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Abstract: Industrial SMEs may take the decision to invest in energy efficient equipment to reduce 

energy costs by replacing or upgrading their obsolete equipment or due to external socio-political 

and legislative pressures. When upgrading their energy equipment, it may be beneficial to consider 

the adoption of new energy strategies rising from the ongoing energy transition to support green 

transformation and decarbonisation. To face this energy-investment decision-making problem, a set 

of different economic and environmental criteria have to be evaluated together with their associated 

risks. Although energy-investment problems have been treated in the literature, the incorporation 

of both quantitative and qualitative risks for decision-making in SMEs has not been studied yet. In 

this paper, this research gap is addressed, creating a framework that considers non-risk criteria and 

quantitative and qualitative risks into energy-investment decision-making problems. Both types of 

risks are evaluated according to their probability and impact on the company’s objectives and, ad-

ditionally for qualitative risks, a fuzzy inference system is employed to account for judgmental sub-

jectivity. All the criteria are incorporated into a single cost–benefit analysis function, which is opti-

mised along the energy assets’ lifetime to reach the best long-term energy investment decisions. The 

proposed methodology is applied to a specific industrial SME as a case study, showing the benefits 

of considering these risks in the decision-making problem. Nonetheless, the methodology is ex-

pandable with minor changes to other entities facing the challenge to invest in energy equipment 

or, as well, other tangible assets. 

Keywords: decision-making; risk assessment; uncertainty; optimal energy design; prosumer 

 

1. Introduction 

The selection and management of assets are crucial for the achievement of enter-

prises’ objectives in the industrial sector. Among the company’s tangible assets, those re-

lated to energy generation and management have special interest due to their impact on 

production costs and thermal comfort. Currently, small-and-medium enterprises (SMEs), 

and particularly those in the manufacturing sector, have a high environmental footprint, 

and literature estimates that they contribute 60–70% of industrial pollution in Europe [1]. 

Therefore, equipment investment and operation of the SMEs are critical for the green 

transformation and can increase their growth performance [2]. However, the inclusion of 

new energy assets such as renewable energy sources (RES) and other supporting equip-

ment to improve the competitiveness of enterprises and reduce the environmental foot-

print has not been studied adequately [3], and industries, especially SMEs, are facing dif-

ficulties in incorporating them in their energy infrastructure [4]. Besides, the energy tran-

sition that is already taking place presents an opportunity for the industrial sector to adopt 

an active role in transforming the energy market, for example, becoming a prosumer. This 

active role implies the establishment of a smart energy management strategy that would 

make us the industrial energy assets to meet internal demand while adapting their 
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operation to external market conditions, generating a profit from this interaction and 

opening new business models in the industrial entity. To be able to incorporate these strat-

egies, it could be necessary, among other solutions, to perform an investment for upgrad-

ing the energy equipment and infrastructure of the industry through its re-design and 

sizing to use it as a productive asset. Due to their limited financial capacity and managerial 

system, industrial SMEs investments occur in discrete points in time, not prolonging the 

investment in multiple phases as performed by other entities such as governmental or-

ganizations or large companies, which can modify the project according to the evolution 

of industrial, legal or social boundary conditions [5]. Instead, SMEs’ decisions are taken 

based on immediate investment return and maximization of profit along the lifetime of 

the equipment [6]. Therefore, industrial SMEs face the investment decision-making prob-

lem only with the current information and accepting the uncertainty related to the real 

situation evolution at which the upgraded infrastructure would operate. Moreover, some 

of the factors that are commonly employed as criteria in the decision-making process are 

hard to measure, and its mere definition presents levels of venture and hazard, as, for 

example, social acceptance and legislation alignment. Thus, the required investment for 

industrial SMEs to upgrade their energy infrastructure is inherently linked to risks arising 

from both the uncertainty in the future situation, which can be represented as a quantita-

tive risk, and the measurement or subjectivity of some of the possible decision criteria, 

reflected as a qualitative risk. To support industrial SMEs in performing these invest-

ments, the research objective of this paper is to create a framework that addresses risk-

informed decision-making (RIDM) for their energy investment problem. The specific re-

search questions that have to be answered and that are addressed here are: 

• Which risks and factors have to be treated for the energy investment RIDM problem 

in industrial SMEs and how can they be processed? 

• Which methodology is suitable to address this RIDM problem? 

• Which techniques and tools are convenient and how should be used for optimising 

the energy investment RIDM problem in industrial SMEs considering the previously 

addressed risks and factors? 

To created framework to answer these questions, in the following paragraphs a re-

view of the state-of-the-art on methodologies and techniques applied to RIDM processes 

and energy investment decisions is exposed. 

Up to date, some RIDM approaches for general industrial applications have been 

presented in the literature. In [7], a methodology for decision-making considering quan-

titative and qualitative risk factors is presented with a focus on enterprises with serious 

health and environmental risk aspects such as mining, nuclear and aerospace industries. 

In this work, a set of alternatives exist, and the decision is taken by deliberation. In [8], a 

multi-criteria decision analysis (MCDA) is presented for planning the energy generation 

network of a country, selecting the best option among the alternatives employing an ana-

lytical hierarchy process (AHP). Although a cost–benefit analysis (CBA) would have been 

suitable for this case, it is argued that qualitative attributes are difficult to transform and 

incorporate in the final functions. 

In CBA, advantages and disadvantages accounting for different criteria over the life-

time of investment alternatives are both assessed and incorporated in a single function 

[9], which can be optimised to reach either the best value of the investment or the best 

benefit to cost ratio. In [10], both quantitative and qualitative parameters are included in 

the CBA, although qualitative attributes are set as crisp numerical values without consid-

ering the vagueness of qualitative judgements. Additionally, the weight selection meth-

odology is not clear, stating that the application of weights to compare qualitative and 

quantitative data is difficult and presents a barrier to the development of CBAs. This 

weighting issue is solved in [11], where an AHP is employed to weight the criteria and 

ease the selection of the best alternative through an MCDA. AHP enables to structure the 

decision-making problem according to a hierarchy of preferences from which each of the 
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weight of the criteria, which can be of various natures and have different units, is obtained 

through the analysis performed by decision-makers [12]. All these RIDM problems pre-

sented until now deal with a discrete number of alternatives, and qualitative and quanti-

tative risks considered are transformed to crisp and precise values. However, qualitative 

measurements are subject to judgmental vagueness and thus their consideration as crisp 

numbers cause loss of information. In the past, an alternative to deal with qualitative val-

ues’ vagueness for decision-making was presented based on a fuzzy approach, which 

transformed the linguistic risk appreciations into continuous numerical functions [13]. In 

this work, however, only qualitative fuzzy parameters were employed to assess the risk 

of construction projects, omitting quantitative information, which is by its own nature 

much more precise. Although the exposed RIDM approaches have addressed the invest-

ment problem for some industrial applications, a suitable framework for industrial SMEs’ 

RIDM energy investment and optimisation problem has not been developed yet. 

In the general field of energy investment including industrial, services and residen-

tial sectors, research has been performed focusing on energy design and planning without 

analysing the associated risks [14,15]. Although in some cases the uncertainty of the out-

put is studied after performing the decision, RIDM is not carried out. This is the case of 

[16], where the performance of a hybrid energy system is analysed under uncertain events; 

and of [17], where the response of an energy system is studied according to fluctuations 

in system inputs’, such as the cost of energy. The literature on energy investments consid-

ering risks inside the decision-making problem is scarce, although risk analysis is a com-

mon tool for companies. In [18], a life cycle cost (LCC) analysis is performed for a building 

energy system considering the risk related to economic parameters through Monte Carlo 

simulation. In [19], the design is done evaluating through the same technique the risk re-

lated to quantitative costs and technological aspects, and in [20], energy carriers price and 

investment costs uncertainties are considered. In all of these works, the risk is expressed 

employing a quantitative probability approach, focusing on economic parameters. How-

ever, real-world industries’ decision-making problems include a mixture of criteria that 

are not easily quantifiable and have to deal with insufficient information, such as the con-

tribution of the investment into social benefit or the future continuity of the enterprise, 

which makes it not possible to employ probabilistic methods [21]. This fact enhances the 

application of both quantitative and qualitative risk assessment techniques which have 

not been employed in the energy investment literature until now. Due to the investment 

characteristics and the inclusive growth role the SMEs play in society, as well as the re-

quirements of energy assets to fulfil internal enterprise requirements over time and the 

possible adoption of an active energy role to open a new business models, it is required 

to create a methodology in which risks are correctly considered. 

In this paper, a methodology to properly address the RIDM energy equipment in-

vestment problem considering the mixture of criteria that exist for industrial SMEs is pro-

posed with the aim of improving their competitiveness and allow them to play an active 

role in the energy market. In this new methodology, both quantitative and qualitative risk 

must be assessed accounting for the judgemental vagueness of the decision-maker, while 

addressing the optimisation problem continuously over the operation time and space of 

possible combined solutions of the equipment to use rather than analyse only a few sub-

jectively chosen alternatives. As a basis for solving this problem, a CBA approach is em-

ployed, which is suitable for the application in enterprise assets management problems 

[22]. In order to deal with real-world situations where a mixture of criteria exists, the pro-

posed CBA approach incorporates both quantitative and qualitative data, being the latter 

assessed through a fuzzy approach to account for judgemental vagueness. These risks, 

together with the non-risk criteria to make the decision, are unified into a single objective 

function employing an AHP weighting technique that represents a balanced trade-off of 

the different factors considered in the RIDM energy investment problem. The objective 

function is evaluated and optimised continuously over time and also over the continuous 

space of solutions, analysing all the alternatives and not relying on a pre-specification of 
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them. This procedure enables us to reach an optimal decision considering the specifica-

tions and constraints provided by the industrial SME. 

Bearing in mind the state-of-the-art in RIDM and its application to the problem of 

energy investment for industrial SMEs, this paper presents the following main novelties 

and improvements: 

• Creation of a methodology to support industrial SMEs in the energy investment de-

cision-making process considering relevant factors and criteria to improve their com-

petitiveness and accounting for related risks that could affect their performance. 

• Optimisation of the RIDM energy investment problem including equipment options 

and its operation to address internal demand and produce a profit from exchanges 

with the energy market. To do this, the continuous-time operation of the SME and all 

possible combinations and sizes of energy equipment are evaluated. 

• Evaluation of both qualitative and quantitative risks for energy-investment decision-

making in a unique function to account for uncertain deployment scenarios and face 

the difficulty in the measurement of subjective criteria. 

These novelties imply the adoption and usage of strategies, techniques and tools 

which have not been employed until now in RIDM for energy investment. These are con-

sidered as collateral paper contributions consequence of the previously stated ones, and 

are: 

• Transformation of subjective criteria represented as qualitative risks into fuzzy sets 

to account for judgmental vagueness of industrial SMEs’ decision-makers. 

• Incorporation of qualitative and quantitative measurements into a single function ex-

pressed as CBA through AHP weighting, properly reflecting the preferences of deci-

sion-makers. 

This paper is structured as follows. First of all, in Section 2, the proposed methodol-

ogy for energy-investment decision-making is further explained. Secondly, in Section 3, a 

case study based on a real manufacturing industrial plant at which this methodology is 

applied is explored. The results of this case study and their discussion are shown in Sec-

tion 4, and, lastly, conclusions are drawn in Section 5. 

2. Energy-Investment Decision-Making Methodology 

In this section, the methodology to assess the RIDM for industrial SMEs aiming to 

invest in energy assets to upgrade their energy infrastructure and improve their compet-

itiveness is presented. Industrial SMEs are characterised by performing investments in 

discrete points in time to maintain or increase the productivity of their plant. For the case 

of investment in energy assets, their selection influences the long-term continuity of the 

enterprise as it affects the efficiency at which the production load is met as well as its 

impact on local social welfare and corporate image. However, the information with which 

industrial SMEs manage to perform these decisions present uncertainty both in the fore-

cast of the future situation and in the measurement of qualitative decision-making criteria. 

These facts, together with decision-making difficulties involving access to financial 

sources, are challenges faced by SMEs worldwide [23]. Therefore, the proposed method-

ology to address and support SMEs’ RIDM in energy investment, which can be seen in 

Figure 1, has been defined to be expandable to SMEs around the globe. 
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Figure 1. Energy-investment decision-making methodology. 

To implement this methodology, information regarding a specific industrial SME 

framework and the variables and constraints that apply are required. On the one hand, 

the specific SME internal and context information include: 

• Production and energy consumption profiles; 

• Local energy and emissions costs and applicable legislation; 

• Available energy solutions and technological maturity of the company for using 

them; and 

• Opinion and views of the local community on innovative energy infrastructures and 

equipment for renewable energy, who may have, for instance, different acceptance 

of photovoltaic and biomass due to their different landscaping and logistic impacts. 

On the other hand, the constraints that apply for the energy-investment problem in 

industrial SMEs and that should be considered are: 

• Limited initial investment; 

• Required payback period; 
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• Geographic constraints; and 

• Legislation constraints. 

These parameters and variables must be locally analysed and stated to process them 

according to their uncertain nature. Then, they serve as input for the optimisation prob-

lem, where the potential energy infrastructures in which the SME can invest are analysed, 

evaluating the identified risks and criteria. This evaluation of possible energy infrastruc-

tures is performed through an iterative algorithm, which analyses the output for each of 

them and moves towards the solution most suited to the studied industrial SME, the pri-

orities of which are specified by decision-makers and adequately incorporated in the op-

timisation problem to reach the best trade-off solution. 

In the following sections, each of the stages of the proposed methodology are ex-

posed together with the techniques employed and their background. 

2.1. Scope, Context and Criteria 

Industrial SMEs face the problem of investing equipment to upgrade their energy 

infrastructure and include RES due to the required replacement of outdated energy assets 

or the existence of a socio-political framework that forces or encourages them to do so. 

The current economic, environmental and technical context is also opening the path and 

promoting the inclusion of distributed energy resources and active energy actors to 

achieve a cleaner and sustainable energy system [24]. For industries, it is possible to be 

part of this change by adopting a prosumer role, one way to do so being the upgrading of 

their energy infrastructure. However, the uncertain future market situation and the en-

ergy price volatility supposes a financial risk that inhibits industries to perform these in-

vestments [25]. For this reason, the methodology presented in this paper considers the 

relevant criteria to take into account for choosing the most suitable energy-investment 

solution, and the risks related to them. 

The criteria represent the decision drivers to evaluate the potential energy-invest-

ment solutions. These criteria can be related to risks or not, being possible the following 

situations, or a combination of them: 

• Non-risk criteria: Their value is computed objectively and it is not influenced by the 

uncertainty in the inputs of the system. In the RIDM energy investment optimisation 

problem, these non-risk criteria are selected according to the scope of the problem 

and can be, for example, the total emissions of the system if the emission factor is 

considered constant, which is a common approach in energy-investment optimisa-

tion problems [26]. 

• Criteria affected by inputs’ uncertainty: The value of the criteria depends on uncer-

tain inputs. These uncertainties have to be identified as quantitative risks, and the 

variation of the affected criteria according to them have to be computed. This varia-

tion is then included in the decision-making problem as an additional criterion aim-

ing for its reduction, minimizing the risk at which the enterprise is exposed. For the 

case of energy investment problems in industrial SME, a common decision-making 

criterion is the net present value (NPV). The value of the NPV in the proposed energy 

infrastructure is influenced, among others, by the cost of energy carriers. As there is 

uncertainty in future energy costs that can be quantifiable, the variation of the NPV 

should be computed according to them and introduced in the optimisation problem. 

• Subjective criteria: These criteria are difficult to assess mathematically, as they rely 

on subjective opinions and, consequently, their evaluation represents a risk by itself. 

To include them in the decision-making process, they are treated as qualitative risks 

employing a fuzzy methodology to account for judgemental vagueness. This is the 

case of criteria such as social acceptance, whose value relies on the knowledge about 

the local community where the SME is placed and the opinion based on the experi-

ence of decision-makers. 
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In this paper, and to properly address the mixture of criteria and risks present in the 

energy investment RIDM problem of industrial SMEs, the combination of criteria with 

both quantitative and qualitative risks is considered. For this problem, the non-risk crite-

ria are related to factors arising from the operation of the upgraded energy infrastructure 

and its economic and environmental impact, such as the obtained profit and emissions. 

To compute these parameters, the industrial plant is modelled mathematically and its op-

eration optimised. Additionally, quantitative and qualitative risks related to the upgraded 

energy plant are evaluated following the indications of relevant research performed in the 

literature to date, including the fuzzy treatment of qualitative measurements. 

The criteria and risks to decide the best trade-off energy-investment solution are se-

lected according to specific enterprise interests and should include economic, environ-

mental, technical and social aspects. A review of the criteria for energy investment evalu-

ations commonly employed in the literature is available at [27], which can be modified 

and adapted to the specific problem treated. The scope of the energy-investment decision 

problem also has to be settled by the company, specifying the equipment considered for 

installation, the available space for installation and other limitations, the required risk de-

tail, and any restrictions that apply, such as maximum initial investment, payback time, 

etc. 

