{ t
0u} i 5 { t

0u} i 2 1 1 { Du} i (10)

Initial conditions:
If s is the final number of iterations needed in the

algorithm self-stress implementation, for iterationi 5 1
and stept 5 1:

[1
0KL]0 5 [K L]s; [ 1

0KNL]0 5 [KNL]s (11)

h1
0Fj0 5 { F} s, h 1

0uj0 5 0 (12)

3. Numerical applications

We applied this method to two systems:

1. a tensegrity cell, the four-strut tensegrity system (Fig.
2) comprising four struts and 12 cables. Several load-
ings are investigated: traction, compression, flexion
(upward and downward) and torsion (direct and
indirect). For the loading case, influence of self-stress
level is investigated;

2. an assembly of five ‘four-strut tensegrity systems’
called a tensegrity beam. This beam is subjected to
distributed and concentrated traction load.

Fig. 2. Geometry of the four-strut tensegrity system and different load cases.

3.1. Characterisation of a four-strut tensegrity system

3.1.1. Behaviour
The form-finding step, not explicated here, defines the

null self-stress geometry equilibrium. Stresses in all bars
(struts and cables) must verify node equilibrium in the
corresponding geometry. To determine them, Pellegrino
ant Calladine [2,3] and Vassart et al [4] have developed
a method based on analysis of matrix equilibrium [A]
which satisfies:

[A]hq0j 5 0 (13)

where {q0} is the force density coefficient in the case of
self-stress (called self-stress coefficient in the following
text). Each component of this vector is associated to an
element and is equal to the ratio between the stress and
the length of this element. Study of the kernel of matrix
[A] allows determination of the self-stress basis.

For the four-strut tensegrity system (Fig. 2), only one
self-stress basis exists. Table 1 gives this basis and
stresses in the different elements for a self-stress coef-
ficient g equal to2 5.5 daN/cm (traction, 0 and com-
pression > 0).

When self-stress implementation is achieved a slight
difference can be observed between theoretical and real
stress values (last column). Corresponding node co-ordi-
nates are given in Table 2 (only for loaded nodes).

Geometrical and mechanical characteristics taken in
account for calculations are:

Cable cross-section:Ac 5 0.28 cm2

Strut cross-section:Ab 5 0.325 cm2

Young’s modulus:Ec 5 40 000 MPa (cables);Eb 5
200 000 MPa (struts)

FIGURE 3.4: Geometry of the four-strut tensegrity system and different load cases [12]

The considered structure has the following nodal coordinates in cm units.

Node x y z Node x y z

1 0 100 0 5 50 0 50
2 0 0 0 6 100 100 0
3 0 50 50 7 100 0 0
4 50 100 50 8 100 50 50

TABLE 3.1: Nodal Coordintes of the tensegrity structure in Fig. 3.4

Following the Force-Finding method explained in Chapter ??, the connectivity matrix C of
the structure is determined and the equilibrium equation A is built. The SVD decomposition
of A states the number of self stress states for this structure is s = 1. This is then used to
determine the force-density matrix and again the SVD decomposition of it done in order to
determine force-density for each group of symmetry (which in this case are four: 4 bottom
cables, 4 top cables, 4 diagonal cables and 4 struts). The initial pre-stress level selected
for this problem is ps0 = 55 N/cm. The rest length (without pre-stress) is then computed
and compared with the real initial one (without no pre-stress). the data at this point of the
problem is summarized in the following table:
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Element Nodes Nature Self-stress
Coeff. q0

Length
Le[cm]

Rest L.
Le

0[cm]
Internal stress

T [N]

1 1 6 1 100 99.51 5500
2 2 7 1 100 99.51 5500
3 1 2 1 100 99.51 5500
4 6 7

Lower
cables

1 100 99.51 5500
5 3 4 2 70.71 70.22 7778.17
6 3 5 2 70.71 70.22 7778.17
7 4 8 2 70.71 70.22 7778.17
8 5 8

Upper
cables

2 70.71 70.22 7778.17
9 2 5 2 70.71 70.22 7778.17

10 7 8 2 70.71 70.22 7778.17
11 4 6 2 70.71 70.22 7778.17
12 1 3

Bracing
cables

2 70.71 70.22 7778.17
13 3 6 -2 122.47 122.72 −13472.18
14 2 8 -2 122.47 122.72 −13472.18
15 1 5 -2 122.47 122.72 −13472.18
16 4 7

Struts

-2 122.47 122.72 −13472.18

TABLE 3.2: Elements, nodal connectivities and initial properties.

