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Abstract—Data sets containing instances that are assigned
values by an ensemble of annotators of unknown accuracy are
becoming increasingly common. Binary, potentially correlated
data are frequent in a number of disciplines, and thus eligible to
be exploited by ensemble meta-learners. A prior key step is test-
ing the meta-learners with synthetic data sets featuring realistic
correlation patterns, which is the main scope of this work. To
achieve this goal, two challenges are faced: (i) finding out a new
correlated pattern to model Bernoulli random variables, and (ii)
obtaining a process to generate realistic synthetic data sets. A
comparative analysis and performance results are provided for
two methods of artificial data generation. The methods are also
tested using two state-of-the-art binary ensemble meta-learners
that consider inter-classifier dependencies.

Index Terms—Data sets, Unsupervised Ensemble Learning,
Bernoulli correlated patterns

I. INTRODUCTION

Research into Unsupervised Ensemble Learning experi-
enced a boost in recent years mainly due to the surge in
crowdsourcing. Nonetheless, this Machine Learning discipline
holds enormous potential in other fields, including Computa-
tional Biology, [1] [2] Computer Vision, [3] Natural Language
Processing, [4] and 5G communications systems, [5] among
others.

The topic of Unsupervised Ensemble Learning was already
discussed by Dawid and Skene in as early as 1979. [6] The
authors assumed conditional independence between classifiers,
an assumption that has been maintained in similar, subsequent
works. Such an assumption does not hold in many real-world
scenarios, and it is thus crucial to continue the search for novel
statistical methods considering this issue.

Extensive testing with synthetic data is a key step in the
characterization of novel algorithms. However, artificial binary
data sets where the conditional independence assumption is
violated are scarce. Some previous works in the literature
generate synthetic correlated binary data imposing several
consistent relations on the joint annotators probability function
as in [11], or by assuming a regression structure in the
correlated binomial distribution parameters by using selected
link functions as in [10].

Two recent works tackle the issue of inter-classifier depen-
dencies, each developing an adapted meta-learner. In [7], the
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EM algorithm is used to estimate the underlying probability
distribution of the instances’ ground truth labels; in [8],
an algorithm identifying strong inter-classifier correlations is
developed and ultimately used to adapt an already existing
meta-learner. These two works were developed on the basis of
two different approaches as to the modeling of inter-classifier
dependencies.

We focus extensively on the approaches presented in [7] and
[8]. Our work exploits the one in [7] to obtain an artificial data
generation method with realistic correlation patterns. Based on
the potentially existing relationships between the different an-
notators, an intuitive designation of their correlation structure
is introduced. Plus, the overall degree of correlation is adjusted
through an external input parameter. This provides greater
adaptability with regard to possible testing environments for
newly developed algorithms. A database containing pathway
activation measurements is provided as a real example of
highly correlated binary data to be emulated by our method.

The work is organized as follows: in Section II, the problem
setup is laid out; in Section III, a novel method of artificial
data generation is proposed and compared with an alternative
approach; in Section IV, performance results for our artificial
data generation method are presented; and in Section V,
conclusions are drawn.

II. PROBLEM SETUP

A set of n instances have to be classified. Each instance x
must be assigned a ground truth label y ∈ {0, 1}, an informa-
tion that is not generally available. Each labeled instance may
be modeled as a realization of the random variable (X,Y ).
We have access to the instances’ predicted labels provided by
a set of m classifiers {fj}mj=1. These results are stored in an
n-by-m matrix with entries zij = fj (Xi). The classifiers’
accuracies are fully characterized by the specificities ηj and
sensitivities ψj , for j = 1, . . . ,m, defined as

ηj = Pr (fj(X) = 0 | Y = 0)

ψj = Pr (fj(X) = 1 | Y = 1)
. (1)

Classifiers can be clustered in correlation groups, that is
sets of classifiers showing a remarkable degree of correlation.
Throughout this work, the number of classifiers belonging to
the same correlation group will be written within braces. E.g.,
{5 5 5 1} denotes a 16-classifier ensemble, with 4 different
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correlation groups; the three first groups contain 5 classifiers
each, whilst the fourth one contains a single, independent
classifier. Correlation groups are indexed k = 1, . . . ,K, so that
K equals the number of correlation groups, obeying K ≤ m.