2.2. Risks Analysis 

Once the SME decides the criteria which are relevant for consideration in the energy-

investment problem, the risks that affect them have to be identified. In this section, the 

methodology to classify and treat these risks is assessed. 

2.2.1. Identification 

The first stage in the risk analysis process is the identification of the risks present in 

the energy investment decision-making problem. Industrial SMEs are characterised by a 

management system where the owner of the enterprise acts, most of the time, as manager 

of the company, and there is a lack of a management body with suitable specialised 

knowledge for decision-making [6]. To successfully implement an energy-investment de-

cision-making process, it is required to establish a decision-board either internally in the 

enterprise or resorting to external advisors. Once decision-makers have been established, 

the risk detection process has to be performed aiming to identify as many risks as possible 

according to the scope of the problem. The possibility of not identifying a risk due to a 

lack of knowledge or awareness is not assessed in this paper. 

As mentioned in the previous section, risks can be embedded in the criteria or can be 

the effect of quantitative inputs uncertainty in the criteria. To properly deal with them, 

their probability and impact on the enterprise’s objectives and criteria have to be ad-

dressed, reaching a risk evaluation measure [28]. The probability of a risk is the measure 

of how possible it is for an uncertain event to happen, and the impact refers to the effect 

that this event would cause on the performance of the energy infrastructure and the SME’s 

objectives. In the following subsections, the definition strategy for both types of risks is 

exposed. 

2.2.2. Quantitative Risks Definition 

The steps to treat these risks in the decision-making process are exposed in Figure 2. 

In the energy-investment decision-making problem for industrial SMEs, quantitative 

risks deal with the uncertainty related to the future energy situation, and include, among 

others, future energy carrier and emissions costs. Once the decision-board identifies all 

the applicable risks for the specific problem considered, the inputs’ uncertainties have to 

be expressed mathematically. The possible values that the uncertain inputs can take can 

be denoted as a set of discrete values with their corresponding probabilities [16], such as 

in the case of existent forecasting scenarios of future energy costs, or as continuous 
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probability distribution functions [19] if a more detailed analysis is available. The type of 

expression depends on the nature of the risk and the information gathered. If a continuous 

probability distribution function is employed, this has to be transformed into a set of prob-

ability-based scenarios to be able to evaluate their impact on the criteria. This is done 

through the Monte Carlo sampling strategy, which is widely used and accepted in RIDM 

processes [18]. In the case that discrete values with probabilities are used, the scenarios to 

compute the impact are all the possible values with their associated probability. 

 

Figure 2. Quantitative risks treatment. 

With these scenarios, it is possible to compute the impact of the risk on the affected 

criteria. Then, the risk is evaluated as the variation present in the criteria due to the dif-

ferent inputs’ uncertainties. This variation is the parameter that is incorporated into the 

CBA function as a cost. 

2.2.3. Qualitative Risks Definition 

The steps to consider qualitative risks in the decision-making process are exposed in 

Figure 3. 

 

Figure 3. Qualitative risks treatment. 

As commented previously, qualitative risks deal mainly with criteria that cannot be 

easily defined mathematically and that are approximated subjectively by decision-mak-

ers. This is the case of some social and environmental aspects which do not have clear 

measurement strategies, such as social welfare and local community perceptions. Once 

these risks are identified, it is required to evaluate and assign a numerical value to both 

their probability of occurrence and their impact on SME’s objectives if they occur. Alt-

hough there are other manners to define qualitative risks, the employment of probability 

and impact values, which is also suitable for quantitative risks, is the most appropriate 

one to deal with qualitative ones in decision-making problems in the industrial sector [28]. 

The assessment of probability and impact of qualitative parameters is done considering 

the decision-board experience in the sector, knowledge on local society obtained through 

interviews, government surveys, etc., and vary according to the equipment considered for 

installation and their size. In the proposed methodology, the optimisation of the energy 
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investment RIDM problem is performed continuously evaluating all possible solutions, 

as a set of them that are pre-defined does not exist. Thus, it is required to implement a 

strategy for the specification of probability and impact of qualitative parameters based on 

the decision-maker’s opinion for all possible solutions. This is done by the creation of a 

decision tree whose branches divide all the possible solutions in ranges of specific equip-

ment and sizes at which the probability and impacts can be defined by decision-makers. 

This decision tree is used by the continuous optimisation algorithm to identify the appli-

cable impact and probability values for the solution that are iteratively analysed. 

Although these probability and impact values can be defined as crisp values, they 

are unavoidably subject to judgemental vagueness. To avoid losing experts and decision-

makers’ valuable opinions, these parameters should not be considered as crisp, but as part 

of a continuous function. To do so, a set of fuzzy membership functions are defined, which 

serve as input for the Fuzzy Inference System (FIS) that computes the risk evaluation. Two 

FIS are widely accepted and employed in the literature; the Mamdani and the Takagi-

Sugeno [29]. In this paper, the Mamdani method and the max–min inference are selected 

as they perform better in extracting experts’ opinions on risk factors, and thus it is more 

suitable for RIDM problems [30]. In the Mamdani method, if–then rules and the implica-

tion method are used to obtain a fuzzy output, which has to be defuzzified in a later stage 

for its treatment in further mathematical equations. The if–then rules are designed to fol-

low the logic of an expert risk assessor through a qualitative risk matrix [31], and the de-

fuzzification is performed employing the centroid strategy, which provides solutions that 

naturally and smoothly respond to the created rules [32]. 

2.3. Criteria Ranking 

In this stage, the criteria selected and the risks identified are ranked to reflect the 

preferences of industrial SME in the energy investment RIDM problem. To capture these 

preferences, an AHP is employed, which is a tool to methodologically determine the 

weights based on subjective preferences and which is suitable to incorporate various cri-

teria of different nature [12], including non-risk, quantitative risks and qualitative risks. 

The AHP method decomposes the problem into a hierarchy, having the goal on top and 

structuring the criteria and risks into levels, as can be seen in Figure 4. In classic AHP 

applications, the set of studied alternative solutions are included in the hierarchy, and 

they are analysed in a bottom-up perspective, from sub-criteria to criteria preceding them 

in the hierarchy until reaching the overall goal. In this paper, as the evaluation of solutions 

is performed through a continuous optimisation problem, the AHP is employed to select 

the weights, which are later incorporated in the CBA function. 

The goal of the problem, located at the top of the hierarchy, is in this case the energy 

upgrade to become a prosumer and improve the competitiveness of the enterprise. Imme-

diately below the goal, a set of criteria appears which designate the main aspects consid-

ered by the enterprise to reach the decision, such as economic and environmental aspects. 

Then, the next level details the criteria linked to these aspects and the relevant risks that 

apply. In this case, the sublevel below the economic criteria can be formed by the NPV, 

the payback period, and their variation according to uncertain inputs, whereas the envi-

ronmental field can include CO2 emissions or soil depletion. After generating the hierar-

chy, each of the items in a level is compared to the rest in the same level and under the 

same hierarchy branch in a pairwise manner [33]. This process is reflected in a paired 

comparison matrix, in which the element 𝑎𝑖𝑗  denotes the importance of parameter i in 

front of parameter j following the Saaty scale definition [34], exposed in Table 1. This ma-

trix definition process is done for the upper or lower diagonal part, being the parameter 

in the opposite part, 𝑎𝑗𝑖 , equal to 1/𝑎𝑖𝑗 . Thus, the resultant matrix has the following struc-

ture: 
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[

1 1/𝑎12 1/𝑎13
𝑎12 1 1/𝑎23
𝑎13 𝑎23 1

]  (1) 

Based on this matrix, the weights can be computed using the geometric mean and 

multiplying the results of the matrix from the lower levels of the hierarchy until reaching 

the goal [35]. 

 

Figure 4. AHP hierarchy structure and pairwise comparison strategy. 

Table 1. Saaty fundamental AHP scale. 

