
Universitat Politècnica de Catalunya

Programa de Doctorat:
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Catalunya (UPC) whom I received many supports during this research journey. They

have contributed in my professional training with their critiques and persistent ques-

tioning, being always available for academic discussions. They have also given me the

possibility to begin this challenging and wonderful journey from which I have learned

plenty of things.

Second, I want to thank Prof. Didier Theilliol from Université de Lorraine to accept
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Abstract

This thesis intends to provide theoretical and practical contributions on safety and con-

trol of industrial systems, especially in the mathematical form of uncertain systems. The

research is motivated by real applications, such as pasteurization plant, water networks

and autonomous systems. All of them require a specific control system to provide proper

management able to take into account their particular features and operating limits in

presence of uncertainties related to their operation and failures from component break-

downs.

Most of the real systems present nonlinear behaviors. One promising approach to

deal with non-linear systems is representing them by means of Linear Parameter Varying

(LPV) and Takagi-Sugeno (TS) models. In this thesis, an Economic Model Predictive

Control (MPC) approach based on LPV/TS models is proposed and the stability of the

proposed approach is guaranteed by using a region constraint on the terminal state.

Besides, the MPC-LPV strategy is extended to deal with systems with varying delays

affecting states and inputs. The control approach allows the controller to accommodate

the scheduling parameters and delay change. By computing the prediction of the state

variables and delay along a prediction time horizon, the system model can be modified

according to the evaluation of the estimated state and delay at each time instant.

To increase the system reliability, anticipate the appearance of faults and reduce the

operational costs, actuator health monitoring should be considered. Different strate-

gies are studied for assessing the system health. First, the damage is assessed with the

rainflow-counting algorithm that allows estimating the component fatigue and control

objective is modified by adding an extra criterion that takes into account the accumu-

lated damage. Besides, two different health-aware economic predictive control strategies

that aim to minimize the damage of components are presented.
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Then, an economic health-aware MPC approach is developed to determine the com-

ponents and system reliability in the MPC model using an LPV modeling approach

that maximizes the availability of the system by considering system reliability. Then,

another approach is proposed using chance-constraint programming to compute an op-

timal list replenishment policy based on a desired risk acceptability level and aiming

to dynamically determine safety stocks in flow-based networks to satisfy non-stationary

flow demands. Finally, an innovative health-aware control approach for autonomous

racing vehicles allowing to simultaneously control them at the driving limits and to fol-

low the desired path based on maximization of the battery RUL. The control design

is divided into two layers with different time scale, path planner and controller. The

proposed approach is formulated as an optimal on-line robust LMI based MPC driven

from Lyapunov stability. The controller gain are determined by solving an LPV-LQR

problem using LMIs and including an integral action for improving trajectory tracking.

Keywords: Model predictive control, economic optimization, linear parameter vary-

ing, Takagi-Sugeno, time-varying delay, health-aware control, reliability, remaining use-

ful life, autonomous system, industrial process.
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Resumen

Esta tesis presenta diversas contribuciones teóricas y prácticas sobre seguridad y con-

trol de sistemas industriales con dinámicas no lineales. La investigación está motivada

por diversas aplicaciones reales (una planta de pasteurización, redes de agua y sistema

autónomos). Cada uno de las cuales requiere un sistema de control espećıfico para con-

seguir una gestión adecuada capaz de tener en cuenta sus caracteŕısticas particulares y

ĺımitesó de operación en presencia de incertidumbres relacionadas con su operación y

fallas de aveŕıas de componentes.

De acuerdo con que la mayoŕıa de los sistemas reales tienen comportamientos no

lineales, puede aproximarse a ellos mediante modelos inciertos lineales politópicos como

los modelos de Lineal Variación de Parámetros (LPV) y Takagi-Sugeno (TS). Por lo

tanto, se propone un nuevo enfoque de Control Predictivo del Modelo (MPC) económico

basado en modelos LPV/TS y la estabilidad del enfoque propuesto se certifica mediante

el uso de una restricción de región en el estado terminal. Además, la estrategia MPC-

LPV se extiende en función del sistema con diferentes demoras que afectan los estados y

las entradas. El enfoque de control permite al controlador acomodar los parámetros de

programación y retrasar el cambio. Al calcular la predicción de las variables de estado

y el retraso a lo largo de un horizonte de tiempo de predicción, el modelo del sistema se

puede modificar de acuerdo con la evaluación del estado estimado y el retraso en cada

instante de tiempo.

Para aumentar la confiabilidad del sistema, anticipar la aparición de fallas y reducir

los costos operativos, se debe considerar el monitoreo del estado del actuador. Con

respecto a varios tipos de fallas del sistema, se estudian diferentes estrategias para

obtener fallas del sistema. Primero, el daño se evalúa con el algoritmo de conteo de

flujo de lluvia que permite estimar la fatiga del componente y el objetivo de control

se modifica agregando un criterio adicional que tiene en cuenta el daño acumulado.

