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Abstract

The increasing use of power electronics converters to integrate renewable energy sources has been subject of concern due
to the resonance oscillatory phenomena caused by their interaction with poorly damped AC networks. Early studies are focused
to assess the controller influence of a single converter connected to simple networks, and they are no longer representative for
existing systems. Lately, studies of multi-infeed grid-connected converters are of particular interest, and their main aim is to
apply traditional criteria and identify their difficulties in the stability assessment. An extension of traditional criteria is commonly
proposed as a result of these analysis, but they can be burdensome for large and complex power systems. The present work
addresses this issue by proposing a simple criterion to assess the stability of large power systems with high-penetration of power
converters. The criterion has its origin in the mode analysis and positive-net damping stability criteria, and it addresses the stability
in the frequency domain by studying the eigenvalues magnitude and real component of dynamic models in the admittance matrix
form. Its effectiveness is tested in two case studies developed in Matlab/Simulink which compare it with traditionally criteria,
proving its simplicity.

Index Terms

stability analysis, grid-connected converter, multi-infeed, nodal admittance matrix, Generalized Nyquist Criterion, frequency
domain analysis.

I. INTRODUCTION

The use of grid-connected power converters has been increasing due to the need to connect large renewable energy
resources to the AC power network. These resources are typically connected to the AC grid by means of voltage source

converter technology (VSC) which play an important role in the transmission system development. However, VSCs also bring
new challenges and problems due to the interaction with components of the traditional power system such as synchronous
generators, power transformers and transmission lines. One of the most important problems is the oscillatory phenomena caused
by the interaction between the VSC control and the grid. These oscillations can lead to instabilities specially in poorly damped
networks [1]–[3]. There are non-damped cases when the system maintains a sustained oscillation due to non-linearities such
as saturation and limiters [4], [5].

The commonly used methods to model grid-connected VSC systems to study the oscillatory phenomena are the state-space
and impedance-based modelling approaches [6], [7]. The first one represents the system as a set of linear equations in the time
domain, but it requires detailed information of the control code which is possibly not available. On the other hand, impedance-
based modelling approach is based on the impedance characterization of the system (e.g., detailed knowledge about the converts
is not needed) which can be expressed as a transfer function in the s-domain. Stability criteria such as the Nyquist stability
criterion [8], [9], impedance-based stability criterion [10]–[12], and the positive-net damping stability criterion (PND) [13],
[14] have been used to study the controller influence of a single VSC over the stability of simple networks in the frequency
domain.

Stability studies of multi-infeed VSC-based AC grids are currently of great interest and different approaches to assess
stability of the nodal admittance matrix in the s-domain by using modal analysis are presented in [15]–[17], and in the
frequency domain based on the GNC in [18]–[20]. These studies use the nodal admittance matrix modelling approach, an
enhancement of impedance-based modelling methods, as it is simple and powerful when characterizing multi-infeed large
power systems. In [15], the stability of MIMO systems is assessed by looking at the nodal admittance matrix poles; the
contribution in [16] studies the zeros of the nodal admittance or loop impedance matrix determinant; the stability is assessed
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with the damping coefficient and the negative-resistance effect of the resonance modes in [17]; however, all mentioned studies
are conducted in the s-domain, and there is a preference in the industry to work with measurements in the frequency domain
as it allows the use of black-box models.

Typically, the stability of the nodal admittance matrix is assessed in the frequency domain with the generalized Nyquist
criterion (GNC) which extends the Nyquist criterion for single-input and single-output (SISO) to multiple-input and multiple-
output (MIMO) dynamic systems as introduced in [8]. For example, the stability of MIMO systems is assessed with the GNC
by using the impedance-based approach of the nodal admittance matrix form for a three-phase meshed and balance power
system in [18], for hybrid AC/DC grids [19], and for large-scale multiconverter systems in [20]. However, studies in [21], [22]
show that GNC may lead to a wrong stability conclusion due to misleading associations at the time of deriving the closed-loop
transfer function. Further drawbacks using GNC were identified during the present study such as computational efforts (i.e.,
time and memory) at the time of evaluating the open-loop in the [�j1,+j1] frequency range in order to contour the unstable
poles located in the right half-plane (RHP) for high-order admittance matrices. Additionally, the analysis of large networks is
challenging due to the numerous Nyquist curves of eigenvalues.