Intensity of 

Importance 
Definition 

1 i and j are equally important 

3 i is moderately more important than j 

5 i is strongly more important than j 

7 i is very strongly more important than j 

9 i is extremely more important than j 

2,4,6,8 
Intermediate values between two adjacent judgements employed when 

compromise is needed 

2.4. Optimisation 

Once the criteria and risks have been identified and ranked, establishing the frame-

work for selecting the best trade-off energy investment to upgrade the energy infrastruc-

ture of the plant, it is possible to enter the optimisation stage. In this stage, the possible 

energy infrastructures are evaluated iteratively to reach the optimal energy investment 

decision. This is done by incorporating all the criteria and risks into a CBA, which forms 

the optimisation’s objective function. In the CBA, the parameters that are beneficial and 

want to be maximised are included as benefits, such as the NPV of the investment and the 

social acceptance of the solution. In contrast, the parameters that represent a disadvantage 

or hazard are introduced as costs. This is the case, for example, of emissions and NPV 

variability. As these factors present different units, their value is normalised for its inclu-

sion in a single function. This normalisation process is performed both to remove the di-

mensions and also to balance possible magnitude differences that exist between different 
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criteria [36]. The transforming approach employed here, which is considered one of the 

most robust regardless of the original range of parameters [37], is: 

𝑝𝑡𝑟𝑎𝑛𝑠 =
𝑝 − 𝑝0

𝑝𝑚𝑎𝑥 − 𝑝0
 (2) 

where 𝑝𝑡𝑟𝑎𝑛𝑠 is the normalised parameter which lays between 0 and 1, 𝑝 is the measured 

value and 𝑝0 and 𝑝𝑚𝑎𝑥  are the minimum and maximum values achievable, respectively. 

Once the parameters are normalised, they are included in the CBA function with the 

weights obtained in the AHP. 

Some of the parameters included in the CBA function are related to the performance 

of the energy infrastructure over time, and for this reason, it is required to compute the 

operation of the upgraded plant for the expected lifetime of the energy investment. This 

is performed by modelling the plant employing the Energy Hub (EH) concept [38], which 

can be expressed mathematically as: 

𝐿 = 𝜂𝑃 (3) 

where 𝐿 represents the demand of the plant or power output, 𝑃 the generation or power 

input, and 𝜂 the connectivity matrix, which includes the dispatch factors and the effi-

ciency of the equipment. This model represents the power balance which has to be ful-

filled at all times which, together with other restrictions such as power exchange thresh-

olds with external grids and equipment operation bounds, serves as the basis to evaluate 

the operation of the plant and obtains relevant parameters which should be included in 

the CBA such as the NPV and payback period. 

The CBA obtained from the different criteria is optimised, aiming to reach as many 

benefits as possible with the least costs. To do so, a stochastic global algorithm is em-

ployed, which assures the surveillance of the entire search space and has better chances 

to find the global optimum compared to other optimisation methodologies [39]. In this 

paper, the Direct Search (DS) global optimizer is employed due to its capabilities to reach 

the global solution efficiently. Through this method, the search space surveillance is per-

formed through the selection of a set of possible solutions or candidates, which are eval-

uated for the problem under study. The first set of candidates is computed based on an 

initial point provided by the decision-maker, which can be any point in the search space. 

The algorithm adds the unitary pattern vectors to the initial point, creating the first mesh. 

All the points in the mesh are possible energy-investment solutions whose CBA is evalu-

ated. The results of these energy-investment possibilities enable the algorithm to move in 

the search space, creating new meshes having as starting points those in the previous 

mesh that provided favourable results, approaching the global optimum efficiently. The 

calculations required to compute the CBA and optimize it depend on the specific case 

study considered and the criteria and risks identified. 

2.5. Methodology Generalisation 

The exposed methodology has been designed for RIDM energy investment problems 

in industrial SMEs, addressing the challenges globally faced by these entities and creating 

a solid framework for the assessment of new energy equipment and management solu-

tions. As can be inferred from previous paragraphs, this methodology can be divided into 

three different strata: 

1. Input information from enterprise characteristics and the framework at which it op-

erates. 

2. Risks, factors and limitations applicable to the energy-investment problem. 

3. Mathematical strategies, techniques and tools for the proper incorporation of factors 

different in nature in an optimisable function. 

All three points are directly applicable to worldwide SMEs that face the energy-in-

vestment decision-making problem. However, and although the proposed methodology 
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has been especially designed for these entities in the energy-investment context, it is ex-

pandable to other decision-making problems. 

For instance, the current energy-investment problem faced nowadays by managers 

of buildings, communities or districts can also be assessed through the proposed method-

ology. In such cases, the methodology should be modified to incorporate as input infor-

mation the specific data and characteristics of tertiary and residential sectors, such as: 

• Space occupation and energy consumption demand at different conditions; 

• Consumers’ flexibility and load shifting behaviour; 

• Compatibility of energy equipment with building/community/district purposes; and 

• Integration with Smart City initiatives, etc. 

The constraints that apply to the energy investment itself may also differ, focusing 

more on operational benefits and allowing larger payback periods. Moreover, as in these 

entities the human factor is much stronger than in the industry, issues related to social 

welfare, environment and safety should be considered as determinant criteria, having eco-

nomic criteria either in the same level or moved to the background. Despite these differ-

ences with the industrial SMEs’ problem treated in this paper, energy-investment prob-

lems deal with a similar mixture of criteria which have to be evaluated along the lifetime 

of the infrastructure. For this reason, the mathematical strategies, techniques and tools 

exposed for suitably address the energy-investment RIDM problem are applicable not 

only to industrial SMEs’ problems, but also to other entities facing the challenge to per-

form an energy investment with minimum risks. 

Furthermore, if the energy investment is not performed by SMEs or individuals but 

by governmental entities or big corporations, the proposed methodology can be adapted 

to incorporate the possibility to carry out multiple-phase investments and project expan-

sions. In this case, the inputs of the system should incorporate the time frames at which 

investments are desired and the growing energy requirements to be fulfilled. 

Apart from its application to energy-investment problems from a wide point of view, 

the proposed methodology can also expand to suit other RIDM problems not directly re-

lated to energy issues, but with other tangible assets, such as the placement and invest-

ment of distribution centres. For this case, the inputs should incorporate the expected 

products’ traffic, location of stakeholders and clients, earth-moving constraints, etc. Ad-

ditionally, for distribution and logistics centres, the investment problem is not only eco-

nomic, and constraints are closely related to the acceptance of the local community since 

it can strongly affect the structure of the environment and the communications infrastruc-

ture of the district and area in which it is placed, due to important visual impact for the 

community. Therefore, and in a similar way to the case of energy-investment in non-in-

dustrial entities, it is possible to use the proposed methodology, strategies and tools to 

evaluate the selected criteria and the qualitative and quantitative risks that should be con-

sidered to make the decision. 

Thus, it can be concluded that the proposed methodology can be applied to a vast 

number of decision-making problems in which quantitative and qualitative risks have to 

be evaluated. For these new applications, the general methodology and tools can be main-

tained while the inputs of the system should be modified to suit the specific problem to 

be addressed as well as the application constraints. In this way, it is possible to employ 

the proposed strategies and tools to reach the balanced trade-off solution that best reflects 

the interests of the entity making the decision. 

3. Case Study 

In this section, a case study for an industrial SME of the automotive sector is pre-

sented in which the methodology exposed in the previous section is applied. Industrial 

SMEs, in contrast with other entities in the tertiary and residential sector, have higher 

thermal consumption than electrical consumption [40–42] and are characterized by a di-

versity of processes and equipment that enable the incorporation of different energy assets 
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to interconnect the different energy carriers present in the industry, increasing the robust-

ness of the energy system [43]. Additionally, the load pattern of industrial SMEs is much 

more predictable than in other sectors, as it is strongly affected by production and varies 

only slightly with daily human behaviour [44]. This is especially true for the case of in-

dustrial SMEs of the automotive sector, as they do not have stocks and produce in a just-

in-time manner to supply materials and components to other enterprises for continuous 

vehicle manufacturing [45,46], thus presenting a much more stable load curve. 

The case study exposed in this section is based on a real industrial SME of the auto-

motive sector and reflects the main characteristics exposed of overall industries and espe-

cially of those related to the automotive sector. The annual electrical and thermal demands 

of the industrial plant are 679,240 MWh and 1,127,600 MWh, respectively; and an example 

of the demand pattern followed in one day can be seen in Figure 5. 

 

Figure 5. Daily load demand for the case study industrial SME. 

In the following subsections, each of the stages of the proposed methodology are de-

veloped with the objective to achieve the best energy-investment decision in accordance 

with the objectives and characteristics of industrial SMEs. 

3.1. Scope, Context and Criteria 

The considered industrial manufacturing plant wants to upgrade its energy infra-

structure to improve its competitiveness. This can be done by incorporating RES and other 

equipment to enhance its efficiency and reduce its carbon footprint, and to explore the 

capacity of exchanging electricity with the utility grid by adopting an active prosumer 

model. 