For the present tensegrity, the geometrical and mechanical characteristics are:

Element
Type

Young Modulus
E [GPa]

Cross-section
A [cm2]

Cables 40 0.28
Struts 200 0.325

TABLE 3.3: Element properties

The boundary conditions for this problems states that: the node number 1 is totally fixed,
the node number 2 can only move along y direction (x2 in Fig. 3.4) and the node number 3
can move in y, z directions. This means that our boundary conditions restrict: the first three
DOFs of node 1, the first and third DOFs of node 2 and the first DOF of node number 2.

FIXDOF = [1 2 3 4 6 7] (3.44)

The external loads are considered to act over nodes number 6, 7 and 8. The non-linear
stiffness procedure has been implemented for the different types of load.

1. Results for Traction and Compression

For this case, the external loads are applied in the x direction (positive for traction and neg-
ative for compression). The interval for the external load varies from F =±2 kN. Kebiche
increments the external load by a factor of 3 (3F) for each iteration, so then the range be-
comes F =±6 kN. Fig. 3.5 shows the evolution of the mean displacements on nodes number
6, 7 and 8 for different ranges of external loads along x axis.
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FIGURE 3.5: Behavior of the structure under compression and traction loads. Average displacements
of nodes 6,7,8 in the load application direction

As it can be seen, the behavior described by the structure is non-linear, and those linearities
are not the same according to whether this structure is subjected to traction or compression.
In traction, the system becomes stiffer as the external load increases, i.e, the displacements
are smaller. This stiffness is progressively lost if the structure is compressed, showing an
anisotropic behaviour [12] for this four-strut tensegrity.

To better visualize the displacements, the deformed four-strut tensegrity structure when
maximal load is plotted over its initial configuration (dashed gray lines) in Fig. 3.9. The
response of the structure to traction loads is stiffer than the case of compression loads, as
explained before. The structure then if the load is increased will be deformed faster if com-
pression is applied.
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(A) Traction Load - Top view
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(B) Compression Load - Top view
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(C) Traction Load

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50    4

   6
   1

   3

   8

   7

   5

   2

(D) Compression Load

FIGURE 3.6: Top and lateral views of the deformed structure under compression and traction loads.

The evolution of the internal stress (in N/m2) each element is also presented in Fig. ??. The
difference between this evolution for cables and struts is notorious depending on the type
of load, compression or traction. For a given traction external load, a big increase in the
stress(and then internal tension) in cables number 1 and 2 is noticed as they are oriented
in the same direction of load application. Simultaneously, a decrease in elements 3 and 4
occurs as they are orthogonal to the load. Regarding the compression loads, the internal
stress in the bars increases significantly. This fact can be the result of buckling in struts,
which is less important for traction loads.
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FIGURE 3.7: Evolution of the internal stress in members under Traction and Compression loads.

2. Results for Flecxion Up and Down

The same procedure has been followed as for compression-traction loads, but now consid-
ering flexion loads. As it can be seen in Fig. 3.4, this loads are applied in the positive
z-direction(Upward flexion) and negative z-direction(Downward flexion). The behavior of
the structure under flexion using the same range of 0 to 6 kN is shown in figure Fig. 3.8
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FIGURE 3.8: Behavior of the structure under flexion loads. Average displacements of nodes 6,7,8 in
the load application direction

Again the nonlinear behavior is present, showing a stiffer structure as long as external loads
increase. This fact is present in the upward flexion direction and in less ratio for the down-
ward direction, showing also anisotropic behavior as in the case of compression-traction
loads. This can be due to the difference in the initial internal force vector shown in Tab. (3.2),
which is two times higher for the upper cables than the lower ones. For a load value of 6 kN,
the displacements for upward flexion load are 12.8 cm and up 17.26 cm for the downward
case. Then, the four-strut tensegrity system stiffness is of low order for torsional loads.
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(A) Upward Flexion Load - Top view
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(B) Downward Flexion Load - Top view
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(C) Upward Flexion Load - Lateral
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(D) Downward Flexion Load - Lateral

FIGURE 3.9: Top and lateral views of the deformed structure under up-downward flexion loads.