III. ARTIFICIAL DATA GENERATION METHODS

We present a new method to generate artificial correlated,
binary data sets, denoted Method 1. This method is an up-
graded version of the approach applied in [7], which has been
entirely revisited to obtain easily tunable, realistic correlation
patterns. The approach applied in [8], denoted Method 2, is
also reviewed for comparative purposes.

A. Method 1

Method 1 estimates the probabilities of obtaining each
of the possible combinations of classifier-estimated labels in
each correlation group. To do so, the labels provided by the
classifiers are modeled as a multivariate Bernoulli distribution,
as presented in [9]. This approach requires computing the
exponentially growing conditional probabilities of getting a
certain label conditioned to previous labels in the same cor-
relation group. In essence, correlation is introduced through
hierarchical dependence within each correlation group, as
shown in Fig. 1 (Left).

Fig. 1. Underlying inter-classifier dependence models of Method 1 (Left) and
Method 2 (Right). Adapted from [8].

The labels provided by the m classifiers are modeled as a 1-
by-m vector zzz containing realizations of a Bernoulli random
variable (r.v.). If there are K correlation groups containing
mk classifiers each s.t.

∑K
k=1mk = m, then zzz =

[
zzz1 . . . zzzK

]
,

where zzzk is a 1-by-mk vector. Each zzzk can take Lk = 2mk

values, which are denoted by zzzkl for l = 0, ..., Lk − 1, so
that zzzkl may be thought of as the decimal to 1-by-mk binary
conversion of integer l. By extension, zzz can take L = 2m

values.
Each zzzkl is assigned two of the 2L probabilities p0k,l and

p1k,l, defined as

p0k,l = Pr
(
zzzk = zzzkl | Y = 0

)
p1k,l = Pr

(
zzzk = zzzkl | Y = 1

) , (2)

where l = 0, . . . , Lk − 1 and k = 1, . . . ,K. Also, it must
be ensured that {pYk,l}

Lk−1
l=0 make up a probability simplex, i.e.

0 ≤ pYk,l ≤ 1 and
∑Lk−1
l=0 pYk,l = 1.

The set of probabilities are generated in different
steps. First, we generate the conditional probabilities
associated to the occurrence that a certain instance

is assigned a label by a classifier in the correlation
group k, conditioned to classifiers in the same corre-
lation group. These conditional probabilities are denoted
vYk,l,j := Pr

(
fkj = aj | fk1 = a1, . . . , f

k
j−1 = aj−1, Y

)
, for

j = 2, . . . ,mk, where the combination of the classifiers’ labels
{a1, . . . , amk

} represents the decimal to binary conversion
of the integer l. Secondly, considering the specificity and
sensitivity of the first classifier in the correlation group k,
ηk1 and ψk1 , the 2Lk probabilities {pYk,l}

Lk−1
l=0 are computed as

follows,

p0k,l = ηk1

mk∏
j=2

v0k,l,j p1k,l = ψk1

mk∏
j=2

v1k,l,j . (3)

Designating which is the first classifier within a correlation
group is completely arbitrary. Hierarchical inter-classifier de-
pendence negatively impacts on correlation patterns, and it is
thus crucial to randomize this designation, as explained later
on in this section.

Equation (3) is equivalent to multiplying one node in each
layer of a mk-layer tree diagram of conditional probabilities.
See a graphic example in Fig. 2 with mk = 3 and Y = 0.
The j-th layer, for j = 1, . . . ,mk, is denoted by a 1-by-2j−1

vector vvvYk,j , with entries

vvvYk,j [ i ] =

{
Y ψk1 + (1− Y )ηk1 if j = 1

vYk,i,j if j > 1
, (4)

where i = 1, . . . , 2j−1 denotes the binary to decimal
conversion of the set of classification results {a1, . . . , aj}.
Consequently, pYk,l are the joint probabilities that the an-
notators’ labels {f1, . . . , fmk

} are equal to the entries of
zzzkl , for a given k and conditioned to Y . In Fig. 2, this
designation for p0k,l is used. Note that two tree diagrams must
be generated eventually, one for each possible ground truth
label Y ∈ {0, 1}.