Además, se presentan dos estrategias diferentes de control predictivo económico que
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tienen en cuenta la salud y tienen como objetivo minimizar el daño de los componentes.

Luego, se desarrolla un controlador MPC económico con conciencia de salud para

calcular los componentes y la confiabilidad del sistema en el modelo MPC utilizando un

enfoque de modelado LPV y maximiza la disponibilidad del sistema mediante la esti-

mación de la confiabilidad del sistema. Además, otra mejora considera la programación

de restricción de posibilidades para calcular una poĺıtica óptima de reposición de listas

basada en un nivel de aceptabilidad de riesgo deseado, logrando designar dinámicamente

existencias de seguridad en redes basadas en flujo para satisfacer demandas de flujo no

estacionarias. Finalmente, un enfoque innovador de control consciente de la salud para

veh́ıculos de carreras autónomos para controlarlo simultáneamente hasta los ĺımites de

conducción y seguir el camino deseado basado en la maximización de la bateŕıa RUL. El

diseño del control se divide en dos capas con diferentes escalas de tiempo, planificador

de ruta y controlador. El enfoque propuesto está formulado como un MPC robusto en

ĺınea óptimo basado en LMI impulsado por la estabilidad de Lyapunov y la śıntesis de

ganancia del controlador resuelta por el problema LPV-LQR en la formulación de LMI

con acción integral para el seguimiento de la trayectoria.

Palabras clave: Control predictivo del modelo, optimización económica, variación

lineal de parómetros, takagi-sugeno, retraso variable en el tiempo, control consciente de

la salud, confiabilidad, vida útil restante, sistema autónomo, proceso industrial.
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Resum

Aquesta tesi vol proporcionar aportacions teóriques i próctiques sobre seguretat i control

dels sistemes industrials, especialment en la forma matemática de sistemes incerts. La

investigació està motivada per aplicacions reals, com la planta de pasteurització, les

xarxes daigua i el sistema autónom, que cadascuna dfelles requereix un sistema de

control espećıfic per proporcionar una gestió adequada capaç de tenir en compte les

seves caracteŕıstiques i ĺımits operatius particulars davant d́ıncerteses relacionades amb

la seva funcionament i fallades per avaries en components.

Segons que la majoria dels sistemes reals tenen comportaments no lineals, es poden

aproximar-los mitjançant models poĺıtics lineals i incerts com els models Lineals Param-

eter Varying (LPV) i Takagi-Sugeno (TS). Per tant, es proposa un nou enfocament de

model de control predictiu (MPC) econòmic basat en models LPV / TS i l’estabilitat de

l’enfocament proposat està certificada mitjançant l’ús d’una restricció de regió a l’estat

terminal. A més, l’estratègia MPC-LPV s’estén en funció del sistema, amb diferents

retards que afecten estats i entrades. L’enfocament de control permet al controlador

acomodar els paràmetres de programació i retardar el canvi. Si es calcula la predicció

de les variables déstat i el retard al llarg dún horitzó de predicció, el model del sistema

es pot modificar segons lávaluació de léstat estimat i el retard en cada moment.

Per augmentar la fiabilitat del sistema, preveure l’aparició de falles i reduir els costos

operatius, s’ha de tenir en compte la vigilància de la salut de l’actuador. Quant a

diversos tipus de fallades del sistema, séstudien diferents estratègies per obtenir fallades

del sistema. Primer, el dany es valora amb l’algoritme de recompte de fluxos de pluja

que permet estimar la fatiga del component i l’objectiu de control es modifica afegint

un criteri addicional que tingui en compte el dany acumulat. A més, es presenten dues

estratègies de control predictiu econòmic diferents que tenen per objectiu minimitzar els

danys dels components.
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A continuació, es desenvolupa un controlador MPC econòmic que té la salut

econòmica per calcular els components i la fiabilitat del sistema en el model MPC

mitjançant un enfocament de modelat LPV i maximitza la disponibilitat del sistema

mitjançant l’estimació de la fiabilitat del sistema. Addicionalment, una altra millora con-

sidera que la programació de restricció d’atzar calcula una poĺıtica òptima de reposició

de llistes basada en un nivell d’acceptabilitat del risc desitjat, aconseguint designar

dinàmicament les existències de seguretat a les xarxes basades en fluxos per satisfer les

demandes de flux no estacionàries. Finalment, un innovador enfocament de control de

salut per als vehicles de cursa autònoms per controlar-lo simultàniament fins als ĺımits

de conducció i seguir el camı́ desitjat basat en la maximització del RUL de la bateria. El

disseny del control es divideix en dues capes amb escala de temps diferent, planificador

de ruta i controlador. L’enfocament proposat es formula com un MPC òptim en ĺınia

basat en LMI basat en LMI impulsat des de l’estabilitat de Lyapunov i la śıntesi de

guanys del controlador resolts pel problema LPV-LQR en la formulació de LMI amb

acció integral de seguiment de la trajectòria.

Paraules clau:Control de predicció del model, optimització econòmica, variació

lineal de paràmetres, takagi-sugeno, retard variable en el temps, control conscient de la

salut, fiabilitat, vida útil permanent, sistema autònom, procés industrial.
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Notation

Throughout the thesis...

{.,...} set or sequence

∅ empty set

i ∈ X i is an element of the set X

R set of real numbers

R+ set of non-negative real numbers, defined as R+ , R \(−∞, 0]

R≥c R≥c := {x ∈ R+|x ≥ c} for some c ∈ R+

R>c R>c := {x ∈ R|x > c} for some c ∈ R
Rm×n space of n by m matrices with real entries

Z set of integer numbers

Z+ set of non-negative integer numbers

Z≥c Z≥c := {x ∈ Z+|x ≥ c} for some c ∈ Z+

Z>c Z>c := {x ∈ Z|x > c} for some c ∈ Z
> (<) positive (negative) definite

≥ (≤) positive (negative) semi-definite

X−1 inverse of the matrix X ∈ Rm×n

X(⊂) ⊆ Y set X is a (strict) subset of Y
X× Y Cartesian product of the sets X and Y, i.e., X× Y = {(x, y)|x ∈ X, y ∈ Y}
Xn n-dimensional Cartesian product X× X× ...× X, for some n ∈ Z ≥ 0

x>(X>) transpose of a vectorx ∈ Rn(matrixX ∈ Rm×n)

Xij element in the i-th row and j-th column of the matrix X ∈ Rm×n

‖.‖ the spectral norm for matrices

‖x‖2 2-norm of a vector x is defined by ‖x‖2 =
√
x>x

P[·] probability measure

E[·] expectation with respect to probability measure P[·]
⊕ direct sum of matrices (block diagonal concatenation)
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diag(·) operator that builds a diagonal matrix with the elements of its argument

N (x,
∑
x) multivariate normal distribution of x with mean x and covariance

∑
x

∗ a term induced by (Hermitian) symmetry in a block matrix∏n
k=1 product of all values in range of series

∏n
k=1 xk means x1x2...xn

xk the sub-index k indicates the discrete time

xk+j|k prediction of x made at time instant k for the time instant k + j,

where k, j ∈ Z≤0 .In the argument k + j|k, the first element k + j

indicates discrete time prediction, whereas the second element k

indicates the actual discrete time
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Acronyms

MPC Model Predictive Control

EMPC Economic Model Predictive Control

NEMPC Nonlinear Economic Model Predictive Control

RMPC Robust Model Predictive Control

CC-MPC Chance-Constrained MPC

PHM Prognosis and Health Management

LPV Linear parameter varying

LTI Linear Time Invariant

LTV Linear Time Varying

TS Takagi-Sugeno

RUL Remaining Useful Life

HAC Health- Aware Control

LMI linear matrix inequalitie

LQR Linear Quadratic Regulator

DWN Drinking Water Network

OCP Optimal Control Problem

QP Quadratic Programming

Co Convex hull

RFC Rainflow Counting Algorithm

FHOP Finite-time Horizon Optimization Problem

SoC State of Charge

HTST High-Temperature Short-Time
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Chapter 1

Introduction

This chapter presents the introduction of this thesis document. The aim of this chapter is

to describe the main motivations which have originated this thesis as described in Section

1.1. Then, the thesis objectives are presented in Section 1.2. Finally, in Section 1.3, a

brief outline of the structure of this dissertation is introduced, providing an abstract of

each chapter.

1.1 Motivation

In modern times of industrialization, the investigation of advanced control algorithms

for complex dynamic systems is still very active. Controlling these complex systems is

one of the most important problems in control engineering, but also one of the most

challenging. Another essential but just as a demanding topic is including robustness

against uncertainties in the design of the control system. On the other hand, regularly,

the time delay arises in the dynamics of the systems, such as communication systems,

chemical processes, and transportation systems [82, 179, 23]. One of the main successful

and widespread advanced control methodologies in industrial processes is Model Pre-

dictive Control (MPC). MPC is quite popular in the process industry for the automatic

control of process units under operating constraints and has attracted a considerable

research effort in the last three decades. MPC based on linear models is typically used

in process control where the on-line optimization problem can be formulated as a convex

optimization problem by either using Linear Programming (LP) or Quadratic Program-

ming (QP). However, most of the real-time processes are nonlinear. Thus, when the

1
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operating conditions undergo significant changes, the performance of linear MPC can

deteriorate drastically. However, most of the real systems show nonlinear behaviors

that can be approximated by polytopic linear uncertain models. In order to reduce the

conservativeness, the idea of controlling nonlinear systems considering linear parameter

varying (LPV) and Takagi-Sugeno (TS) models have been widely investigated in the

literature [147, 191, 207, 33]. In particular, the LPV and the TS paradigms have pro-

vided an elegant way to apply linear techniques to nonlinear systems with theoretical

guarantees of stability and performance.

The application of control strategies by considering the system and components

reliability becomes necessary to ensure the quality of service. In order to increase the

system reliability, anticipate the appearance of faults and reduce the operational costs,

actuator health monitoring should be considered. Recently, system reliability has been

taken into account in the control algorithm through a Prognosis and Health Management

(PHM) framework using reliability. Reliability is the ability of a system or component

to perform its expected functions. On the one hand, it a systematic strategy that is

utilized to assess the state-of-health of a system in its actual life-cycle conditions, predict

failure progression, and decrease damage via control actions. And, on the other hand,

it is principal process in maintenance strategies based on the remaining useful life of the

equipment, which makes it possible to avoid critical damages and reducing costs. The

Remaining Useful Life (RUL) is the useful life that remains on an asset at a particular

time of operation. Its estimation is fundamental for condition based maintenance, health

management and prognostics. Therefore, it can be noted that the reliability estimation

of equipment as well as its RUL prediction is necessary to establish if the mission goals

can be achieved. Since the prediction of RUL is critical for operations and decision

making, it is imperative that the RUL is determined accurately.

Merging the LPV/TS modeling, the MPC strategy, and the PHM opens up a new

view to control engineering of industrial process. In this case, open issues that motivate

further research regarding how to design the control algorithm in the MPC framework

for considering the information about system health in order to extend the useful life of

the system. Therefore, the motivation of this PhD thesis is to develop the new MPC

strategies, specifically, economic MPC based on the LPV/TS models of the industrial

process and as well as a methodology for the design of a Health-Aware Control (HAC)

strategy that takes into account the system and actuators state-of-health in order to

extend its useful life.
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1.2 Thesis Objectives

The overall objective of this thesis is to design predictive controllers based on LPV/TS

models for complex industrial systems subject to delays, constraints, and uncertainty in

order to improve the performance of the closed-loop process from the energy point of

view. Moreover, the controller will be upgraded such that the system health is considered

in the control objective. In this way, the control methodology will provide major benefits

such as decreasing maintenance costs, avoiding incipient and catastrophic failures and

extending equipment uptime.

Moreover, some specific objectives of this thesis have been proposed as follows:

Objective I Develop an economic MPC strategy for nonlinear systems that can be

represented by means of LPV/TS models.

Objective II Investigate the MPC strategies for LPV/TS models in order to guarantee

the stability and performance.

Objective III Design an MPC controller for nonlinear systems with varying delays

affecting states and inputs using LPV framework.

Objective IV Modeling the degradation of actuators and reliability of sys-

tem/actuators as a function of affected by control actions.

Objective V Design and Develop a health-aware strategy for a complex system to

extend the components and system reliability and RUL of the system by using the

model predictive control and LPV LQR approaches.

Objective VI Design and develop an economic health-aware MPC for a complex sys-

tem to extend the components and system reliability based on a finite horizon

stochastic optimization problem with joint probabilistic (chance) constraints in

order to manage dynamically designate safety stocks in the system.

Objective VII Validate the proposed approaches is complex systems as a indus-

trial process (pasteurization plant and water network) and complex systems (au-

tonomous vehicle).
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1.3 Outline of the Thesis

The structure of this thesis is reported in this section mentioning different parts and

chapters. Thereby, a short abstract and related published papers are provided for each

chapter.

This dissertation is organized into four parts:

Part I entitled Background and case studies, presents the previous results that

establish a contribution to the state-of-the-art of control strategies based on LPV /TS

models and description of application used in this thesis. It is made up of two chapters:

• Chapter 2: Research Background

This chapter background on classical and economic MPC controller with particu-

lar emphasis on LPV and TS systems is recalled. Known results about analysis,

modeling, and control of LPV/TS models are presented and discussed. More-

over, the fundamental concepts and definitions of PHM and HAC by providing

bibliographical references to the main contributions in this area are introduced.

• Chapter 3: Case studies

This chapter presents case studies considered in this dissertation. Firstly, a non-

linear model of the pasteurization plant its validation with real data and its em-

bedding in the LPV/TS models. Then, a part of the drinking water network of the

city of Barcelona (Spain) is described as another case study. Finally, the model of

autonomous racing vehicle is presented in detail.

Part II, entitled Economic MPC approaches based on LPV/TS , proposes an

economic MPC based on LPV /TS models with and without delays and guaranteeing

their stability. It is made up of three chapters:

• Chapter 4: A new design of economic model predictive control based

on LPV/T-S Models

This chapter proposes an EMPC strategy based on an LPV/T-S models. Moreover,

for solving the economic optimization problem by using a series of QP problems

at each time instant, a new iterative approach is introduced that reduces the

computational load compared to the solution of a non-linear optimization problem.

The stability of the proposed approach is analyzed presenting the conditions to be
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satisfied. The proposed algorithm for EMPC strategy based on the quasi-LPV/T-

S is illustrated through a pasteurization plant as a case study that is described by

a quasi-LPV model/ T-S models. This chapter is based on the following papers:

F. Karimi Pour, V. Puig and C. Ocampo-Martinez. Comparative assess-

ment of LPV-based predictive control strategies for a pasteurization plant. 4th

International Conference on Control, Decision and Information Technologies

(CoDIT), (pp. 0821-0826). IEEE, Spain, 2017.

F. Karimi Pour, V. Puig and C. Ocampo-Martinez. Economic predictive

control of a pasteurization plant using a linear parameter varying model. In

Computer Aided Chemical Engineering, (Vol. 40, pp. 1573-1578). Elsevier,

2017.

F. Karimi Pour, C. Ocampo-Martinez and V. Puig . Output-feedback

model predictive control of a pasteurization pilot plant based on an LPV

model. In Journal of Physics: Conference Series (Vol. 783, No. 1, p.

012029), France, 2017.

F. Karimi Pour, V. Puig and C. Ocampo-Martinez . A new Design of

Economic model Predictive Control based on LPV systems. To be submitted

Journal of Process control.

F. Karimi Pour, V. Puig and C. Ocampo-Martinez . Takagi-Sugeno based

Economic Predictive Control of a Pasteurization Plan. To be submitted In-

ternational Journal of Computer Applications in Chemical Engineering.

• Chapter 5: Economic model predictive control based on LPV models

with parameter varying delays

This chapter presents an MPC strategy based on LPV models with varying delays

affecting states and inputs. By computing the prediction of the state variables and

delay along a prediction time horizon, the system model can be modified according

to the evaluation of the estimated state and delay at each time instant. More-

over, the solution of the optimization problem associated with the MPC design is

achieved by solving a series of QP problem at each time instant.The pasteuriza-

tion plant system is used as a case study to demonstrate the effectiveness of the

proposed approach. This chapter is based on the following papers:

F. Karimi Pour, V. Puig and C. Ocampo-Martinez. Comparison of Set-

membership and Interval Observer Approaches for State Estimation of Un-

certain Systems. 18th European Control Conference (ECC), (pp. pp. 3644-
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3649) IEEE, Denmark, 2019.

Part III, entitled Health-Aware Control , present the contributions to the state of

the art on Health Aware Control (HAC). It is made up of four chapters:

• Chapter 6: Multi-layer health-aware economic predictive control based

on Components Fatigue

This chapter proposes a multi-layer health-aware economic predictive control strat-

egy that aims to minimize the damage of components in a pasteurization plant.

The damage is assessed with the rainflow-counting algorithm that allows estimat-

ing the components fatigue. In order to achieve the best minimal accumulated

damage and operational costs, a multi-layer control scheme is proposed, where the

solution of the dynamic optimization problem is obtained from the model in two

different time scales. Finally, to achieve the advisable trade-off between minimal

accumulated damage and operational costs, both control strategies are compared

in simulation over for the pasteurization case study. This chapter is based on the

following papers:

F. Karimi Pour, V. Puig and C. Ocampo-Martinez. Multi-layer health-

aware economic predictive control of a pasteurization pilot plant. Interna-

tional Journal of Applied Mathematics and Computer Science,28(1), 97-110),

2018.

F. Karimi Pour, V. Puig and C. Ocampo-Martinez. Health-aware model

predictive control of pasteurization plant. In Journal of Physics: Conference

Series,(Vol. 783, No. 1, p. 012030), 2017.

• Chapter 7: Economic health-aware LPV-MPC based on a system

reliability and remaining useful life assessment

This chapter presents a new strategy of health-aware MPC for industrial processes.

The new approach is based on an economic health-aware MPC that involves an

extra objective: to extend the components and system reliability. The compo-

nents and system reliability are incorporated in the MPC model using an LPV

modelling approach. To exhibit the advantage of taking into account system and

component reliability, computed on-line in an LPV-based MPC algorithm. More-

over, this approach is improved to extend the components and system reliability
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based on a finite horizon stochastic optimization problem with joint probabilistic

(chance) constraints. The improvement is that the considered chance-constraint

programming allows computing an optimal tank storage value based on a desired

risk acceptability level, managing to dynamically designate safety stocks in flow-

based networks to satisfy non-stationary flow demands. A case study based on a

part of the drinking water transport network of Barcelona is used for illustrating

the performance of the proposed approach. This chapter is based on the following

papers:

F. Karimi Pour, V. Puig, and G. Cembrano. Economic Health-Aware LPV-

MPC Based on System Reliability Assessment for Water Transport Network.

Energies, 12(15), 3015,2019.

F. Karimi Pour, V. Puig, and G. Cembrano. Economic Health-aware MPC-

LPV based on DBN Reliability model for Water Transport Network. 6th

International Conference on Control, Decision and Information Technologies

(CoDIT),(pp. 1408-1413). IEEE, France,2019.

F. Karimi Pour, V. Puig, and G. Cembrano. Health-aware LPV-MPC

based on system reliability assessment for drinking water networks. IEEE

Conference on Control Technology and Applications (CCTA),(pp. 187-192).

IEEE, Denmark, 2018.

F. Karimi Pour, V. Puig, and G. Cembrano. Health-aware LPV-MPC

based on a reliability-based remaining useful life assessment. 10th IFAC

Symposium on Fault Detection, Supervision and Safety for Technical Pro-

cesses, (SAFEPROCESS),IFAC-Papers OnLine,51(24), 1285-1291, Poland,

2018.

F. Karimi Pour, V. Puig, and G. Cembrano. Economic MPC-LPV Control

for the Operational Management of Water Distribution Networks. IFAC

Workshop on Control Methods for Water Resource Systems (CMWRS 2019),

IFAC-PapersOnLine, 52(23), 88-93, Netherlands, 2019.

F. Karimi Pour, V. Puig, and G. Cembrano. Economic Reliability-Aware

MPC-LPV for Operational Management of Flow-based Water Networks in-

cluding Chance-Constraints Programming. Submitted to Processes.

F. Karimi Pour and V. Puig. Reliable Aware Model Predictive Control in-

cluding Fault tolerant ability for Drinking Water Transport Networks. Sub-

mitted to 10st IFAC World Congress, 2020.
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• Chapter 8: Health-aware optimization-based control design for au-

tonomous racing vehicle

This chapter proposes an innovative health-aware control approach using the Lin-

ear Matrix Inequality (LMI), where the objective consists in preserving the state

of charge (SoC) and maximizing the battery RUL based on optimizing the lap time

to obtain the best trajectory under the constraints of the circuit. The proposed

approach is solved by an optimal online robust LMI based Model Predictive Con-

trol (MPC) driven from Lyapunov stability. The proposed approach is evaluated

in a simulation of autonomous vehicles. This chapter is based on the following

papers:

F. Karimi Pour, D. Theilliol, V. Puig, and G. Cembrano. Health-

aware Optimization-based Control Design: Application to Autonomous Rac-

ing based State of Charge. 4th In 2019 4th Conference on Control and Fault

Tolerant Systems (SysTol), (pp. 244-249), IEEE. Morocco, 2019.

F. Karimi Pour, D. Theilliol, V. Puig, and G. Cembrano. Health-aware

Control Design based on Remaining Useful Life Estimation for Autonomous

Racing Vehicle. Submitted to ISA Transactions.

Part IV, entitled Conclusions and perspectives, is the final part of this thesis that

is concluded by:

• Chapter 9: Conclusions and future research

This chapter summarizes the contributions provided in this thesis and presents

the main concluding ideas and open issues for future research.
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Chapter 2

Research Background

This chapter presents a literature review related to the main topics treated in this

doctoral dissertation. Firstly, a review and the formulations of model predictive con-

trol (MPC) and economic model predictive control (EMPC) are discussed. Secondly,

a literature review for the Linear Parameter Varying (LPV) and Takagi-Sugeno (TS)

models and control strategies, with a special emphasis on the MPC strategy, based both

paradigms is presented. Then, preliminary concepts regarding Prognostics and Health

Management (PHM), damage and reliability, which are used throughout the thesis, are

presented. Finally, some relevant works related to improve system reliability and prevent

the occurrence of system failures are mentioned.

2.1 Model Predictive Control

2.1.1 General Consideration of MPC and EMPC

Model Predictive Control (MPC) is an effective control methodology widely used in both

the academic and industrial fields and treated as a powerful approach with proven abil-

ity to deal with a lot of industrial problems. MPC refers to a class of control algorithms

that use an explicit dynamic process model to predict the future response of the plant

and optimize its performance [179]. At each control interval, the MPC algorithm com-

putes an open-loop sequence of manipulated variable adjustments in order to optimize

the future plant behavior. The MPC problem is formulated as a finite-horizon open-

loop optimal control problem, subject to system dynamics and constraints involving

11
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physical bounds for system variables (inputs, states, outputs), exogenous disturbances

and operational policies [130]. According to [138], there are several specific variants of

predictive control that are listed as follows: dynamic matrix control (DMC), extended

prediction self-adaptive control (EPSAC), generalized predictive control (GPC), model

algorithmic control (MAC), predictive functional control (PFC), quadratic dynamic ma-

trix control (QDMC), sequential open-loop optimization (SOLO) and model predictive

heuristic control (MPHC). For more detailed information about those algorithms and

their developments, see [32, 151, 178, 138]. MPC includes three essential structures:

an explicit internal model, the receding horizon idea, and computation of the control

signal by optimizing the predicted plant behavior. The core of MPC consists of the

receding horizon idea; in fact, only the first control action of the optimal sequence is

applied to the plant. At the next sampling instant, the optimization problem is solved

again with new measurements, and the control input is updated. Due to its ability to

handle constraints on inputs, states, uncertainty and output, the method has received

much interest in both academic community and industry over the last three decades

[144, 179].

• It handles multi-variable problem naturally, being quite well adapted to the ma-

jority of industrial system that present the multi-variable characteristic.

• It can take into account the actuator limitations and cope with input, state and

output constraints in a systematic way.

• It allows the system operation closer to constraints, which frequently leads to more

profitable operation.

• Control update rates in predictive control are relatively low, so that there is plenty

of time for a necessary on-line computation.

• Because of the use of the receding horizon principle, it has satisfactory accommo-

dation ability to several kinds of disturbances and noise.

For more details, [32, 216] could be referred.

Conventionally, standard tracking MPC is formulated as an optimization problem

that penalizes the tracking error [179, 183]. Although this method ensures that the

set-point is achieved in a reasonable amount of time, it does not guarantee that the

transition between set-points is achieved in an economically efficient way. To overcome
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this problem, MPC has been adapted to solve Optimal Control Problem (OCP) with

general cost functions. In this way, Economic MPC (EMPC) contributes a systematic

approach for optimizing an economic performance [55, 47]. EMPC has received much

attention because of its capability of integrating real-time process economic optimiza-

tion and feedback control into an optimal control framework. The optimization problem

of EMPC includes three principal parts: a cost function with a stage cost that consid-

ers the economic goals to be optimized, system constraints containing state and input

constraints as well as other constraints such as stability and performance constraints,

and a nonlinear dynamic model to predict the future evolution of the system (and thus,

being able to select the optimal input profile with respect to the economic cost over

a finite-time prediction horizon) [54]. Unlike tracking MPC, that minimizes a positive

definite error cost function, EMPC can consider economic functions as stage costs.

2.1.2 MPC and EMPC Strategies Descriptions

Although there exist some applications of MPC with continuous-time models, [216], it

is more general to design MPC controllers in discrete time [183, 140, 138], and by using

a state space model of the system. Hence, consider a system whose discrete-time model

is given by

xk+1 = f(xk, uk, dk) (2.1)

where the discrete-time variable is denoted by k ∈ I≥0. The vectors x ∈ X ⊆ Rnx ,

u ∈ U ⊆ Rnu , and d ∈ Rnd . Besides, the sets X and U are defined as feasible sets

according to physical and/or operational constraints for the system states and control

inputs:

x ∈ X M
={xk ∈ Rnx |x ≤ xk ≤ x}, ∀k, (2.2a)

u ∈ U M
={uk ∈ Rnu |u ≤ uk ≤ u}, ∀k, (2.2b)

where vectors x ∈ Rnx and x ∈ Rnx establish the minimum and maximum possible

state values of the system, respectively. Analogously, u ∈ Rnu and u ∈ Rnu determine

the minimum and maximum possible value of manipulated variables, respectively. The

function f : Rnx × Rnu −→ Rnx is an arbitrary system state function. Let

ũk
M
=
(
u0|k, u1|k, ..., uNp−1|k

)
, (2.3)
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be a feasible control input sequence over a fixed-time prediction horizon denoted by

Np ∈ I>0. Notice that (2.3) depends on the initial condition x0|k
M
= xk. Moreover, the

predictive control approach involves the solution of an open-loop optimization problem

of the following general form:

min
ũk

J(xk, ũk) = Jf (xNp|k) +

Np−1∑
i=0

Jl(xi|k, ui|k), (2.4a)

subject to

xi+1|k = f(xi|k, ui|k, di|k), ∀i ∈ [0, Np], (2.4b)

xi|k, ∈ X ∀i ∈ [0, Np], (2.4c)

ui|k, ∈ U ∀i ∈ [0, Np − 1], (2.4d)

where the function Jl : Rnx × Rnu −→ R allows to determine the cost throughout the

prediction horizon Np, and the function Jf : Rnx −→ R denotes the terminal cost.

Moreover, functions in (2.4a) must be suitably chosen in order to guarantee the stability

of the closed-loop system as discussed in [183, 216].

Assuming that the optimization problem in (2.4) has a solution there will be an

optimal sequence of control inputs

ũ∗k
M
=
(
u∗0|k, u

∗
1|k, ..., u

∗
Np−1|k

)
. (2.5)

Then, according to the receding horizon philosophy, u∗0|k is applied to the system,

and the whole process is repeated for the next time instant k ∈ I≥0. Algorithm 2.1

presents the MPC strategy.

Algorithm 2.1 General procedure for the computation of the MPC law

1: Measure the state xk at time k
2: Compute ũ∗k

M
=
(
u∗0|k, u

∗
1|k, ..., u

∗
Np−1|k

)
by solving the optimization problem (2.4)

3: Apply only the first element uk
M
= u∗0|k to the system

4: k ← k + 1. Go to 1

Conventionally, standard tracking MPC is formulated as an optimization problem

that penalizes the tracking error [179, 183]. Although this method ensures that the

set-point is achieved in a reasonable amount of time, it does not guarantee that the



2.1 : Model Predictive Control 15

transition between set-points is achieved in an economically efficient way. To overcome

this problem, MPC has been adapted to solve OCPs with general cost functions. In

this way, Economic MPC (EMPC) contributes a systematic approach for optimizing

an economic performance [55, 47]. In the EMPC, the operational costs are directly

considered as the objective function instead of penalising the tracking error with respect

to the targets [181]. The controller design problem is based on obtaining a control law

that minimizes a specific performance cost index

L(xk, ũk) =

Np−1∑
i=0

`(xi|k, ui|k), ` : X× U −→ R. (2.6)

where `(xk, uk) is an economic stage cost. Given the economic stage cost, the economic

controller should conduct the system to the optimal reachable steady state, that is

determined by using the implicit form of the optimization as next definition follows:

Definition 2.1. [63] The optimal reachable steady state and input, (xs, us), satisfy

(xs, us) = argmin
(x,u)

`(x, u), (2.7a)

subject to:

x = f(x, u, d),

x ∈ X, u ∈ U.

�

In the case of tracking MPC, the stage cost is typically designated as a positive

definite function with regard to (xs, us). In EMPC, `(x, u) is chosen according to some

economic criteria such as production cost, energy saving and efficiency, etc [143, 78].

These economic criteria have to be minimized or maximized in terms of profits and

environmental issues according to the particular system. Therefore, in EMPC, `(x, u)

is not necessarily positive definite with regards to (xs, us). The EMPC control law is

derived from the solution of the optimization problem

min
xk,ũk

L(xk, ũk) =

Np−1∑
i=0

`(xi|k, ui|k), (2.8a)



16 Chapter 2 : Research Background

subject to:

xi+1|k = f(xi|k, ui|k, di|k), ∀i ∈ [0, Np], (2.8b)

ui|k, ∈ U ∀i ∈ [0, Np − 1], (2.8c)

xi|k, ∈ X ∀i ∈ [0, Np], (2.8d)

xNp = xs, (2.8e)

and, according to the receding horizon form, the same procedure of the MPC strategy

is applied for the EMPC controller.

2.2 LPV/TS Modeling

Most of the real systems show nonlinear behaviours that can be approximated by poly-

topic linear uncertain models [196]. In order to reduce the conservativeness of controlling

the nonlinear system and increasing the systematic analysis of gain-scheduled controllers,

two most successful approaches, Linear Parameter Varying (LPV) and the Takagi-

Sugeno (TS) paradigms, have been widely studied in the literature [175, 176, 191, 207].

2.2.1 Linear Parameter Varying Modeling

The LPV paradigm was introduced by Shamma [195] for the analysis of the control

design practice of gain-scheduling [196]. In brief, gain-scheduling is a control design

approach that constructs a nonlinear controller for a nonlinear plant by patching together

a collection of linear controllers. Specifically, LPV models are a particular class of

LTV systems, where the time-varying elements depend on measurable parameters that

can vary over time [220]. The LPV framework is proved to be suitable for controlling

nonlinear systems by embedding the nonlinearities in the varying parameters, that will

depend on some endogenous signals, e.g. states, inputs or outputs. In this case, the

system is referred to as quasi-LPV, to make a further distinction with respect to pure

LPV systems, where the varying parameters only depend on exogenous signals [141].

The general state-space representation for discrete-time LPV model is described as

xk+1 =A(θk)xk +B(θk)uk, (2.9a)

yk =C(θk)xk +D(θk)uk, (2.9b)
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where the system matrices A(θk) ∈ Rnx×nx , B(θk) ∈ Rnx×nu , C(θk) ∈ Rny×nx and

D(θk) ∈ Rny×nu are varying matrices of appropriate dimensions.

Among the available analysis approaches, the most widely-used, at least taking into

account the number of publications, is the polytopic approach [81]. An LPV system is

called polytopic when it can be represented by matrices A(θk), B(θk), C(θk) and D(θk),

that are assumed to depend linearly on the parameter vector θk := [θ1,k, θ2,k, ..., θnθ,k]
T ∈

RN , which belongs to a convex polytope Θ defined by

Θ :=

θk ∈ Rnθ |
N∑
j=1

θj,k = 1, θj,k ≥ 0

 , (2.10)

where N is the number of vertices of the polytope. Hence, as θk varies inside the convex

polytope Θ, the matrices of the system (2.9) vary inside a corresponding polytope Ψ,

which is defined by the convex hull (Co) of N local matrix vertices [Aj , Bj , Cj , