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Abstract 
The industry is a crucial actor towards the energy transition with the possibility to adopt new energy strategies 

including a prosumer model. However, industries are struggling to adopt smart energy approaches, and 

initiatives supporting them should be improved. To enhance industrial participation in energy transition, it is 

required to assess the optimal energy infrastructure considering its economic advantages and associated risks. 

Up to date, the literature dealing with energy sizing optimisation does not consider the time evolution of 

parameters or the uncertainty linked to the energy framework. The objective of this paper is to fill this literature 

gap by proposing a novel complete methodology to optimise the design and operation of the energy 

infrastructure for its lifetime while assessing its uncertainty and risk through an uncertainty analysis, as well as 

to identify the inputs causing it by a two-stage sensitivity analysis. This framework is applied to a case study 

based on a real industrial manufacturing SME. The results indicate that the proposed methodology produces 

robust results in front of the present uncertainties, being energy price the one that causes most of it and thus the 

one more attention should be paid to when evaluating energy investment decisions. 
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1. Introduction 

1.1. Motivation 
The industry is gaining an increasingly important role 

in the energy sector due to its possibility to adopt 

smart energy management strategies that can 

improve their productivity while creating flexibility in 

the energy market. The energy consumption, energy 

infrastructure, and the current Industry 4.0 revolution 

opportunities [1] place industrial entities as new 

actors in the energy market fundamental for market 

decarbonization [2]. Among industrial enterprises, 

SMEs represent more than 13% of total global energy 

consumption and account for more than half of the 

energy used in the industrial and commercial sectors, 

although they are under-researched in terms of their 

energy use [3]. Some scientific publications deal with 

energy efficiency improvements in the SME sector 

such as [4], where a study is done on energy efficiency 

drivers for industrial SMEs, or [5], where an 

information platform is presented to promote the 

usage of energy efficiency technologies. However, 

these studies deal only with efficiency improvement 

and, following the energy transition changes, it is 

necessary to adjust the latest trends and practices to 

SMEs framework [6], being the adoption of a 

prosumer model a key activity to incorporate in the 

sector. 

SMEs could face the problem of having to invest in 

energy infrastructure due to equipment obsolesce or 

the existence of governmental, social and market 

pressures. For an industrial entity, this investment 

gives added value to the enterprises, supporting the 

achievement of their primary goal, which is its 

productivity. Industrial SMEs tend to select 

investments with short payback periods and 



2 
 

favourable economic, environmental and social 
parameters and; once the investment has been made, 

the infrastructure is maintained in operation until 

another relevant event occurs that requires a new 

investment, thus exploiting the equipment for its 

whole lifetime [7]. When upgrading the energy 

infrastructure, it may be beneficial to evaluate the 

possibility of adopting smart energy management 

strategies such as a prosumer model. However, the 

intrinsic characteristics of industrial SMEs are not 

compatible with standard prosumer approaches, and 

specific investment selection strategies are required 

for them. Moreover, as exposed in the analysis 
performed in [8] considering investment trends in 

firms during the last years, entities tend to intuitively 

invest less if the uncertainty in the energy market 

increases. Therefore, as important expenses are to be 

performed, it is crucial to optimise not only the plant 

design and operation for the expected lifetime of the 

equipment but also to evaluate the risk of these 

actions according to the uncertain ranges and 

probabilities of the inputs. For this reason, the 

renovation of energy equipment has to consider the 

current and future feasibility of the decided energy 

Nomenclature 
 
Abbreviation Full description 

General Abbreviations 

CHP Combined Heat and Power 

EE Elementary Effect 

ESS Energy Storage System 

HP Heat Pump 

JC Job Creation 

LHS Latin Hypercube Sampling 

NPV Net Present Value 

O&M Operation and Maintenance 

OAT One-At-a-Time 

PDF Probability Density Functions 

PPA Power Purchase Agreement 

PV Photovoltaic 

RES Renewable Energy Source 

ROI Return On Investment 

RTP Real-Time Pricing 

SA Sensitivity Analysis 

SME Small-and-Medium Enterprise 

UA Uncertainty Analysis 
 
Energy infrastructure sizing and operation parameters 
 
𝑃𝑃𝑉  Power generated by the PV system [kW] 

𝑃𝐶𝐸𝑆 Power at which the electrochemical 
storage is charged [kW] 

𝑃𝐷𝐸𝑆 Power at which the electrochemical 
storage is discharged [kW] 

𝑃𝐸𝐷 Electric power used by the electric to 
thermal equipment [kW] 

𝑃𝑈𝐺  Power purchased from the utility grid [kW] 

𝑃𝐹𝐼 Power injected to the utility grid [kW] 

𝑃𝐶𝐻𝑃 Electric power from the cogeneration 
system [kW] 

𝑃𝐻𝑃 Electrical power used by the heat pump 
equipment [kW] 

𝑉𝐶𝐻𝑃 Gas used by the cogeneration system [kW] 

𝑄𝐶𝐻𝑃 Thermal power from the cogeneration 
system [kW] 

𝑄𝐻𝑃 Thermal power from the heat pump [kW] 

𝑄𝑇𝐿 Thermal load [kW] 

𝑉𝐵𝑂𝐼 Gas power used by the boiler system [kW] 

𝑄𝐵𝑂𝐼 Output power from the boiler [kW] 

𝑄𝐶𝑇𝑆 Power at which the thermal storage is 
charged [kW] 

 

  

  

𝑄𝐷𝑇𝑆 Power at which the thermal storage is 
discharged [kW] 

𝜂𝑃𝑉 Efficiency of the connexion with the PV 
system [%] 

𝜂𝐶𝐸𝑆 Charge efficiency of the electrochemical 
storage [%] 

𝜂𝐷𝑆 Discharge efficiency of the electrochemical 
storage [%] 

𝜂𝐸𝐷 Efficiency of the connexion with the 
electrical demand [%] 

𝜂𝑈𝐺  Efficiency of the connexion with the utility 
grid [%] 

𝜂𝐶𝐻𝑃𝑒  Cogeneration electrical efficiency [%] 

𝜂𝐶𝐻𝑃𝑡ℎ Cogeneration thermal efficiency [%] 

𝜂𝐻𝑃 Efficiency of the heat pump [%] 

𝜂𝐵𝑂𝐼  Efficiency of the boiler [%] 

𝜂𝐶𝑇𝑆  Charge efficiency of the thermal storage 
[%] 

𝜂𝐷𝑇𝑆 Discharge efficiency of the thermal storage 
[%] 

𝜂𝑇𝐿 Efficiency of the connexion with the 
thermal load [%] 

𝐶𝑂&𝑀,𝑃𝑉  PV O&M costs [€/kW-year] 

𝐶𝑂&𝑀,𝐸𝑆 Electro-chemical ESS O&M costs [€/kW-
year] 

𝐶𝑂&𝑀,𝐶𝐻𝑃 CHP O&M costs [€/kW-year] 

𝐶𝑂&𝑀,𝑇𝐸𝑆 Thermal ESS O&M costs [€/kW-year] 

𝐶𝑂&𝑀,𝐻𝑃  Heat Pump O&M costs [€/kW-year] 

𝐶𝑈𝐺 Electricity price [€/kWh] 

𝐶𝐺 Gas price [€/kWh] 

𝐶𝐹𝐼 Feed-in tariff [€/kWh] 

𝐶𝐺𝐻𝐺 Emissions costs [€/tCO2] 

 
Uncertainty Analysis and Sensitivity Analysis parameters 
 
∆ Morris step 

𝐸 Expected value 

𝑝 Number of levels at which the PDF is 
divided in the Morris method 

𝑟 Number of trajectories created for the 
Morris method 

𝑆𝑖 First-order Sobol index for parameter 𝑖 

𝑆𝑇𝑖 Second-order Sobol index for parameter 𝑖 

𝜇𝑖
∗ Morris index for parameter 𝑖 

𝑉 Variance 
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solutions maximising the return of investment while 

evaluating the risk associated with the decision. 

The optimisation of the energy design and sizing has 

been treated extensively in the literature. Many 

energy infrastructure and equipment sizing studies, 

such as [9], focus on islanded mode. Few studies 

consider a connection with the utility grid. This is the 

case of [10], where a hybrid energy system is 

proposed for an industrial area performing the 

optimisation separately for each month of the year 

and without analysing prosumer capabilities. 

Following the same line, in [11] a grid-connected 

photovoltaic system is sized parametrically, while in 

[12] an approach to select the sizes and locations of 

energy sources is performed with the objective to 

evaluate possible future energy expansions. In all the 

mentioned studies, the energy equipment sizing is 

optimised for a single year, omitting the time 

evolution of parameters and without calculating the 

value of the investment along its lifetime. Also, all 

input variables are treated as deterministic, not 

evaluating the uncertainty created by them. 

Overlooking the time evolution of parameters and the 

uncertainty can lead to a suboptimal and unexpected 

result, representing a risk for entities performing the 

investment activity. Recently, a study has been 

published where an optimisation model for long-term, 

multi-stage planning of a general decentralized multi-

energy system is exposed without analysing 

uncertainties [13]. In this work, the optimal 

investment is addressed from a multi-stage point of 

view, distributing the investment over years and 

performing retrofitting. This strategy could be 

suitable for urban planning applicable to big 

governmental entities or districts where buildings are 

added in multiple phases but is not suitable for SMEs 

due to their investment characteristics. Also, despite 

multiple years are evaluated to perform the 

investment at different points in time, the considered 

parameters are discretized and considered constant 

during the year. This fact discerns from reality, as 

input parameters are subject to important seasonal 

and hourly variations [14]. This is especially true for 

the industrial sector, where the production is 

maintained constant during week-days and is 

diminished during weekends to perform minor 

activities such as adopting new plant configurations 
and maintenance [15], making it essential for 

industrial SMEs to consider continuous weekly 

operation to capture production and costs patterns 

and properly size their energy infrastructure. 

To evaluate the real risk related to energy 

investments, it is essential to understand the value of 

the investment, the uncertainty in the design problem 

output and the inputs that cause it. Thus, when 

evaluating the optimal decision for an energy 

investment to be performed in an industrial SME, the 

complete lifetime of the energy infrastructure should 

be analysed considering continuous costs and 

production patterns. Also, a complete Uncertainty 

Analysis (UA) has to be done to properly analyse the 

risk linked to the investment and its robustness, and 

Sensitivity Analysis (SA) is required to identify the 

parameters that cause this risk. This identification 

allows SMEs to decide if they put an effort on better 

defining the most critical factors, thus reducing the 

epistemic uncertainty and the investment risk; and 

also provides them with a framework to identify the 

points in time at which the investment perspectives 

are better due to a clearer evolution of these key 

parameters. 

Therefore, in this paper, a methodological framework 

is proposed to support SMEs in the optimisation of 

their energy infrastructure considering its whole 

lifetime together with weekly production and market 

operation cycles; as well as applying UA and SA. 

Considering the existing structure and investment 

strategies of industrial SMEs as well as the current 

changing market structure, the proposed 

methodology supposes a novelty in the decision-

making process performed by these entities. The 

outputs of the methodology have important 

implications, allowing smart energy investment 

decisions, providing risk awareness, and identifying 

hotspots related to the economic, environmental, and 

social activities of the enterprise which helps 

industrial SMEs to take realistic energetic and 

financial decisions. 

1.2. Relevant literature discussion 
Up to date, some studies have been presented where 

uncertainty is addressed for energy infrastructures 

design and operation. In most of them, the uncertainty 

is analysed employing uniquely a basic SA to evaluate 

the variation of the output of the system according to 

a set of selected inputs. This is the case of [16], where 

an energy system for rural electrification is optimised 

and a SA is done. In this study, the proposed SA 

methodology is not clear and the inputs’ uncertainties 

studied are selected subjectively, not presenting their 

probability distributions. Similarly, in [17] a set of pre-

defined system combinations are evaluated and their 

sensitivity in front of different parameters is 

performed, without providing details on the 
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methodology. In [18], a hybrid system is optimized 

employing commercial software and a SA is done. In 

this case, it is mentioned that the SA is carried out 

changing only one parameter at a time once. This 

procedure is also followed in [19], where a 

trigeneration system is optimised considering the 

variation of load and energy carriers prices through 

analysing potential occurrence scenarios. The one-at-

a-time (OAT) strategy employed in these studies, 

where each input parameter is modified in an isolated 

manner while the others remain the same, is common 

in the literature due to its ease of implementation and 

logic analysis of results. The OAT approach has also 

been used in [20], where the optimal design of a stand-

alone hybrid energy system for a rural area is 

addressed. In this study, the configuration of the 

system is pre-stated and a SA based on scenarios is 

conducted to appreciate the influence of 

environmental policy on the total system cost. 

Similarly, in [21] a techno-economic analysis of a 
standalone hybrid energy system is carried out and a 

SA through OAT strategy is conducted to see the 

effects of costs of energy in the system economic 

performance, while in [22] four hybrid power system 

scenarios for a household application are tested and a 

SA is done employing three wind speeds and solar 

radiation possibilities. In none of these works, 

however, the probabilities of the analysed uncertain 

inputs are considered. Moreover, the performed SA 

strategies do not provide the required insights to 

properly evaluate the output statistically, as they only 

consider a small number of scenarios and the 

interrelation of different energy inputs is overlooked. 

A slightly different approach is presented in [23], 

where an OAT methodology is carried out employing 

several samples performed on a uniform distribution, 

expanding the results of considering only few 

scenarios. However, the use of uniform distributions is 

a simplification of the reality, as it is common to have 

specific scenarios with higher probability of 

occurrence rather than intervals where the 

probability of all values is equal [24]. Therefore, the 

employment of uniform distributions limits the 

capacity of obtaining suitable insights for the 

investment problem faced by industrial SMEs. 

Few studies with improved SA strategies have been 

published, such as [25], where a SA is applied for 
zero/low energy buildings aiming to obtain the design 

parameters that affect the performance. In this case, 

the SA is formed by a two-stage approach, using global 

and local methods as the first and second stage, 

respectively. However, in this analysis a UA is not 

performed and thus despite sensitivity is addressed to 

evaluate the inputs that most affect the performance, 

the output uncertainty is not known. In [26], UA and 

SA are both performed for the optimal design of a 

distributed energy system to supply energy to a 

tertiary demand. The objective is the minimisation of 

total system cost while meeting CO2 emissions 

restrictions. The UA is performed using the Monte 

Carlo simulation while the SA consisted of a two-step 

global SA. Despite the existence of different market 

prognosis, the uncertainty linked to energy market 

costs is modelled as uniform, without considering the 

higher probability of some scenarios above others. 

Furthermore, in all the above studies the proposed 

optimisation models employ only one year as a 

representative time frame, simplifying the decision-

making process and not evaluating the time evolution 

of parameters. According to [27], the fact of solving 

this optimisation problem using single “typical-year” 

approaches produces results that become suboptimal 

after a short time due to the changing framework 
where the energy systems are integrated. In this same 

line, the proposed inputs’ probability distribution 

functions are static, i.e., they do not vary with time. 

This characterization does not evaluate the future 

costs probabilities and simplifies their consideration. 

This uncertainty handling is methodologically 

erroneous and does not enable to obtain a realistic 

framework for energy investment analysis. 

Therefore, there is a gap in the literature regarding the 

optimisation and analysis of energy investments over 

time and the uncertainty linked to it which has to be 

filled to support industrial SMEs in energy investment 

decisions. In the following paragraphs, suitable 

techniques employed for uncertainty assessment in 

other research fields are reviewed to be able to 

propose the most correct methodological framework 

for its application in the prosumer energy investment 

problem of industrial SMEs. 

The uncertain parameters that influence the 

investment decision can be characterized through 

different strategies, such as scenarios, numerical 

ranges or Probability Density Functions (PDF). The 

latter is more suitable for the problem presented here, 

as it enables the application of sophisticated methods 

that provide robust results [28]. To perform the UA, a 

method that generates samples according to these 

PDFs allows obtaining a reliable output for energy 

systems [29]. Although Monte Carlo is a commonly 

used statistical sampling method [30], its high 

computational cost suggests the employment of quasi-

random sampling methods such as the Latin 

Hypercube Sampling (LHS), which provides results 
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efficiently at a low computational cost [31] and has 

been proved to perform well in energy models [32]. 

Once the uncertainty in the output is known, the risk 

becomes more tangible for investors, although it is 

convenient to perform a SA to know the inputs that 

cause most of this uncertainty. Among other 

approaches, statistical global SA methods are the ones 

that provide the most model insights [28]. Due to the 

complexity of the optimisation problem and its high 

computational cost, a two-stage SA methodology is 

considered for the study here presented. The first 

stage aims at reducing problem dimensionality, 

identifying and discarding less influential inputs 

through a screening technique. Among the different 

screening techniques for energy models, the Morris 

method is the most suitable one as it does not require 

hypotheses regarding the nature of the model and 

thus can be applied to a wide range of problems [33]. 

The second stage of the SA methodology is selected to 

be formed by a statistical variance-based global SA 

method, applicable to non-monotonic and non-linear 

models [34]. Among the variance-based methods, the 

Sobol method presents robust results and allows for a 

suitable sample size to capture the behaviour of the 

problem [35]. The combination of Morris and Sobol 

has already been used in the literature to assess 

complex uncertain problems, such as in [36]; and has 

been proved to provide results efficiently while 

quantifying the sensitivity effectively. 

1.3. Contributions 
After analysing the literature and the most suitable 

tools for assessing the energy investment uncertainty, 

a design and operation optimisation methodology 

considering the lifetime of the equipment and 

performing a UA based on LHS and a two-stage SA 

formed by the Morris and Sobol methods is proposed 

in this paper. Considering the existing structure and 

investment strategies of industrial SMEs as well as the 

current changing market structure, the proposed 

methodology supposes a novelty in the decision-

making process performed by these entities. The 

outputs of the methodology, which is designed to suit 

the industrial SMEs requirements, have important 

implications, allowing smart energy investment 

decisions, providing risk awareness, and identifying 

hotspots related to the economic, environmental, and 

social activities of the enterprise. Given the current 

managerial system of industrial SMEs, the adoption of 

this methodology forms a suitable, robust and efficient 

framework and provides SMEs with a different point 

of view that enables better asset planning, resulting in 

a competitive advantage.  

The main contributions of this work to the state of the 

art can be summarized as: 

• Optimisation of energy investments 

considering equipment operation over its 

lifetime which evaluates the production and 

energy market weekly cycles, hourly 

operation, and economic, environmental and 

social implications. 

• Continuous probabilistic uncertainty 

characterization of optimisation’s inputs over 

the expected lifetime of energy equipment. 

• Energy system investment uncertainty 

quantification for risk acknowledgement of 

the upgraded infrastructure over time. 

 

Figure 1: Workflow for investment optimisation and risk assessment 
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• Identification of the main inputs that influence 

the output uncertainty in the energy 

investment decisions through sensitivity 

analysis. 

The paper is organized as follows. First of all, the 

studied problem is presented in section 2. This 

problem definition section includes the explanation of 

the methodology and techniques employed, as well as 

the characterization of the uncertainty in the inputs. 

Secondly, in section 3, the case study at which the 

exposed methodology is applied is shown, which is 

based on a real remanufacturing industrial SME. Then, 

the results of the optimisation, UA and SA are shown 

in section 4, where a discussion is also performed. 

Lastly, the conclusions of the study are presented in 

section 6. 

2. Problem definition 
The objectives of industrial SMEs willing to upgrade 

their energy infrastructure are the reduction of costs, 

the maximization of investment’s return, the 

compliance with the legislation, the support to the 

green transition and the contribution to the progress 

of the local community. The methodology that is 

applied in this paper to properly evaluate the 

investment performed by SMEs in energy equipment 

is depicted in Figure 1, which considers the 

performance of the upgraded infrastructure acting as 

a prosumer along the lifetime of the equipment as well 

as the assessment of risks and the identification of key 

inputs causing uncertainty. 

The first stage of this methodology, labelled in Figure 

1 as box number 1, is the deterministic optimisation of 

the investment to upgrade the energy infrastructure of 

the SME considering its benefits over time. In the 

literature, most studies addressing energy sizing 

optimisations including renewable energy sources 

(RES) have as unique objective economic profit 

maximisation or cost minimisation, such as [37], 

although some of them also consider environmental 

and social implications. From these, the most common 

approach is to combine economic objectives with 

environmental ones, including emissions either as a 

constraint or as an objective. This is the case of, for 

example, [38], where a small hybrid power system is 

sized minimising costs and the resultant emission 

factor from the generated energy. The incorporation 

of social criteria in these sizing studies is often 

overlooked due to the difficulty of their measurement 

[39] and the moderate implications that the resultant 

system has in the local community. However, the 

decisions taken by industrial SMEs have a great social 

impact since these entities are closer to the local 

community, both geographically and in a social 

proximity manner. For these reasons, it is beneficial in 

the long term for the SME to include social objectives 

in the energy investment optimisation problem. 

Given the characteristics of the studied problem, 

economic, environmental and social criteria are 

included in the optimisation function to reach a 

solution that is not only suitable from an economic 

profit point of view but that also contributes to the 

long-term continuity of the SME and the acceptance of 

the solution by the society. The economic parameter is 

represented through the maximisation of the Net 

Present Value (NPV), which is a measure employed 

when assessing the profitability of projects in 

enterprises [39]. Emissions are included in the 

objective function for its minimisation, and the social 

field is considered through the incorporation of the 

Renewable Factor (RF) and Job Creation (JC). RF 

measures the amount of load covered by RES [40] and 

enables to evaluate local community content with the 

energy solution, as it is common that the community 

accepts energy infrastructures where renewable 

sources cover the load [41], whereas JC is understood 

as the employment generated per equipment for their 

installation and maintenance services [42]. Also, 

restrictions such as maximum Return on Investment 

(ROI) specified by the investor and maximum 

emissions allowable are considered. 

This energy equipment sizing optimisation procedure 

performed in this first stage of the methodology 

provides the optimal energy equipment and capacities 

to install as well as their energy, economic and 

environmental performance. To evaluate the risks 

associated with the investment and the most 

influential parameters, UA and SA are performed. For 

this, and as exposed in the second box of the 

methodology shown in Figure 1, the uncertainty in the 

input is characterized. The parameters considered as 

uncertain are those not under the control of the 

enterprise or that can change unexpectedly within 

some range. In this case, these are electrical energy 

costs, gas energy cost, selling price of electricity, 

emissions costs and operation and maintenance costs 

of equipment. With a PDF assigned to each of them and 

the upgraded plant model, it is possible to perform the 

UA and SA. The UA, which has to be carried out before 

the SA, uses LHS simulations to obtain input samples 

and repeatedly runs the deterministic plant model. 

Although in this methodological stage the selected 

energy equipment does not change, its hypothetical 

operation varies considering the different evolution of 
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input parameters obtained through LHS. Thus, in the 

deterministic model run under the UA, the operation 

of the equipment is computed again for the considered 

inputs. With this process, the output distribution is 

obtained, making it possible to evaluate the 

robustness of the solution and the minimum 

expectable profit. Then, the SA is done through a two-

stage global system, which enables to identify and 

rank the inputs that influence the most the uncertainty 

of the output obtained through the UA. This provides 

information about where efforts should be focused on 

when seeking additional framework data if the 

robustness of the solution wants to be improved. 

The proposed methodological workflow is suitable for 

its application to industrial SMEs, with peak power 

ranging from dozens of kW to units of MW [43] and 

specific electricity and thermal consumption of 1.449 

kJ/€ and 4.512kJ/€, respectively, concerning the 

value-added [44]. In Figure 2, the energy 

infrastructure of a typical SME is exposed. In bold 

lines, the original plant or “reference plant” existent 

before the investment purchases electricity to satisfy 

electrical demand and has a boiler to fulfil thermal 

demand. For the optimisation procedure to upgrade 

the energy infrastructure of the SME, the inclusion of 

equipment undergoing growing adoption and 

reducing its costs as well as equipment enabling the 

interconnection of the thermal and the electrical sides 

is considered. This equipment is formed by RES, in this 

case, photovoltaic (PV); electrochemical Energy 

Storage System (ESS), thermal ESS, Combined Heat 

and Power (CHP) units and electrical to thermal 

equipment, such as Heat Pumps (HP). In this paper, 

the considered lifetime of the energy upgrade is of 15 

years. 

In the following sections, details are provided 

regarding the optimisation procedure, the inputs’ 

uncertainty characterization and the UA and SA 

techniques employed. 

Figure 2: Energy infrastructure of a typical industrial SME and potential upgrade 
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2.1. Energy sizing optimisation 
The optimisation aims to select the investment to 

upgrade the energy infrastructure of the SME for 

improving its competitiveness, considering economic, 

environmental and social parameters as well as the 

adoption of a prosumer energy behaviour. A 

deterministic model of the plant is constructed and a 

two-stage procedure is applied to optimize both the 

energy equipment and their operation over their 

lifetime. This formulation requires the specification of 

two sets of constraints. On the one hand, constraints 

related to the design, which can include maximum 
equipment size, maximum emissions and maximum 

investment and time for ROI. On the other hand, 

operation constraints regarding the energy flow 

inside the resultant plant. These include electrical and 

thermal hub equilibriums, energy exchange 

constraints, storage constraints, and fulfilment of 

equipment power capacity thresholds. 

The flowchart of the optimisation procedure can be 

seen in Figure 3. First of all, SME parameters, 

investment constraints, and information of RES 

generation, energy market and demand are obtained. 

Four seasonal representative weeks per year are 

selected along the considered time horizon, which are 

used to obtain the expected costs and benefits per 

year. Once all the information is loaded, the optimal 

operation of the reference or starting plant before the 

investment is obtained, computing the total operation 

cost along the optimisation horizon, i.e. 15 years. This 

optimisation is solved through linear programming in 

an hourly format minimising the weekly cost. The total 

operating costs along the optimisation horizon are 

used as the reference value for plant sizing 

optimisation, which is solved in the next block. 

For the sizing optimisation, the operation of the 

energy infrastructure along time is also considered. 

This optimisation employs a Direct Search approach 

that works with a set of candidates and evaluates their 

suitability. The selected candidates, which are the 

equipment to install and their capacities, should fulfil 

the constraints regarding maximum investment and 

plant restrictions, such as maximum space available. If 

so, the energy flows are verified and the operation 

 

Figure 3: Flowchart of the energy sizing optimisation process 
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optimised. This operation optimisation is 

mathematically identical to that of the reference plant, 

although it is exposed separately in the diagram for 

the sake of readability. Once the operation 

optimisation is completed, ROI and emissions are 

computed and it is verified if their constraints are 

fulfilled. If so, the cost-benefit per year is obtained by 

comparing the performance of the upgraded plant 

with that of the reference plant and the NPV is 

computed. Then, bearing in mind the operation of the 

equipment, the RF is computed considering the total 

energy generated by the PV system and the load of the 

SME over the considered time horizon. JC is also 

evaluated following the guidelines provided in [45], 

using the total energy generated by generation and 

transformer equipment and the capacity of storage 

systems to compute the full-time jobs created over the 

expected lifetime of the new energy infrastructure. 

Once all the economic, environmental and social 

criteria values are obtained, they are normalised and 
included in a single weighted objective function. After 

its computation, a new set of solution candidates are 

created until the sizing optimizer reaches the optimal 

value. 

This procedure enables to consider economic, energy, 

environmental, and social aspects in the investment 

and operation of the industrial plant and adjusts 

today’s decision considering the forecasted changes in 

the external market over the lifetime of the 

equipment. For details on the mathematical 

formulation of the optimisation problem, please refer 

to Appendix A. 

2.2. Uncertainty characterization 
The inputs considered as deterministic in the 

optimisation stage are inherently uncertain. To 

evaluate the uncertainty of the computed NPV, it is 

indispensable to consider their uncertainty. In this 

section, these inputs are analysed and their 

uncertainty is evaluated and characterized. A 

summary of the obtained PDFs for each of the 

parameters can be seen in Table 2. 

2.2.1. Operation and maintenance of 

equipment 
The distribution of the Operation and Maintenance 

(O&M) costs is studied for the PV system, the CHP, the 

electrochemical ESS, the thermal ESS and the HP 

system. To do so, a literature search has been 

performed to gather values for these parameters and 

PDFs are fitted to the obtained data. The most suitable 

PDF is selected according to the goodness of the fit, 

evaluated using the likelihood function. For the same 

maintenance services, the O&M costs can vary due to 

the existence of additional services which do not affect 

the maintenance itself or due to external market 

causes. In this paper, this initial uncertainty is 

considered to improve the accuracy of the obtained 

results. 

For the PV system, data collected from O&M contracts 

are obtained from [46]. The obtained data resembles a 

normal distribution with a positive skew, being the 

Nakagami distribution the one that shows better 

performance. In Figure 4, the histogram of the values 

and the Nakagami distribution are exposed. These 

values correspond to the year 2020 and are likely to 

decrease in upcoming years due to the growing 

practice and the economy of scale that the PV sector is 

experiencing. For this reason, PDFs are created for 

each year along the lifetime of the equipment, 

adjusting the initial distribution to the expected 

Uncertain parameter Symbol 2020 PDF 2035 PDF 

PV O&M costs 𝐶𝑂&𝑀,𝑃𝑉 Nakagami 
(16,53; 43,69) 

Nakagami 
(16,55; 21,39) 

Electro-chemical ESS O&M costs 𝐶𝑂&𝑀,𝐸𝑆 Weibull 
(9,07; 4,01) 

Weibull 
(5,14; 3,25) 

CHP O&M costs 𝐶𝑂&𝑀,𝐶𝐻𝑃 IG 
(36,6; 1.772) 

IG 
(36,6; 1.772) 

Thermal ESS O&M costs 𝐶𝑂&𝑀,𝑇𝐸𝑆 Normal 
(0,26; 0,52) 

Normal 
(0,26; 0,52) 

Heat Pump O&M costs 𝐶𝑂&𝑀,𝐻𝑃  IG 
(5,56; 12,36) 

IG 
(5,56; 12,36) 

Electricity price  𝐶𝑈𝐺 Nakagami 
(0,885; 10,14) 

Nakagami 
(0,885; 10,14) 

Gas price  𝐶𝐺 Weibull 
(1,44; 3,11) 

Weibull 
(1,44; 3,11) 

Feed-in tariff 𝐶𝐹𝐼 U 
(0,8𝐶𝑈𝐺; 0,9𝐶𝑈𝐺) 

U 
(0,8𝐶𝑈𝐺; 0,9𝐶𝑈𝐺) 

Emissions costs 𝐶𝐺𝐻𝐺 Nakagami 
(0,824; 20,03) 

Nakagami 
(0,824; 20,03) 

Table 1: Summary of PDFs for uncertain inputs 
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tendency exposed in studies [46–48], and decreasing 

the costs up to 30%. 

