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Abstract

A billiard is a map that describes the motion of a ball without mass in a closed region on the plane such that
the collisions with the boundary are elastic. The region where the ball moves is the billiard table. In this
thesis, we present the convex billiards (the boundary of the billiard table is a convex Jordan curve of class
C 2) and some of their properties. In particular, we will study caustics which are curves that often appear in
the billiard problem and they are related with rotational invariant curves (RIC). Lazutkin and Douady proved
that convex billiards have caustics if all points of the boundary have curvature strictly positive and the
boundary has 6 continuous derivatives. Guktin and Katok, under the hypothesis of Lazutkin and Douady,
give estimations of the size of the regions free of caustics contained inside the billiard table. Mather proves
the non existence of caustics if there is a flat point in the boundary and Hubacher proves the non existence
of caustics close to the boundary if the second derivative of the boundary is not continuous. Finally we do
a numerical study about symmetric periodic orbits with odd period and we expose a conjecture that relates
the number of symmetric periodic orbits with its period.

Keywords

Convex billiards, twist maps, are-preserving maps, generating function, action functional, invariant curves,
caustics, periodic orbits, symmetry.
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1. Introduction

The aim of this thesis is to present the billiard map and some of its properties. The name of the map
appears from the well-known billiard game but it models a system with impacts. Suppose that we have
a billiard table and a ball inside this table. The mathematical problem arises when we want study the
dynamics of this ball in the table. With this approach we can define the billiard map.

Suppose we have a Jordan curve B on the plane that defines the boundary of the billiard table and a
ball without mass as a particle. Moreover, suppose that the motion of the ball is a free motion (without
friction). This motion draw imaginary lines inside the table that we called trajectories. On the other hand,
the collisions with the boundary are elastic and follow the classical reflection rule:

the angle of incidence is equal to the angle of reflection.

In our case, we are going to study the convex billiard, so we will suppose that the boundary of the table B
is a C 2 closed convex curve in the plane. Also, we will suppose that B is orientated counterclockwise.

The dynamical system that we have described is a continuous system but we can do a Poincaré
section on the boundary to obtain a discrete dynamical system. This new system consists of the following:
two consecutive collisions with the boundary are determined by a trajectory, hence this trajectory can be
expressed with a contact point of B and a direction vector that determines the trajectory. So, the billiard
map, maps a contact point and a direction vector to obtain the next contact point and the next direction
vector after the collision with the boundary. We are going to denote the billiard map as f .

Fixing a point p0 in B, any point of B can be expressed by its arclength parameter s P r0, Lq where L is
the length of B. Moreover, for each point s we can define the angle θ between the tangent vector to B at
s orientated counterclockwise and the direction vector of the trajectory. Thus, the pair ps, θq determines
the contact point and the direction vector, then f : S1ˆp0,πq Ñ S1ˆp0,πq since ps, θq P r0, Lqˆp0,πq –
S1 ˆ p0,πq. The set of pairs ps, θq that generate a billiard trajectory is called orbit.

In section 2, we will see some properties of the billiard map as twist condition or area preserving. On
the other hand, the concept of generating function H appears. Let ps, θq, ps 1, θ1q be two consecutive points
of an orbit. The angle θ, as we have explained above, is determined by the line that joins s and s 1, so if we
have s and s 1 we do not need the angle to determine the orbit. The generating function defines the orbit
implicitly using s an s 1. The generating function Hps, s 1q of the billiard map is the function that gives the
euclidean length between s and s 1 but the generating function is not unique.

Also, we will see the definition of action functional L. The action functional is defined from the
generating function as L : Rn Ñ R such that Lps1, ...snq “

řj´1
k“i Hpsk , sk`1q. An important result that

relates the action functional and the billiard map is the following: suppose that we have an orbit and a
finite segment S of this orbit, then segment S is a critical point of the action functional.

On the other hand, a classical result is the Birkhoff theorem from which we can deduce that the
rotational invariant curves (RICs) that appear in the cylinder S1ˆ p0,πq under the billiard map are graphs
and separate the cylinder in two connected components, i.e., RICs restrict the behaviour of an orbit inside
one connected component.

In section 3 we will define the concept of caustic and we will see some results about the existence and
non existence of caustics. Let Γ be a closed curve inside the billiard table. Given an orbit, suppose that
this orbit has a trajectory between two consecutive points that are tangent to Γ. We say that Γ is a caustic
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Billiard and periodic orbits

if all trajectories of two consecutive points are tangent to Γ. Caustics are curves that appear in the billiard
problem. We will see that there is a two to one correspondence between RICs that appear in the cylinder
S1 ˆ p0,πq and the caustics that are contained inside the billiard table.

The most known convex billiards are the circumference and the ellipse. When the table is a circum-
ference, all concentric circumferences inside the billiard table are caustics. In the case of the ellipse, all
cofocal ellipses inside the ellipse, which is the billiard table, are caustics.

Caustics do not always exist. The classical result of Lazutkin [6] says that if the boundary B of the
billiard table has all points with curvature strictly positive and B has 558 continuous derivatives then RICs
exist. This results implies that there exist caustics since there is a correspondence two to one between RICs
and caustics. The proof consists to do an study near to the curves S1 ˆ t0u and S1 ˆ tπu and, to do this
study, Lazutkin defines new coordinates that we will call Lazutkin coordinates. Later, Douady presents a
result that reduces the conditions: caustics exists if all point of B has curvature strictly positive and B has
6 continuous derivatives.

Under the existence hypothesis of caustics, Gutkin and Katok in [3] study the regions free of caustics
inside the billiard table and give an estimation of the size of these regions. A simple example to see these
results consists to fix a one-parameter family such that the minimum value of the curvature of B tends
to 0, for example Bt “ tpx , yq; P R2; x2 ` ty2 ` y4 ď 1u where t ą 0. Using the size estimations of the
regions free of caustics, we can see that size of these regions increase when the minimum value of curvature
tends to 0 and, consequently, the size of the regions that contains caustics decrease.

This study of regions leads us to the result of Mather. Mather in [4] supposes that there is a point
of B where the curvature vanishes and B has 6 continuous derivatives. Under this hypothesis, he proves
the non existence of caustics inside the billiard table. Since RICs separate the cylinder in two connected
components, if an orbit states as close as we want to the boundaries S1 ˆ t0u and S1 ˆ tπu then RICs
cannot exist. Mather proves that if there is a flat point then RICs do not exist, then, by Bikfhoff theorem,
there exist orbits that state as close as we want to both boundaries. Thus, we can conclude that RICs exist
if and only if B does not have a flat point. In other words, caustics exist if and only if B does not have a
point with curvature equal to zero.

Other interesting result was written by Hubacher in [5]. This result proves the non existence of caustics
near to B and the hypothesis are all points of B have strictly positive curvature but the second derivative
of B is not continuous. The proof is based in the following construction: Fix a point s0 where the second
derivative is no continuous but the lateral limits there exist. Consider two osculating circles that approximate
s0. Suppose that there is a neighborhood of s0 such that contains points of two different orbits. The first
orbit has the point s0 and the second orbit no. Under this construction, we arrive to a contradiction with
the Birkhoff theorem, so there cannot exists any caustic near to the boundary.

In section 4, we will study periodic orbits. Suppose that we have an orbit. Let F be the lift of the
billiard map defined in R ˆ p0,πq, the orbit is pp, qq periodic if F qps, θq “ ps ` p, θq for any point of the
orbit ps, θq. The rotation number of this orbit is p

q . The Poincaré-Birkhoff theorem gives us the existence
of, at least, two geometrically different periodic orbits. In other words, the result says that there exists
a pp, qq periodic orbit that minimize the action functional L and this minimum remains for translations.
Therefore, since the action functional is a continuous function, any path that connects two minimums has
a maximum. Now, we can modify this path and we can choose the path which its maximum is the smallest.
This point is a saddle, that is a critical point, so the orbit associated to this point is a pp, qq periodic orbit.
Thus, we have the existence of two different periodic orbits.

A type of periodic orbits are symmetric periodic orbits. Suppose the curve B that is the boundary of the
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billiard table has two perpendicular axis of symmetry. Using this type of curve, we can do a classification of
the symmetric periodic orbits. We say that a periodic orbit is symmetric (see Figure 17) if the figure that
draw the trajectory of one period of the orbit is symmetric respect one axis of symmetry. Suppose even
period. Then, we can distinguish two cases (see Figure 18). The first is when the orbit has a point over an
axis of symmetry and the second is the opposite. In both cases, the orbit is symmetric respect both axis
of symmetry. Now, suppose odd period. In this case the orbit only can be symmetric respect one axis of
symmetry, hence we can distinguish two cases according to the axis of symmetry (see Figure 19).

In the last section, we do a numerical study about symmetric periodic orbits when the curve of the
boundary B is

C “ tpx , yq P R2; x2 ` y4 “ 1u.

In particular, we focus in periodic orbits that has odd period p2k ` 1, k P Zq, its rotation number is 1
2k`1

and contain the point p0, 1q, i.e., they just go one time around the curve B and are symmetric respect
y-axis. So from now, a symmetric periodic orbit is a periodic orbit of this type.

The main goal is to find an approximation that relates how many times this symmetric periodic orbits
appear depending on their period. Let 2k ` 1, k P Z be the period of a symmetric periodic orbit. It is easy
to see that this orbit satisfies that the trajectory between the iterates k and k ` 1 is horizontal. For this
reason, consider the function

Zk : p0,
π

2
q Ñ R such that Zk “ P4 ˝ f k ˝ i ,

where i is the inclusion, f is the billiard map and P4 is the projection over the fourth component. So,
Zkpθ0q define the initial conditions q0 “ p0, 1q, p0 “ p´ cospθ0q,´ sinpθ0qq, iterates this initial condition k
times with the billiard map and, finally, gives the fourth component that is the second component of the
direction vector in the iterate k. Therefore, find symmetric periodic orbits of period p2k ` 1q corresponds
to find the roots of the function Zk .

In the numerical study we do an study of the function Zk . We will see when the value of k increase,
then the roots of the function Zk increase and the intervals where roots are located decrease. With the
results of the study, we have the following conjecture:

Conjecture 1.1. Let C “ tx2 ` y4 “ 1u be the curve that define the billiard map. The orbits that
are periodic with period 2k ` 1, symmetric respect the y-axis with initial position p0, 1q and the rotation
number is 1

2k`1 satisfy that there exists a constant α such that

npkq « αk with α « 0.41,

where npkq is the lower bound of the quantity of orbits described above. There exists constants a˚, b˚ such
that the orbits are contained in the interval rapkq, bpkqs where

apkq «
a˚
k

and bpkq «
b˚
k

with a˚ « 0.91, b˚ « 1.31.
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Billiard and periodic orbits

2. Convex Billiards

The aim of this section is to describe the dynamic of billiards in mathematical terms using a physical
approach. In our case, we are going study convex billiards. First, we will define the billiard map and we
will see some properties that it satisfies, for example the twist condition and the area preservation. Finally,
we are going to explain the concept of invariant curves and how the existence of these curves affects the
dynamics in our map.