The resonance mode analysis (RMA), introduced in [23], helps to identify harmonic resonance modes for systems in the
admittance matrix form; however, no stability criterion is proposed. The letter in [24] uses the ”peak-picking” method and the
”circle fit” method introduced in [25] to analyse these resonance modes obtained from measurement data, yet no contribution
about addressing the stability beyond the traditional criteria was made.

To address the above concerns in traditional frequency domain stability criteria, this paper contributes with a new stability
criterion, called as positive-mode damping (PMD) stability criterion, which is based on the RMA and the PND stability criteria.
The features of the proposed criterion are summarized as follows:

1) The oscillatory modes can be characterized in the frequency domain;
2) it does not require detailed information;
3) the system stability can be assessed from experimental measurements (e.g., black-box models);
4) it is not affected by aggregation of system elements;
5) it is easy to use;
6) it requires less effort to calculate and evaluate than traditional stability criteria;
7) its application can be programmed.
The effectiveness of proposed stability criterion is tested in two case studies implemented in Matlab/Simulink, comparing

its results with the corresponding eigenvalue analysis and the GNC criterion application over the same system. The first case
study is built to demonstrate that the proposed criterion provides a correct stability assessment while others methods fail. It
is composed by three grouping options, where each one studies the closed-loop stability of the system, in the admittance
matrix form, by diving it into two subsystems. The instability condition is the same for all grouping options, but the approach
to build each of the subsystems is different between them, leading to possible wrong stability assessment conclusions. The
second case has two examples in order to show the simplicity of the proposed method for assessing the stability of large
and complex networks. The visualisation of results and the computation effort for a large network is compared between the
proposed criterion and commonly used closed-loop stability criteria in the frequency domain.

II. GRID-CONNECTED VSC MODELLING

Fig. 1(a) displays the control structure of a generic grid-connected VSC. The model is an averaged three-phase converter,
which uses vector control strategy with a cascaded controller to control active and reactive power [26].

The dynamics of the VSC can be modelled by both state-space and impedance-based modelling approaches [6], [7]. The
small-signal model for stability studies at the point of common coupling (PCC), as displayed in Fig. 1(a), can be formulated
to state-space equations as

_x(t) = Ax(t) + Bu(t) u(t) = �vqd(t)

y(t) = Cx(t) + Du(t) y(t) = �ic�qd(t), (1)
where x(t), u(t) and y(t) are the states, input and output of the system state-space representation; and by a two-by-two
impedance matrix, where each of its elements is a transfer function in the s-domain as follows

�vqd =

�
Zvsc�qq(s) Zvsc�qd(s)
Zvsc�dq(s) Zvsc�dd(s)

�
| {z }

Zvsc(s)

�ic�qd, (2)

where �vqd = [�vq �vd]T and �ic�qd = [�ic�q �ic�d]T . A comparison between both small-signal modelling approaches
in a local reference is described in [27] for further information.

When two or more VSCs are connected to the AC grid, they cannot longer be in a local reference. In other words, they all
should be referenced to a reference or slack bus in the AC network, as detailed in [28] (see the Appendix for more details).



Active 

Power 

Current 

Control

vc-ref
qd PLL

qd

abc

vc
abc

θ 

 Reactive 

Power 

iref
q

iref
d

ic
qd

v
abc

Control 

System ic
abc

v
qd

Rc Lc

vabcvc
abc

ic
abc

qd

abc

pref

qref

PCC

(a)

Reactive 

Power

FD

T
i
qd

T
v

qd

Active 

Power Current

Control

AC 

Grid

Tqd
-1

HV PLL

Δθ 

Δic-qd

ΔvqdΔv
c
qd

Δvc
c-qdΔv

c
ref-qd

Δvc
h-qd

Δpc
ref

Δi
c
ref-d

Δvc-qd

Δqc
ref

Δi
c
ref-q

Δic
c
-qd

(b)

Fig. 1. Grid-connected VSC. (a) Schematic diagram control structure. (b) Block diagram small-signal model.

In the impedance-modelling approach, the converter impedance can be easily added to the network nodal admittance matrix
by means of its admittance Yvsc(s)=(Zvsc(s))�1 as other YRL series or YC shunt connected elements by applying the
voltage node method,

YRL(s) =

�
R+ Ls ωL
�ωL R+ Ls

��1

YC(s) =

�
Cs Cω
�Cω Cs

�
. (3)

III. MULTI-INFEED GRID-CONNECTED VSCS MODELLING

Fig. 2 shows a schematic diagram used to represent multi-infeed VSC-based AC grids as carried out in [15], [19]–[21],
[29]–[31]. The network is characterized by its admittance matrix YN(s), and the voltages and currents at its terminals (i.e.,
n the number of buses) are v = [v1 ... vn]T and i = [i1 ... in]T . The external elements (e.g., VSC converters) connected at
the network buses are represented by their Norton equivalent circuits formed by the Norton currents in = [in1 .... inn]T with
their corresponding impedance connected in parallel.
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Fig. 2. Schematic diagram of multi-infeed grid connected VSCs.

The relation between voltages and currents at the AC grid terminals are expressed as
i = YN(s)v
i = in �YS(s)v

�
in = (YN(s) + YS(s))v = YT(s)v, (4)

where YT(s) and YS(s) are the nodal admittance matrix transfer functions of the full system and the external elements’
impedance which can be easily obtained by applying the voltage node method.

IV. STABILITY ASSESSMENT CRITERIA

A small-signal stability analysis can be performed using both state-space and impedance-based dynamic models. In state-space
representations, stability is commonly assessed by using eigenvalue analysis. On the other hand, the stability in impedance-



based models is typically assessed with closed-loop stability criteria, that studies the open-loop formed by the ratio of the
two subsystems’ impedance partitioned accordingly to each criterion [10], [11]. The stability of MIMO systems is typically
assessed applying the GNC to the open-loop [8].

A. Eigenvalue analysis

Stability of the multi-infeed grid-connected VSCs in Fig. 2 can be studied from state-space equations in (1), where u(t) =
in(t) and y(t) = v(t) are the input and output variables of the system state-space. Stability can be addressed by obtaining the
eigenvalues λi = σi � jωi of the state-space matrix calculated as jA� λIj = 0. The stability criterion is built on the real and
imaginary part: the real part σi = Refλig represents the system damping and the imaginary ωi = Imfλig the frequency of
oscillation. The system is unstable if it contains any eigenvalue in the RHP (i.e., σ0 > 0 means oscillatory instability of the
frequency mode ω0) [32]. Considering (4), the expression in (1) can be rearranged as

v = [C(sI�A)�1B + D]| {z }
ZT(s)

in, (5)

where ZT(s) = YT(s)�1 is the impedance matrix transfer function which can be expressed from (5) in the following form

ZT(s) =
1

jsI�Aj
C[adj(sI�A)]B + D =

1

D(s)
ZTb(s), (6)

being adj(sI�A) the adjoint matrix of (sI�A) and ZTb(s) the adjoint matrix of ZT(s).
It can be noted from (6) that the poles of ZT(s) are the roots of the denominator D(s) = jsI�Aj, namely the eigenvalues

λi of the state-space matrix A [33], [34]. Therefore, system stability can be assessed by either the eigenvalues λi of A as
well as the poles of ZT(s).

Eigenvalue analysis is a simple stability criterion which helps to analyse the stability of large systems in a short time.
However, it requires detailed information in order to model real systems, which sometimes is not available (e.g., control
structure and parameters of power converters).

B. Generalized Nyquist criterion

The expression in (4) can be rewritten as
v = (I + L(s))�1ZN(s)in L(s) = ZN(s)YS(s), (7)

where ZN(s) = (YN(s)){1 and I is an nth order identity matrix.
If the open-loop L(s) does not have any RHP poles, the stability of the closed-loop system in (7) can be assessed by the

GNC, which extends the traditional Nyquist criterion for SISO systems to Nyquist curves of the eigenvalues of L(s) [8], [29].
This means that system stability is assessed by counting the clockwise encirclements of the eigenvalues λni of L(s) around
the (–1, j0) point. This is valid for multi-infeed grid-connected VSCs modelling in (7) because the network ZN(s) is passive
and the external components in YS(s) are individual subsystems, which in stand-alone operation are stable (i.e., ZN(s) and
YS(s) do not have any RHP poles). However, this might not be valid anymore if some of these individual subsystems come
from an aggregation of part of the network containing VSCs. This aggregation could be unstable due to the interaction of the
grouped VSCs and network passive components, introducing RHP poles in YS(s) [21].

On the other hand, part of the drawbacks identified in eigenvalue analysis, such as the required knowledge of the complete
control structure, can be solved by using a GNC-based stability analysis. Stability can be assessed from frequency depen-
dent models provided by manufactures (e.g., converter impedance curves) which are obtained from numeric simulation or
experimental measurements. However, applying GNC, wrong stability conclusions might be made due to order-cancellation,
open-loop RHP poles, and improper minor-loop gain or impedance ratio has been identified in [21], [22].

V. POSITIVE MODE DAMPING CRITERION

It is well-known that instabilities are related to low-damped network resonances. This has been proved for a single grid-
connected VSC with the PND stability criterion in [8], [13], [14] which evaluates the damping of the SISO transfer function
ZT (s) at resonance frequencies. It is stated that a system is stable if and only if the damping is positive at these resonance
frequencies, i.e., RefZT (jωx)g > 0. It is also worth mentioning that the PND stability criterion in [13] evaluates the closed-loop
function (i.e., ZT (jωx)) to address the stability; therefore, it is not affected by misleading associations of the system elements
as it is the case of the Nyquist criterion, which evaluates the open-loop function [21], [22]. The proposed stability approach,
called positive-mode damping (PMD) stability criterion, extends the PND stability criterion to multi-infeed grid-connected
VSCs by means of the RMA.

The RMA provides an effective tool for evaluating the resonances of networks modelled in the admittance matrix form [23],
by addressing the statement in (4) as

v = YT(jωx)in YT(jωx) = L�YT, (8)



where YT(jωx) is the system admittance matrix at frequency ωx; v and in are the nodal voltage and current injection vectors;
L and T are the right and left eigenvector matrices; and �Y is the diagonal eigenvalue matrix,

�Y =

26666664
λy1 0 . . . 0
0 λy2 . . . 0
. . . .
. . . .
. . . .
0 0 . . . λyn

37777775 . (9)

It must be noted that the inverse diagonal eigenvalue matrix �Y is the diagonal eigenvalue matrix of ZT(jωx) in (5),
ZT(jωx) = (YT(jωx))�1 = L�ZT

�Z = [λz1 λz2 ... λzn]I λzi =
1

λyi
, (10)

where the diagonal terms of �Z are called modal impedances λzi.
Parallel resonance phenomena is associated with the singularity of YT(jω) which happens when one of its eigenvalues λyi

approaches 0. The resonance modes can also be identified from peaks values at the magnitude modal impedance jλzij curves
in the frequency domain [23].