 

Figure 4: Histogram and PDF for the 2020 O&M cost of the PV 
system 

Electrochemical ESSs are also undergoing 

technological developments that will decrease their 

economic costs. Despite that for power system 

stability and high energy capacity storage lead 

batteries are being used nowadays [49], there is a 

trend to implement more efficient technologies such 

as the Li-ion battery for smart energy management 

applications. The current O&M costs of Li-ion batteries 

lay around 8€/kW-year [50–52], which is forecasted 

to be reduced between 40% and 50% in the upcoming 

years [53,54]. In this case, the Weibull distribution is 

the most suitable, which is modified along the years 

according to the specified decrease range. In Figure 5, 

the values obtained for the O&M and the fitted PDF for 

2020 is exposed. 

 

Figure 5: Histogram and PDF for the 2020 O&M cost of the 
electrochemical ESS 

Regarding the rest of the systems, although they are 

still not widely included in smart grids, they have a 

considerable maturity level and their O&M costs are 

not likely to decrease in the near future [55]. Thus, 

their probability distribution will be kept constant 

along the considered time horizon. For CHP, O&M 

values are between 30€/kW-yr and 45€/kW-yr, and 

follow an Inverse Gaussian distribution, as exposed in 

Figure 6. In the case of the thermal ESS, sensible heat 

energy storage is considered due to its stability and its 

current use in industrial sites [56,57]. The O&M cost of 

these systems has a mean value of 0,26€ct/kW and a 

small variance [58]. This uncertainty is represented as 

a Normal PDF, as shown in Figure 7. HPs O&M costs 

range from 2,5€/kW-yr to 9€/kW-yr [14,59]. The 

Inverse Gaussian is the distribution function most 

suitable in this case. The histogram and the fitted PDF 

are shown in Figure 8. 

 

Figure 6: Histogram and PDF for the O&M cost of the CHP system 

 

Figure 7: Histogram and PDF for the O&M cost of the thermal ESS 
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Figure 8: Histogram and PDF for the O&M costs of the HP system 

2.2.2. Energy price 
In this section, the uncertainty associated with the cost 

of electricity and gas during the lifetime of the energy 

equipment is evaluated. 

In many countries, there are two main types of 

electrical tariffs: tariffs where the price is fixed and 

agreed with the supplier, and tariffs regulated by the 

energy market or governmental entities which include 

price variability. To enhance the employment of 

renewable energy sources, fixed price tariffs are 

increasingly reflected as power purchase agreements 

(PPAs) between energy consumers and renewable 

energy producers [60]. PPAs are performance-based 

contracts that aim to create a risk-controlled 

agreement for the purchase and sale of energy, and 

which typically last between 7 and 10 years. To enable 

the proliferation of PPAs, it is required to allocated 
RES at a considerable scale and therefore tendering 

schemes are being implemented. However, this 

strategy currently reduces the diversity of actors and 

presents a disadvantage for the participation of SMEs 

and private individuals in the renewable energy 

market [61], being big entities the ones primarily 

benefiting from these contracts. 

In [62], it is argued that to promote a competitive 

inclusion of smart energy management strategies 

including renewable energy sources, the most efficient 

pricing strategy would be for the electricity price to 

vary in real-time and reflect wholesale market 

dynamism market. This is also defended in [63], where 

electricity supply dynamic pricing is presented as a 

key strategy to enhance the flexibility of consumers. 

The energy transition is currently opening the path to 

the purchase of electricity following dynamic cost 

patterns reflecting wholesale market behaviour [64]. 

In fact, the European Directive 2019/944 [65] 

developed in the framework of the Clean Energy 

Package defines the “dynamic electricity price 

contract” as an electricity supply contract between a 

supplier and a final customer that reflects the price at 

the spot market or at the day-ahead market at 

intervals at least equal to the market settlement 

frequency. These flexible tariffs are already been 

implemented and have been studied in the literature, 

evaluating also its suitability for prosumer SMEs. In 

[66], an industrial SME with a PV system is analysed in 

which a variable price tariff of two bands per day 

changing in a monthly manner is applied. A dynamic 

price strategy is also employed in [67] to surpass the 

technical and economic barriers that exist for SMEs 

applying novel energy management strategies, and a 

case study based on a bakery industrial SME is 

developed to check its suitability. Similarly, the 

economic benefits of installing new energy equipment 

in a medium-scale facility are studied in [68]. In this 

case, a real-time pricing (RTP) scheme is chosen based 

on the energy prices at the wholesale market. 

In this study, given the prosumer energy model that 

the industrial SME is transforming to and the ongoing 

green transition, as well as the impacts of the energy 

behaviour in the local community and environment, it 

is chosen to employ an RTP tariff, considering hourly 

changing electricity price according to the wholesale 

market while including the applicable taxes and levies 

as done in [68]. This electricity price is forecasted to 

increase yearly, on average, between 0,79% and 

4,82% until 2035 [26,69,70]. In Figure 9, the 

forecasted scenarios are exposed considering an 

average starting price of 47,68€/MWh [14]. 

 

Figure 9: Electricity price forecast up to 2035 

To capture the uncertainty of electricity price and 

obtain realistic time evolutions when sampling the 

PDFs, the energy price scenarios are translated into 

yearly percentage increases, enabling to obtain the 

electricity price based on previous year values. The 
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most suitable distribution is the Nakagami one, which 

is exposed in Figure 10. 

 

Figure 10: PDF of the electricity price increase 

Regarding gas costs, tariffs do not differentiate the 

time of use and thus constant hourly prices are 

considered. The forecasting yearly increment of gas 

price lays between 0,65% and 1,81% until 2035 

[70,71]. The forecasted scenarios, with a starting price 

in 2019 of 30,8€/MWh [72], are exposed in Figure 11. 

As with electricity, a PDF is generated based on the 

yearly percentage increase. The most suitable 

distribution is the Weibull, which is exposed in Figure 

12. 

 

Figure 11: Gas price forecast up to 2035 

 

Figure 12: PDF of the gas price increase 

The exposed energy costs and predictions do not 

consider the presence of taxes and levies. To obtain 

realistic final cost values, taxes of 40,7% and 20% are 

applied to electricity and gas price, respectively [73]. 

2.2.3. Feed-in tariff 
When an SME faces the decision of upgrading its 

energy infrastructure, it may be beneficial to consider 

the incorporation of new business models involving 

an active role in the energy market. For this reason, it 

is crucial to consider a feed-in tariff that enables the 

delivery of energy to the utility grid at a specified cost. 

There are three types of feed-in tariffs [74]. The first 

type is the percentage-based, which establishes the 

price of the energy sold as a percentage of the energy 

price at the same moment in the wholesale market. 

The second type are the fixed price tariffs, where the 

price is stated by the government and remains 
independent from the market, and the third type are 

the premium tariffs, which offer a price above the 

electricity price at the market at the same time. For the 

case studied in this paper, the most suitable approach 

is the employment of a feed-in tariff with dynamic 

prices, being these prices a percentage of the ones at 

the wholesale market [75]. This enhances the 

generation of energy at peak times and the purchase 

of energy at valley times, helping to decongest the 

electrical grid while creating a profit for the consumer. 

This percentage can vary due to political reasons. In 

this paper, the range of 80% to 90% of the wholesale 

market price is considered [76], modelled through a 

uniform distribution. 

2.2.4. Emissions costs 
Emissions are growing in importance due to their 

influence on global warming. In 2019, most countries 

with implemented emission trading schemes dealt 
with costs below 30€/ tCO2 [77]. In this paper, the 
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average European case is considered, with emission 

costs of 25€/ tCO2 in 2019. This cost is forecasted to 

yearly increase as depicted in Figure 13, being the 

values obtained from [54,78]. This distribution is also 

captured by evaluating the yearly percentage 

increases. The Nakagami distribution is employed, 

which can be seen in Figure 14. 

 

 

Figure 13: Emissions cost forecast up to 2035 

 

Figure 14: PDF of the emission cost at 2035 

2.3. Uncertainty Analysis 
In order to obtain the output distribution and the risk 

associated with the selected investment, a UA is 

performed. To do so, N samples are generated for each 

of the PDFs presented in the previous section using the 

LHS technique, a probabilistic procedure that divides 

the variable range into intervals with equal 

probability and selects one random sample within 

each interval. Combining randomly the samples 

generated, N scenarios are obtained [79]. These are 

introduced into the deterministic plant model, where 

the optimal operation of the equipment is computed 

considering the evaluated inputs. Then, the output is 

calculated for each of the scenarios, obtaining its 

uncertainty. In this paper, 9 uncertain inputs are 

evaluated. Considering their variation over the 

studied horizon, a total of 135 PDFs have to be 

sampled. For complex energy systems like this, 1000 

samples per PDF is a suitable value to obtain an 

accurate and representative result that enables the 

study of the uncertainty in the output [25]. 

2.4. Sensitivity Analysis 
With the output uncertainty obtained, it is possible to 

evaluate the risk of the investment decision. Once this 

uncertainty has been assessed, a SA is performed to 

identify the inputs of the system that cause most of it. 

A two-stage methodology is applied in this paper. In 

the first stage, the Morris method is used to reduce the 

dimensionality while, in the second stage, the Sobol 

method is applied to obtain the parameters ranking. 

The Morris method is a global approach that can be 

considered as an extension of local OAT techniques 

which enables to discriminate the less influential 

inputs with a small sample size and low computational 

cost [80]. The uncertainty range of all the inputs is 

divided into 𝑝 levels. Then, 𝑟 base vectors are obtained 

from sampling one random level per uncertain input. 

These base vectors are recommended to be between 4 

and 10 [81] and serve as the starting point for the 
creation of trajectories, which enable to analyse the 

influence of the inputs in the output. In this paper, 

each uncertain parameter is divided into 𝑝 = 11 

levels; and 𝑟 = 10 trajectories are evaluated. In each 

trajectory, the inputs’ values are increased or 

decreased a step ∆ in a consecutive manner. The 

Elementary Effect (EE) of input 𝑥𝑖 in the trajectory can 

be computed as: 

 𝐸𝐸𝑖

=
𝑓(𝑥1, … , 𝑥𝑖 + ∆, … 𝑥𝑘) − 𝑓(𝑥1, … , 𝑥𝑖, … 𝑥𝑘)

∆
 

(1) 

Where f represents the deterministic model. To 

ensure a desirable symmetric treatment of inputs [82], 

it is convenient to employ a value of p even and a step 

value of: 

 ∆=
𝑝

2(𝑝 − 1)
 (2) 

With the EE obtained, it is possible to rank parameters 

through the index 𝜇𝑖
∗: 

 
𝜇𝑖

∗ =
1

𝑟
∑ |𝐸𝐸𝑖|

𝑟

𝑗=1

 (3) 



14 
 

Following the procedure exposed, the total number of 

model evaluations is 380. 

Once the less influential inputs are discarded, the 

Sobol method is applied, which aims to calculate two 

metrics per parameter named first-order Sobol index 

and total-order Sobol index. These metrics indicate 

the portion of the output variance that is explained by 

a parameter alone and the portion of the output 

variance that is explained by a parameter and its 

interactions with others [26]. 

On the one hand, the first-order index of the 

parameter 𝑥𝑖 is defined as: 

 

𝑆𝑖 =
𝑉𝑥𝑖

(𝐸𝑋∽𝑖
(𝑌|𝑥𝑖))

𝑉(𝑌)
 (4) 

Where 𝑌 is the output of the system, 𝑉(𝑌) is its total 

variance and 𝐸𝑋∽𝑖
(𝑌|𝑥𝑖) is the mean value of Y 

considering the variation of all model inputs except 𝑥𝑖, 

which remains fixed. This term is evaluated for all 

values of 𝑥𝑖, and its variance computed, which is 

expressed by the term 𝑉𝑥𝑖
. On the other hand, the total-

order index is defined as: 

 

𝑆𝑇𝑖 =
𝐸𝑋∽𝑖

(𝑉𝑥𝑖
(𝑌|𝑥∽𝑖))

𝑉(𝑌)
 (5) 

Where 𝑉𝑥𝑖
(𝑌|𝑥∽𝑖) is the variance of the output over all 

the possible values of 𝑥𝑖 when the rest of the inputs are 

fixed. This variance is computed for all the values of 

the inputs, which is represented by the 𝐸𝑋∽𝑖
 term. To 

compute the Sobol indices for complex energy 

problems considering the entire distribution of inputs, 

repeatedly running the model is required. To 

minimise the computational cost while maintaining 

the method robustness, the best practices exposed in 

[83] are employed, which are based on scenarios 

sampling and matrix combinations. In this paper, the 

number of primary scenarios created is 5.000, 

requiring a total number of model evaluations of 
30.000. An overview of this computation strategy can 

be consulted in Appendix B. 

3. Case study 
In this section, a case study based on a real SME 

manufacturing industry related to the automotive 

sector is presented. The plant considered presents an 

 

 
Figure 15: Electrical and thermal demands of the case study plant 
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annual electrical and thermal demand of 386MWh and 

779MWh, respectively. The representative weeks 

selected to perform the sizing study are exposed in 

Figure 16. The total operation cost of the energy 

infrastructure of the plant, including energy purchase, 

emissions and equipment maintenance during the 

considered time horizon is 23.116.000€. This 

industrial SME is considering to perform an energy 

upgrade in which it would be possible to install a PV 

system, thermal ESS, electrochemical ESS, CHP and 

HP. 

For the energy sizing optimisation, deterministic 

inputs are employed, which are formed by the 

expected values of the uncertain parameters exposed 

in the previous section and that are shown in Table 2. 

Apart from these values and other restrictions related 

to energy equipment operation, constraints that can 

be imposed by the enterprise are also considered and 

exposed in Table 3. Other information used as input 

can be consulted in Appendix C. 

Input 2020 value 2035 value 

𝐶𝑂&𝑀,𝑃𝑉  (€/kW-yr) 6,56 4,70 

𝐶𝑂&𝑀,𝐸𝑆(€/kW-yr) 8,22 4,78 

𝐶𝑂&𝑀,𝐶𝐻𝑃(€/kW-yr) 36,6 36,6 

𝐶𝑂&𝑀,𝑇𝐸𝑆(c€/kW-yr) 0,26 0,26 

𝐶𝑂&𝑀,𝐻𝑃(€/kW-yr) 5,56 5,56 

𝐶𝑈𝐺(€/MWh) 47,68 70,0 

𝐶𝐺 (€/MWh) 30,8 36,9 

𝐶𝐹𝐼 (€/MWh) 40,5 59,5 

𝐶𝐺𝐻𝐺 (€/tCO2) 25,0 42,5 

Table 2: Deterministic inputs for the case study 

Constraint Value 

Maximum investment 800.000€ 

Area to install PV 6.000m2 

Maximum payback time 6 years 

Maximum emissions at final year 300tCO2 

Table 3: Constraints specified by the enterprise 

4. Results and discussion 

4.1. Deterministic energy sizing 
The results of the deterministic energy sizing problem 

can be seen in Table 4. Through the proposed energy 

sizing optimisation strategy, the equipment to include 

in the upgraded energy infrastructure of the industrial 

SME is formed by a PV system, a thermal ESS and a 

CHP system. Although electrochemical ESS and HP 

were also considered for installation, the 

characteristics of the industrial load together with the 

cost, social and environmental parameters of the 

equipment led to an optimal solution in which these 

are not included. In Table 4, it is possible to observe 

that the initial investment required to upgrade the 

energy infrastructure of the plant is quickly recovered 

and its value is multiplied almost by 10, reaching a 

final NPV of 5,078M€, which represents a 22% of the 

total operation cost of the initial plant, leading to a 

considerable energy saving and economic benefit. As 

the optimisation has been performed considering also 

environmental and social parameters, the resultant 

energy infrastructure represents a trade-off solution 

bearing in mind the different interests of the SME. 

Therefore, the energy investment does not only 

provide profit for the enterprise in economic terms 

but is also a good option considering the long-term 

strategy of the SME related to economic and social 

implications. 

Parameter Value 

Initial investment 530.920€ 

PV Area 6.000m2 

Thermal Storage Size 465kWh 

Cogeneration Size 123kWe 

NPV 5.078.900 € 

Payback time 4 years 

Emissions at the final year 210tCO2 

RF on electrical load 0,43 

Job Creation 5,34 full-time jobs 

Table 4: Results of the deterministic optimisation 

It is worth mentioning that the optimal energy 

infrastructure found by the algorithm depends on the 

constraints specified by the enterprise. To exemplify 

this, in Table 5 the results of the optimisation for the 

same industrial plant but with a maximum investment 

of 400.000€ are exposed. It can be seen that, through 

forcing a smaller investment, the PV and the thermal 

storage are maintained, whereas the CHP size is 

reduced. This is due to the fact that PV positively 

affects all the criteria and the thermal storage has low 

costs, whereas CHP has a high capital cost and there 

already exist a boiler system in the industrial plant to 

fulfil thermal demand. Nonetheless, the installed 

capacity of the CHP and the thermal storage still 

enable an interconnection between both the thermal 

and the electrical sides of the plant, enhancing a smart 

energy management strategy that improves the 

prosumer behaviour, as seen in the equipment 

operation analysis performed in upcoming 

paragraphs. 

Parameter Value 

Initial investment 400.000€ 

PV Area 6.000m2 

Thermal Storage Size 480kWh 

Cogeneration Size 64kWe 

NPV 4.964.400 € 

Payback time 4 years 

Emissions at the final year 210tCO2 

RF on electrical load 0,29 

Job Creation 4,43 full-time jobs 

Table 5: Optimisation results considering different economic 
constraints 
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Bearing in mind the demand of the industrial plant 

exposed in Figure 16 and the energy infrastructure 

optimally obtained and shown in Table 4, the 

operation of the resultant energy infrastructure as a 

prosumer is here analysed. The operation of the 

selected energy equipment is exposed in Figure 16 for 

the summer week and in Figure 17 for the winter 

week, both corresponding to the final evaluation year. 

In these figures it is possible to appreciate the 

electricity generated by both the PV and the CHP 

systems, as well as the thermal power generated by 

the boiler and the charge and discharge cycles of the 

thermal ESS. It can be appreciated that, in the summer 

season, as thermal demand is generally lower than in 

winter season, the boiler system is used only as back-

up for peak-power moments and the thermal ESS is 

employed to store excess thermal energy from the 

CHP system. In contrast, in the winter season the 

boiler has a more active role and thermal storage is 

rarely used as almost all power is employed to cover 

demand. 

 

Figure 16: Power operation and generation of the energy 
equipment selected for the summer week. 

 

Figure 17: Power operation and generation of the energy 
equipment selected for the winter week. 

With this operation, the total energy generated and 

consumed in the electrical and thermal sides for 

summer and winter weeks are exposed in Figure 18, 

Figure 19, Figure 22 and Figure 23. It can be seen that 

the electrical demand is covered through a 

combination of the CHP and the PV system in both 

seasons, and that excess electrical energy is present in 

the system. Electricity directly purchased from the 

utility grid is also employed, although it is not directly 

exposed here. For the thermal side, it is possible to 

appreciate that, in summer, almost all demand power 

is covered by the CHP system while in the winter, the 

CHP works most of the time at near maximum capacity 

and the boiler is employed to completely fulfil demand 

requirements. 

 

Figure 18: Electrical demand and generation for the summer week. 