Suppose we have a bounded region in the plane that we called billiard table and the boundary of
this region is a regular Jordan curve. The regularity requirements will be fixed later. The billiard map
represents the free motion of the ball inside the table (without friction). The trajectory of this ball is
given by imaginary straight lines inside the table. When the ball hits the border of the table, the angle of
reflection is equal to the incidence angle. In other words, the assumptions are that the collisions with the
boundary are plastic and follow the classical reflection rule.

Below we present a mathematical definition of the idea that we have just explained.

Let D be an open convex region in the plane and B its boundary. The main conditions that B has to
fulfill is to be a closed regular C 2 curve and we can consider that B is orientated counterclockwise. Let L
be the length of B. We denote by C the set of pairs pp, vq P B ˆ S1 where p is a point of B and v is a
unit vector with footpoint p, directed inward.

Fixing an initial point p0 P B, for any point p P B we assign its arclength parameter s P r0, Ls as the
counterclockwise distance along the curve from p0 to p so s P r0, Lq. On the other hand, suppose t be
a positive vector tangent to B at p, i.e., the vector has the same orientation as the curve B . Then the
angle θ between v and t is unique. This implies that any pair pp, vq P C has a unique representative pair
ps, θq P r0, Lq ˆ p0,πq. Indeed C – S1 ˆ p0,πq since B – S1.

Figure 1: Billiard dynamics

The billiard map is defined as a free motion of a free mass point with the elastic reflections from the
boundary, in other words, the rule that it satisfies is that the angle of reflection is equal to the angle of
incidence. With this assumption we can determine the successive points through the following process that
we can see in Figure 1: fixing a point s P S1 and an angle θ P p0,πq, we can construct an line l such that
s P l and θ is the angle between l and the positive vector tangent of the boundary in s. This line intersects
B in other point s 1 and we can consider the angle θ1 between the line and the tangent vector of B in s 1.
Then, the billiard map maps ps, θq to ps 1, θ1q and, to find the next point, we consider ps 1, θ1q and we must
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repeat the same process.

The map f : S1ˆp0,πq Ñ S1ˆp0,πq such that f ps, θq “ ps 1, θ1q is called billiard map. We can express
it as f ps, θq “ pSps, θq, Θps, θqq, where S and Θ are two maps.

Remember that the phase space associated to the map f is the set of all possible values ps, θq. Hence
the phase space of the billiard map is the cylinder S1 ˆ p0,πq.

Let f : S1 ˆ p0,πq Ñ S1 ˆ p0,πq be a billiard map. It will be considered the lift of this map, F , so the
following diagram commutes:

Rˆ p0,πq Rˆ p0,πq

S1 ˆ p0,πq S1 ˆ p0,πq

F

π π

f

where π : RÑ S1 is the projection function over S1.

In other words, the lift is defined as:

F : Rˆ p0,πq Ñ Rˆ p0,πq

ps, θq ÞÑ pSps, θq, Θps, θqq
(1)

such that f ps, θq “ pSps, θq mod L, Θps, θqq.

From now we are going to use the same notation Sps, θq to indicate the first term of the functions f
and its lift F . Remember that the function S is defined in R if we use the lift, and it is defined in R{LZ if
we use f .

2.1 Properties

The billiard map satisfies some very restrictive conditions. Many of their properties are a consequence at
the fact that it is a twist map, as we will see. in particular, it will allow us define the generating function.
In Section 2.2, we are going to use some properties to apply the Birkhoff’s Theorem in the billiard map.

Proposition 2.1. Let α : R Ñ R2, αpsq “ pα1psq,α2psqq, be an arclength parameterization of B. The
map (1) is a differentiable map.

Proof. Remember that the next point Sps, θq under F states over the curve B, then

rα1pSps, θqq ´ α1psqs rsinpθq 9α1psq ` cospθq 9α2psqs “

“ rα2pSps, θqq ´ α2psqs rcospθq 9α1psq ´ sinpθq 9α2psqs .

Moreover, two consecutive points are in the same period, Sps, θq ´ s ă L. Hence, for any pair ps, θq there
exists a unique s 1 P rs, s ` Ls such that

E ps 1, s, θq :“ detpαps 1q ´ αpsq|Rθp 9αpsqqq

“
“

α1ps
1q ´ α1psq

‰

rsinpθq 9α1psq ` cospθq 9α2psqs

´
“

α2ps
1q ´ α2psq

‰

rcospθq 9α1psq ´ sinpθq 9α2psqs “ 0,

where Rθp 9αpsqq is the tangent vector at s in B with a rotation of angle θ.
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Billiard and periodic orbits

Let ps1, s0, θ0q be a solution of the equation E ps 1, s, θq “ 0. Moreover,

BE

Bs 1
ps 1, s, θq “ sinpθ1q ñ

BE

Bs 1
ps 1, s, θq ‰ 0, since θ1 P p0,πq.

By the implicit function theorem, there exists C0 neighborhood of ps0, θ0q such that Sps, θq is a differentiable
map. We can do this reasoning for any pair ps, θq P Rˆp0,πq, so Sps, θq is a differentiable map in Rˆp0,πq.

On the other hand, the new angle Θps, θq satisfy the reflection rule, i.e.,

cospΘps, θqq “ rcospθq 9α1psq ´ sinpθq 9α2psqs 9α2pSps, θqq

` rsinpθq 9α1psq ` cospθq 9α2psqs 9α1pSps, θqq

so we have

Θps, θq “ arccosrpcospθq 9α1psq ´ sinpθq 9α2psqq 9α2pSps, θqq

` psinpθq 9α1psq ` cospθq 9α2psqq 9α1pSps, θqqs.

where α, sin, cos and arccos are differentiable maps in our domain, then, the map Θ is a differentiable map.

So, F is a differentiable map since S and Θ are too.

A direct consequence of this result is that the billiard map f is a differentiable map.

Let f ps, θq “ pf1ps, θq, f2ps, θqq be a differentiable map over the cylinder and area preserving. We say
that f is twist if

Bf1
Bθ
ps, θq ą 0 (or ă 0),

for all pairs ps, θq in the cylinder, i.e., f1 is a monotone function of θ. If it is monotonically increasing then
f has positive twist and it is negative twist if f is monotonically decreasing. Hence, if we choose a vertical
line, after one iterate, the result is a graph that tilts to the right (positive twist) or to the left (negative
twist), as we can see in Figure 2.

Figure 2: Representation of positive twist condition.
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Proposition 2.2. The billiard map is a positive twist map, i.e., for all pairs ps, θq P S1 ˆ p0,πq we have
BS
Bθ ps, θq ą 0.

Proof. Let α be an arclength parameterization of B. Fixing s0 P r0, Lq, 9αps0q is the tangent vector at s0
and, for any θ P p0,πq, v “ p 9α1ps0q cospθq ´ 9α2ps0q sinpθq, 9α1ps0q sinpθq ` 9α2ps0q cospθqq is the director
vector of the trajectory.

Suppose s1 “ Sps0, θq, then,

E ps1, s0, θq “ pα1ps1q ´ α1ps0qqp 9α1ps0q sinpθq ` 9α1ps0q cospθqq

´ pα2ps1q ´ α2ps0qqp 9α1ps0q cospθq ´ 9α2ps0q sinpθqq “ 0.

and, this implies

E pSps0, θq, s0, θq “ 0 ñ
BE

Bθ
pSps0, θq, s0, θq `

BE

BS
pSps0, θq, s0, θq

BS

Bθ
ps0, θq “ 0.

Computing the last equation we obtain the following result:

BE

Bθ
pSps0, θq, s0, θq `

BE

BS
pSps0, θq, s0, θq

BS

Bθ
ps0, θqq “ ´

BS

Bθ
ps0, θq sin θ1 ` h “ 0

where h is the Euclidean distance between s0 and Sps0, θq and θ1 “ Θps0, θq . So,

BS

Bθ
ps0, θq “

h

sin θ1
ą 0

since sin θ1 ą 0 i h ą 0 for all θ1 P p0,πq.

The following definition introduces the Birkhoff’s coordinates. These new coordinates are useful to
prove some properties as area preservation.

Definition 2.3. Let f ps, θq “ pSps, θq, Θps, θqq be the billiard map, we consider g : S1 ˆ p0,πq Ñ
S1 ˆ p´1, 1q the map of change of coordinates such that gps, θq “ ps, rq where r “ cos θ.

The map f̄ ps, rq “ pSps, rq, Rps, rqq, where S and R are differentiable maps, is called the billiard map
in Birkhoff’s coordinates.

Definition 2.4. Let f : S1 ˆ p´1,´1q Ñ S1 ˆ p´1,´1q be a map. We say H : S1 ˆ S1 Ñ p´1,´1q is a
generating function of f if for all pair ps, rq P S1 ˆ p´1,´1q such that f ps, rq “ ps 1, r 1q, it holds

BH

Bs
ps, s 1q “ ´r and

BH

Bs 1
ps, s 1q “ r 1. (2)

The generating function H defines implicitly one orbit of f using only two consecutive points of the
trajectory on the boundary, so H defines implicitly f .

Proposition 2.5. A generating function of the billiard map in Birkhoff coordinates ps, rq is

Hps, s 1q “ rpα1ps
1q ´ α2psqq

2 ` pα2ps
1q ´ α1psqq

2s
1
2 ,

where αpsq is the arclength parameterization of B. The function H is the length between two consecutive
impact points.
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Billiard and periodic orbits

Proof. Computing the partial derivatives we have

BH

Bs 1
ps, s 1q “

2rpα1ps
1q ´ α1psqq

2 9α1ps
1qsrpα2ps

1q ´ α2psqq
2 9α2ps

1qs

2rpα1ps 1q ´ α1psqq2 ` pα2ps 1q ´ α2psqq2s
1
2

“
xpαps 1q ´ αpsqq, 9αps 1qy

rpα1ps 1q ´ α1psqq2 ` pα2ps 1q ´ α2psqq2s
1
2

“ r 1

and

BH

Bs
ps, s 1q “

2rpα1ps
1q ´ α1psqq

2p´ 9α1psqqsrpα2ps
1q ´ α2psqq

2p´ 9α2psqqs

2rpα1ps 1q ´ α1psqq2 ` pα2ps 1q ´ α2psqq2s
1
2

“
x´pαps 1q ´ αpsqq, 9αpsqy

rpα1ps 1q ´ α1psqq2 ` pα2ps 1q ´ α2psqq2s
1
2

“ ´r .

So, the function H satisfies the equations (2).

Proposition 2.6. The billiard map f̄ preserves the area form ds ^ dr .

Proof. To see that f̄ preserves ds ^ dr we have to prove detpJpf̄ qq “ 1. Remember f̄ is the billiard map
in Birkhoff’s coordinates.

First, we have

detpJpf̄ qq “
BS

Bs
ps, rq

BR

Br
ps, rq ´

BS

Br
ps, rq

BR

Bs
ps, rq.

On the other hand, using the generating function defined above, we can define a new function as H̃ps, rq :“
Hps, Sps, rqq and we have the following expressions:

BH̃

Bs
ps, rq “

BH

Bs
ps, Sps, rqq `

BH

BS
ps, Sps, rqq

BS

Bs
ps, rq “ ´r ` Rps, rq

BS

Bs
ps, rq,

BH̃

Br
ps, rq “

BH

BS
ps, Sps, rqq

BS

Br
ps, rq “ Rps, rq

BS

Br
ps, rq

then,

B2H̃

BsBr
ps, rq “ ´1`

BR

Br
ps, rq

BS

Bs
ps, rq ` Rps, rq

B2S

BsBr
ps, rq

B2H̃

BrBs
ps, rq “

BR

Bs
ps, rq

BS

Br
ps, rq ` Rps, rq

B2S

BrBs
ps, rq.

By the Schwarz’s lemma,

B2H̃

BsBr
ps, rq “

B2H̃

BrBs
ps, rq ñ detpJpf̄ qq “

BS

Bs
ps, rq

BR

Br
ps, rq ´

BS

Br
ps, rq

BR

Bs
ps, rq “ 1.
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Until now, we have seen that the billiard map f : S1 ˆ p0,πq Ñ S1 ˆ p0,πq (in natural coordinates)
is a twist map and the billiard map f̄ : S1 ˆ p´1, 1q Ñ S1 ˆ p´1, 1q (in Birkhoff coordinates) is area
preserving. There is a homeomorphism between the intervals p0, 1q and p´1, 1q so we have that both maps
are symplectic twist maps.

Definition 2.7. If we fix initial values ps0, r0q P S1ˆp´1, 1q, we say that the set of ordered pairs Ops0, θ0q “
tpsn, θnq, n P Zu is a orbit of f if psn, θnq “ f nps0, θ0q.

Definition 2.8. The function

L : Rn Ñ R such that Lps1, ...snq “
j´1
ÿ

k“i

Hpsk , sk`1q

is called the action functional, where H is a generating function.

The next proposition relates the concept of orbit with the action functional.

Proposition 2.9. Given sn, sm P S1, the sequence tsn, ..., smu P S1 is a segment of an orbit if and only if
tsn, ..., smu is a critical point of the action functional Lpsn, ..., smq with fixed endpoints sn and sm.

Proof. Fixing sn, sm P S1, the action functional of the segment tsn, ..., smu is

Lpsn, ..., smq “
m´1
ÿ

i“n

Hpsi , si`1q.

Indeed, the segment is a critical point of the action functional if and only if

BL

Bsj
psn, ..., smq “ 0 @j P tn ` 1, ..., m ´ 1u,

and, using the definition of the map L, this implies,

BH

Bs 1
psj´1, sjq `

BH

Bs
psj , sj`1q “ 0 @j P tn ` 1, ..., m ´ 1u.

So, the segment of the orbit is a critical point of L if and only if

rj :“
BH

Bs 1
psj´1, sjq “ ´

BH

Bs
psj , sj`1q @j P tn ` 1, ..., m ´ 1u,

in other words, the equations (2) are satisfied.

2.2 Rotational invariant curves

Let F : S1 ˆ p´1, 1q Ñ S1 ˆ p´1, 1q be an area preserving map on the cylinder.

Definition 2.10. F is end preserving if it satisfies

lim
rÑ´1

f2ps, rq “ ´1,

lim
rÑ1

f2ps, rq “ 1,

where F ps, rq “ pf1ps, rq, f2ps, rqq.

11



Billiard and periodic orbits

Definition 2.11. A curve C is an invariant curve under the map F if F pC q “ C . Moreover, if this curve
is a loop that encircles the cylinder we say that C is a rotational invariant curve (RIC). In other words, a
RIC can not be contracted to a point.

Since the map is continuous, end preserving and bijective, this type of curves separate the cylinder in
two invariant regions, i.e., they provide an absolute barrier to motion.

Theorem 2.12. (Birkhoff’s theorem) Let F be a C 1 area preserving, end preserving twist map on the
cylinder. Let U be an open invariant set homeomorphic to the cylinder such that there are a, b P R with
a ă b satisfying the following condition

tpx , yq; y ă au Ă U Ă tpx , yq; y ă bu.

Then, the boundary of U is a graph tx , Y pxqu of some Lipschitz function Y .

Proof. To do the proof we will follow r1s. First, we present some concepts.
Suppose γptq “ pxptq, yptqq is a curve embedded in U parametrized by t P pα,βq such that limtÑα yptq “
´1. The deviation of γ from the vertical is defined to be the angle δ between a tangent to γ and the
vertical. For those points γptq such that yptq ą ypt 1q for all t 1 ă t, choose δ in range r´ π

2,π
2
s; otherwise

the branch of δ is chosen to make the deviation a continuous function. (See Figure 3, left image).

Consider two types of curves γ, depending of the range of δ. If δ ď 0 for all points along the curve, we
are going to call it γR and if δ ě 0 we will denote it γL. This means the deviation of γR from the vertical
is to the right for all points of the curve and the deviation is to the left when γ “ γL.

(a) Example of γ that tilts to right. (b) Example of right accessible point z0.

Figure 3: Images of [1]

Let z0 P U be a point. We say that z0 is right accessible if there exists a γR P U such that γRpt0q “ z0.
(See Figure 3, right image)

An interesting property is that this curves under the map F conserve its tilt, i.e., the iterate of the curve
that tilts to the right also tilts to the right. To see this, we choose a point z on the curve and the vertical
vector v at z . Consider M the linearization of F and the new vector Mv . The twist condition implies that
v is mapped to a right-tilt vector and the angle θ between the vertical vector and Mv has a range r´π, 0s.
On the other hand, F preserves orientation, so the angle between Mv and the tangent vector of F pγRq at
F pzq is contained in r´π, 0s. Therefore, F pγRq tilts to the right. Similarly, F pγLq tilts to the left. (See
Figure 4, left image).

12



Suppose W R and W L the sets of points that are contained in U and are right and left accessible
respectively. The boundary of W R are the points of the boundary of U that are right accessible together
the vertical segments in U that they delimit the parts of U not right accessible (see Figure 4, right image).
All points of W R are on a curve that tilts to right, hence, by the previous property, W R is mapped to itself
(F pW Rq Ă W R). Analogously, if we consider the map F´1 we have the twist condition to the left and
F´1pW Lq Ă W L.

(a) Tilt property. (b) Region W R .

Figure 4: The map T in image (a) corresponds to the map F . Images of [1]

Now, we are going to see W R “ U. Suppose W R ‰ U, then there is a portion of U that is not right
accessible and there is a ”lobe” bounded by a vertical segment on the right. The points of this vertical
segment are mapped into a portion of W R . On the other hand, we consider a circle y “ y0 far below the
boundary of U. It is clear that the area of U above y0 is finite since the points px , yq of the boundary of
U satisfy y ă a and y ą b. Then, using the area preserving property of F , we have that this finite area is
mapped to a regions with the same area. Moreover, by the end preserving condition, the area contained
under the curve y “ y0 is the same under iterations of F and this gives a contradiction. Using the same
arguments with the map F´1 we have W L “ U.

Thus, all points of the boundary of U are right and left accessible so there exists a function y “ Y pxq
such that defines the boundary of U.

The Lipschitz condition to the graph y “ Y pxq is proved in [1].

Observation 2.13. The billiard map f satisfies the conditions of the theorem, so if the cylinder where f is
defined has RICs, these RICS are graphs and these graphs are Lipschitz.

13



Billiard and periodic orbits

3. Caustics

Caustics are interesting curves that appears in the billiard problem. They are the ”physical counterpart” of
the RICs in the billiard map. In general, there is a two to one correspondence between RICs and caustics.
In this section we will see some properties about the caustics and the conditions that we need to guarantee
the existence of caustics in the convex billiards. The most known examples when the caustics appear
are circumferences and ellipses. We will see if the boundary of the billiard table is a circumference, all
concentric circumferences inside the table are caustics. On the other hand, is the boundary of the table is
an ellipse, all cofocal ellipses inside the table are also caustics. The conditions of the existence of caustics
in convex billiards was proved by Lazutkin and Douady. On the other hand, caustics do not exist always.
in this seccion we are going to see how Mather proves the non existence of caustics when the boundary of
the table has a point where the curvature vanishes and how Hubacher proves the non existence of caustics
when the boundary of the table is no sufficiently smooth.

3.1 Definitions and Properties

Let B be the boundary of the billiard table and ps, θq a point of a billiard’s trajectory.

Definition 3.1. Given Γ a curve and ps, θq a point of an orbit such that the line drawn by the points ps, θq
and its next iterate is tangent to Γ. The curve Γ is called caustic if all of the segments generated by the
orbit ps, θq are tangent to Γ too. Moreover, we say that the caustic is convex if the curve Γ is a smooth
closed convex curve contained in the billiard table.

The convex caustics are related with the RICs that we can find in the phase space r0, Lq ˆ r0,πs.
From now, the phase space is defined in r0, Lq ˆ p0,πq But we can extend the interval p0,πq to r0,πs by
continuity.

Proposition 3.2. If Γ is a convex caustic, there exist two RICs in the phase space that corresponds with
the orbits that are tangent to the caustic.

Proof. Given s0 a point of the curve B we can consider two lines l1 and l2 that are tangent to Γ and go
through the point s. We define θ0 the angle between the line l1 and the tangent line to B at s0 (see Figure
5).

If we repeat this process for all points s0 of B, in the phase space appears a rotational curve C in the
cylinder S1 ˆ r0,πs. We are going to see that C is invariant: choosing ps0, θ0q P C and its next iterate
ps1, θ1q under the billiard map, the line s0s1 is tangent to Γ and Γ has an other tangent line l3 that contains
s1. Since Γ is a caustic, the reflection angle θ1 in s1 coincides with the angle between the tangent line to
B at s1 and the line l3, so the point ps1, θ1q belongs to C . So C is a RIC.