Fig. 2. Tree diagram of conditional probabilities of a three-classifier corre-
lation group, conditioned to Y = 0. For the sake of simplicity, the classifier
index k is not always included in this figure.

The generation of a synthetic data set following the pro-
cedure presented in this work is carried out in two stages.



Firstly, all the probabilities provided in (2) are generated.
Secondly, the binary labels are assigned to each instance by
the m classifiers.

The first stage begins with the generation of the entire
set of vectors vvv0k,j , vvv

1
k,j , for j = 1, . . . ,mk, and k =

1, . . . ,K. The entries of the vectors {vvvYk,j ; j = 2, . . . ,mk}
are assigned 2j−1 realizations of a uniformly distributed
r.v. in [0,1]. For the case Y = 0, the realizations are
sorted from highest to lowest in each vector. Contrarily, for
Y = 1, they are sorted in the opposite order. This logic
ensures that the first and last vector entries, vvvYk,j [1] and
vvvYk,j

[
2j−1

]
, for j > 1, are assigned the conditional probabil-

ities Pr
(
fkj = 0(1) | fk1 = 0(1), . . . , fkj−1 = 0(1), Y = 0(1)

)
and Pr

(
fkj = 1(0) | fk1 = 1(0), . . . , fkj−1 = 1(0), Y = 0(1)

)
.

Consequently, these probabilities always correspond to the
highest (lowest) and lowest (highest) values, respectively. See
a graphic depiction in Fig. 2 for the case Y = 0.

To control the correlation degree, the parameter ε ∈ [0, 1] is
introduced. For Y = 0, the first and last vector entries, vvvYk,j [1]
and vvvYk,j

[
2j−1

]
, for j > 1, are recomputed as follows,

vvv0k,j [1] = min{ε u, vvv0k,j [1]}
vvv0k,j

[
2j−1

]
= max{1− ε u, vvv0k,j

[
2j−1

]
}
, (5)

where u is a uniformly distributed r.v. in [0,1]. For Y =
1, the values assigned to the vector entries are interchanged.
Following this logic, the lower the value of ε, the higher the
degree of correlation.

Once the vectors vvvYk,j have been obtained, the probabilities
p0k,l, p

1
k,l; l = 1, .., 2mk are computed as in (3). Next, the

discrete Cumulative Distribution Function (CDF) FYk,l :=
Pr{lk ≤ l|Y } for the set of decimal values lk = 0, ..., 2mk − 1
in each correlation group k is computed as follows,

FYk,l =

l∑
lk=0

pYk,lk . (6)

In the second stage, given a set of n instances and their
corresponding ground truth values {yi}ni=1, each instance xi
is assigned labels by the m classifiers. In each correlation
group k, we proceed by generating an n-by-1 vector uuu, with
entries corresponding to n runs of a uniformly distributed r.v.
in [0,1]. The entries of the vector uuu are assigned the decimal
values l = 0, . . . , Lk − 1, following the criteria provided by

FYk,l−1 ≤ ui ≤ FYk,l . (7)

Note that (7) will change for each instance depending on
its ground truth label yi.

Upon allocation of the decimal values l to the n instances,
performing a decimal to binary transformation produces the
corresponding sets of classification results, represented by the
n-by-mk matrix [zzzkl,1; . . . ;zzz

k
l,n]. Repeating for each correla-

tion group k, an n-by-m matrix Z is eventually obtained.
One last step is the random permutation of the labels

assigned to each instance n by the mk classifiers in each

correlation group k. This tackles the arbitrary designation of
the critical role of first classifier for each correlation group.

The software implementation of Method 1 is summarized
in Algorithm 1.