 

Figure 19: Electrical demand and generation for the winter week 
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Figure 20: Thermal demand and generation for the summer week 

 

Figure 21: Thermal demand and generation for the winter week 

The exposed energy equipment behaviour has been 

computed considering a prosumer model. This 

obtained energy exchange is shown for the two 

analysed seasons in Figure 22 and Figure 23. For the 

summer case, a combination of CHP, PV and electricity 

bought at low prices is employed to fulfil electrical 

demand. When the electricity price for feed-in is high, 

electrical energy coming from both the PV and the CHP 

is injected into the utility grid. This happens for 

example at hour 10, when the price of electricity is 

high and although electrical demand is also high there 

is surplus electrical power that is sold to the utility 

grid. The decision of employing CHP electrical power 

to fulfil electrical demand and also to sell it to the 

utility grid is a consequence of the difference between 

energy carriers and emissions costs. Most of the time, 

the added cost of gas and emissions is lower than the 

cost of electricity. Therefore, it is profitable to burn gas 

and employ the electrical energy coming from the CHP 

to fulfil electrical demand and to sell it to the utility 

grid. As the thermal demand is considerably higher 

than the electrical demand, the CHP thermal power, 

linked to the CHP electrical power, is directly used to 

cover internal thermal load. As the thermal demand is 

considerably higher than the electrical demand, the 

CHP thermal power, linked to the CHP electrical 

power, is directly used to cover internal thermal load. 

If the desired CHP electrical operation and 

corresponding CHP thermal production exceed the 

required thermal power, thermal storage enters into 

action and absorbs the surpluses of thermal power to 

provide it at later times where thermal demand is 

higher. An example of this performance can be seen at 

hour 45, when the electricity price is high, electrical 

demand is also high, but PV generation is low. To 

reduce the electricity purchased from the utility grid, 

electrical demand from the CHP system is used. 

However, thermal demand is relatively low and thus 

more thermal power is generated than used. For this 

reason, the thermal ESS stores this surplus and 

delivers it later, in hour 55, where there is a small peak 

of thermal power. Where important thermal power 

peak occurs in this season, the boiler is also employed. 

In the winter season, the thermal demand is higher 

than in summer and the electrical demand is more 

stable and lower. For this reason, the CHP operates 

most working hours at maximum capacity. In this case, 

the boiler takes a more active role, as it is employed to 

support the CHP in meeting thermal demand. 

Regarding the electrical demand, it is fulfilled by the 

energy generated from the CHP and the PV system, 

minimising the energy purchase and selling the 

surpluses. In case of electricity costs being remarkably 

low, as happens on weekend days, the operation 

regime of the CHP is lowered down and electricity is 

purchased and employed to fulfil electrical demand, 

using the boilers to meet the thermal demand at that 

moment. 

 

Figure 22: Exchange of energy with the utility grid for the summer 
week. 
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Figure 23: Exchange of energy with the utility grid for the winter 
week. 

4.2. Uncertainty Analysis 
The results of the UA showing the evolution of the 

uncertainty of the NPV are exposed in Figure 24 while 

the final NPV uncertainty is shown in Figure 25 

together with the fitted PDF, which in this case is an 

Inverse Gaussian with parameters (5,08; 8.869). The 

mean final value is 5.082.200€, slightly higher than 

the obtained in the deterministic case due to the 

change in equipment operation, which is improved in 

some of the cases, being the expected final profit 

higher than the deterministic one. It can be seen that 

the uncertainty on the value of the investment 

increases with time following the same pattern as the 

exposed by the uncertainty in prices related to energy 

and emissions. For its final value, the NPV presents a 

standard deviation of 121.700€, which means that 

there is a 68% chance that the final value lays around 

2,4% of the mean value and a 95% of probabilities that 

the final value lays around 4,8% of the mean value. 

These results expose that, despite the uncertainty 

existent in the input parameters, the proposed 

optimisation methodology provides robust results 

which creates a benefit for the industrial enterprise 

with an acceptable risk level. 

 

Figure 24: Uncertainty evolution of NPV along the lifetime of the 
energy equipment. 

 

Figure 25: Final NPV uncertainty and fitted PDF. 

4.3. Sensitivity Analysis 

4.3.1. First stage: Morris method 
As the objective of this first stage is to discard the less 

influential inputs, all the inputs exposed in section 2.2 

are considered. The results of the Morris SA are 

exposed in Figure 26. 

 

Figure 26: Morris SA results. 
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The obtained results show five parameters having 

almost no influence on the output uncertainty, which 

endorse the methodology employed to perform this 

evaluation as they can be clearly identified and erased 

from further analysis. The O&M cost of the PV, ESS, 

TES and HP systems can be considered as 

deterministic as they are inconsequential in terms of 

output variance. Also, and although the uncertainty in 

the output increases with time as the uncertainty in 

emissions costs do, the results expose that these costs 

have a negligible influence due to their low value in 

front of that of the energy carriers. By eliminating the 

mentioned O&M costs and the cost of emissions at this 

point of the evaluation, the computational effort in the 

second stage of the SA is reduced 54% while 

maintaining the uncertain information intact. 

4.3.2. Second stage: Sobol method 
The results of the Sobol analysis are exposed in Figure 

27, in which the y-axis is presented on a logarithmic 

scale. 

 

Figure 27: Sobol SA parameter ranking results. 

It can be observed that the input that has the main 

influence in the final NPV uncertainty is the cost of 

electrical energy, being the influence of the cost of gas 

more than 10 times lower and the influence of the 

feed-in tariff and the O&M costs negligible. 

The dependence of the performance of energy 

equipment on energy prices was also exposed in [26], 

where the sensitivity of the single-year economic 

performance of an energy system was studied. Being 

the cost of energy carriers the inputs that cause most 

of the uncertainty, the demand profile together with 

the framework and boundary conditions applied 

determine which of them has a predominant role. For 

instance, in [26], the selling price of electricity was 

maintained independent from the cost of electricity, 

not enhancing to exchange energy with the utility grid 

at the most interesting time intervals, and a more 

restrictive CO2 emissions cap was applied, which 

affected the performance of the CHP to supply power 

to the electrical demand and utility grid. Consequently, 

electricity cost became a minor factor of uncertainty 

and gas cost the major influencer. 

Apart from claiming the importance of the energy 

price in the investment uncertainty, the results 

obtained here also justify mathematically the firms’ 

investment tendencies found in [8], in which it was 

appreciated, through a statistical analysis based on 

historical information, that enterprises tend to invest 

less if the uncertainty in the energy market increases. 

5. Conclusions 
This paper presents a methodology to optimise the 

investment in energy equipment for prosumer 

industrial SMEs considering its operation along time 

and assessing the risk this action supposes together 

with the inputs that influence the most. The energy 

infrastructure is optimised considering the time 

evolution of energy carriers and operation costs. This 

sizing optimisation includes also the operation 

optimisation of the plant over the lifetime of the newly 

installed equipment, which is performed based on a 

weekly horizon to take into account production and 

energy market patterns. The proposed optimisation 

procedure enables to compute the net present value of 

the investment as well as the environmental and social 

implications that the upgraded energy infrastructure 

has, therefore supporting industrial SMEs to obtain 

the solution that best suits their interests. The risk 

linked to this energy investment is also evaluated to 

enrich the investment procedure typically followed by 

SMEs given their managerial and financial 

characteristics. To do so, the upgraded energy 

infrastructure is analysed under uncertain scenarios 

through an Uncertainty Analysis (UA). This UA enables 

to compute the statistical final expected value of the 

investment as well as its deviation, exposing the 
probability of the outcome to be within a certain range 

and thus the risk that the enterprise is facing when 

performing the investment. To complete the risk 

analysis, Sensitivity Analysis (SA) is also performed. In 

order to have reliable results in an efficient manner, 

the employed SA combines Morris and Sobol methods 

and identifies the most influential parameters. This SA 

provides industrial SMEs with information regarding 

the inputs that influence the most the risks of the 

investment, being possible for them to locate efforts in 

better defining these inputs to reduce the risk. A case 

study has been developed in which it has been 

possible to appreciate the economic, social and 
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environmental benefits for enterprises upgrading 

their energy infrastructure and adopting prosumer 

behaviour. The proposed optimisation approach 

provides robust results and a risk analysis that allows 

a more informed investment by industrial SMEs. 

These results are of high utility for industrial entities 

when upgrading their energy infrastructure, exposing 

their suitability to adopt a prosumer behaviour and 

providing a framework to further support their energy 

investment decision process. 
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Appendix A. Energy optimisation problem formulation 

A.I. Reference Plant performance optimisation 
- Constraints: 

• Electrical hub equilibrium: 

 
𝑃𝑈𝐺,𝑟𝑒𝑓𝜂𝑈𝐺 =

𝑃𝐸𝐿

𝜂𝐸𝐿
 (6) 

Where 𝑃𝑈𝐺,𝑟𝑒𝑓 is the energy purchased by the reference plant, 𝑃𝐸𝐿 the power required by the electrical demand 

and 𝜂𝑈𝐺  and 𝜂𝐸𝐿 the efficiencies of connexion with the utility grid and the demand. 

• Thermal hub equilibrium 

 
𝑉𝐵𝑂𝐼,𝑟𝑒𝑓𝜂𝐵𝑂𝐼 = 𝑄𝐵𝑂𝐼,𝑟𝑒𝑓 =

𝑄𝑇𝐿

𝜂𝑇𝐿
 (7) 

Where 𝑉𝐵𝑂𝐼,𝑟𝑒𝑓 is the gas consumption by the boiler at the reference plant, 𝑄𝐵𝑂𝐼,𝑟𝑒𝑓 the heat produced by the 

boiler, 𝑄𝑇𝐿 the thermal demand, 𝜂𝐵𝑂𝐼 the boiler efficiency and 𝜂𝑇𝐿 the connexion efficiency with the thermal 

demand. 

• Energy exchange: 

 0 ≤ 𝑃𝑈𝐺,𝑟𝑒𝑓 ≤ 𝐸𝑚𝑎𝑥 (8) 

 0 ≤ 𝑉𝐵𝑂𝐼,𝑟𝑒𝑓 ≤ 𝑉𝑔𝑚𝑎𝑥 (9) 

 0 ≤ 𝑄𝐵𝑂𝐼,𝑟𝑒𝑓 ≤ 𝑄𝐵𝑂𝐼,𝑚𝑎𝑥 (10) 

Where 𝐸𝑚𝑎𝑥, 𝑉𝑔𝑚𝑎𝑥 and 𝑄𝐵𝑂𝐼,𝑚𝑎𝑥 are the maximum power thresholds in the utility grid, gas grid and also in the 

boiler. 