Analogously, when we fix the point s0, we can choose θ0 the angle between the line l2 and the tangent
line to B at s0. As above, in the phase space appears a curve C̄ that is a RIC.

Observation 3.3. The RIC C and C̄ satisfy the relation

ps0, θ0q P C ô ps0,π ´ θ0q P C̄ .

Proposition 3.4. If there exists a RIC γ sufficiently near to the boundary S1ˆ t0u or S1ˆ tπu, there is a
caustic Γ such that the trajectories generated by the points of the RIC are tangent to this caustic.
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Figure 5: A caustic and its associated RIC

Proof. We recall that an envelope of an uniparametric family of planar curves is a curve that is tangent to
each member of the family at some point and these points of tangency together form the whole envelope.

Let Ts be the straight line connecting the points αpsq and αpgpsqq, where α : S1 Ñ B was the
parameterization of B. Let T “

Ť

s Ts be the familiy of curves formed by these lines. Let Γ be the
envelope of the family T . That is, each point in Γ can ve seen as the intersection of two “infinitesimally
adjacent” curves:

Γ “
 

βpsq P R2 : s P S1
(

, βpsq “ lim
s1Ñs

Ts X Ts1 .

To end the proof, it suffices to check that this curve is well-defined and it is contained in B. That is, we
have to check that all limit points βpsq exist and are contained in B for any s P S1. By the Birkhoff’s
theorem, any RIC γ can be expressed by a graph, hence there exists a function δ : S1 Ñ r0,πs such that
for any point ps, θq P γ, θ “ δpsq. On the other hand, we call g the function that describes the dynamics
of the billiard map restricted to the curve. In other words,

f ps, δpsqq “ pgpsq, gpδpsqq, @s P S1.

This function g is monotonously increasing since γ is near to the boundary S1 ˆ t0u or S1 ˆ tπu and
the billiard is area preserving. Hence two close trajectories always intersect (see Figure 6).

Caustics are curves very studied because their existence has great implications in the billiard map. In
the following sections we are going to see two conditions provided by Lazutkin to prove the existence of
caustics near of the boundary of the billiard table and the result of Gutkin-Katok about how regions free
of convex caustics change when the curvature of a point of the billiard table tends to zero. On the other
hand, we are going to see the result of Mather about the non existence of caustics when a point in the
billiard table has curvature zero. Finally, we will see how Hubacher proves the non existence of caustics
near the boundary when the table is not sufficiently smooth.

Examples of caustics in convex billiards.

The most known examples of billiard tables are circumferences and ellipses.
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Billiard and periodic orbits

Figure 6: Close trajectories near to the boundary

If we focus in the circumference C , it is easy to see that any concentric circumference C̄ contained in
C is a caustic, since for all initial condition ps, θq, the iterate f nps, θq “ psn, θnq satisfies θn “ θ @n P N
(see Figure 7).

Figure 7: Caustics of a circumference and an ellipse

On the other hand, we can consider an ellipse E as billiard table. In this case, all cofocal ellipses E 1
inside E are convex caustics as we can see in Figure 7. To prove it we are going to follow r2s.

Let A, B, C be three points in the ellipse E such that satisfy the billiard law. Now we choose two points
T1, T2 in the tangent line to the ellipse at B (T1 to the left of B and T2 to the right of B).

The focus of an ellipse satisfy the following property: given any point P of B, the lines generated by
the segments F1P and PF2 are part of a billiard map trajectory. This property is esay to prove with a
geometric argument and using the followings fact:

given a line l and two points in the same half-plane delimitated by l, the point P̄ P l when the law
reflection is satisfied coincides with the point when the sum of distances dpF1, P̄q ` dpF2, P̄q is minimal.

By this property, the angles =F1BT1 and =F2BT2 are equal and this implies that the segment AB is
placed inside =F1BT1. Then, the segment BC is placed inside =F2BT2 since =ABT1 and =CBT2 are
equal by the billiard law (orange angles in Figure 8).
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Figure 8

Let D1, D2 be points symmetric to F1, F2 respect the lines AB and BC respectively. It is easy to prove
that the triangles ∆D1BF1 and ∆F1BD2 are congruent. The distances D1B, F1B are the same and F2B
and D2B have the same length too. Moreover,

=D1BF2 “ =D1BF1 `=F1BF2,

=F1BD2 “ =F2BD2 `=F1BF2,

and, using the symmetry

=D1BF1 “ 2=F1BA “ 2p=F1BT1 ´=ABT1q “ 2p=F2BT2 ´=CBT2q “ 2=F2BC “ =D2BF2.

Hence, ∆D1BF1 and ∆F1BD2 are congruent and D1F2 – F1D2.
For any point in the line AB, we can consider the sum of distances between this point with the foci F1, F2.
The minimal value of these sums of distances is equal to the length of the segment D1F2. Since ∆D1BF1

and ∆F1BD2 are congruent, F1D2 is equal to the minimal sum of distances from F1 and F2 of a point on
the line BC . Then, BC is tangent to E 1, so E 1 is a caustic of E .

3.2 Existence of caustics

The most important known result about the existence of convex caustics was given by Lakutkin. Later,
Douady presented the same result with weaker conditions. In this section we are going to see the Lazutkin
theorem and an idea about the approach of the proof. Finally, we are going to see the theorem enunciated
by Douady.

Theorem 3.5. (Lazutkin) Let D be the billiard table and let B “ BD be a closed convex curve such that
for all point of B the curvature is positive everywhere and B is Ck where k ě 558. Then, there exist a
Cantor set K Ă r0, 1

2qzQ such that for all α P K , there exists a RIC with rotation number α.
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Now we are going to remember the notation to see the idea that Lazutkin use to prove the theorem.

We call f : S1 ˆ r0,πs Ñ S1 ˆ r0,πs the billiard map in the natural coordinates and we define
F : Rˆ r0,πs Ñ Rˆ r0,πs as its lift. Let ps, θq “ ps, 0q be the point of the phase space Rˆ r0,πs such
that the angle is zero. By the law reflection, the iterates of this points are same point, i.e. F ps, 0q “ ps, 0q.
Hence this point are stationary and the curve Rˆt0u is an stationary curve. Analogously the curve Rˆtπu
is an stationary curve.

Lazutkin in r6s proves the existence of a family of RICs near to the stationary curves R ˆ t0u and
R ˆ tπu with a small rotation number. So, by Proposition 3.4 we have the existence of caustics near to
the boundary.

We focus in the stationary curve Rˆ t0u and the map F near to this curve, i.e., we are going to take
small angles θ.

Doing an asymptotic expansion, we can describe ps1, θ1q “ F ps, θq as

s1 “ s ` 2ρpsqθ ` 4
3ρpsqρ

1psqθ2 ` 2
3ρ

2psqρ2psqθ3 ` G1ps, θqθ4

θ1 “ θ ´ 2
3ρ
1psqθ2 ` p´2

3ρpsqρ
2psq ` 4

9ρ
12psqqθ3 ` G2ps, θqθ4

(3)

where ρpsq is the radius of curvature of B in s and the functions G1ps, θq and G2ps, θq has three
derivatives less than the function ρpsq.

Now, we are going to consider the following change of coordinates:

x “ C1

ż ?

0
ρ´2{3psqds

y “ C2ρ
1{3psq sin

θ

2

where C1 “ p
ş

B ρ
´2{3psqdsq´1 and C2 “ 4C1. The new coordinates are called Lazutkin coordinates. This

expression appears from some formulas of diffraction theory and from the fact that the invariant measure
have the simple form dm “ const|y |dxdy . The asymptotic expansion (3) of the billiard map F in this new
coordinates is the system:

x1 “ x ` y ` y3g1px , yq
y1 “ y ` y4g2px , yq,

(4)

where the functions g1px , yq and g2px , yq has three derivatives less than the curvature function. The factors
C1 and C2 have been chosen to define the period of x in a unit and the coefficient of y in the first equation
of (4) be unitary.

If the functions g1 and g2 are zero, the system (4) is

x1 “ x ` y
y1 “ y .

(5)

Then, we have the family of invariant curves y “ const. On the other hand, is y is small, we can understand
the terms y3g1px , yq and y4g2px , yq as a small perturbation of (5). At this point, Lazutkin proves the
theorem with KAM theory.

Theorem 3.6. (Douady) If k ą 6, then there exists a Cantor set K of irrational points contained in r0, 1
2q

such that for all α P K , the there exists a caustic γ P C1`ε, ε ą 0 with rotation number α.

Although we have seen the existence of a discontinuous family of convex caustics, in the case of ellipse
E this family is continuous since all cofocal ellipses inside E are caustics.
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3.3 Regions free of convex caustics

Gutkin and Katok in r3s do an study of the regions free of convex caustics that depends of the billiard
table shape. Moreover, they give estimations about the size of these regions.

We have just seen that under some conditions there exists a family of convex caustics near to the
boundary. Now, doing some deformations in the billiard table we will see how change the regions where
the caustics are contained or, which is the same, how change the region free of convex caustics. There
are different factors that appear when we estimate the size of these regions, for example the minimum and
maximum value of the curvature.

An simple example to see how can change the size of these regions is the following: suppose that we
have a one-parameter family of curves such that the minimum curvature change and tends to zero but the
global shape of the table remains essentially the same, for example

Bt “ tpx , yq; P R2; x2 ` ty2 ` y4 ď 1u where t ą 0.

In this case, when we tend the parameter t to zero, the region free of convex caustics increase and,
consequently, the caustics are contained in a region near to the boundary which area tends to zero. See
Figure 9.

(a) Bt where t=0.05. (b) Bt where t=0.01.

Figure 9: Blue region is the region where the caustics are contained.

Definition 3.7. A region X Ă D is called region free of convex caustics if for any convex caustic γ,
γ X X̊ “ H.

The domain of the convex billiard map is a closed convex curve B “ BD hence the maximum and
minimum values if the curvature are finite. Let κpsq be the curvature function of the curve B, we define:

κ´ “ min
sPB

κpsq and κ` “ max
sPB

κpsq.

Definition 3.8. Let D be a compact set in the plane. The diameter d is defined as the largest euclidean
distance between two points contained in the set D. The width w is the minimum distance between two
parallel supporting lines of D. And the inradius r of D is the radius of the biggest circumference inscribed
in D.
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Now, we are going to state different estimations about regions free of convex caustics. The main tool
used to prove this estimations is the mirror equation of the geometric optics.

In the following results we assume that D is the billiard table, B is its boundary and L is the length of
B. And we are going to use the notation described above about the curvature.

Proposition 3.9. If B satisfies
r ě

?
2κ´d2

then, the billiard table contain a disc free of convex caustics and its radius r 1 satisfies r 1 ą r ´
?