Currently, the plant fulfils its electrical and thermal demands through the direct pur-

chase of electricity and the combustion of natural gas in a boiler. The boiler equipment is 

foreseen to continue in operation for the next 15 years and thus its substitution is not eval-

uated. The enterprise has 12,000 m2 of available space for the installation of a PV system, 

and it is also considering the inclusion of a Combined Heat and Power (CHP) unit, a Heat 

Pump (HP), Thermal Storage System (TSS) and an Electrochemical Storage System (ESS). 

However, the maximum investment is limited to 1,000,000€ and the payback period has 
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to be lower than 6 years. With this context and scope, the combination of criteria proposed 

in this article to evaluate the best energy-investment decision is shown in Table 2. 

Table 2. Criteria for the energy-investment decision-making problem case study. 

Criteria Sub-Criteria Description 

Economy 

NPV Value of the investment at the end of its expected lifetime. 

Business continuity 
Investment influence on supporting business continuity in the 

future. 

Technol-

ogy 

Innovation Competitive advantage through innovation. 

Maturity 
Feasibility of the technological solutions to be integrated into the 

SME. 

Safety Safety of the solution for workers and local community.  

Social 
Social benefits Contribution to the advancement of society. 

Social acceptance Attitudes of users on the energy infrastructure upgrade. 

 
Administration align-

ment 

Alignment of the solution with administrative and legislative 

energy trends. 

Environ-

ment 

Pollutant emissions Emissions of greenhouse gases to the atmosphere. 

Ecology influence Direct and indirect influences on ecosystem. 

3.2. Risk Identification and Analysis 

Keeping in mind the criteria selected, the identified quantitative and qualitative risks 

that affect them for this case study are exposed in Table 3. In the following pages, each of 

these risks is characterized for its inclusion in the optimisation problem. 

Table 3. Risks identified for the energy-investment decision-making problem case study. 

Risk ID Risk Description Criteria Affected Risk Type 1 

1 Electricity cost market uncertainty NPV QT 

2 Gas cost market uncertainty NPV QT 

3 Feed-in tariff uncertainty NPV QT 

4 Emissions cost market uncertainty NPV QT 

5 PV O&M 2 costs uncertainty NPV QT 

6 Electrochemical storage O&M costs uncertainty NPV QT 

7 Business continuity subjectivity Business continuity QL 

8 Innovation subjectivity Innovation QL 

9 Maturity subjectivity Maturity QL 

10 Safety subjectivity Safety QL 

11 Ecology influence subjectivity Ecology influence QL 

12 Social benefit subjectivity Social benefit QL 

13 Social acceptance subjectivity Social acceptance QL 

14 Administrative alignment subjectivity Administrative alignment QL 
1 QT = quantitative; QL = qualitative. 2 O&M= operation and maintenance. 

3.2.1. Quantitative Risk Analysis 

Here, the quantitative risks are analysed and a numerical description assigned to 

them. 

• Risks 1–4 

These risks correspond to the uncertainty in the forecast of future market costs, in-

cluding the price of electricity, gas and emissions as well as the feed-in tariff at which 

electricity is sold. The uncertainty of the increment ratio of energy and emissions costs 

creates different operation and financial scenarios for which the studied solutions provide 

distinct results on the criteria. These uncertainties and criteria variation have to be evalu-

ated as a risk in the decision-making process. To do so, the future scenarios represented 

as price increments possibilities obtained from the literature are analysed. These scenar-

ios, which present an equal probability of occurrence, are exposed in Table 4. 
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Table 4. Risks 1–4 numerical description. 

Risk ID Factor Description Scenarios Source 

1 Electricity cost yearly percentage increase [1.40;4.06;4.82] [47] 

2 Gas cost yearly percentage increase [0.65;1.40] [48] 

3 
Percentage of the electricity cost at which electricity is 

sold 
[0.80;0.9] [49] 

4 Emissions cost yearly percentage increase [1.14;6.45] [50] 

• Risks 5–6 

These risks relate to the fact that PV and electrochemical energy storage systems are 

growing in adoption, decreasing their operation and maintenance (O&M) costs as a con-

sequence of the economy of scale that the sectors are experiencing, although the cost evo-

lution is not clear yet. To capture this uncertainty, the cost decrease expectation is ex-

tracted from the literature and the possible scenarios, also with equal probabilities and 

exposed in Table 5, are analysed under the point of view of its impact on the criteria for 

RIDM. 

Table 5. Risks 5–6 numerical description. 

Risk ID Factor Description Scenarios Source 

5 PV O&M costs yearly percentage decrease [0.5;0.95;1.7] [51] 

6 Electrochemical storage O&M costs yearly percentage decrease [3.3;3.7;4.5] [50,52] 

All these quantitative risks affect the NPV criteria. To evaluate this risk, the impact 

in the NPV is computed for all the risk scenarios combinations, obtaining, as a result, the 

variation of the NPV. This NPV variation is included in the CBA function aiming at its 

reduction for risk minimisation. 

3.2.2. Qualitative Risk Analysis 

Risks 7–14 are qualitative and thus they are defined based on the opinion of decision-

makers and experts. To capture their knowledge, decision-makers perform an analysis of 

the probability of risks to happen and the impact these would have on the enterprise’s 

objectives depending on the energy infrastructures evaluated. As the energy investment 

RIDM is optimised continuously, all possible energy infrastructure that could be a solu-

tion have to be assessed. To do this analysis, decision-makers rely on their experience and 

knowledge of the local community, legislation trends and company environmental and 

social commitment, as well as initial enterprise’s constraints such as maximum invest-

ment. The probability and impact evaluations are reflected into decision trees allowing 

the optimisation algorithm to obtain these risks’ values for the evaluated energy-invest-

ment solutions. As probability and impact are not necessarily distributed in the same 

ranges of equipment, for each studied risk one decision tree is required for probability 

and another for impact. Therefore, in the case study presented here, a total of 16 decision 

trees are constructed. The resultant decision trees for the decision-making problem are 

subjective, as they derive from the opinions of experts considering previous experience 

surveys performed to users and local social agents. An example of a decision tree is ex-

posed in Figure 6. This decision tree serves to specify the impact of the solution on busi-

ness continuity according to the equipment selected. A higher value means that the stud-

ied solution has a higher impact than other solutions, being a high impact desirable. In 

this case, the decision-makers specify that business continuity should not have a big CHP 

installation, whereas it is positive to include a PV system, although in a moderate manner. 

Of course, this assessment can change depending on the location of the company, the pro-

duction sector, local trends and opinions about the industries, etc. 
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Figure 6. Decision tree for Risk 7 impact, business continuity. 

The probability and impact values specified by decision-makers are influenced by 

vagueness, as one person can understand 0.7 to be a moderate impact, whereas another 

one can understand it to be high. To avoid losing information regarding the true meaning 

behind the value specified by the decision-maker, a fuzzy strategy is employed in which 

probability and impact can correspond to one or more fuzzy membership functions that 

serve to compute the risk evaluation through the FIS. In Table 6, the membership func-

tions employed for probability, impact, and risk evaluation are exposed. In this case study, 

the employed membership functions specified in the last column of Table 6 are trapezoi-

dal. Their definition is performed in the (𝑎1, 𝑎2, 𝑎3, 𝑎4) form, which correspond to the spe-

cific function’s shape such that: 

𝑓(𝑥; 𝑎1, 𝑎2, 𝑎3, 𝑎4) =  

{
 
 

 
 
0, (𝑥 < 𝑎1) 𝑜𝑟 (𝑥 > 𝑎4)
𝑥 − 𝑎1
𝑎2 − 𝑎1

, 𝑎1 ≤ 𝑥 ≤ 𝑎2

1, 𝑎2 < 𝑥 < 𝑎3
𝑎4 − 𝑥

𝑎4 − 𝑎3
, 𝑎3 ≤ 𝑥 ≤ 𝑎4

 (4) 

Table 6. Fuzzy membership functions and linguistic description of risk impact, probability and eval-

uation. 

Risk Aspect Linguistic Definition Fuzzy Number 

Probability 

High (0.6, 0.9, 1, 1) 

Medium (0.2, 0.4, 0.6, 0.8) 

Low (0, 0, 0.1, 0.4) 

Impact 

Large (0.7, 0.9, 1, 1) 

Considerable (0.5, 0.7, 0.8, 0.9) 

Moderate (0.2, 0.4, 0.6, 0.8) 

Minor (0.1, 0.2, 0.3, 0.4) 

Negligible (0, 0, 0.1, 0.2) 

Evaluation 

High (0.6, 0.9, 1, 1) 

Medium (0.2, 0.4, 0.6, 0.8) 

Low (0, 0, 0.1, 0.4) 
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The membership functions for risk impact, probability and evaluation can be seen 

graphically in Figure 7. 