Algorithm 1 Artificial Data Generation: Method 1
Input: {yi}ni=1, {ηk1 , ψk1}Kk=1, ε
Output: Z

1: for k = 1, . . . ,K do
2: Compute vvvYk,1 as in (4)
3: for j = 2, . . . ,mk do
4: Generate entries vvvYk,j [i] ∼ [0, 1]
5: Depending on yi, sort all vector entries, and re-

compute vvvYk,j [1], vvv
Y
k,j [2

j−1] as in (5)
6: end for
7: Compute p0k,l, p

1
k,l as in (3)

8: Compute the CDF as in (6)
9: Generate a n-by-1 vector with entries ui ∼ [0, 1]

10: for l = 0, . . . , Lk − 1 do
11: Replace entries ui according to (7)
12: end for
13: for i = 1, . . . , n do
14: Obtain zzzkl,i by performing a decimal-to-binary con-

version on ui
15: Randomly permutate the entries of zzzkl,i
16: end for
17: end for

B. Method 2
Denoted Method 2, we review the procedure to artificially

generate binary, correlated data presented in [8] to model inter-
classifier dependencies.

In essence, this approach is a a relaxation of the inter-
classifier conditional independence assumption in the original
model developed in [6]. Method 2 introduces inter-classifier
dependencies through a series of unobserved binary latent
variables, one for each correlation group. Classifiers do not
directly depend on the ground truth, but through the la-
tent variables {αk}Kk=1. The set of unobserved binary latent
variables are conditionally independent when conditioned to
Y . Classifiers depending on different latent variables αk are
conditionally independent, whereas classifiers depending on
the same αk show correlated results. Classifiers depend on Y
only through their corresponding αk.

Latent variables are fully characterized by the 2K proba-
bilities

Pr (αk = 0 | Y = 0) Pr (αk = 1 | Y = 1) , (8)

for k = 1, . . . ,K. Similarly, classifiers are characterized by
the 2m probabilities

ηαj = Pr (fj(X) = 0 | α = 0)

ψαj = Pr (fj(X) = 1 | α = 1)
. (9)

Note that the total number of probabilities to be computed is
2K+2m, a number that is remarkably lower than in Method 1



for large correlation groups. In Method 1, 2L probabilities are
to be computed, where L = 2m, with the number of classifiers
in a correlation group mk at the exponent.

The software implementation of Method 2 is an immedi-
ate application of the tree diagram in Fig. 1 (Right)—two
layers of binary labels to be generated, one consisting of k
elements, and the other of m elements, obeying K ≤ m. The
elements in the k-label layer are generated according to the
probabilities Pr (αk = 0 | Y = 0) or Pr (αk = 1 | Y = 1),
for k = 1, . . . ,K, depending on the ground truth label Y . On
the other hand, the m-label layer is generated according to
the probabilities ηαk

j or ψαk
j , for j = 1, . . . ,m, depending on

the previously generated k labels. Repeating this process over
n instances, using probabilities that generate strongly enough
dependencies between layers of labels, an n-by-m data set is
eventually obtained.

IV. RESULTS

The performance of synthetic data sets generated using
Method 1 is evaluated with a series of correlation structures.
The results for Method 2 are included as well, for comparative
purposes.

The evaluated correlation structures are listed in Table I.
Denoted as Cases 1–12, a total of 12 different structures are
tested. Cases 1–10 feature one single correlation group, with
a total of m = 20 classifiers. The number of classifiers in the
correlation group m1 increases with the case number—Case 1
features m1 = 1, whereas Case 10 has m1 = 10. Note that
Case 1 corresponds to the all-independent structure, featuring
K = 20 correlation groups.

TABLE I
LIST OF CASE NUMBERS AND CORRESPONDING CORRELATION

STRUCTURE

Case No. 1 2 3 4 5 6 7 8 9 10
m1m1m1 1 2 3 4 5 6 7 8 9 10
KKK 20 19 18 17 16 15 14 13 12 11

Case No. 11 12
Corr. Str. {5 5 5 1} {15 10 1 . . . (×25) . . . 1}

mmm 16 50
KKK 4 27

We measure the averaged degree of correlation featured
by synthetic data sets generated using Methods 1 and 2 for
Cases 1–12. The covariance matrix characterizing a database
containing binarized pathway activation measurements is in-
cluded to asess the methods’ ability to resemble an actual,
real-world case. Also, we present testing results using two
state-of-the-art binary ensemble meta-learners—the Correlated
Expectation-Maximization (CEM) and the Latent Spectral
Meta-Learner (LSM), presented in [7] and [8], respectively.
We include the relative errors featured by both meta-learners
using both methods for Cases 1–12.