2κ´d2.

Proposition 3.10. If B satisfies
w

3
ě
?

2κ´d2

then, the billiard table contain a disc free of convex caustics and its radius r 1 satisfies r 1 ą w
3 ´

?
2κ´d2.

Proposition 3.11. If B satisfies
1 ě

?
2d2κ´κ`

then, the billiard table contain a disc free of convex caustics and its radius r 1 satisfies r 1 ą 1
κ`
´
?

2κ´d2.

Theorem 3.12. If B is C2 and satisfies
1 ě

?
2d2κ´κ`

then, the billiard table contain a convex region X free of convex caustics and its area satisfies

AreapX q ě AreapDq ´
?

2κ´d2L.

3.4 Non existence of caustics - Mather

Remember that the conditions of existence of caustics by Lazutkin-Douady are it has the strictly positive
curvature and the boundary has 6 continuous derivatives for any point on the boundary of the table.
Mather, in r4s, changes the first condition and he imposes the existence of a point with zero curvature.
Under this conditions, he proves the non existence of caustics. To do it, we need define the ε-glancing
orbits.

Definition 3.13. An orbit is called ε-glancing if, at least, it has a reflection angle less than ε.

We differentiate two types of ε-glancing orbits: if ε ă π
2 , we say that the trajectory is positively ε-

glancing if the reflection angle is between the trajectory and the positive tangent of B and we say that it
is negatively ε-glancing if we choose the angle with the negative tangent.

A intuitive way to see these orbits is in the phase space R ˆ r´1, 1s. Suppose we have some orbit
that is positive ε-glancing for all ε ą 0. This orbit has always some iterate such that it states as close as
we want to the boundary B ˆ t´1u. Now, suppose that we have a RIC. RICs separate the phase space
into two connected components then there can be no orbit that is positive and negative ε-glancing for all
ε ą 0.This implies if there exists an orbit of this type, there no exist RICs. On the other hand, Mather
proves that if there are no RICs then there exists an orbit that is positive and negative ε-glancing for all
ε ą 0. To do it he supposes that there is no orbit of this type and, under this hypothesis, he arrives to the
conclusion that there exists a RIC. So, there exists RICs if and only if there no exist a positive and negative
ε-glancing orbits for all ε ą 0. On the other hand, he proves the existence of this type of orbits when a
point of the boundary B has curvature zero. As a consequence, there no exist caustics when a point of the
boundary has curvature zero.
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Theorem 3.14. If the curvature of the boundary of B vanishes at some point, then for every ε ą 0, there
are trajectories which are both positively and negatively ε-glancing.

Proof. Suppose that the result of the theorem is false and we are going to arrive at a contradiction.
Consider V´ and V` the following sets (see Figure 10)

V´ “ B ˆ r´1,´1` εs and V` “ B ˆ r1´ ε, 1s.

Remember that the phase space of the billiard map in Birkhoff’s coordinates is S1 ˆ r´1, 1s that is
homeomorphic to B ˆ r´1, 1s.

Figure 10: Sets V´ and V`.

We can construct the new set

V “

8
ď

n“´8

f̄ npV´ X 8Dq Y pB ˆ t´1uq,

where D “ B ˆ r´1, 1s. In other words, V contains all iterates of the orbits that have some point in V´
and the points of the lower boundary.

Using that the conclusion of the theorem is false, there exists an ε ą 0 sufficiently small such that
the intersection of V` and V´ is empty (V` X V´ “ H). We choose this ε. Consider C “ DzV which
contains B ˆt1u, that is a connected component, and U “ AzC . Then, V´ Ă U, U XV` “ H, f̄ pUq “ U
and B ˆ t´1u is a deformation retract of U.

By the Birkhoff’s theorem, there exists a function γ such that it describes the boundary of U (BU “

tpx , γpxqq; x P Bu).

Then, f̄ pBUq “ BU since f̄ pUq “ U and B ˆ t1u is a deformation retract of U, so there exists an
homeomorphism g : B Ñ B such that f̄ px , γpxqq “ pgpxq, γgpxqq. This implies that f̄ |BU and g preserve
orientation since f̄ preserves orientation.

Consider a point x0 P B such that its curvature is zero and other point y P B. We are going to denote

xn “ gnpx0q and yn “ gnpy0q
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their respective orbits.

On the other hand, we denote by hpv , wq the euclidean distance between v and w where v , w P B.
Remember that this function is a generating function so, by (2),

Bh

Bv
pv , wq “ ´r

where r “ cospθq and θ is the angle associated to the point v in the cylinder under its trajectory (the line
that it join the point v and w).

It is clear that Bθ
Bw ă 0, thus

Bh2

BvBw
“

B

Bw

Bh

Bv
“

B

Bw
cospθq ñ

Bh2

BvBw
ą 0. (6)

Moreover, if x´1 and x1 are the previous and posterior points of the trajectory of x0, using that h is a
generating function, we have

B

Bx0
phpx´1, x0q ` hpx0, x1qq “ 0.

On the other hand, at x0 the curvature of B vanishes, then we can apply the reflection law that is: if
we fix two points x and y in the plane and one line under this point, the point z in the line that satisfies
the reflection law (the angle of incidence is equal to the angle of reflection) is the one that minimizes the
distance hpx , zq ` hpz , yq. So, in our case we can express this property as

B2

Bx2
0

phpx´1, x0q ` hpx0, x1qq ą 0. (7)

Choosing ỹ and y 1 two points on B near to x´1 and x1 respectively and applying the implicit function
theorem, there exists a function η “ ηpỹ , y 1q in a neighborhood of x0 such that

B

Bη
phpỹ , ηq ` hpη, y 1qq “ 0

and given y´1 sufficiently near to x´1, we get

y0 “ ηpy´1, y1q. (8)

Using (6) and (7),

Bη

Bỹ

ˇ

ˇ

ˇ

ˇ

ˇ

ỹ“x´1

ă 0 and
Bη

By 1

ˇ

ˇ

ˇ

ˇ

ˇ

y 1“x1

ă 0. (9)

Since y1 is an increasing function of y´1 and using (8) and (9) we have that y0 is a decreasing function
of y´1 choosing y´1 a point in a small neighborhood of x´1. And this is a contradiction, so the theorem
is proved.

3.5 Non existence of caustics - Hubacher

In r5s, Hubacher proves the non existence of convex caustics when the number of continuous derivatives is
less than 2. In particular, she supposes the second derivative is not continuous.
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Theorem 3.15. Suppose that the boundary B “ BD of the billiard table has at least one discontinuity
in the curvature (there is a point such that the second derivatives exists from both sides but there is a
discontinuity). Then the circles S1 ˆ t0u and S1 ˆ tπu are isolated invariant curves of the billiard map;
hence caustics cannot accumulate at the boundary curve B “ BD.

First we are going to see an idea about the proof and next we will see the proof of the theorem.

Suppose the boundary B of our table is a convex closed curve that has a point where the curvature
function is discontinuous. We can assume that this point is s “ 0 since otherwise we can do a translation
to fix the discontinuity in this point. Assume that this point is the concatenation of two circles with radius
r and R respectively, where r ‰ R. Under this hypotheses, we are going to see the behaviour of two
different types of orbits.

The first orbit (orange orbit in Figure 11) we will suppose that it does not impact on the point s “ 0.
Then, this orbit has an impact in s0 ă 0 and a second impact s1 ą 0. We define the angles as θ0 and θ1
respectively, i.e., the points of the orbit are ps0, θ0q and ps1, θ1q. In the phase space, the points s P R under
the lift of the billiard map evolve as follows: two consecutive points si , si`1 of the orbit that impact in the
circle with radius r satisfy si`1 “ si ` 2rθr . Analogously, si`1 “ si ` 2RθR if the two consecutive points
state over the circle with radius R. Remember that the impact angle states the same when the boundary
of the table is a circle. On the other hand, the relation between θr and θR is θR ď

a

r
R θr (we will see this

relation in the proof of the theorem).

The second orbit (green orbit in Figure 11) we will assume it impacts over s “ 0. In this case, if we fix
an impact point s´i with angle θ´i before s0 “ 0 and other point si with angle θi after s0 “ 0, the points
of the trajectory from s´i to si remain the angle, i.e., θ´i “ ... “ θ0 “ ... “ θi .

Figure 11

Now, we are focus in the impact point after s “ 0. The angles of the first orbit (orange) evolve slower
than the angles of the second orbit (green). Therefore, the impact points also evolve slower. This implies
the orbits will cross.

Suppose that there exists a caustic and we have two orbits as described above. We can assume that
these orbits are tangent to the caustic, i.e., the points of their trajectories are in the RIC associated to
the caustic. In this case, we have two orbits over the same RIC that they cross. This fact contradicts the
Birkhoff theorem, so a caustic does not exist.

Lemma 3.16. Let psn, θnq and ps 1n, θ1nq the orbits described above. Suppose s0 ă s 10 ă s1. For all
δ ą 0, δ P R, there exist a neighborhood V of s 10 such that if psn, θnq has at least a point in V , then the
orbits do not cross for any n ą 0 if the following condition holds:

|θ10 ´ θ1| ă δθ1. (10)
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Billiard and periodic orbits

Analogously, they do not cross for any n ă 0 if if the following condition holds:

|θ10 ´ θ0| ă δθ0. (11)

Let ps 1n, θ1nq be an orbit near to the boundary.

Proof. Fix s “ 0 and consider the set VR “ V X ts ą 0u. We can use the Lazutkin coordinates because
the orbit is near to the boundary and the boundary is smooth (remember that the Lazutkin coordinates is
an asymptotic expansion), then

s1 “ s ` 2κpsq´1θ ` opθq

θ1 “ t ` opθq

Now, fix δ such that 0 ă δ ă 1 and define

m “ inf
VR

2κpsq´1, M “ sup
VR

2κpsq´1.

The curvature is bounded then m and M are finite values and we can choose V sufficiently small such that
m ą p1´ δqM.

Let n be an integer such that n “ r 2m
pm´p1´δqMq s ` 1 (the smallest integer greater than 2m

pm´p1´δqMq).

Therefore all iterates F jps0, θ0q and F jps 10, θ10q with 1 ď j ď n are contained in V if θ0 and θ10 are sufficiently
close.

Suppose (10) is not fulfilled, i.e., θ10 ă p1´ δqθ1 or θ10 ą p1` δqθ1. In the first case, using the Lazutkin
coordinates we obtain

sn ą sn ´ s1 “ θ1

n´1
ÿ

j“1

2κpsjq
´1 ` opθ1q ą θ1pn ´ 1qm ` opθ1q

s 1n “ s 1n ´ s 10 “ θ0

n´1
ÿ

j“0

2κps 1j q
´1 ` opθ10q ă θ1p1´ δqnM ` opθ1q

then sn ą s 1n and this implies that the orbits do not cross since the hypothesis was s0 ă s 10. the second
case is analogous.

