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Abstract

Concern for carbon dioxide emissions have been growing considerably during the last years and this has
motivated research in topics like carbon capture. Carbon capture consists in capturing the carbon dioxide
that is produced in fossil fuel plants before releasing it to the atmosphere to reduce the greenhouse effect.
In this work a mathematical model for column sorption that can be applied to carbon removal by adsorption
is described. After neglecting some terms of the governing equations an analytical solution for the model is
shown. The breakthrough curve from the analytical solution is compared with experimental data. Finally,
the existence of an analytical solution allows an analysis of the effect of the parameters to be done. With
it, it is discussed which possible modifications of the parameters could be used to make the carbon dioxide
removal more efficient.
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1. Introduction

During the last decades carbon dioxide emissions have been increasing and the growing concern about the
climate crisis has motivated the research in topics that aim to solve that. These include not only upgrades
of the currently used methods that generate less carbon dioxide but also processes that actively remove
CO;, like carbon capture. Carbon capture consists of technologies that aim to reduce carbon emissions by
capturing the CO, generated by fossil fuel plants before releasing it to the atmosphere. The stored carbon
dioxide can be later used in multiple ways but it is mostly injected in deep subsurface geological formations
in which the CO; is prevented from leaving.

There are three different ways in which carbon capture can be done; in each of them carbon dioxide is
extracted in a different stage of energy generation. We will focus in postcombustion, where the product
gas of the combustion of a fuel is treated in a way that CO; is extracted. Multiple ways of removing
the CO> from the flue gas exist, such as absorption, adsorption and membrane gas separation. The most
commonly used method nowadays is chemical absorption. The drawback of this method is that a lot of
energy is required for the regeneration of the absorbent. For this reason a lot of alternatives have been
recently explored.

The process described in this work is known as column sorption and is the most popular configuration
in sorption processes. It can be used to remove carbon dioxide from a fluid but it is a general process
that can be used to remove a specific component (sorbate) from a mixture by being attached to another
substance (sorbent). This configuration is often used to remove organic contaminants from water.

In column sorption the removal of the pollutant is done by making the polluted fluid flow through
a column filled with a porous material. This material is capable of capturing the pollutant as it passes
through the column in two different ways: by absorption, the pollutant gets into the holes of the porous
material; and by adsorption, the pollutant is adhered to the surface. Even though the mathematical part
could describe both adsorption or absorption, in the capture process that is being discussed in this work
the removal of the contaminant is done only by adsorption.



2. Objectives

The objective of this work is to provide a way to predict the behaviour of the process by describing how
the concentration in the column changes and to determine how the parameters should be modified in order

to optimise the removal of the contaminant.

To do this a mathematical model will be first developed and non-dimensionalised, then an analytical
approximate solution will be shown. With an exact expression for the concentration of CO» at the outlet
of the column a comparison with experimental data will be done. The data that will be used is from [3]
where a mixture gas containing CO5 and N that simulates a flue gas of a power plant was used. The
exact expression will also allow us to do an analysis on the effect of each parameter and state how they
should be modified in order to optimise the process of carbon capture.
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Figure 1: Configuration of the process, image from [2]



3. Mathematical model

The mathematical model described in this section is a simplification of the model from [1] since here
pressure will not be taken into account.

Let's consider a cylinder that contains the adsorbent material with both ends open with a flux through
it. The fluid that comes into this column will have some concentration of the pollutant we want to remove.
We will assume that the concentration of the pollutant does not depend on the radial component and the
flow through the column is a plug flow, that means that the velocity field inside the column is parallel to
the column and does not depend on the radial component. With these assumptions the problem will be
reduced to a one-dimensional problem in space.

We will consider the x-axis the only axis of the problem, the one that is parallel to the column. All
the variables will be assumed to depend only on x and time t, that is, they are defined as averages over
sections of the column.

Conservation of mass for the pollutant gives the equation
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where p is the density of the fluid, j is the flux and S is the sink of mass, which represents the amount of
pollutant that is removed from the fluid. Since the flow inside is affected by diffusion and advection, the
flux j is

j=-DVp+pu (2)

where D is the diffusion coefficient (in the x direction) and u is the velocity field. Since we are assuming
plug flow, u(x, t) = (u(x, t),0,0).

If § denotes the amount of moles of pollutant adsorbed by the solid per kilogram of this solid then the
source term

g
S=—(1-¢)pgMp . (3)

Here ¢ is the bed void fraction, the fraction of volume of the cylinder that is not occupied by the adsorbent
solid. pg denotes the density of the solid when it has adsorbed pollutant and M; is simply the molar mass
of the pollutant. The bar in g indicates that it is taken as a cross-sectional average in order to avoid the
radial dependence of q. After using the forms of the field u and the source S and writing the density as
p = Mic1 where ¢ is the concentration in moles per volume, the equation (1) is

dcy 0 _ 82C1 0g
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For the mass transfer we will use the linear driving force model; we will assume that the rate of mass
transfer is proportional to the free sites in the solid,

9q
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where kg is the rate constant and the G* is the maximum value of g, the saturation value. This equation
only applies where mass transfer can occur, where there is pollutant in the fluid to be adsorbed (c¢; > 0).



In the region where ¢; = 0 the amount of adsorbed mass remains constant. Apart from this, g* usually
depends on time and space so the equation cannot be directly integrated. Even though there are simpler
models that assume that the equilibrium between fluid and adsorbed phase is always maintained and more
complex models that take into account the internal structure of the solid particles, the linear driving force
model or modifications of it are the most commonly used mass transfer models for adsorption processes.

At the inlet, x = 0, we have to apply a boundary condition for the continuity of mass flux. We impose
that the flux on both sides of the inlet is the same.

dc
U(O_, t)Clo = <UC1 — Da_X1>

where ¢y is the concentration of pollutant of the fluid that enters and the 0~ and 0% indicate limits from
left and right sides of the inlet. At the end of the column we impose that, since the fluid moves to a region
where there is no mass sink, the concentration ¢; remains the same outside the exit.

(6)

x=0*
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For the times before the pollutant has reached the end of the column we need to impose another condition
at the front of the concentration,

oc
5 (s(8).8) = a(s(t), 1) = (8)

0,
q(s(t),t) = 0. (9)

Here s(t) is the front of the concentration, that is the furthest point in the column where ¢; > 0, or the
closest point to the entrance where ¢; = 0. Trivially, at the beginning of the process s(t) will be 0 and it
will increase gradually For the initial conditions we impose that the column is clean before the flux of the
polluted fluid.

g(x,0) =0, a(x,0)=0, Vvt>0. (10)

As it has been commented before, some of the parameters can actually depend on the temperature and
the pressure. We will assume that they are both constant but since adsorption is an exothermic process an
energy balance could be taken into account in order to get more precise results.



4. Non-dimensionalisation

With the non-dimensional analysis we can simplify the problem by removing negligible terms. For this
we will need to use actual parameters of the experiment. These values are the ones in table 1 and are
corresponding to the experiment done in [3].

We can define new non-dimensional variables as
A C1 o q N u X o t
&= —, g=— o= —, X ==, t=— (11)
C10 qo ug L At

where cyg is the concentration of pollutant in the fluid that comes into the column, gg is the value of g*
at time 0 and the other parameters are yet to determine. With them we can get new equations on these
variables with non-dimensional factors that indicate the relative importance of the terms.

The new equations are
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To balance the second equation we have to make k;At = 1. By defining At = -~ we will get the balanced
equation.
g
" — § 15
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The parameter g* can vary with the temperature, the pressure and the concentration c¢;. However we will
assume that it is constant as a first approach. This means that §* = 1.