It must be noted that the poles of ZT(s) (i.e., the eigenvalues of the state-space matrix A) are the same as the poles of the
modal impedances of �Z(s),

�Z(s) =
1

D(s)
TZTb(s)L =

1

D(s)
�Zb(s)

�Zb(s) = TZTb(s)L = [λzb1 λzb2 ... λzbn]I. (11)
Therefore, the stability of the system in (10) can be assessed with the diagonal matrix �Z, and the analysis can be carried

out independently for each modal impedance λzi as a SISO system by applying the PND stability criterion to each λzi [13].
These modal impedances can be expressed as,

λzi(jωx) =
λzbi(jωx)

ipQ
i=1

(jωx � pi)(jωx � p�
i )

=
G(jωx)

(jωx � p0)(jωx � p�
0)

=
G(jωx)

σ2
0 + ω2

0 � ω2
x � j2σ0ωx

, (12)

where p0 = σ0 � jω0 is pair of complex conjugate poles of λzi corresponding to a certain system oscillatory mode which
match with eigenavalues λ0 of the state-space matrix A, and G(jωx) is a polynomial expression representing the rest of the
terms of λzi.

It can be observed that the modal impedance in (12) will be maximum or have a peak value at the oscillation frequency
(i.e., ωx � ω0) in the case of a poorly damped oscillatory mode (i.e., jσ0j << jω0j), which is the main concern in academia
and industry due to the following reasons: (a) a power system maintains stable operation for strongly damped modes with
large negative σi; and (b) monotonic instability caused by large positive σi occurs less often in power systems. In these cases,
the growing oscillations caused by large positive σ0 are sustained due to saturation and limiters non-linearities [4], [5].

If ωx is within the small neighbourhood of ω0, G(jωx) � G(jω0) = Gr + jGx where Gr and Gx are constant complex
numbers dependent on ω0 [30]. Thus, λzi can be further expressed as

λzi(jωx) =
σ2

0 + ω2
0 � ω2

x + j2ωxσ
2
0

(σ2
0 + ω2

0 � ω2
x)2 + (2σ0ωx)2

(Gr + jGx) = λzi;r(ωx) + jλzi;x(ωx) (13)

where

λzi;r(ωx) =
(σ2

0 + ω2
0 � ω2

x)Gr � 2ωxσ
2
0Gx

(σ2
0 + ω2

0 � ω2
x)2 + (2σ0ωx)2

λzi;x(ωx) =
(σ2

0 + ω2
0 � ω2

x)Gx + 2ωxσ
2
0Gr

(σ2
0 + ω2

0 � ω2
x)2 + (2σ0ωx)2

. (14)

The oscillatory resonance occurs at zero-crossing frequencies of λzi;x, i.e., λzi;x(ωx) = 0,

ωx1;x2 =
2Grσ0 �

p
(2Grσ0)2 + 4(σ2

0 + ω2
0)G2

x

2Gx
, (15)

where the feasible solutions correspond to positive zero-crossing frequency values with the largest magnitude [30].
In case of poorly damped oscillatory modes where jσ0j << jω0j, it implies that ωx approximately matches with the frequency

of the oscillatory mode ω0, i.e., ωx � ω0. Thus, the real part of λzi at ωx can be approximated as

λz0r(ωx � ω0) � �2Gxω0σ0

2ω0σ0
=

�Gx

(2ω0σ0)2
= kxσ0, (16)

where kx is the slope of λz0x at ωx � ω0, i.e.,

kx =

�
∂λzix(ω)

∂ω

�
!=!x

� �8ω3
xGxσ

2
0 � 8ω2

xGrσ
3
0

16ω4
0σ

4
0

� �Gx

2ω0σ2
0

. (17)



According to the above, the PMD stability criterion is summarized as follows,

PMD stability criterion: multi-infeed grid-connected VSCs systems are stable (i.e.,� 0 < 0) if and only if,
(i) kx > 0 and � zi;r < 0; or (ii) kx > 0 and � zi;r < 0 at resonant frequencies! x for all local maximums or peak values of�
� � zi (j! )

�
� (i = 1 to n).

The conditionkx > 0 indicates that� zi;x (! ) passes through zero-axis at! x from a capacitive area to an inductive area;
and the conditionkx < 0 means that� zi;x (! ) passes through zero-axis at! x from an inductive area to a capacitive area.

The second condition usually occurs at peak resonance points for inductive (i.e., positive� zi;x (! ) values which increase in
line with the frequency,j!L ) and capacitive (i.e., negative� zi;x (! ) values which decrease as long as the frequency increases,
� j=(!C )) behaviour, which is associated to physical elements in conventional power systems. However, the control structure
of power converter can also produce different inductive and capacitive behaviour (i.e., in�uence of the outer loops and the
PLL) which is not related to any physical element of the system as observed in [35] for PMSG based wind farms in weak AC
networks in the subsynchronous frequency range. In this case, both conditions, (i) and (ii), might be considered for� 0 < 0 at
the peak resonance points.

In the harmonic range as studied in Section III, the imaginary part of the VSC output impedance is not strongly affected by
the control structure and keeps the inductive behaviour produced by its �lter,L c. In this case, the condition (ii) might happen
for � 0 < 0 at the peak resonance points, which is the usual case in traditional electrical power systems.

VI. CASE STUDY

The previously described stability criteria is tested in two study cases:
� Case study I studies the effect of misleading association when dividing the system to assess the closed-loop stability. The

study network consists of two VSCs connected in parallel to a grid-equivalent impedance as shown Fig. 3(a).
� Case study II addresses the issue of assessing the stability of a large power system in the frequency domain by studying

two networks.
(a) The testing network of case study I is taken a step ahead by completing the string con�guration with a 2 km cable
between converters. An additional VSC is also connected in string as displayed in Fig. 3(b).
(b) A larger and more complex system than previous study networks as the modi�ed IEEE 14 bus system (Fig. 3(c))
introduced in [36] is used to complete the study.

(a) (b)

(c)

Fig. 3. Testing networks single-line diagrams. (a) Case study I. (b) Case study II(a). (c) Case study II(b).



The construction of the nodal admittance matrix closed-loop of case study I and II(a) is derived in this work, and the dynamic
models are veri�ed in thes-domain by comparing the poles and zeros of the impedance matrix,ZT (s) = ( Y T (s)) � 1, with
the eigenvalues of linear state-space models. The state-space models are validated with time domain simulations by comparing
the results obtained with the ones of non-linear Simulink models. No state-space model was developed for case study II(b)
because the process can be long and complex. Nevertheless, this example allows to verify the usefulness of the proposed
stability criterion in large networks and compare its performance to the GNC.

The stability assessment with the PMD stability criterion is compared with the results of eingenvalue analysis and the GNC
in linearized state-space and impedance-based Matlab models for case study I and II(a), and only in an impedance-based model
for case study II(b). The unstable resonance modes oscillation frequency of linear models is further veri�ed for all study cases
with time domain simulations of non-linear Simulink models. The system (complemented with data from [37]) and control
parameters for both networks can be found in Table I.

TABLE I
SYSTEM PARAMETERS

Symbol Value Units Symbol Value Units
Rc 0.0112 
 kppll 0.0163 rad / V s
L c 0.358 mH ki pll 0.326 rad / Vs2

Cc 141.471 � F kpol 4.0825e-6 1 / V
R tl 0.00557 
 ki ol 0.00408 1 / V s
L tl 0.184 mH kpil 0.358 H / s
Rcl 9.773e-4 
 ki il 11.25 
 / s
L cl 0.00182 mH � f fv 0.010 s
Ccl 82.28 � F � fd 1.250e-4 s

The time delay is calculated with the expression� fd = qd � sw as described in [8]. Aqd= 0.25 was initially considered for
all converters in all study cases. The switching period� sw = 1=f sw is determined forf sw = 2 kHz. Instability happens when
the time delay is modi�ed (i.e., varyingqd) [38].

A. Case study I

The testing network is a 3 bus system with 2 converters (i.e., VSC1 and and VSC2) connected to a network equivalent
impedance (Fig 3(a)). The system stability is assessed for three grouping options. Each of them associates some elements in
Y S andZN of the closed-loop function with a different approach as displayed in Fig 4. The nodal admittance matrix model
has been veri�ed in the time domain and thes-domain, where there is a good match with non-linear Simulink and linearized
state-space models for stable (i.e., �gures are not included for the sake of space) and unstable conditions in Fig 5(a) and
Fig 5(b). Instability in the system occurs in the time domain simulation at approximately 1190 Hz when the time delay of
VSC2 increases up to 0.5 times� sw as displayed Fig 5(a).

(a) (b) (c)

Fig. 4. Case study I, grouping options. (a) GO1. (b) GO2. (c) GO3.

1) Grouping option 1:The nodal admittance matrix in the grouping option 1 (GO1) is constructed according to Section III
and displayed in Fig. 4(a). The grid equivalent is connected at bus 1, and two VSCs at buses 2 and 3 respectively. The network
passive elements are grouped inY N and external elements which can cause instability by interacting with resonances of the
system inY S (i.e., no open-loop RHP poles). The system closed-loop as expressed in (7) is conformed by

ZN =

2

4
Ytl 1 + Ytl 2 � Ytl 1 � Ytl 2

� Ytl 1 Ytl 1 + Ycc1 02� 2

� Ytl 2 02� 2 Ytl 2 + Ycc2

3

5

� 1

(18)



and

Y S =

2

4
Yg 02� 2 02� 2

02� 2 Yvsc1 02� 2

02� 2 02� 2 Yvsc2

3

5 ; (19)

whereY tl1 , Y tl2 , Y cc1 , Y cc2 , Y vsc1 , Y vsc2 andY g are 2 by 2 matrices, which can be expressed in the frequency domain
or s-domain as in (3). The inputs and outputs of the system are� i n = [� i ng � q � i ng � d 02� 1 02� 1]T and � v = [� vtmv � q

� vtmv � d � vtl 1� q � vtl 1� d � vtl 2� q � vtl 2� d]T respectively.
In Fig. 5, the stability is assessed withs-domain and frequency domain stability criteria. A pair complex conjugate poles

in the RHP can be noticed in Fig. 5(b) atf 0 = 1192 Hz (i.e.,! 0 = 7488 = 2�f 0) by evaluating the system impedance matrix
ZT (s). These poles match with the eigenvalues of the state-space representation ofZT as described in the eigenvalue analysis
section. The instability can be further con�rmed in Fig. 5(c), where the� n 3 Nyquist curve ofL encircles the (-1,j 0) point in
the clockwise direction. It is worth mentioning that other Nyquist curves such as� n 6 seem to encircle (-1,j 0) but by zooming
around the critical point no encirclement was observed.

(a) (b) (c)

Fig. 5. Stability assessment GO1. (a) Time domain simulation. (b) Eigenvalue analysis. (c) GNC.

The stability assessment with the PMD stability criterion is displayed in Fig. 6. The modal impedance magnitude curve� z5

in the frequency domain has a peak at 1192 [Hz] where its real part is negative, con�rming once more the instability ofZT .
The stability assessment in GO1 agrees for all stability criteria.

Fig. 6. Stability assessment GO1, PMD stability criterion.

2) Grouping option 2:The grouping option 2 (GO2) studies the same network under the same instability conditions as GO1.
However, it mergesY cc2 andY tl 2 into Y vsc2 as displayed in Fig. 4(b). The new converter admittance isY b

vsc2 = ( Zb
vsc2) � 1 =

[(Zvsc2==Zcc2) + Z tl 2]� 1 which enables the possibility of interaction between the converter controller with resonant circuits
from the network (e.g., parallel resonances caused by the transformer inductanceZ tl 2 and the shunt capacitor of the converter