To prove (11) we choose VR “ V X ts ă 0u and we use the same reasoning.

Proof. We will separate the proof in two steps. The first is a local proof and consist to prove that for all
point with a discontinuity in the curvature there exists a neighborhood that it does not have RICs. The
second step is a generalize of this result for a neighborhood to the boundary.

Without loss of generality, assume s “ 0 a point where the curvature function κpsq is discontinuous
but the lateral limits of κpsq exist. Since the curvature is bounded, we can define the lateral limits as
r “ κp0´q and R “ κp0`q where r , R P R. Moreover, we can assume κp0´q ă κp0`q, otherwise the proof
is analogously.

We will use the billiard map f and its lift F to do the proof. Remember that the lift is defined as
F : R{LZ ˆ r0,πs Ñ R{LZ ˆ r0,πs and it can be extended as a periodic function from R ˆ r0,πs to
Rˆ r0,πs. Then, to do the study at point s “ 0 is equivalent to do it at p0, 0q in the phase space under
the lift F . Consider V a neighborhood of p0, 0q such that we can approximate the boundary of the billiard
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table B at s “ 0 by to osculating circles with radius r and R respectively with a first order approximation,
i.e., opsq Ñ 0 when s Ñ 0.

Suppose that there exists a RIC passing through V and we will arrive to a contradiction. Let Γ be a
RIC passing through V , since Γ is continuous, there exist a point q “ ps0, θ0q such that the segment ¯qf pqq
is perpendicular to the straight line generates by the normal vector to B at S “ 0 and is a segment of a
trajectory.
We call t0 the point that is the intersection of the osculating circle with radius r and the segment ¯qf pqq.
We define α0 the angle between the tangent line of the osculating circle at t0 and the segment ¯qf pqq.
Analogously, on the osculating circle with radius R we define the point t1 and the angle α1. See Figure 12.

Figure 12

Hence we can conclude that the following relation is satisfied:

R cospα1q “ R ´ r ` r cospα0q.

Given this relation we define this function:

gpαq “ arccosp1´
r

R
`

r

R
cospαqq.

and doing the derivative of gpαq the have the following bound:

g 1pαq “

a

r
R

b

1` p1´ r
R q tan2pα2 q

ă

c

r

R
,

then,

α1 “ gpα0q “ α0

ż 1

0
g 1pτα0qdτ ă α0

c

r

R
ùñ α1 ă α0

c

r

R
. (12)

Using the osculating circles approximation,

α0 “ θ0 ` opθ0q i θ1 “ α1 ` opα1q
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when the angles tend to 0 and applying the inequality (12),

θ1 ă α0

c

r

R
` opθ1q “ θ0

c

r

R
` opθ0q ÝÑ θ1 ă θ0,

i.e., for a small neighborhood V we can bound θ1 ´ θ0:

θ0 ´ θ1 ą
1

2
p1´

c

r

R
qθ0 ą

1

2
p1´

c

r

R
qθ1. (13)

We will refer by psn, θnq the orbit that we just described.

Now, we consider all orbits that impact in the point s “ 0 and we denote this type of orbits by ps 1n, θ1nq.
Our goal is arrive to a contradiction as follows: fix s 10 “ 0 and we will see that for any θ10 that we choose,
the orbits psn, θnq and ps 1n, θ1nq cross. If this happens we arrives a contradiction with the Birkhoff theorem.

By Lemma 3.16, we know that psn, θnq and ps 1n, θ1nq do not cross for any positive n P Z if for all @δ ą 0
there exists a neighborhood U such that

|θ10 ´ θ1| ă δθ1

and, analogously must be satisfied
|θ10 ´ θ0| ă δθ0

so that two orbits do not cross for some negative n P Z.

Suppose that the orbits do not cross for any n ą 0, then, for all δ ą 0DU neighborhood such that
|θ10 ´ θ1| ă δθ1. Choosing δ “ 1

4p1´
a

r
R q i and using (13) we have:

|θ10 ´ θ0| “ |θ
1
0 ´ θ1 ` θ1 ´ θ0| ą |θ0 ´ θ1| ´ |θ

1
0 ´ θ1| “ θ0 ´ θ1 ´ |θ

1
0 ´ θ1|

ą θ0 ´ θ1 ´
1

4
p1´

c

r

R
qθ1 ą

1

2
p1´

c

r

R
qθ1 ´

1

4
p1´

c

r

R
qθ1 “

1

4
p1´

c

r

R
qθ1 “ δθ1

ą δθ0,

so, they cross for some negative n. Analogosuly, is we suppose that they do not cross for any n ă 0 we
conclude that they cross for some positive n. In other words, the orbits psn, θnq and ps 1n, θ1nq cross for any
θ10 that we choose. In particular, we can choose ps 1n, θ1nq the orbit that impact on s “ 0 and it is tangent
to the caustic. This implies that both orbits state over the RIC but this is a contradiction by the Birkhoff
theorem. So, in the neighborhood V does not pass any RIC.

To generalize the result we suppose that there exists an accumulation point of a family of RICs tΓnumPZ.
The boundary of the table B is piecewise C2and the curvature is uniform hence the billiard map is twist
uniform. On the other hand, by Birkhoff theorem, Γn is Lipschitz, then there exists a subsequence of
tΓnumPZ that converges to RIC Γ and it intersects with R{LZˆ t0u at least in one point ps, 0q. Since F is
periodic, there exists at least other point ps 1, 0q where Γ intersects with R{LZˆ t0u.

Take two consecutive points where Γ intersects with R{LZˆt0u and the region W delimited by Γ and
R{LZ ˆ t0u contains the point p0, 0q in its boundary. The set W is an invariant set homeomorphic to
the plane. Give a vertical line inside W such that this lines divides W in two connected components with
positive measure. Under the billiard map this measure remains and, by twist condition, the vertical line
tilts to right. These two facts are contradictory, so the RIC Γ cannot exist.

26



4. Periodic Orbits

In this section we folllow the references [1] and [7]. We are going to define of the pp, qq periodic orbits
and we will prove the existence of at least two pp, qq periodic orbits with different geometry in convex
billiards. These periodic orbits are minimizing orbits and minimax orbits. The first are associated with the
minimums of the functional action. The existence of these orbits implies the existence of a minimax orbit
since the functional action is continuous and between two minimums of the functional action there must
be another critical point.

In this section we assume that F : R ˆ p0,πq Ñ R ˆ p0,πq is a lift of the billiard twist map f :
S1ˆp0,πq Ñ S1ˆp0,πq where S1 “ R{Z. That is, we assume that the length of the billiard map is equal
to one, otherwise we can normalize it.

4.1 Definitions and Poincaré-Birkhoff theorem

Definition 4.1. A sequence tpsn, θnqunPN is a pp, qq periodic orbit of a map F if

F qpsn, θnq “ psn ` p, θnq,

where p P Z, q P Z.

In terms of the billiard map, the function F is the lift of the billiard map f and sn is defined in R for
all n P Z. So, given an orbit O “ tpsn, θnqunPN, the components sn are in S1 if we consider the billiard
map f but, when we use the lift F , sn is defined in R. In the last case, we say that the space where we are
working is the configuration space.

Observation 4.2. If we have a pp, qq periodic orbit, the physical representation of this periodic orbit on the
billiard table is a cycle. In other words, suppose the segment pps1, θ1q, ..., psq, θqqq is a segment of a pp, qq
periodic orbit, then sq`1 “ s1 ` p, sq`2 “ s2 ` p, ...s2q “ sq ` p hence

psq`1modppq, ..., s2qmodppqq “ ps1, ..., sqq.

So the points of the trajectory under the billiard map f generate a cycle with q components.

Definition 4.3. Let tpsn, θnqunPN be an orbit and F ps, θq “ pF1ps, θq, pF2ps, θqq a map. The rotation
number is the result of the following limit if it exists:

lim
nÑ8

F n
1 ps, θq ´ s

n
,

where ps, θq is an element of the orbit. If the limit exists, it does not depend to the ps, θq chosen.

Proposition 4.4. The rotation number of a pp, qq periodic orbit is ω “ p
q .

Proof. Let ps, θq be an element of a pp, qq periodic orbit, then

lim
nÑ8

F n
1 ps, θq ´ s

n
“ lim

nÑ8

F nq
1 ps, θq ´ s

nq
“ lim

nÑ8

ps ` npq ´ s

nq
“

p

q
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Billiard and periodic orbits

In section 5 we shall study the symmetric periodic orbits when the billiard table is the curve x2`y4 “ 1
and the orbits has odd period and one point of the orbit is p0, 1q, so the axis of symmetry is y-axis.

Examples of periodic orbits

In the following images we see different types of orbits with same period. In Figure 13 the orbits have
period q “ 5 but O1 is a p1, 5q periodic orbit and O2 is a p2, 5q periodic orbit. In Figure 14 the orbits have
period q “ 7 but O3 is a p1, 7q periodic orbit and O4 is a p3, 7q periodic orbit.

Figure 13: Periodic orbits with period q “ 5. Left orbit is O1 and right orbit is O2.

Figure 14: Periodic orbits with period q “ 7. Left orbit is O3 and right orbit is O4.

Figure 15 is a representation of the contact points of one cycle of the orbit in R. This is a good
representation to see the meaning of p.

Remember that the generating function of the billiard map is Hps, s 1q where s and s 1 are the first
component of two consecutive points ps, θq and ps 1, θ1q of an orbit, that is the length of these two consecutive
points in the billiard table. On the other hand, Lps1, ..., snq is the action functional and it is defined in the
configuration space. The following Proposition is analogous to Proposition 2.9.

Proposition 4.5. An orbit O “ tpsn, θnqunPN is a pp, qq periodic orbit if and only if for any q dimensional
segment of the orbit psi , ..., si`q´1q is a critical point of the functional

Lppsi , ..., si`q´1q :“ Lpsi , ..., si`q´1, si ` pq “
i`q´1
ÿ

k“i

Hpsk , sk`1q|si`q“si`p.

Proof. Suppose that O is a pp, qq periodic orbit and we consider the functional action of a q dimensional
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Figure 15

segment of this orbit

Lppsi , ..., si`q´1q “ Hpsi , si`1q ` ...` Hpsi`q´1, si ` pq

then, the segment psi , ..., si`q´1q is a critical point if and only if

BLp

Bsj
psi , ..., si`q´1q “ 0 @j P ti , ..., i ` q ´ 1u.