Regarding the internal stress evolution of each element against upward flexion load, the
struts get more compressed as the cables increase their internal tension. This matches with
the observations made in the behavior in traction Fig. 3.10. However, for the case of down-
ward flexion load, cables number 1 and 4 experience a fall in tension of about a 12% and a
loss in compression of 15% in bar number 13. The stress in the bar number 13 is stabilized
for external loads higher than 2,5 kN while bar number 14 is compressed about a 60% of its
initial value for a load of 6 kN. For the rest of struts in this case a similar and quick evolution
of the internal stress takes place (bars 15 and 16)
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(A) Cables - Flexion Up
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FIGURE 3.10: Evolution of the internal stress in members under upward and downward flexion
loads.

The obtained results for traction, compression and flexion loads have been compared with
the results obtained by Kebiche in [12]. The results show the same results as the obtained
ones. it is concluded then that the developed code is correct and then it can be used for
any tensegrity structure where nodal coordinates and connectivities as along as the material
type.

3.3.2 The effect of pre-stress
In this section, the effect of prestressing a structure is presented. The aim is to show the
advantages or drawbacks of a prestressed structure. To do so, both linear and non-linear
algorithms have been implemented. The linear method does not need any iterative process
while the non-linear one does (Newton Raphson). Considering the structure studied for the
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program validation and considering traction forces, the displacements in both cases are as
follows:
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FIGURE 3.11: Difference between the solutions on displacements for Linear and non-linear Finite
Element Methods

As it can be seen from Fig. 3.11, the structure has been notably improved with the non-linear
method. With it, the structure is stiffened for a given load as to ensure that the internal
forces and this external load become zero as much as possible. However, when a linear
method is used, the structure responds to the applied load but only considering the initial
level of pre-stress.

As the external load increases, the increment of displacements is reduced for the non-linear
method while they become bigger and bigger for the linear method.
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Chapter 4

Two Stage tensegrity Masts

In this chapter, the static analysis is presented for two stage tensegrity masts. The masts
studied here have been defined by Skelton in [27]. A two stage tensegrity mast is composed
by two tensegrity simplex as explained before.

For the numerical form-finding method the obtained masts had no aesthetics value and in
some cases they went in a 2D solution. This masts are defined using the Reduced Coordi-
nates Form-finding method and the Force-finding to define an initial state of sel-stress.

Once the initial self-stress design is found, the non-linear method explained in previous
Chapters can be used to determine the behavior of the structure under external loads.

4.1 Form-Finding of Tensegrity Masts
The method of Reduced Coordinates, exaplined in Chapter 1 for the determination of a
tensegrity structure, is applied to determine the initial shape of a tensegrity structure.

This method is used to determine the equilibrium-state of a two stage tensegrity mast with
symmetrical relationship and known shape. Sultan and Skelton [28, 26], apply this method
to a simple two stage tensegrity mast shown in Fig. 4.1. The mast consists of three struts
per stage, held in place by three sets of cables - saddle, vertical and diagonal cables -
between two rigid triangular plates (cables) at the top and bottom. The stages are basically
two 3-strut tensegrity prisms one over another as we have previously seen in the numerical
form-finding.

For this form-finding, the initial step is to determine a set of generalized coordinates which
describe its configuration. For the two stage mast studied by Sultan, the 18 coordinates
selected are:
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FIGURE 4.1: Sultan and Skelton’s two stage tensegrity tower: (a) leteral view, (b) side view to better
see the overlap and (c) top view.

• for each strut the azimuth angle is defined j (the angle between the vertical plane
containing the strut and the x− z plane), and the colatitude δ j (angle between strut
and z-axis). Also is noticeable the overlap h between both stages.

• Three rotations and three translation parameters defining the position and orientation
of the top triangle of cables with respect the bottom one.