 

Figure 7. Risk impact, probability and evaluation membership functions. 

Once the linguistic terms, fuzzy sets and decision trees for impact and probability 

assessment of candidate solutions are defined, the 15 required if–then rules for the 

Mamdani FIS are designed, which enable us to compute the risk evaluation that has to be 

included in the CBA function. To support their creation, the qualitative risk matrix shown 

in Table 7 is generated, where the risk evaluation fuzzy set is identified based on the risk 

probability and impact specified by the decision-maker. 

Table 7. Qualitative risk matrix for the case study. 

 
Impact 

 Large Considerable Moderate Minor Negligible 

P
ro

b
ab

il
it

y
 

High High High High Medium Medium 

Medium High High Medium Low Low 

Low Medium Medium Low Low Low 

From this matrix, the rules for the Mamdani FIS are generated. As an example, five 

of them are shown here: 

If (Probability is High) and (Impact is High), then risk is High 

If (Probability is High) and (Impact is Moderate), then risk is Moderate 

If (Probability is Medium) and (Impact is Considerable), then risk is High 

If (Probability is Medium) and (Impact is Moderate), then risk is Moderate 

If (Probability is Low) and (Impact is Minor), then risk is Minor 

Here, an example of the working behaviour of the developed FIS is exposed to assess 

the business continuity when analysing the possibility of installing 6000 m2 of PV, a CHP 

system of 180 kWe and an HP of 150 kW. According to the decision tree exposed previ-

ously, the impact of this solution on business continuity is 0.3. For the case of the proba-

bility of contributing to business continuity, the resultant value is 0.5, which has also been 

established following decision-makers’ judgments. With this information, the risk can be 

evaluated through the FIS as exposed in Figure 8. According to the fuzzy membership 

functions used, the probability parameter belongs only to one membership function. In 

contrast, the impact value belongs to two membership functions as it can express either a 

minor impact or a moderate impact. Thus, it is necessary to analyse two rules: one for 
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medium probability and moderate impact and another for medium probability and minor 

impact. These two rules lead to two possible risk evaluations, which are combined to con-

sider judgemental vagueness. 

 

Figure 8. FIS procedure for evaluating the business continuity of a candidate solution for the case study developed. 

In the first activated rule, the obtained risk is medium. As the value of the impact is 

0.3, it belongs to the moderate impact membership function although it does not com-

pletely fulfil it. For this reason, the implication is performed through max–min composi-

tion to reduce the influence of this rule in the output according to the degree of fulfilment 

of input membership functions [53]. In the second activated rule, the obtained risk is low 

and the min operator is not activated, as both membership functions are completely ful-

filled. These two outputs are aggregated, obtaining the fuzzy risk evaluation, which is 

defuzzified through the centroid method. The centroid returns the centre of gravity in the 

x-axis of the area under the membership function and is a consistent method suitable for 

one-dimensional output problems where no real-time implementation occurs, such as the 

one presented here [54]. In the example here shown, the defuzzification returns a final 

value of 0.3188, which is the measure of risk evaluation included in the CBA function. 

3.3. AHP Ranking 

Being the main goal of the energy upgrade of the company to improve the competi-

tiveness, a hierarchy with all the criteria and risks identified is constructed, which can be 
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seen in Figure 9. The first level is formed by the main decision criteria, which are economy, 

technology-based, social, and environmental criteria. Then, each of these criteria are sub-

divided into several items that are those already exposed in previous sections, specifically 

in Table 2. To these items, the NPV variation is included as a sub-criterion arising from 

the consideration of quantitative risks. 

Energy upgrade to improve 
competitiveness

Economic
0.6324

Technology
0.2

Social
0.0838

Environment
0.0838

NPV
0.6833

NPV 
variation

0.1998

Business 
continuity

0.1168

Maturity
0.2493

Innovation
0.1571

Safety
0.5936

Social 
benefits
0.1131

Social 
acceptance

0.2081

Administration 
alignment

0.6608

Pollutant 
emissions

0.75

Ecology 
influence

0.25  

Figure 9. Criteria hierarchy with their corresponding level weights for the case study. 

Once the structure is created, the criteria in the same level are compared in a pairwise 

manner using the Saaty fundamental scale, and the weights for this level are obtained. 

This process is performed by decision-makers considering the interests of the enterprise 

and the importance of each of the elements in terms of its predecessor in the hierarchy. 

These preferences are independent of the value that the criteria and risks take when eval-

uating possible energy infrastructure upgrades. Therefore, they are maintained constant, 

reflecting the preferences of the enterprise, and appear in the CBA function multiplying 

the value of criteria and risks, which change for every solution analysed, to assure a bal-

anced trade-off suitable for the industrial SME. 

As an example of the application of the Saaty fundamental scale, the comparison ma-

trix and resultant weights for the first hierarchy level, where the main criteria are placed, 

are exposed in Table 8. The weights, as specified in Section 2.3, are obtained through the 

geometric mean, expressed as: 

𝑊𝑖 = (∏𝑊𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

 (5) 

where 𝑊𝑖 is the obtained weight, 𝑊𝑖𝑗 represent the comparison performed between pa-

rameters in row 𝑖 and column 𝑗 and 𝑛 is the total number of parameters in the same 

layer for comparison. Given that the Saaty scale and the geometric mean can produce 

weights greater than one, once all the weights in the same layer are obtained, these have 

to be normalised: 

𝑊𝑖,𝑛𝑜𝑟𝑚 =
𝑊𝑖

∑ 𝑊𝑖
𝑛
𝑖=1

 (6) 
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Table 8. Pairwise comparison matrix for the second hierarchy level. 

 Economic Technology Social Environment Weights 

Economic 1 5 6 6 0.6324 

Technology 1/5 1 3 3 0.2 

Social 1/6 1/3 1 1 0.0838 

Environment 1/6 1/3 1 1 0.0838 

This process is repeated for all the sub-criteria, obtaining the weight hierarchy struc-

ture shown in Figure 9. 

With this information, the global weights of the sub-criteria for their incorporation in 

the CBA function are computed through the multiplication of the resultant weights in a 

bottom-up perspective: 

𝑊𝑖,𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑊𝑖,𝑛𝑜𝑟𝑚𝐿2 ×𝑊𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟,𝑛𝑜𝑟𝑚 (7) 

where 𝑊𝑖,𝑔𝑙𝑜𝑏𝑎𝑙  represents the global weight of a parameter, 𝑊𝑖,𝑛𝑜𝑟𝑚𝐿2  the normalised 

weight obtained for the parameter in the second layer of the diagram through pairwise 

comparison, and 𝑊𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟,𝑛𝑜𝑟𝑚 the normalised weight of its predecessor in the hierar-

chy. 

The global weights for all the considered criteria and risks are exposed in Table 9, 

together with the symbols employed to express them in upcoming mathematical equa-

tions. 

Table 9. Global weights for the sub-criteria in the analysed case study. 

Sub-Criteria Symbol Weight 

NPV 𝑁𝑃𝑉 0.4321 

NPV variation 𝑁𝑃𝑉𝑉 0.1264 

Business continuity 𝐵𝐶 0.0739 

Maturity 𝑀 0.0499 

Innovation 𝐼𝑁 0.0314 

Safety 𝑆𝐹 0.1187 

Social benefits 𝑆𝐵 0.0110 

Social acceptance 𝑆𝐴 0.0174 

Administration alignment 𝐴𝐴 0.0554 

Ecology influence 𝐸𝐼 0.0629 

Pollutant emissions 𝑃𝐸 0.0210 

3.4. Optimal Energy-Investment Selection Process: Continuous CBA 

Once the criteria are selected and ranked, it is possible to proceed to the optimisation 

of the energy-investment RIDM for the industrial SME. The variables to optimise are the 

equipment to install and their sizes, whereas the constraints include the maximum invest-

ment that can be performed by the enterprise and the maximum allowable payback pe-

riod. The objective function of the optimisation problem is the CBA function, where all 

the criteria and risks are considered either as a benefit or as a cost, including the quantita-

tive and qualitative risks. This CBA function is maximised, aiming for an energy infra-

structure that creates as many benefits as possible with low costs. The benefit criteria are 

those attributes included as positive terms and which wish to be maximised, while the 

cost criteria are those included as negative terms and that want to be kept as low as pos-

sible. For the present case study, bearing in mind the weights obtained through AHP, the 

resultant CBA function is: 