The last equation is equivalent to the following:

BH

Bs 1
psj´1, sjq `

BH

Bs
psj , sj`1q “ 0 @j P ti ` 1, ..., i ` q ´ 1u

BH

Bs
psi , si`1q `

BH

Bs 1
psi`q´1, si ` pq “ 0

So, the segment psi , ..., si`q´1q is a critical point if and only if

@j P ti ` 1, ..., i ` q ´ 1u θj “
BH

Bs 1
psj´1, sjq “ ´

BH

Bs
psj , sj`1q

θi “
BH

Bs 1
psi`q´1, si ` pq “ ´

BH

Bs
psi , si`1q

“ θi`q,

thus, the equations (2) are satisfied.

Given an area preserving end-preserving twist function f , the Poincaré-Birkhoff theorem implies the
existence of at least two periodic orbits under the map f . Birkhoff gives us a geometrical proof and his
results can be applied to other types of functions. In our case, we can do a simply proof using the variational
principle. So we need to introduce the definition of minimizing orbit and the minimax principle.

Consider an orbit O “ tpsn, θnqunPN and a finite segment of this orbit tpsi , θi q, ..., psj , θjqu. By Propo-
sition 2.9 this segment is a critical point of the functional action Lpsi , ..., sjq but the second variation can
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Billiard and periodic orbits

not be zero. Consider the following quadratic form that is the second order expansion of L fixing the end
points si and sj :

δ2Lpsi , δsi`1, ..., δsj´1, sjq “
j´1
ÿ

k“i`1

j´1
ÿ

l“i`1

δsl
B2L

BslBsk
δsk . (14)

Definition 4.6. A finite segment tpsi , θi q, ..., psj , θjqu of an orbit O “ tpsn, θnqunPN is locally minimizing
if δ2Lpsi , δsi`1, ..., δsj´1, sjq is non negative for all vectors pδsi`1, ..., δsj´1q P Rj´i´1. And the orbit O is
locally minimizing if every finite segment is locally minimizing.

Definition 4.7. Let O “ tpsn, θnqunPN be an orbit and pηi , ..., ηjq “ psi , si`1 ` δsi`1, ..., sj´1 ` δsj´1, sjq
be an arbitrary variation of the finite segment psi , ..., sj , q with fixed end points. The segment psi , ..., sjq is
minimizing if

Lpηi , ..., ηjq ´ Lpsi , ..., sjq ě 0

for every variation pηi , ..., ηjq. And the orbit O is minimizing if every finite segment of the orbit is minimizing.

The first periodic orbit of the Poincaré-Birkhoff theorem appears as a minimizing periodic orbit. To do
the proof we need the growth condition.

Proposition 4.8. (Growth condition) For any area preserving and end preserving twist map f the generating
function H is bounded by

Hps, s 1q ě A´ B|s ´ s 1| ` C |s ´ s 1|2,

where A, B, C P R and B, C are positive.

Proof. Consider ξλ “ s ` λps 1 ´ sq with λ P r0, 1s the line that connects s and s 1. Applying Barrow’s rule
we have the following,

Hps, s 1q ´ Hps, sq “

ż 1

0

BH

Bs 1
ps, ξλqdλps

1 ´ sq.

Now, we apply again the Barrow’s rule and we have

Hps, s 1q ´ Hps.sq “

ż 1

0

ż 1

0

B2H

Bs 1Bs
pξµ, ξλqdµdλps 1 ´ sq2.

Then,

Hps, s 1q “ Hps, sq ` pHps, s 1q ´ Hps, sqq ´ pHps, s 1q ´ Hps, sqq

“ Hps, sq `

ż 1

0

ż 1

0

B2H

Bs 1Bs
pξµ, ξλqdµdλps 1 ´ sq2 ´

ż 1

0

BH

Bs 1
ps, ξλqdλps

1 ´ sq

ě A´ B | s 1 ´ s | `C | s 1 ´ s |2

where A “ minsPS1 Hps, sq, B “ maxs,s 1PS1 |BH
Bs 1 ps, s 1q| ą 0 and C “ 1

2K ą 0. The constants A and B exist
because H is C8 and H is defined over the compact S1ˆ S1. The constant K is the constant of the twist
condition.

Theorem 4.9. (Poincaré-Birkhoff) For an area preserving, end preserving twist mapping F there is a
periodic orbit of period pp, qq.
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Proof. Let O “ tpsn, θnqunPN be a pp, qq periodic orbit. By Proposition 4.5, any finite segment psi , ..., sjq P
Rq of this orbit is a critical point of the functional action Lppsi , ..., sjq. So, we are going to consider the
segment ps1, ..., sqq.

The first step is to prove that there exists a pp, qq periodic orbit that minimizes the functional Lp. The
functional Lpps1, ..., sqq “ Hps1, s2q ` ... ` Hpsq, s1 ` pq is defined in r0, 1s ˆ Rq´2 since s1 P r0, 1s. By
Proposition 4.8,

Lpps1, ..., sqq “ Lpps0, ..., sq´1q “ Hps0, s1q ` ...` Hpsq´1, s0 ` pq (15)

ě

q´1
ÿ

j“0

pA´ B|sj`1 ´ sj | ` C |sj`1 ´ sj |
2q. (16)

Now, consider Ω Ă Rq such that

Lps0, ..., sq´1q ď qA` D (17)

where ps0, ..., sq´1q P Ω and D is a constant sufficiently small to satisfy Ω ‰ H. If Ω is a compact set, the
function L has a minimum and this implies that there exists a pp, qq periodic orbit.

Using (15) and (17),

D ě

q´1
ÿ

j“0

p´B|sj`1 ´ sj | ` C |sj`1 ´ sj |
2q,

hence |sj`1 ´ sj | is bounded for all j and |st ´ s0| is bounded for all 0 ă t ă q since we can consider
s1 P r0, 1s because F if periodic. Then, Ω is a compact set.

The minimum of Lp is not unique. Suppose that we have a pp, qq periodic orbit and ps0, ..., sq´1q is a
minimum, then the translation psj ` k , sj`1 ` k , ..., sq´1 ` k, s0 ` k, ..., sj´1 ` kq is a minimum for any j
where k P Z is chosen so that xj ` k is in the unit interval r0, 1s.

Definition 4.10. Let O,O1 be two minimizing orbits such that they do not cross. Consider a path such
that connects both minimums of Lp. Since Lp is continuous, it must have a maximum along this path. If
we vary this path, we can find the orbit where this maximum is the smallest. This point is a saddle point
so it is a critical point of Lp. Then, the saddle point has a pp, qq periodic orbit associated and this orbit is
called minimax orbit (see Figure 16).

4.2 Symmetry

In this section we are going to see examples of symmetric periodic orbits and we will do a classification.
To do this, we will see some examples where the billiard table is elliptic.

Consider a billiard table such that its boundary C is symmetric respect a line. When C is an ellipse
centered in p0, 0q, we have that the symmetric axis are x-axis and y-axis. Other example is the circumference
whose symmetric axis are all lines that contains the center of the circumference.

We say that a pp, qq periodic orbit is symmetric if the figure created by the trajectories generated by the
orbit segment pps0, θ0q, ..., psq, θqqq is symmetric respect one symmetric axis of the curve C . For example,
in Figure 17 the p1, 3q periodic orbit is symmetric respect y-axis.
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Figure 16

Figure 17: Symmetric periodic orbit respect y-axis

Now, we will focus to the curves C such that has two symmetric axis and they are perpendicular, for
example the ellipse or the curve x2 ` y4 “ 1. Under these hypothesis we can do a classification that
depends on the period and the axis of symmetry.

First, suppose the period is even. We can distinguish two cases, when an axis of symmetry contains
a point of the orbit and the opposite as we can see in Figure 18. We can observe that in both cases the
period orbit is symmetric respect both axis of symmetry.

(a) (b)

Figure 18: Symmetric periodic orbits with period 4.

Now, suppose that the period is odd. In this case, if the orbit has a point in an axis of symmetry, the
other axis of symmetry cannot contain a point of the orbit. This implies that the orbit is only symmetric
respect one axis of symmetry as we can see in Figure 19.

32



(a) (b)

Figure 19: Symmetric periodic orbits with period 3.

In section 5 we shall study of symmetric periodic orbits when the billiard table is the curve x2` y4 “ 1
and the orbits have odd period and one point of the orbit is p0, 1q, so the axis of symmetry is the y-axis.
These orbits are to the one shown in Figure 19 (a).
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5. Numerical results

In the previous section we have seen a classification of symmetries. In this section we will focus in the
orbits that are symmetric respect the y-axis and have an impact point on the y-axis.

Suppose the billiard table is the region of the plane delimited by the curve

C “ tpx , yq P R2; x2 ` y4 “ 1u.

Our goal is to study the periodic orbits with odd period, i.e., the period has the form 2k ` 1 where k P N
and we will impose that the initial point is p0, 1q and the rotation number of this orbits is 1{p2k ` 1q.

Under these conditions, the first question that we raise is how many such orbits are there. Other
question that appears is how the number of such orbits grows when the period increases and if there exists
some relation between the period and the number of such periodic orbits.

In previous sections, the billiard map in the natural coordinates ps, θq is defined in the space S1ˆr0,πs.
Now, we will do a program that reproduce the behaviour of this map. In the program, the points of the
boundary will be expressed as a Cartesian coordinates qi “ pxi , yi q and the direction vector of the trajectory
will be expressed as pi “ pui , vi q.

Now, we are going to focus in our orbits. We will study periodic orbits with period 2k ` 1 so from
now on, we will only refer to the k that determines the period. On the other hand, since our orbits are
symmetric respect the y-axis and have odd period, the trajectory between the iterates k and k ` 1 should
be horizontal, i.e., the direction vector should be pk “ puk , 0q.

Finding the orbits we describe above consists to solve the following problem:

Fix the initial point q0 “ p0, 1q in the boundary of the billiard table. We will consider the three following
functions

1. the inclusion i : p0, π2 q Ñ R4 such that ipθ0q “ pq0, p0q where q0 “ p0, 1q and
p0 “ p´ cospθ0q,´ sinpθ0qq,

2. the billiard map f : r´1, 1s2 ˆ R2 Ñ r´1, 1s2 ˆ R2 that maps pqj , pjq to pqj`1, pj`1q,

3. the projection P4 : R4 Ñ R such that P4px , y , u, vq “ v , i. e., P4 gives us the fourth component.

Finally, we consider the function

Zk : p0,
π

2
q Ñ R such that Zk “ P4 ˝ f k ˝ i .

So, given an angle θ0, we have

Zkpθ0q “ P4pf
kpipθ0qqq “ P4pf

kpq0, p0qq “ P4pqk , pkq “ vk

i.e., the function Zk gives us the second component of the direction in the iterate k (see Figure 20).