By the use of symbolic manipulation software(Maple, MuPAD, Mathematica, Matlab,etc),
the length of each cable can be expressed in terms of the defined 18 coordinates and then
differentitated to get an 18×18 matrix A, in symbolic form. At this point, the structure shape
is still unknown and the existence of a self-equilibrated configuration depends on finding a
suitable set of strut length. Sultan reduces the number of independent generalized coordi-
nates by considering only symmetric configuration (same azimuth ps0, colatitude δ ). If a
spatial symmetry in t is considered, the problem could be reduced to a 3×3 with the forces
in the diagonal, saddle and vertical cables remain as the only unknowns. The equilibrium
matrix A is finally defined as:

A =

 ∂S
∂α

∂V
∂α

∂D
∂α

∂S
∂δ

∂V
∂δ

∂D
∂δ

∂S
∂h

∂V
∂h

∂D
∂h

 (4.1)
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where S, V and D are the length of the saddle, vertical and diagonal cables respectively. The
expression for the length of this cables are derived analytically by Sultan as:

S =

√
h2 +

b2

3
+ l2 sin2(δ )− 2√

3
lbsin(δ )cos

(
α− π

6

)
V =

√
l2 +b2−2lbsin(δ )sin

(
α +

π

6

)
D =

√
l2 +

b2

3
+h2−2lhcos(δ )− 2√

3
lbsin(δ )sin(α)

(4.2)

where l is the length of the struts and b the length of the top and bottom cables (side length
of the triangles). Due to the symmetry in configuration, this cables have the same length for
both top and bottom stages (the saddle cables are common to the structure). The prestability
condition is given by:

A(α,δ ,h)t = 0 (4.3)

where t is the normalized internal force vector for saddle, vertical and diagonal cables. The
non-trivial solution is then

det(A(α,δ ,h)) = 0 (4.4)

The solution of this quadratic equation is solved for the overlap analytically by Sultan,
yielding:

h =


cos(δ )

2sin(δ )cos(α+π/6)

(
−b√

3
+ l sin(δ )cos(α +π/6)+

√
b2

3 −3p2
)

if α 6= π

3

l cos(δ )
2 if α = π

3

(4.5)

For a given length of the top cables (b) and length of bars (l, can be also interpreted as the
height of one stage), the overlap h can be evaluated and the adequate solution (of two possi-
bles) is selected. With this, the nodal coordinates of the structure can be finally determined.
For a two stage 3-strut tensegrity mast, the nodal coordinates are expressed as:

Stage Plane Node x-coord y-coord z-coord

1

Bottom
1 rb 0 0
2 rb cos(γ) rb cos(δ ) 0
3 rb cos(2δ ) rb sin(2δ ) 0

Top
Intersection

4 x1 + lb cos(α1)sin(δ ) y1 + lb sin(α1)sin(δ ) lb cos(δ )
5 x2 + lb cos(α1 + γ)sin(δ ) y2 + lb sin(α1 + γ)sin(δ ) lb cos(δ )
6 x3 + lb cos(α1 + γ)sin(δ ) y3 + lb sin(α1 + γ)sin(δ ) lb cos(δ )

2

Top
10 x4 + lb cos(α1 + γ/2)sin(δ ) x4 + lb sin(α1 + γ/2)sin(δ ) 2lb cos(δ )−h
11 x5 + lb cos(α1 + γ + γ/2)sin(δ ) x5 + lb sin(α1 + γ + γ/2)sin(δ ) 2lb cos(δ )−h
12 x6 + lb cos(α1 +2γ + γ/2)sin(δ ) x6 + lb sin(α1 +2γ + γ/2)sin(δ ) 2lb cos(δ )−h

Lower
Intersection

7 rb cos(γ/2) rb sin(γ/2) lb cos(δ )−h
8 rb cos(2γ + γ) rb sin(2γ + γ) lb cos(δ )−h
9 rb cos(2γ +2γ) rb sin(2γ +2γ) lb cos(δ )−h

TABLE 4.1: Nodal coordinates for a three-strut two stage tensegrity mast
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where rb is the base radius of the top and bottom triangles, lb the length of the struts, α1
is the azimuth angle of a bar connected to node 1 and another one (will be the same for
all the bars), δ is the declination angle, h the overlap between stages and γ is 2π/3 for
this tensegrity. Note that this nodal locations are distributed in the xy plane of a circle and
located on four different levels. For this case, the structure has 6 bars and 24 cables (6
vertical, 6 diagonal and 6 saddle ones).

The two stages are formed by two simplex tensgrity units composed by 3 struts each. the 3
bars forming a tensegrity unit are rotated either in clockwise or in anticlockwise direction.
The top strings connecting the top nodes of each bar support the nect stage where the struts
are rotated in an opposite direction to the previous stage. Following this explanation and
Tab. (4.1) it is possible to construct as many stages as desired.