𝑓 = 0.4321𝑁𝑃𝑉 − 0.1265𝑁𝑃𝑉𝑉 + 0.0739𝐵𝐶 + 0.0499𝑀 + 0.0314𝐼𝑁

+ 0.1187𝑆𝐹 + 0.011𝑆𝐵 + 0.174𝑆𝐴 + 0.0554𝐴𝐴 − 0.0629𝐸𝐼

− 0.0210𝑃𝐸 

(8) 
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It can be seen that almost all criteria are incorporated with a positive value, being the 

NPV variation, ecology influence and pollutant emissions, and the negative criteria which 

represent a cost that have to be kept low. This CBA function has to be evaluated for all 

possible energy-investment solutions to upgrade the energy infrastructure of the plant, 

examined through the DS optimisation algorithm. The value of some of the criteria can be 

obtained directly from the selection of the energy infrastructure, the decision trees and the 

FIS exposed in previous sections. However, the NPV, NPV variation and pollutant emis-

sions criteria require the computation of the infrastructure operation along the lifetime of 

the equipment and, in the case of the NPV, a comparison with the hypothetical situation 

of not performing any investment. For this reason, an analysis of the plant performance 

for the lifetime of the new equipment, which is considered to last for 15 years, is included 

inside the optimisation process. This analysis is carried out by employing the EH concept. 

For the studied industrial plant, the EH equilibriums for the electrical and thermal sides 

are stated as: 

𝑃𝑃𝑉𝜂𝑃𝑉 + 𝑃𝑈𝐺𝜂𝑈𝐺 + 𝑃𝐶𝐻𝑃 + 𝑃𝐷𝐸𝑆𝜂𝐷𝐸𝑆 =
𝑃𝐸𝐷
𝜂𝐸𝐷

+ 𝑃𝑈𝐺𝑆 +
𝑃𝐶𝐸𝑆
𝜂𝐶𝐸𝑆

+ 𝑃𝐸𝑇  (9) 

𝑄𝐶𝐻𝑃 + 𝑄𝐵𝑂𝐼 + 𝑄𝐷𝑇𝑆𝜂𝐷𝑇𝑆 + 𝑄𝐸𝑇 =
𝑄𝑇𝐿
𝜂𝑇𝐿

+
𝑄𝐶𝑇𝑆
𝜂𝐶𝑇𝑆

 (10) 

where 𝑃𝑃𝑉 , 𝑃𝑈𝐺 , 𝑃𝐶𝐻𝑃 and 𝑃𝐷𝐸𝑆 are the electrical power coming from the PV system, the 

utility grid, the CHP system and the energy storage, respectively; 𝑃𝐸𝐷 , 𝑃𝑈𝐺𝑆 , 𝑃𝐶𝐸𝑆  and 

𝑃𝐸𝑇  are the electrical power to the internal demand, the one injected back to the utility 

grid, the employed to charge the energy storage and the sent to the HP system, respec-

tively; and 𝜂𝑃𝑉, 𝜂𝑈𝐺, 𝜂𝐸𝐷, 𝜂𝐷𝐸𝑆, and 𝜂𝐶𝐸𝑆 are the connectivity efficiencies with the PV sys-

tem, the utility grid, the electrical demand and also the discharge and charge efficiencies 

of the energy storage. On the thermal side, 𝑄𝐶𝐻𝑃 , 𝑄𝐵𝑂𝐼 , 𝑄𝐷𝑇𝑆 and 𝑄𝐸𝑇  are the thermal 

power generated by the CHP and the boiler and coming from the thermal storage and the 

HP; 𝑄𝑇𝐿 and 𝑄𝐶𝑇𝑆 are the thermal power for thermal load and the one injected in the 

thermal storage; and 𝜂𝑇𝐿, 𝜂𝐷𝑇𝑆 and 𝜂𝐶𝑇𝑆 are the connectivity efficiencies with the load 

and the discharge and charge efficiencies of the thermal storage. 

These equilibrium equations are accompanied by restrictions that allow the EH to 

operate following the physical constraints existent in the real plant. These restrictions in-

clude equipment connectivity, power equipment operation bounds and external grid re-

quirements. This mathematical model can be employed for the different energy infrastruc-

tures analysed and also for studying the operation of the current industrial plant, as it is 

possible to set equipment to any size including zero, maintaining the operationality of the 

infrastructure. With this model, the operation of the upgraded plant can be obtained 

through optimising its behaviour aiming at minimising costs, which serves for the com-

putation of parameters that have to be included in the CBA function for assessing the 

suitability of the analysed energy infrastructure. 

Considering these aspects and the methodology exposed in Figure 1, the energy-in-

vestment RIDM optimisation flowchart is detailed for this specific case study in Figure 10. 

First of all, the industrial plant, market information, uncertainty scenarios and decision-

makers judgements data are obtained. This information is employed, in part, to compute 

the scenarios at which the performance and operation of the industrial plant are analysed 

for the non-risk criteria and quantitative risk criteria. After obtaining the scenarios data, 

the operation of the reference plant is computed, which reflects the situation if no energy 

investment is performed and the currently existing energy infrastructure continues in op-

eration for the next 15 years. This reference plant computation serves as a base for com-

parison and calculation of the NPV for the analysed energy investments. 
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Figure 10. Optimisation flow chart for the case study. 
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Once this first part of the process is performed, the optimisation starts, aiming to find 

the energy investment that provides the best trade-off solution considering the risks re-

lated to its selection. Employing the DS algorithm, the first mesh is created through the 

addition of pattern vectors to the initial point provided by the decision-maker. Each of the 

points in the mesh represents a candidate energy investment solution with a linked up-

graded energy infrastructure, which is analysed for the non-risk criteria, quantitative 

risks, and qualitative risks. For the non-risk criteria, which are the NPV and pollutant 

emissions, the operation of the plant is computed for the whole expected lifetime. In the 

case of the quantitative risk, which is the variation of the NPV, the operation of the plant 

analysis process is repeated for all the considered uncertain scenarios. Then, for qualita-

tive risks, the impact and probability are obtained through the decision trees, and the risk 

evaluation is computed by employing the designed FIS. The evaluation of all the criteria 

is included inside the CBA function, obtaining the expected benefits and costs and the 

suitability of the analysed solution. At this stage, the DS optimisation checks its finalisa-

tion constraints, which include, among others, the change tolerance in the CBA function 

and the achievement of a minimum step variation. If the algorithm has reached an optimal 

value, the process ends, obtaining the best energy investment for the enterprise and the 

upgraded energy infrastructure. If not, a new set of candidate solutions is generated by 

re-meshing the search space, considering the results of the last set of candidate solutions 

to approach the global optimal. 

4. Results and Discussion 

The results of performing the energy investment RIDM optimisation in the studied 

SME to upgrade its energy infrastructure are presented in this section. In order to evaluate 

the benefits of incorporating the risks into the decision-making problem, an optimisation 

considering only the non-risk criteria, which are the NPV and the emissions, has also been 

carried out. In Table 10, the initial investment and payback periods for both solutions, 

with and without risks, are exposed. Figure 11 depicts their NPV during the first 6 years, 

showing graphically the evolution of the investment and its return along time until the 

payback is achieved. The equipment selected by the optimiser for each of the alternatives 

is exposed in Table 11. As one of the investment solutions has been obtained through a 

without risks analysis whereas the other is the result of an optimisation accounting also 

with quantitative and qualitative risk factors, the energy infrastructure resulting from the 

different optimisation problems also present different consequences in terms of risk im-

plications, which can vary the real outcome for the enterprise. To appreciate these impli-

cations, Table 12 has been created in which it is possible to see the value of all the criteria 

including risks for both optimisations. It is worth noting that for the without risks optimi-

sation, risks have not been considered during the optimisation, but are computed at the 

end of the process for the sake of comparability. 

Table 10. Energy investment main characteristics. 

 With Risks Without Risks 

Initial investment 689,600€ 909,960€ 

Payback period 3.4 years 4.1 years 
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Figure 11. NPV evolution during the first 6 years after investment. 

Table 11. Energy equipment selected and their sizes. 

Equipment 

Size 

Optimisation with 

Risks 

Optimisation 

without Risks 

PV energy source 12,000 m2 12,000 m2 

Thermal storage 140 kWh 135 kWh 

CHP system 140 kWe 200 kWe 

Table 12. Criteria evaluation for the two obtained solution. 