Therefore, the problem consists to find the zeros of the function Zk since our orbits satisfy pk “ puk , 0q.

One of the difficulties we encountered in making the program was numerical precision. In Figure 21
we can see that in the interval r0.0036, 0.0055s there are 99 zeros of the function. This implies that the
computations should be preformed with high accuracy.

Initially, the program was written in C language and the variable used were type double. But these
variables have 16 decimals and the program did not find the solutions with sufficiently precision to apply
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Figure 20: Dynamics of the billiard map.

Newton’s method correctly and the program failed when k “ 60. For this reason we used a library called
quadmath.h where we could use a new format that has 28 decimals. However, this change was not sufficient
since the program failed when k “ 100 and finally the program was written in PARI since we can choose
the precision of the variables. We have performed the more extreme computations with more than 100
decimal digits.

5.1 Description of the program

First, we have a function that we call iterateFunction. Let qi be a point in C and pi be a direction. The
function returns the next point and the next direction under the billiard map. So this function computes
the next iterate of an orbit.

The next step is reproduce the billiard behaviour and to do it we have to iterate the function iterate-
Function several times. Suppose that we will find three consecutive iterates of an orbit. To do it we fix a
initial point and a direction vector (pointing inside the table) of the orbit. Then, we execute the function
one time with the initial conditions and we repeat this process two times using the returned values of the
previous iterate as a new initial condition.

In our case, the goal is the periodic orbit with odd period, rotation number 1{p2k`1q and y-symmetric.
So the will fix the initial condition q0 “ p0, 1q. As we have explained above, identify this orbits is equivalent
to see if the trajectory between the iterate k and k ` 1 is horizontal, hence we will fix the initial condition
and iterate the function k times and we observe if the direction pk “ puk , vkq has vk “ 0. This condition
is not sufficient to assure that the rotation number of the orbit is 1{p2k ` 1q, as we can see in Figure 22.
So, other condition that the orbit need is the first k iterates satisfies that the point qi “ pxi , yi q has xi ă 0,
i.e., the orbits remains in the left half-plane defined by the y axis.

Under this two conditions and fixing the period, to calculate the times that this type of orbit appears
we need fix q0 “ p0, 1q and vary the direction vector as following: let θ0 be the angle between the tangent
line of C ant q0 and the line defined by the direction, we have p0 “ pu0, v0q “ p´ cospθ0q,´ sinpθ0qq so
moving θ0 between 0 and π provides us about all orbits. In our case, we can fins symmetric orbits, so we
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Billiard and periodic orbits

Figure 21: Relation between θ0 and vk , for k “ 240.

only need move θ0 between 0 an π
2 .

Description of iterateFunction

Let C be the curve defined by x2 ` y4 “ 1. Suppose that we have a point qi “ pxi , yi q and a unitary
direction pi “ pui , vi q (pointing inside the table). We want to find the next iterate under the billiard map
defined in the curve C , i.e., the point qi`1 “ pxi`1, yi`1q and the vector pi`1 “ pui`1, vi`1q. We call l
the line defined by qi and pi . The new point qi`1 remains in this line and, simultaneously, remains in the
curve C so this new point satisfies

pxi`1, yi`1q “ pxi , yi q ` τpui , vi q,

where τ ą 0 (see Figure 23).

The function computes τ such that pxi , yi q ` τpui , vi q P C X l . To find τ we impose that x “ xi ` τu
and y “ yi ` τv and x2 ` y4 “ 1. Consider the function

gpτq “ pxi ` τui q
2 ` pyi ` τvi q

4 ´ 1.

Applying Newton method over this function we obtain the point px , yq we the precision that we impose in
the method. This point is the new iterate qi`1 “ pxi`1, yi`1q.

When we have the point qi`1 we need to find the direction vector pi`1. Let ni`1 be the normal vector
at qi`1 pointing inside the table. In Figure 23 we can see the following relation:

pi “ αti`1 ` βni`1,

where ti`1 is the tangent vector, α “
xti`1,pi y
xti`1,ti`1y

and β “
xni`1,pi y
xni`1,ni`1y

, and by the reflection law we have

pi`1 “ αti`1 ´ βni`1 “ αti`1 ` βni`1 ´ 2βni`1 “ pi ´ νni`1,

where ν “ ´2
xpi ,ni`1y

xni`1,ni`1y
.

So, the direction pi`1 is determined and the new iterate is pqi`1, pi`1q.

Description of the main function
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Figure 22: Orbit with period 11.

Now, our goal is find the periodic orbits described above.

Remember that is we call θ0 the angle of the direction of the trajectory at initial point q0, we can
express the direction vector as p0 “ px0, y0q “ pcospθ0q, sinpθ0qq.

We fix a step h. The program is defined by two loops. The first starts with θ0 “ h and inside this
loop there is other loop that iterates the function iterateFunction k times to save the component vk of
the direction vector in the k iterate. Now, we fix again the initial conditions increasing the value of θ0
(θ0 “ θ0` h) and we repeat the same process to save the component vk of this new orbit. The main loop
stops when some stop condition is satisfied, i.e., if the angle θ0 “

π
2 or there is an orbit such that xk ą 0

and yk ą xk .

In this main function we obtain the following results:

1. Components vk : For any k associated with period 2k ` 1, we prove different initial conditions for θ0.
The program save the component vk for each orbit. So if we draw this values we obtain a graphic
that relates the angle θ0 and the values of vk . The zeros of this graphic correspond with the orbits
that we find.

2. Intervals: Our program saves the components vk . Then, we can save the interval when the component
vk change the sing that is the interval where the zero of the graphic is located. This implies that,
fixed k , we can save all interval of the initial condition θ0 where each orbit are contained therefore
we have an estimation of the initial condition of these orbits.

3. For any k , we save the number of orbits (periodic and symmetric with rotation number is 1) appear,
the value of k and the interval of θ0 where appear all these orbits.

The step h depends of the period or, equivalently, the value of k. To decide this step we have executed
the program for small k (k “ 10, k “ 20) and we have realized that when we multiply the value of k by
2, the number of periodic orbits doubles and the length of the interval where they appear halves. Then,
for example to choose the step for k “ 40 (h40) we can calculate h40 “ h20{4. In general, if we choose a
good step for k “ 20 (h20) the other steps are hk “ h20p

20
k q

2.
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Billiard and periodic orbits

(a) New point qi`1. (b) New direction pi`1.

Figure 23

Since our goal is obtain the number of symmetric periodic orbits which rotation number is 1{p2k ` 1q,
when the program find the first periodic orbit with rotation number greater than Images of 1{p2k ` 1q,
it stops. But we can not guarantee that after there exists an orbit with rotation number equal to Images
of 1{p2k ` 1q. Therefore, the program only gives us a lower bound of the number of symmetric periodic
orbits with rotation number Images of 1{p2k ` 1q.

5.2 Analysis of the results

In this section we are going to see different results for different values of k and they are presented in the
following table. The first column indicates the value of k that corresponds with the results of the periodic
orbits with period 2k ` 1. In the second column there is the lower bound for the quantity of symmetric
periodic orbits with rotation number 1{p2k ` 1q and initial position p0, 1q. In the third and fourth columns
there are the minimum and maximum values of the interval ra, bs where the orbits are located.

k n(k) a(k) b(k)

20 11 0.04515819152 0.07135487634
40 17 0.02287729655 0.03295807921
60 25 0.01531634677 0.02210007196
80 35 0.01131739084 0.01660011565

100 41 0.009091481615 0.01303980509
120 49 0.007598678339 0.01090283008
140 57 0.006527308478 0.009376407510
160 67 0.005670984411 0.008221585129
180 73 0.005051525380 0.007238510268
200 81 0.004554418378 0.006532498081
220 89 0.004146496545 0.005949672563
240 99 0.003783215851 0.005463043983
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Remember that, for any k we obtain a file where the first column is the initial condition of the angle θ0
and the second column is the component vk , i.e., the second component to the direction vector when we
iterate the initial condition k times. The graphics of Figure 24 correspond to this file with different values
of k .

(a) Graph of Zk “ 20. (b) Graph of Zk “ 60.

(c) Graph of Zk “ 100. (d) Graph of Zk “ 140.

(e) Graph of Zk “ 180. (f) Graph of Zk “ 220.

Figure 24

The first observation is that the number npkq of roots of Zk increases when the value of k increase.
So, we can do the graphic that relates the number of orbits with the value of k and we can see that there
is a lineal relation (see Figure 25). So we can suppose that

npkq « αk ` β
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Billiard and periodic orbits

where α,β P R.

Figure 25: Relation between npkq and k .

To do an approximate value for β we have executed the program for small values of k and the results
are the following:

k nº Orbits

10 6
5 4
2 2
1 1

The case k “ 0 corresponds with the orbits with period 1 but this only success if the angle θ0 “ 0 or
θ0 “ π because with this conditions the points are stationary as we had seen in a previous section. So we
can do the approximation β “ 0 and this implies:

npkq « αk

To do an approximation of α we are going to see the graphic that relates k and npkq
k (see Figure 26).

Figure 26: Relation between k and npkq{k .

Therefore, an approximation is α “ 0.41. So, we can do the following approximation

npkq « 0.41k.
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The second observation about the graphics is when the value of k increase, the length of the interval
where the zeros are located decrease. Then, we can see the graphics that relate the minimum and maximum
value of the intervals with the value of k (see Figure 27).

(a) Relation of k and the minimum value of the inter-
val where are contained our orbits

(b) Relation of k and the maximum value of the in-
terval where are contained our orbits

Figure 27: Relation between k and the minimum and maximum values of the interval ra, bs

So, we can suppose the following approximations:

apkq «
a˚
k

, bpkq «
b˚
k

where a˚, b˚ P R.

Now, to do an approximation of the values a˚ and b˚ we can observe Figure 28 that relates k with
apkqk and bpkqk.

Figure 28: Relation of k with apkqk and bpkqk

and an approximation is a˚ “ 0.91 and b˚ “ 1.31.

Finally, with this results we can do the following conjecture:

Conjecture 5.1. Let C “ tx2 ` y4 “ 1u be the curve that define the billiard map. The orbits that
are periodic with period 2k ` 1, symmetric respect the y-axis with initial position p0, 1q and the rotation
number is 1

2k`1 satisfy that there exists a constant α such that

npkq « αk with α « 0.41,
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Billiard and periodic orbits

where npkq is the lower bound of the quantity of orbits described above. There exists constants a˚, b˚ such
that the orbits are contained in the interval rapkq, bpkqs where

apkq «
a˚
k

and bpkq «
b˚
k

with a˚ « 0.91, b˚ « 1.31.
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