A. Degree of correlation

Synthetic correlated data sets can be characterized by the
degree of correlation and overall performance of their m-by-

m inter-classifier covariance matrices R, with entries rij =
E [(fi − E [fi]) (fj − E [fj ])].

We use the correlation coefficient ρ, defined as

ρ :=

∑m
j=1

∑j−1
j′=1 | R̂(j, j′) |∑m

j=1 | R̂(j, j′) |
, (10)

to provide an objective measurement on the overall degree
of correlation in a data set. Fig. 3 plots averaged measurements
of ρ for Methods 1 and 2, for Cases 1–12 of Table I and n =
1, 000 instances. Measurements for Method 1 include results
for several values of the parameter ε ∈ [0, 1]. The simulation
parameters are randomly generated from uniformly distributed
r.v. in the ranges ηk1 , ψ

k
1 ∈ [0.5, 0.8], Pr (αk | Y ) ∈ [0.5, 0.8],

and ηαj , ψ
α
j ∈ [0.7, 0.9]. We also assume null class imbalance,

that is Pr(Y = 0) = Pr(Y = 1).

Fig. 3. Averaged correlation coefficient ρ for Methods 1 and 2, and Cases
1–12 of Table I.

Note that Method 1 always features a higher averaged
measurement of ρ than Method 2. This occurs regardless of
the value of ε, which regulates the degree of correlation (see
Section II). This behavior is a consequence of the higher
degrees of correlation intrinsic to Method 1.

B. Comparing with a real case

We compare the behavior and appearance of the covariance
matrix R of a real database containing pathway activation
measurements, as presented in [12]. This type of genomic
data is easily binarized, and serves as a good example of a
real data set. The covariance matrices of the synthetic data sets
generated using Methods 1 and 2 are included for comparative
purposes. Specifically, we generate the correlation structure
{3 5 2 3 5}, with ηk1 , ψ

k
1 = 0.5, Pr (αk | Y ) = 0.7, and

ηαj , ψ
α
j = 0.8. Note that the degree of correlation within each

correlation group is more heterogeneous for Method 1, a more
realistic characterization compared to Method 2.



Fig. 4. (a) Covariance matrix obtained from binarized pathway activation
measurements in [12], and similar artificial correlation structures obtained
using (b) Method 1 and (c) Method 2.

C. Testing the meta-learners

The performances of the two state-of-the-art meta-learners,
the CEM and LSM, are evaluated using synthetic data sets
generated with Methods 1 and 2. We test all the correla-
tion structures of Table I, assuming that this is an a priori
knowledge. Performance is quantified using the relative error
εr = FP+FN

n , where FP and FN stand for the number of
false positives and false negatives, respectively, and n is the
number of instances in the data set. Simulation parameters are
the same as Fig. 3, with ε = 0.5.

By inspection of Fig. 5, it may be observed that the CEM
outperforms the LSM when using artificial data generated
with Method 1. The opposite occurs for Method 2, with the
LSM outperforming the CEM. However, both wins occur by a
remarkably small margin. Averaged error measurements show
lower values in the case of Method 1 compared to Method 2.
Also, greater variability is observed in the first case.

Artificially generated data sets using Method 1 show larger
values of the correlation coefficient, positively impacting on
the meta-learners’ performances. The higher variability is also
a consequence of the intrinsic higher variability of Method
1, and this is reflected onto the meta-learners’ performance
results.

V. CONCLUSIONS

An adaptable, easily tunable method for generating binary,
correlated synthetic data sets is presented in this work.

The underlying flexibility behind the method, offers better
characterization of developing binary meta-learners, providing
more varied testing scenarios. For instance, the introduced

Fig. 5. Averaged relative error εr for Methods 1 and 2, and Cases 1–12 of
Table I.

tuning parameter allows to change the overall degree of
correlation featured by inter-dependent classifiers.

The well performance of the method has been assessed by
direct comparison with a real, Genomics-related database, and
through extensive testing using ensemble meta-learners.
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