- Objective function: 

 
𝑓𝑤𝑒𝑒𝑘𝑙𝑦,𝑟𝑒𝑓 =  ∑ 𝑃𝑈𝐺,𝑟𝑒𝑓,𝑗𝐶𝑈𝐺,𝑖,𝑗 + 𝑄𝐵𝑂𝐼,𝑟𝑒𝑓,𝑗𝐶𝐵𝑂𝐼 + 𝑉𝐵𝑂𝐼,𝑟𝑒𝑓,𝑗(𝐶𝐺,𝑖 + 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖)

𝑁

𝑗=1

 (11) 

Where j represents the hour considered and i the year under evaluation. This computation is performed for the 

different weeks along the yeas of the optimisation horizon. 𝐶𝑈𝐺  is the cost to purchase energy from the utility 

grid, 𝐶𝐵𝑂𝐼 is the cost for using the boiler, 𝐶𝐺  is the cost to purchase gas, 𝐹𝑔𝐺𝐻𝐺 is the emission factor of the 

purchased gas and 𝐶𝐺𝐻𝐺 the cost of emissions. 
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A.II. Upgraded Plant performance optimisation 
- Constraints: 

• Electrical hub equilibrium: 

 
𝑃𝑃𝑉𝜂𝑃𝑉 + 𝑃𝑈𝐺𝜂𝑈𝐺 + 𝑃𝐶𝐻𝑃 + 𝑃𝐷𝐸𝑆𝜂𝐷𝐸𝑆 =

𝑃𝐸𝐷

𝜂𝐸𝐷
+ 𝑃𝐹𝐼 +

𝑃𝐶𝐸𝑆

𝜂𝐶𝐸𝑆
+ 𝑃𝐻𝑃 (12) 

Where 𝑃𝑃𝑉, 𝑃𝑈𝐺 , 𝑃𝐶𝐻𝑃, 𝑃𝐷𝐸𝑆, 𝑃𝐹𝐼 , 𝑃𝐶𝐸𝑆 and 𝑃𝐻𝑃 are the power from the PV system, from the utility grid, from the 

CHP, from the electrochemical ESS, to the utility grid, to the electrochemical ESS and the HP. 𝜂𝑃𝑉, 𝜂𝑈𝐺 , 𝜂𝐷𝐸𝑆, 𝜂𝐸𝐷, 

𝜂𝑈𝐺  and 𝜂𝐶𝐸𝑆 are the efficiencies of the connection with the PV system, the utility grid, the efficiency for 

discharging the ESS, the efficiency of the connexion with the demand, the utility grid and the efficiency of charging 

the ESS, respectively. 

• Thermal hub equilibrium: 

 
𝑄𝐶𝐻𝑃 + 𝑄𝐵𝑂𝐼 + 𝑄𝐷𝑇𝑆𝜂𝐷𝑇𝑆 + 𝑃𝐻𝑃𝜂𝐻𝑃 =

𝑄𝑇𝐿

𝜂𝑇𝐿
+

𝑄𝐶𝑇𝑆

𝜂𝐶𝑇𝑆
 (13) 

Where 𝑄𝐶𝐻𝑃, 𝑄𝐵𝑂𝐼 , 𝑄𝐷𝑇𝑆 and 𝑄𝐶𝑇𝑆 are the thermal power from the CHP, the boiler, the thermal ESS and the power 

to the thermal ESS. 𝜂𝑇𝐿is the efficiency of the connexion with the thermal load and 𝜂𝐷𝑇𝑆 and 𝜂𝐶𝑇𝑆 are the 

efficiencies of discharging and charging the thermal storage. 

• Energy exchange 

 0 ≤ 𝑃𝑈𝐺 ≤ 𝐸𝑚𝑎𝑥 (14) 

 0 ≤ 𝑃𝑈𝐺𝑆 ≤ 𝐸𝑚𝑎𝑥 (15) 

 0 ≤ 𝑉𝐶𝐻𝑃 + 𝑉𝐵𝑂𝐼 ≤ 𝑉𝑔𝑚𝑎𝑥 (16) 

Where 𝐸𝑚𝑎𝑥 is the maximum exchange of power with the electrical grid and 𝑉𝑔𝑚𝑎𝑥 the maximum for the gas grid. 

• Energy storage. 

The formulation is exposed for general energy storage, which is applied to both electrochemical and thermal 

storages. 

 0 ≤ 𝑃𝐶 ≤ 𝑅𝐶 × 𝐶𝑎𝑝 (17) 

 0 ≤ 𝑃𝐷 ≤ 𝑅𝐷 × 𝐶𝑎𝑝 (18) 

 𝐸𝑡 = 𝐸𝑡−1 + ∆𝑡(𝑄𝐶 − 𝑄𝐷) − 𝑆𝐷𝐸𝑡 (19) 

 𝐶𝑎𝑝𝑚𝑖𝑛 ≤ 𝐸𝑡 ≤ 𝐶𝑎𝑝 (20) 

Where 𝐶𝑎𝑝 is the capacity of the storage and 𝑅𝐶  and 𝑅𝐷 its charge and discharge ratios. 𝐸𝑡 is the stored energy 

at the evaluated instant, 𝐸𝑡−1 describes the energy stored in the previous instant while ∆𝑡 is the time step. SD is 

the self-discharge ratio. 

• Power capacity of energy equipment 

 0 ≤ 𝑄𝐵𝑂𝐼 ≤ 𝑄𝐵𝑂𝐼,𝑚𝑎𝑥 (21) 

 0 ≤ 𝑃𝐶𝐻𝑃 ≤ 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥 (22) 
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 0 ≤ 𝑄𝐻𝑃 ≤ 𝑄𝐻𝑃,𝑚𝑎𝑥 (23) 

Where 𝑄𝐵𝑂𝐼,𝑚𝑎𝑥, 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥 and 𝑄𝐻𝑃,𝑚𝑎𝑥 are the maximum power thresholds for the boiler, the CHP and the HP. 

- Objective function: 

 
𝑓𝑤𝑒𝑒𝑘𝑙𝑦 = ∑ 𝑃𝑃𝑉,𝑗𝐶𝑃𝑉 + 𝑃𝑈𝐺,𝑗𝐶𝑈𝐺,𝑖 + 𝐶𝐸𝑆(𝑃𝐶𝐸𝑆,𝑗 + 𝑃𝐷𝐸𝑆,𝑗) + 𝑃𝐶𝐻𝑃,𝑗𝐶𝐶𝐻𝑃 + 𝑃𝐻𝑃,𝑗𝐶𝐻𝑃

𝑁

𝑗=1

+ 𝑄𝐵𝑂𝐼,𝑗𝐶𝐵𝑂𝐼 + (𝑉𝐶𝐻𝑃,𝑗 + 𝑉𝐵𝑂𝐼,𝑗)(𝐶𝐺,𝑖 + 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖)

+ 𝐶𝑇𝑆(𝑄𝐶𝑇𝑆,𝑗 + 𝑄𝐷𝑇𝑆,𝑗) − 𝑃𝐹𝐼,𝑗𝐶𝐹𝐼,𝑖 

(24) 

Where 𝐶𝑃𝑉, 𝐶𝐸𝑆, 𝐶𝐶𝐻𝑃, 𝐶𝐻𝑃, 𝐶𝐵𝑂𝐼 and 𝐶𝑇𝑆 are the LCOE of the PV system, the electrochemical storage, the CHP, the 

HP, the boiler and the thermal storage system. 

A.III. Optimisation of energy equipment to install 
- Constraints: 

• Equipment size: 

 𝐴𝑃𝑉 ≤ 𝐴𝑃𝑉,𝑚𝑎𝑥 (25) 

 𝐶𝐸𝑆

𝜌𝐸𝑆
+

𝐶𝑇𝑆

𝜌𝑇𝑆
+

𝑃𝐶𝐻𝑃,𝑚𝑎𝑥

𝜌𝐶𝐻𝑃
+

𝑄𝐻𝑃,𝑚𝑎𝑥

𝜌𝐻𝑃
≤ 𝐴𝑖𝑛𝑡,𝑚𝑎𝑥 (26) 

Where 𝐴𝑃𝑉,𝑚𝑎𝑥 is the maximum area for the installation of PV; 𝜌𝐸𝑆, 𝜌𝑇𝑆, 𝜌𝐶𝐻𝑃 and 𝜌𝐻𝑃 are the energy and power 

densities of the electrochemical storage, the thermal storage, the CHP and the HP. 𝐴𝑖𝑛𝑡,𝑚𝑎𝑥 is the maximum area 

available for the installation of internal energy equipment. 

• Initial investment 

 𝐶0 = 𝐴𝑃𝑉𝐶0,𝑃𝑉 + 𝐶𝐸𝑆𝐶0,𝐸𝑆 + 𝐶𝑇𝑆𝐶0,𝑇𝑆 + 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥𝐶0,𝐶𝐻𝑃 + 𝑄𝐻𝑃,𝑚𝑎𝑥𝐶0,𝐻𝑃 ≤ 𝐶0,𝑚𝑎𝑥 (27) 

Where 𝐶0 is the initial investment and 𝐶0,𝑃𝑉, 𝐶0,𝐸𝑆, 𝐶0,𝑇𝑆, 𝐶0,𝐶𝐻𝑃 and 𝐶0,𝐻𝑃 are the initial costs of the PV system, 

electrochemical storage, thermal storage, cogeneration and HP, respectively. 𝐶0,𝑚𝑎𝑥 the maximum investment 

limit. 

• Emissions: 

 

𝐺𝐻𝐺𝑇 =
52

4
(∑ 𝐺𝐻𝐺𝑇,𝑘

4

𝑘=1

) =
52

4
(∑ ∑ 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑇(𝑉𝐶𝐻𝑃𝑇,𝑘,𝑗 + 𝑉𝐵𝑂𝐼𝑇,𝑘,𝑗)

𝑁

𝑗=1

4

𝑘=1

)

< 𝐺𝐻𝐺𝑚𝑎𝑥,𝑇 

(28) 

Where 𝐺𝐻𝐺𝑇 are the total yearly greenhouse gas emissions for and 𝐺𝐻𝐺𝑚𝑎𝑥,𝑇 the maximum emissions limit. The 

factor 𝑘 represents the week of a year considered. 

• Payback 

 𝑃𝐵𝑡 ≡ {𝑖𝑃𝐵|(−𝐶0 + ∑ 𝐶(𝑖)𝑖𝑃𝐵
𝑖=1 = 0)} (29) 

Where 𝑃𝐵𝑡 is the payback time and 𝑖 represents the years evaluated. 

- Objective: The objective function is composed by economic, environmental and social parameters 

included in a weighted and normalised manner. 

• Economic objective 
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The economic objective is the maximisation of the Net Present Value, which is computed as: 

 
𝑁𝑃𝑉 = −𝐶0 + ∑

𝐶𝑖

(1 − 𝑟)𝑖

𝑇

𝑖=1

 (30) 

Where 𝐶𝑖 is the cash flow, or benefits minus cost, for the period 𝑖, and 𝑟 is the hurdle rate. 

To obtain the NPV, the computation of costs and benefits per year is required. 

▪ Seasonal benefit minus cost (obtained through its representative week): 

 
𝐶𝑠𝑒𝑎𝑠𝑜𝑛,𝑖= ∑ 𝑃𝐹𝐼,𝑗𝐶𝐹𝐼,𝑖 + (𝑃𝑈𝐺,𝑟𝑒𝑓,𝑗 − 𝑃𝑈𝐺,𝑗)𝐶𝑈𝐺,𝑖

𝑁

𝑗=1

+ (𝑉𝐵𝑂𝐼,𝑟𝑒𝑓,𝑗 − 𝑉𝐶𝐻𝑃,𝑗 − 𝑉𝐵𝑂𝐼,𝑗)(𝐶𝐺,𝑖 + 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖) 

(31) 

▪ Benefits minus cost for the year i: 

 
𝐶𝑖 =

52

4
(𝐶𝑠𝑝𝑟𝑖𝑛𝑔,𝑖 + 𝐶𝑠𝑢𝑚𝑚𝑒𝑟,𝑖 + 𝐶𝑎𝑢𝑡𝑢𝑛𝑚,𝑖 + 𝐶𝑤𝑖𝑛𝑡𝑒𝑟,𝑖)

− (𝐶𝑂&𝑀,𝐶𝐻𝑃𝑃𝐶𝐻𝑃,𝑚𝑎𝑥 + 𝐶𝑂&𝑀,𝐻𝑃𝑄𝐻𝑃,𝑚𝑎𝑥 + 𝐶𝑂&𝑀,𝐸𝑆𝐶𝑎𝑝𝐸𝑆 + 𝐶𝑂&𝑀,𝑇𝑆𝐶𝑎𝑝𝑇𝑆

+ 𝐶𝑂&𝑀,𝑃𝑉𝐴𝑃𝑉𝑃𝑛𝑜𝑚) 

(32) 

Where 𝐶𝑠𝑝𝑟𝑖𝑛𝑔,𝑖 , 𝐶𝑠𝑢𝑚𝑚𝑒𝑟,𝑖, 𝐶𝑎𝑢𝑡𝑢𝑚𝑛,𝑖  and 𝐶𝑤𝑖𝑛𝑡𝑒𝑟,𝑖  are the variable cash flow of the four 

representative weeks for the year 𝑖 and 𝐶𝑂&𝑀,𝐶𝐻𝑃, 𝐶𝑂&𝑀,𝐻𝑃, 𝐶𝑂&𝑀,𝐸𝑆, 𝐶𝑂&𝑀,𝑇𝑆 and 𝐶𝑂&𝑀,𝑃𝑉 are the 

yearly operation and maintenance costs per unit capacity of CHP, HP, electrochemical storage, 

thermal storage and PV system, respectively. 

• Environmental objective 

Total emissions over the lifetime of the energy infrastructure. 

 

𝐺𝐻𝐺 = ∑
52

4
(∑ ∑ 𝐹𝑔𝐺𝐻𝐺𝐶𝐺𝐻𝐺,𝑖(𝑉𝐶𝐻𝑃𝑖,𝑘,𝑗 + 𝑉𝐵𝑂𝐼𝑖,𝑘,𝑗)

𝑁

𝑗=1

4

𝑘=1

)

𝑇

𝑖=1

 (33) 

• Social objective 

The social objectives are represented by the RF and JC. 

▪ Renewable factor 

Ratio between the energy generated by the PV system and the total demand of the SME. 

 
𝑅𝐹 =

∑ ∑ ∑ 𝑃𝑃𝑉𝑖,𝑘,𝑗
𝑁
𝑗=1

4
𝑘=1

𝑇
𝑖=1

∑ ∑ ∑ (𝑃𝐸𝐷𝑖,𝑗,𝑘 + 𝑄𝑇𝐿𝑖,𝑗,𝑘)𝑁
𝑗=1

4
𝑘=1

𝑇
𝑖=1

 (34) 

▪ Job Creation 

Full-time jobs created through the upgrade of the energy infrastructure over its lifetime. 

 
𝐽𝐶 = 𝑃𝑉𝐽𝐶 ∑

52

4
∑ ∑ 𝑃𝑃𝑉𝑖,𝑘,𝑗

𝑁

𝑗=1

4

𝑘=1

𝑇

𝑖=1

+ 𝐶𝐻𝑃𝐽𝐶 ∑
52

4
∑ ∑ 𝑃𝐶𝐻𝑃𝑖,𝑘,𝑗

𝑁

𝑗=1

4

𝑘=1

𝑇

𝑖=1

+ 𝐻𝑃𝐽𝐶 ∑
52

4
∑ ∑ 𝑃𝐻𝑃𝑖,𝑘,𝑗

𝑁

𝑗=1

4

𝑘=1

𝑇

𝑖=1

+ 𝐸𝑆𝐽𝐶𝐶𝐸𝑆𝑇 + 𝑇𝑆𝐽𝐶𝐶𝑇𝑆𝑇 

(35) 
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Where 𝑃𝑉𝐽𝐶 , 𝐶𝐻𝑃𝐽𝐶 , 𝐻𝑃𝐽𝐶 , 𝐸𝑆𝐽𝐶 , and 𝑇𝑆𝐽𝐶  are the job creation for the PV, CHP, HP, ES, and 

TS equipment, each represented in the units exposed in Table C.1. 

• Multi-objective function 

The economic, environmental and social criteria are included in a single objective function: 

 
𝑓 = 𝑤𝑒𝑐𝑁𝑃𝑉𝑡𝑟𝑎𝑛𝑠 + 𝑤𝑒𝑛𝐺𝐻𝐺𝑡𝑟𝑎𝑛𝑠 + 𝑤𝑠(𝑤𝑠1𝑅𝐹𝑡𝑟𝑎𝑛𝑠 + 𝑤𝑠2𝐽𝐶𝑡𝑟𝑎𝑛𝑠) 

(36) 

Where 𝑤𝑒𝑐 , 𝑤𝑒𝑛, and 𝑤𝑠 are the economic, environmental and social weights respectively, and 𝑤𝑠1 

and 𝑤𝑠2 are the weights of the renewable factor and job creation inside the social dimension. As 

the criteria in the optimisation function present different units, their value is normalised to 

remove dimensions and balance magnitude differences [84]: 

 

𝑝𝑡𝑟𝑎𝑛𝑠 =
𝑝 − 𝑝0

𝑝𝑚𝑎𝑥 − 𝑝0
 

(37) 

Where 𝑝𝑡𝑟𝑎𝑛𝑠 is the normalised parameter which lays between 0 and 1, 𝑝 is the measured value 

and 𝑝0 and 𝑝𝑚𝑎𝑥 are the minimum and maximum value achievable, respectively. 

Appendix B. Sobol indices computation strategy 
Starting from two different sampling matrices A and B with rows equal to the number of simulations and columns 

equal to the number of considered uncertain inputs, the matrix 𝑨𝑩
(𝒊)

 is constructed for all factors with all the 

columns from A expect the i-th column, which is obtained from B. Then, the numerical estimators of the 

sensitivity indices are computed as: 

 
𝑉𝑥𝑖

(𝐸𝑋∽𝑖
(𝑌|𝑥𝑖)) =

1

𝑁
∑ 𝑓(𝑩)𝑗 (𝑓 (𝑨𝑩

(𝒊)
)

𝑗
− 𝑓(𝑨)𝑗)

𝑁

𝑗=1

 (38) 

 
𝐸𝑋∽𝑖

(𝑉𝑥𝑖
(𝑌|𝑥∽𝑖)) =

1

2𝑁
∑ (𝑓(𝑨)𝑗 − 𝑓 (𝑨𝑩

(𝒊)
)

𝑗
)

2
𝑁

𝑗=1

 (39) 

Appendix C. Parameters employed for the optimisation 
 

Parameter Value 

PV  

Initial cost 950 €/kW 

LCOE 0.07 €/kWh 

PV connexion efficiency 99% 
Job creation 0.87 jobs/GWh 

Electrochemical storage  

Initial cost 430 €/kWh 

LCOE 0.06 €/kWh 

Charge efficiency 94% 
Discharge efficiency 94% 

Charge ratio 0.5C 

Discharge ratio 5C 

Job creation 0.01 jobs/MWh- capacity 

CHP  
Initial cost 3400 €/kWe 

LCOE 0.042 €/kWeh 
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G2E efficiency 35% 
G2T efficiency 55% 

Job creation 0.31 jobs/GWh 

HP  

Initial cost 700 €/kW 

LCOE 0.076 €/kWh 

COP 4.5 

0.25 jobs/GWh 

Thermal storage  

Initial cost 5 €/kWh 
LCOE 0.0243 €/kWh 

Charge efficiency 92% 

Discharge efficiency 92% 

Self-discharge 1% 

Charge ratio 5C 
Discharge ratio 0.25C 

Job creation 0.01 jobs/MWh- capacity 

Boiler  

LCOE 0.053 €/kWh 

Efficiency 90% 
Connexion efficiencies 99% 

Objective function weights  

𝑤𝑒𝑐  0.65 

𝑤𝑒𝑛 0.20 

𝑤𝑠 0.15 

𝑤𝑠1 0.75 

𝑤𝑠2 0.25 
Table C.1: Input values employed 
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