Criteria Evaluation 

Value 

Risks Included in the 

Optimisation Problem 

Risks not Included in the 

Optimisation Problem 

Non-risk criteria   

NPV 7,162,700 € 7,470,000 € 

Pollutant emissions (last year) 306.136 tCO2eq 307.4459 tCO2eq 

Quantitative risk criteria   

NPV range 6,356,650–7,968,750 € 6,616,350–8,323,650 € 

Qualitative risk criteria   

Business continuity 0.8470 0.3188 

Maturity 0.4071 0.5000 

Innovation 0.8470 0.5902 

Safety 0.5929 0.4071 

Social benefits 0.1372 0.1372 

Social acceptance 0.8470 0.8470 

Administration alignment 0.8470 0.5000 

Ecology influence 0.6263 0.6263 

First of all, it is possible to see that, for the without risks case, the required energy 

investment is higher and the payback period is larger. It should be pointed out that these 

parameters are considered as constraints in the optimisation problem, specified as maxi-

mum allowable values chosen by the enterprise, but are not optimised. Instead, the objec-

tive for the without risks case is mainly the NPV maximisation while, for the case with 

risk, the objective is the trade-off between NPV, emissions and quantitative and 
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qualitative risks. Therefore, the NPV for the without risk case analysis results higher than 

for the with risk one, as almost no other parameter is optimised. In Figure 11, it appears 

that although both initial investment and payback period are higher for the without risks 

case, its NPV line ascends at a higher grade, as exposed by the tangents of the graphs, 

obtaining more benefits per year and eventually surpassing the NPV for the case with 

risks. Although the final economic value is more favourable for the without risks case, this 

solution does not consider any risk and creates an illusion of the investment’s real profit-

ability. Additionally, the NPV range, as exposed in Table 12, is higher for the without risks 

case, which reflects a less robust result where the final economic value is more uncertain 

and spans in a wider range which does, indeed, cover the NPV obtained for the with risks 

case. 

Regarding the equipment selected, in both alternatives it is chosen to cover com-

pletely all the available area for the installation of the PV system together with thermal 

storage and a CHP system. The PV system is always chosen at its maximum capacity due 

to its low costs and, when considering risks, its positive influence in most of the evaluated 

qualitative criteria. In contrast, electrochemical storage and heat pump, which were also 

considered during the optimisation, do not appear as part of the new energy infrastruc-

ture. This is a consequence of the relationship between the economic benefits obtained 

from the equipment and their costs for the resultant energy infrastructure, which is not 

high enough to justify their incorporation. Additionally, when evaluating the risks, the 

influence of these equipment on the favourable risk criteria is not enough to include them 

regardless of their economic disadvantage. Despite these similarities between both solu-

tions, when optimising the energy investment without considering risks, the size of the 

CHP system is significantly higher, which is the cause of the higher initial investment and 

larger payback period discussed previously. 

Although the financial considerations exposed regarding the differences between the 

cases with and without risks are of importance for the SME, they only reflect a part of the 

global situation. In general, taking a decision considering only the non-risk criteria can 

lead to a situation with high exposure to strictly non-economic risks with great impacts 

on the enterprise. In this specific case study, not considering the risks leads to a solution 

that also compromises the qualitative risk criteria, having lower business continuity, 

safety and administration alignment, among others, as exposed in Table 12. For example, 

the solution obtained considering risks inside the optimisation decision-making problem 

evaluates that the contribution of the energy infrastructure to business continuity is 

84.70%. In contrast, if this factor is not considered as criteria, as happens in the without 

risks optimisation, the contribution of the resultant infrastructure to business continuity 

is only 31.88%, reflecting the possibility of not supporting the company in future chal-

lenges. This variation in some of the qualitative criteria in the evaluated case study is a 

consequence of the danger related to CHP operation and the fact that these systems have 

been lately a focus of interest by governments, reducing the maximum installed capacity 

to reach a sustainable energy system and thus inhibiting further investments on them [55]. 

Thus, incorporating risk analysis in the energy-investment RIDM process enables the 

achievement of a solution that represents a trade-off between the considered criteria, al-

lowing a smarter initial investment. 

The energy investment obtained from considering all the risk and non-risk criteria 

enable the SME to upgrade its energy infrastructure and start acting as prosumer and, 

through the risk analysis performed, the operation of this energy infrastructure presents 

high reliability and robustness that supports the achievement of enterprise’s objectives. 

For the case study analysed in this paper, the operation of the energy equipment and the 

exchange of energy with the utility grid are exposed in Figures 12–14. In Figure 12, it is 

possible to appreciate that electricity is being purchased when energy from the PV is not 

available, although at a smaller quantity than required by the internal demand. This is 

because part of this demand is fulfilled by electricity generated in the CHP system, which 

is employed both by the electrical side shown in Figure 12 and by the thermal one, shown 
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in Figure 13. The energy exchange behaviour with the utility grid can be seen in Figure 

14, where the electricity exchange with the utility grid is exposed together with the price 

of electricity in the wholesale market. It is possible to appreciate that, when the PV system 

is generating energy, this is employed for internal demand or to sell to the utility grid if 

the feed-in price is high enough and economic profit can be obtained. At the moments 

where electricity is sold, internal electrical demand is fulfilled by both the energy from the 

PV not injected into the utility grid and the electricity coming from the CHP system. To 

adopt this optimal working behaviour, it is required to have a great synchronization be-

tween the electrical and thermal sides of the industrial plant. For this reason, it is beneficial 

to include thermal storage to support the mismatches between electrical and thermal de-

mand and allow an optimal operation energy flow. 

 

Figure 12. Electrical side energy equipment behaviour for the optimal energy investment. 

 

Figure 13. Thermal side energy equipment behaviour for the optimal energy investment. 
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Figure 14. Energy exchange with the utility grid for the optimal energy investment. 

5. Conclusions 

This paper addresses the energy-investment optimisation problem to upgrade the 

energy infrastructure of an industrial SME to improve its competitiveness and support 

the green transformation by adopting an active role in the energy market. This energy 

investment optimisation problem is discussed considering all the relevant risks associated 

with the investment decision. A new methodology is proposed which incorporates the 

specification of the relevant criteria that apply for the industrial SME and the identifica-

tion and characterization of quantitative and qualitative risks related to them. All these 

parameters are included in a single function through fuzzy logic and AHP weighting, 

performed with the support of experts and decision-makers. To reach the best-balanced 

trade-off solution for the SME, this function is optimized through Direct Search, a global 

optimisation algorithm that enables the surveillance of the continuous solution’s search 

space. The created methodology, although especially designed to fulfil the requirements 

of industrial SMEs in upgrading their energy infrastructure, is expandable to other energy 

investment RIDM problems and also to problems related to the investment in other tan-

gible assets. In these problems, decisions should also be taken considering a mixture of 

criteria including quantitative and qualitative measures of economic, technical, social, and 

environmental parameters along the expected lifetime of the investment. The weights 

granted to the different criteria in the decision-making process depend on the specific 

problem and its influences in the surroundings, which have to be specified by decision-

makers. For this reason, it is required for decision-makers to have a deep knowledge on 

the interests of the entity taking the decision as well as on social, technical, political, and 

environmental local framework. 

As a demonstration case, in this paper, the developed framework is applied to opti-

mise the energy investment of an industrial SME based in a real manufacturing plant with 

the possibility to include a PV system, electric and thermal storage systems, a CHP system 

and an HP. Results show that employing a RIDM approach affects the optimal investment 

solution, reaching an energy infrastructure that represents a trade-off between the evalu-

ated non-risk and risk criteria. Additionally, it is demonstrated that without incorporating 

the risk in the problem, industries would have to face the decision with incomplete infor-

mation, reaching solutions that could be less beneficial and affect the future of the 
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enterprise and trigger consequences on the surrounding community and environment. 

This conclusion can be transposed to other entities performing investment decisions, as 

the omission of risks in the decision-making problem leads to solutions that do not con-

sider possible impacts on the future, such as environmental effects or social welfare. 

Thus, the methodology exposed in this paper presents a large practical value for both 

industrial SMEs and other entities where decision-making problems have to be addressed 

evaluating both quantitative and qualitative risks, as it can be modified and tailored to 

suit the specific problem addressed and its application constraints. This methodology can 

be adopted by decision-boards to analyse energy-investment problems and investment 

decisions on other tangible assets, enhancing the incorporation of criteria characterized 

by different nature in a single optimisation function and adjusting the input parameters 

to decision-makers requirements. 
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