Note that this method requires some nodal coordinates witch are set in symbolic form to
find a solution for the desired lb and rb for an overlap that fulfills the self-stress equilibrium
condition Eq. (4.3). The connectivities for this type of structure can still be done manually
due to the small number of elements.

The steps to determine the solution for the overlap is the following:

1. Generate the nodal connectivity and type of material data. The connectivities are
sorted by symmetry groups. The first 6 elements correspond to the top and bottom
cables (blue), the next 6 correspond to the vertical cables(cyan), followed by 6 saddle
cable elements (dashed-blue), 6 diagonal cables and finally 6 bars (red).

2. Set the nodal coordinates as specified in Tab. (4.1) as a function of symbolic variables
α , δ , . The length of the of the bars lb and the radius of the top and bottom triangles
rb are design variables.

3. The length of the saddle vertical and diagonal cables are determined as long as the
length of each element. Then, the partial derivatives in Eq. (4.1) are computed to
determine the equilibrium matrix A.

4. The prestressability condition is that the determinant of the equilibrium matrix must
be equal to zero. Using Matlab solve function for the overlap h, two solution are
obtained as a function of α and δ . This two parameters can be now set as design
variables to and play with the shape of the tensegrity. This two angles are used by
Skelton to deploy this two stage mast as it will be seen.

5. Evaluating for the correct solution of the overlap h (non-negative one), the nodal co-
ordinates are finally obtained and the initial self-stress design can be done.

The shape of the studied structure has an azimuth angle α of 200◦ and a declination angle
δ of 60◦ (they have been selected as suitable angles proposed by Skelton). The top and
bottom triangles have a radius of 50 cm and the bars a length of 100 cm. The following
structure shows the geometry of the structure to be analyzed.
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FIGURE 4.2: Side and Top view of a the deformed tensegrity mast under compression loads.

the nodal coordinates of the structure obtained in the previous procedure is shown in the
following table,
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Node x y z

1 50.0000 0 0
2 -25.0000 43.3013 0
3 -25.0000 -43.3013 0
4 -31.3798 -29.6198 50.0000
5 41.3414 -12.3658 50.0000
6 -9.9616 41.9856 50.0000
7 25.0000 43.3013 87.1697
8 -50.0000 0.0000 87.1697
9 25.0000 -43.3013 87.1697

10 9.9616 -41.9856 37.1697
11 31.3798 29.6198 37.1697
12 -41.3414 12.3658 37.1697

TABLE 4.2: Noda coordinates

4.2 Stiffness Under external loads
As the nodal coordinates and the connectivities are known, the initial self stress design can
be carried out as explained in section. For the designed structure only 1 state of self-stress
exists (s = 1). This allows to determine the normalized pre-stress coefficients q for each
group of symmetry which are:

Element Pre-stress coeff.

Top and Bottom
cables 1.000

Vertical Cables 1.659
Saddle Cables 4.154

Diagonal Cables 1.434
Struts -2.725

TABLE 4.3: Prestress coefficient for each group of symmetry obtained from the initial self-stress
design.

Where obviously, the bars are in compression are in compression and all the cables in
tension, being the saddle cables the ones carrying more pre-stress.

Following the procedure as in Chapter 4 for the stiffness analysis of a 4-strut tensegrity
prism, the analysis under external loads for this type if structure is made by considering
4 types of load: compression and traction, bending in two directions. The loads will be
applied at the top surface of the upper stage (nodes 7, 8 and 9). Fig. 4.3 shows the different
loads that will be studied. The applied force F is considered to be 2 kN over each node.
The pre-stress coefficient ps0 is considered to be 100 N/m and the Young Modulus and
cross-sections areas of 4 GPa and 2.8 cm2 for cables and 20 GPa, 0.325 cm2 for struts.
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FIGURE 4.3: Different Loads from lefto to right: Compression (−z), traction and bending in direc-
tion B1 (y) and B2 (−y) (c) [30]

The structure responds differently to compression and traction again, due to its nonlinear
nature. However, the anisotropic behavior here is not notorious as in the example studied in
Chapter 3. When the structure is tractioned or compressed, it becomes stiffer as the external
loads increase. This is because the level of pre-stress forces is changing (increasing) at
each iteration for each external load, which affects the geometric stiffness matrix. Then, as
The structure responds quite better to tractional loads as for an applied force of 2 kN, the
displacements in traction are about 14 cm while for compression they are 20 cm.
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FIGURE 4.4: Average displacements of nodes 7,8 and 9 in the z direction for different traction and
compression loads.

To better see the shape of the structure under the given external load, the deformed and
initial structures are presented in the following plots:
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FIGURE 4.5: Side and Top view of a the deformed tensegrity mast under compression loads.
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FIGURE 4.6: Side and Top view of a the deformed tensegrity mast under Traction loads.

If bending loads are considered, it is noticed that the structure displacements will in-
crease in both direction as the applied load increases. For the case of bending in the
negative direction of y (B1), the stiffness of the structure is constant until one or more
cables go slack. When this occurs, the bending stiffness starts decreasing non-linearly for
the applied loading. This fat can be solved in both cases by changing the pre-stress level ps0.

For different levels of initial pre-stress ps0, the structure seems to be stiffer. This can be
seen for all the types of load but in a biggest ratio for the traction loads. Fig. 4.10 shows
that as the pre-stress level ps0 is increased, the displacements become smaller for the
same applied load. This is because the cables come more tensioned and as a consequence,
the structure improves its stiffness. However, if this initial pre-stress value is too small

67



A study on Tensegrity Structure and their Applications to Space

(i.e. ps0 = 55N/m), the cables on the structure become slack and then the stiffness of
the structure is lost. The cables in this case become slack (get compressed, which is not
feasible) when an external load of 30 is applied at each node.
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FIGURE 4.7: Average displacements of nodes 7,8 and 9 in the y direction for different bending loads
loads.
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FIGURE 4.8: Side and Top view of a the deformed tensegrity mast under Bending loads.
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FIGURE 4.9: Side and Top view of a the deformed tensegrity mast under Bending loads in direction
B1.

Considering now different values for the initial pre-stress level, which is a design parameter.
The average displacements on the upper surface for different initial levels-of pre-stress in
the four direction of loading application are shown in the following figures:
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FIGURE 4.10: Average displacements of nodes 7,8 and 9 for different levels of pre-stress and
compression-traction loads in direction B2.
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FIGURE 4.11: Average displacements of nodes 7,8 and 9 for different levels of pre-stress and bend-
ing loads loads.

It is noticeable that the stiffness of the structure is improved as the initial pre-stress level ps0
is increased. And it does in a notorious manner for the case of Axial forces (compression
and traction). The problem for the bending stiffness has been solved with less effect.

4.2.1 Control and Deployment
Tensegrity structures are perfect candidates to be actively controlled structures as the
control system can be directly embedded in the structure. That is, for example, use the
tendons or cables as actuators and/or sensors. To control of a tensegrity structure can be
done by forcing the structure to move along the equilibrium maniform. The equilibrium
manifold for this mast is determined by evaluating positive solutions for the overlap by
setting different azimuth α and declination δ angles, as made by Skelton [26]. With this an
equilibrium surface can be drawn where the path fulfilling the condition of equilibrium is
determined.
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FIGURE 4.12: Equilibrium surface for a two stage tensegrity mast considering rb = 0.27 m and
lb = 0.4 m. Results given by Skelton [26]

In this section, the deployment of this type of mast is described. From the reduced
coordinates method, it is easy to implement the previous mentioned equilibrium surface
and the deployment can be idealized a time varying function for the declination angle δ ,
for example, δ (t) = 90◦−63◦t. For each declination angle, the initial-self stress design can
be applied to determine the force carried by each member. Skelton have had determined
that the top and bottom cables, as long as the struts will maintain a constant length if the
deployment path determined in the equilibrium surface is followed. However, the vertical
cables become bigger while saddle and diagonal cables decrease in length.

The results for this part where not computed due to lack of time for the delivery. however,
the following figure shows the deployment process studied by Skelton in [26]
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FIGURE 4.13: Deployment process for the sequence line shown in Fig. 4.12 [26]
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Chapter 5

Conclusions

5.1 Analysis Methods
On of the principals aims of this Final Master Thesis was to determine and provide various
methods for the form-finding of tensegrity structures. It was seen that there are various
types of methods organized in static and kinematic groups. In this project, static methods
have been used, which objective is to find an equilibrium configuration that allows the
existence of a state of self-stress. In general, the static methods seem to possess more usable
features than the kinematic ones.

It has been seen that if the aim of a researcher is to determine new shapes and configuration
topology, the force-density method developed by Schek is well suited for this purpose. A
numerical force-density method has been developed to determine 3-D tensegrity structures
by just an idea of how the cables and struts are connected and a prototype force-density
vector. However, it presents some difficulties while dealing with structural members
length, symmetry, aesthetics and geometry orientation. This is due to the variation in the
force-density vectors, which does not respect unilateral behavior between elements (bars an
cables).

The reduced coordinates form finding method is useful for situations where more informa-
tion about the structure geometry is known. This method has been implemented to solve a
two stage cylindrical tensegrity mast where the nodal coordinates can be expressed as two
tensegrity simplex rotated certain angle and with and overlap between stages. Against the
numerical force-density method, the length of the elements can be controlled and then, the
symmetry of the structure.

Finally, it is concluded that there are different types of form-finding methods for tensegrities
but each one has a function and then, anyone is suitable for general applications.

5.2 Pre-Stressed Structures
Another aim of this project was to determine how better can be a pre-stressed structure
against conventional pin-jointed structures. This has been done through the analysis of a
pure tensegrity structure against external loads. To determine the response to external loads,
two Finite Element Methods have been implemented. For both cases, an initial self-stress
state is determined and the internal force vector is then computed for an initial level of
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pre-stress. In the first method, called linear FEM with small displacements assumption, the
internal force-vector is constant and equal to the one defined in the initial self-stress design.
For the second method, a non-linear variation of FEM considering geometrical stiffness due
to pre-stress, the internal force vector is changed so as to ensure equilibrium at each node.
This latter then becomes iterative and is solves by using Newthon Raphson method.

The previous analysis shows that the structural behavior is notable different. For the linear
method, the displacements increase as long as the external force increases. This produces
slack of the cables as they start to take compressing values (which is not feasible) and then,
a larger deformation of the structure occurs. The second method showed that a consciously
pre-stressed structure becomes stiffer as external loads are increased.

5.3 Uses In Space Industry
The wide range of possibilities for geometrical design, lightness, material saving and great
resistance and deployability that this structures offer, make them an interesting topic of
study in the field of space applications. Actually, volume saving on carried payloads for
space missions are crucial if large structures are transported. Deployable structures have
been used for many years in space applications such as, antennas, solar array or masts.
Some types of masts are similar to tensegrities as they are pre-stressed structures composed
by bars and cables.

In this project, the simplest tensegrity mast with two stages have been studied. The objective
was to determine how this mast will respond under external forces using the non-linear
finite element analysis. The results show that they are really good under compression and
traction loads but bad under bending. This lack on bending stiffness can be solved by
changing the design parameters (Young Modulus, Cross-section, initial pre-stress force,
etc). The deployability sequence for this mast has been discussed.

The inconvenient of this type of mast is that it does not reach full stiffness until the last
stage has been completely deployed. This a huge limiting factor for the application of this
type mast as during the deployment sequence the mast is very flexible. In a real scenario
this can be solved by a central road that pushes the upper surface of the mast.

The above problem can be solved by using "false" tensegrity structures where struts are in
contact (Class II tensegrities). This fact will, however, reduce the capabilities of the structure
to be deployed. The trade-off then becomes between fast and easy deployment and compact
packaging, or the stiffness and strength capabilities.

5.3.1 Future Work
One of the main focus for future research must be the applications of tensegrity structures.
regarding their morphology, the number of possible configurations exceeds the possible
applications, and then, only a few types of tensegrity is useful for real applications.

A general method for tensegrity structures regarding form-finding is necessary to be
developed as actual methods are suitable for different tensegrity types. For a given study,
one method must be select against others depending on the desired analysis.
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Personally, the implemented methodology for a two stage mast must be implemented for an
n-stage tensegrity mast. Due to lack of time, it has not been possible to dedicate all the time
that was intended to this part, therefore it remains as personal future work.
Another important thing to solve is the lack of stiffness of the tensegrity structures in
deployment as long as the bending stiffness under external loads (although it can be im-
proved by setting the correct materials and structure, e.g - Skelton et al. [26] analyze planar
tensegrity structures that are efficient in bending). As mentioned before, for deployable
masts, the actual studies have shown that the mast is flexible until the last stage has been
deployed. This, in fact, is not desired and it supposes a huge barrier to use tensegrities for
this purpose.
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