In the first equation we can balance the advection and mass loss terms, that is making d» = 1 by
defining the parameter £ introduced in the new variables as

UpC10
E J—
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This leads to a new equation with only d; and &3 as coefficients of the terms different from 1. The new
system of equations is

8C1 826‘1 827
- 1
5 (“CI) %952 T 5 (17)
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Using the values from the table below §; and d3 are
41 = 0.0269, 63 = 0.0363. (19)



The fact that they are small means that the respective terms in the equation do not play an important role
so they can be neglected. However we will only remove the diffusive term because it is enough to provide

the travelling wave solution. The resulting system of equations is
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a&l (3(3), 1) = &(3(2), 1) = 0,
%4 =0.
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(20)

(21)

(22)
(23)

(24)

The term with the J3 can be neglected since it is the same order as the diffusive term, that has been

neglected.

Parameter Symbol Value Dimension
Initial concentration c1o0 6.03 mol/m3
Adsorption saturation g* 1.57 mol/kg
Bed void fraction € 0.56
Density of adsorbed CO2 Pq 325 kg/m?
Diffusion coefficient D 257-107% m?/s
Bed length L 0.2 m
Interstitial velocity u 0.019 m/s
Adsorption rate constant kq 0.0137 s1!

Table 1: Table with the values of the parameters taken from [1].



5. Solution for constant velocity

Assuming that the velocity field is constant in space and time, a valid hypothesis when small amount of
contaminant is being removed, &t = 1, the system describing the problem is the following,

08 04 _ 9
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We will look for a solution in the form of a travelling wave, which means that the solution, in this case the
variables ¢; and §, can be expressed as a function of one variable ) = (X, t) = x — 5(%) where 5(%) is the
front of ¢;.

a(% 1) = f(7) = f(x - 3()), (27)
4(%. 1) = (i) = g(% — 5(1)). (28)

The fact that the solution is a travelling wave means that the distributions of ¢; and g in space conserve
the shape and this shape travels at the same speed as the front of the concentration 3(%).

By assuming that the solution has this form the equations can be rewritten as
dsdf df dsdg

5 4 9> 8 29

Yandn T dn ~ didn (29)
ds dg
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Note that since 3(%) is the front of the pollutant concentration, the boundary condition at this point
(% = 3(%)) translates to an initial condition for the f and g functions at /) = 0 which is

f(0) = g(0) =0. (31)

If the pollutant front is moving at constant speed then % = v constant and the the first equation, with

the boundary condition f(0) = g(0) = 0, implies that (1 — 6:7)f = Vg.
The second equation can be integrated exactly and the solution after applying the initial condition is
g(h) =1-¢€"?, (32)
so R
14
£(7) =
) =153

Assuming 3(%) is far enough from the entrance, X = 0, the entrance corresponds to 7) = 0 — §(%) which is
negative and large which means that e?/? is small so we can approximate & = &; at this point as
v v

1(0,8) = £() = 755 (1 ") ~ . (34)

1—60
Because of how the non-dimensional variables have been defined, ¢;(0,%) = 1 and that implies that
V= 15 . This allows us to write f with a simpler expression

T+o;
f(f) =1—e". (35)

Note that f = g so we expect the concentration of the contaminant ¢; and the adsorbed mass g to behave
in a very similar way.

(1— €. (33)
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Figure 3: Travelling wave solution for & and § at some times.

The expression for &; (and §) is not completely explicit because in order to write 3(t) we need to know
the initial value 3y apart from the constant velocity that we know. Since the travelling wave solution is not
valid when 3(%) is close to 0, and thus not valid at initial times we cannot set 5 = 0. To determine the
value of 5y we need to make use of the experimental data. One way to do this is by measuring the first time
tp that the pollutant reaches the outlet. Then we can set the dimensional front sp = L — vt;, so s(tp) = L.
Another way to do this is by using the time t; , at which the concentration at the outlet first reaches one

half of the initial concentration. Imposing this to the equation (35) leads to 5y = [— \7?1/2 + Vlog?2.

10



This solution is only valid when the front of the ¢; is not close to the entrance, so it must have
passed some time since the start of the process. This is not an issue because the main interest is in the
breakthrough curve, the curve that represents evolution of the concentration at the exit of the column,
which becomes non-zero only after the front reaches the outlet and this happens far from the beginning.
Even though a solution for the start of the process is not needed, a good approximation for small times

exists.

11
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6. Solution for small times

When little time has passed since the start of the process, the amount of adsorbed mass § is small. So we
can rescale this variable and time
t=e?, §g=e€Q. (36)

The equation (26) with the rescaled variables becomes

=1—¢( 37
77 €Q (37)
with the condition Q(7s) = 0. The main equation (37) can be expanded as a sum of powers of e. If we
neglect ¢, (we take only the first term of the series) the solution is

N

The same can be done for the concentration ¢;. The concentration does not need to be rescaled since
it must be close to 1 near the entrance. The equation (17), with the diffusive term already neglected,
becomes ~
61 0¢1 0 0Q
T or Tzl

(39)

By considering the approximation for Q (or neglecting ¢), the derivative % is 1 and is constant. In this
case if we take € big enough we can make the coefficient 5?1 negligible. For example we can take € = 1/4;.
With this the general solution for the equation is

H=A—% (40)

To determine the values of A we have to make use of the boundary conditions of the problem. Using
(22), that is now simply

1=2| (41)

SO
A=1. (42)

With this exact expression for ¢; we can see that during this initial phase the concentration front 3(%) is 1
and it is constant.

In addition to being able to complete the travelling wave solution, this small time solution is usually
useful to set an initial value for a numerical solution.

13
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7. Comparison with experimental data

Given the parameters we can compare the analytical solution that we have with data measured in a real
experiment to see if the approximation is good. A typical way to compare two different solutions is by
comparing the behaviour of the concentration at the exit of the column, known as the breakthrough curve.

In this case the data used in the comparison is from the experiment from [3]. In this experiment the
gas that is fed to the column is a mixture of Ny and CO», that is a typical flue gas of postcombustion.

The analytical expression for the concentration of CO; at the outlet of the column in dimensional form

q@j):q0<1mp<@£:j£;£>), (43)

14

where
1

T Lky(1+01)

Not all parameters that appear in the expression are known. Some of them have been taken from [1]
where the parameter kg was calculated in order to fit optimally experimental data. The model used there
is not the same that has been presented in this work. For this reason, in this section we will treat the rate
constant as another unknown parameter.

v (44)

Apart from that, an initial value for the front of the concentration of the pollutant must be set. This
parameter should be obtained from the experimental data. If we define t;, as the first time the pollutant is
detected in the outlet then we set sy = L — vtp,, so the front s(t) reaches the outlet at time tp.

With this approximation for sy we can find the optimal kg value. As it can be seen in figure 6 the general
shape of both curves are similar but the analytical solution fails to predict the time of first breakthrough.
The rise of the concentration at time t;, is smoother than the one of the analytical solution.

Since the measurements of the concentration are done in a discrete way the value for sy that we obtain
by using the experimental first breakthrough time is not optimal and not precise. An optimal value of s
can be found such that the analytical solution fits the experimental data.

However, by using a better value for k5 and sy none of the main issues of the analytical breakthrough
curve seem to disappear. The experimental curve is still too smooth and there is no way to change that in
the analytical solution with our parameters without changing the model.

One of the factors that could affect the results is having neglected velocity variation. Removing part of
the mass of the flowing gas has an effect on its velocity that has been considered negligible. At the front
of s(t) the loss of mass due to adsorption is balanced with a decrease of the velocity.

15
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8. Possible improvements

The goal of this section is to determine how the parameters should be modified in order to make the
removal of a contaminant more efficient. For this we will make use of the analytical solution. With its
expression it can be seen how each parameter affects the solution. The concentration of pollutant at the
outlet is the expression that will be of interest.

a(L, t) = co (1 —exp <kqﬂ>> , (45)

4

(1 —¢)pqds
= ="t > 4
v (]. + 51)U0€10 ( 6)

What can be improved in the described process is the speed at which column is filled with the adsorbed
pollutant. It is clear that we can accelerate the process by increasing the rate constant kg, which will
make the contaminant be adsorbed faster. But in order to see how each parameter affects this speed we
will define the time at which we can consider that the process has ended. This time will be when the
concentration at the end of the column is 90% of the concentration of the fluid entering the column. In
order to speed up the process we will try to make this time as small as possible. To see the dependence
on the parameters we will make use of the analytical solution. Since the initial time solution occupies only
a small part of the total process its effect will be neglected. In addition, the small time solution makes the
results too complicated and confusing.

If the condition of the concentration at the end of the column is imposed on the travelling wave solution
we obtain the following dimensional time.
L— ) 1 L— 50 1

— | 1= —log1 47
” qugO v —|—kqog0 (47)

t =

So in order to make the time lower we have to increase kq or v. v is the (dimensional) constant speed of
concentration front.

L L )
=L o Jawao % (48)
At At(1+61) (1—5)pqqo%(1+51) 1—{—(51
Since %51 is always increasing as a function of d; we need that the parameters §; and ug are as large as
possible. Since
€10
51 = T N —x 49
(1 —¢)pqo 49)

c1o and € should be large and pg and g should be small. Note that even though making g makes the
process shorter having a small value of g is not what we want. The process is shorter because the column
has less space to fill with contaminant. This parameter indicates the maximum capacity of the column so
we want to keep it large. In fact the total amount of adsorbed pollutant at some time is

/0 “adx. (50)
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The maximum value of this is Lgg since g; is the maximum value of g. However this limit can’t be reached
in finite time. In the analytical solution it can be seen that § = 1 only when X — 5(%) = /j = —o0, which
means that the front 5(%) has to be far ahead from %X and that happens when a lot of time has passed. So,

trivially, in order to increase the global capacity the length of the column L and the amount of adsorbed
mass per mass of solid at equilibrium gg have to be increased.

18



9. Conclusions

In this work one possible way using carbon capture in a power plant has been described and mathematically
modelled. With this model it has been shown that an analytical solution can be found when some terms
of the advection-diffusion equation are neglected.

It has been seen that there is agreement between the proposed analytical solution and real experi-
ment. However, even with kg and sy chosen to fit the data there are considerable differences around first
breakthrough between both breakthrough curves. A possible cause of this discrepancy is the fact that the
velocity field of the fluid has been considered uniform both in time and space. This assumption is valid
only when the amount of mass adsorbed is small.

Because of the agreement with the experimental data the analytical expression for ¢; can be used to
discuss the dependence on the parameters. For this reason conclusions about the choice of the parameters
have been shown. The adsorption process is more efficient, is either faster or has more capacity when one
of the following changes to the parameters are done:

e The rate constant kg is increased

e The velocity of the fluid ug increases.

e The bed void fraction € increases.

e The initial concentration ¢y increases.

e The density of the adsorbed mass pg increases.
e The length of the bed L increases.

e The amount of adsorbed mass per mass of solid at equilibrium g increases.

The choice of some of parameters is in reality something that cannot be chosen freely because only a
few materials can be used as adsorbents. Even though these indications can help to choose the optimal
material among the diversity of existing ones. It can also be used to set the optimal conditions in which
the carbon capture can take place since properties of the materials, such as g;, may depend on these
conditions.

19



References

[1]

2]

[3]

[4]

20

T.G. Myers and F. Font. Mass transfer from a fluid flowing through a porous media. International
Journal of Heat and Mass Transfer, 163:120374, 2020.

T.G. Myers, F. Font, and M.G. Hennessy. Mathematical modelling of carbon capture in a packed
column by adsorption. Applied Energy, 278:115565, 2020.

Mohammad Saleh Shafeeyan, Wan Mohd Ashri Wan Daud, Ahmad Shamiri, and Nasrin Aghamoham-
madi. Modeling of carbon dioxide adsorption onto ammonia-modified activated carbon: Kinetic analysis
and breakthrough behavior. Energy & Fuels, 29(10):6565-6577, 2015.

Mohammad Saleh Shafeeyan, Wan Mohd Ashri Wan Daud, and Ahmad Shamiri. A review of mathe-
matical modeling of fixed-bed columns for carbon dioxide adsorption. Chemical Engineering Research
and Design, 92(5):961-988, 2014.



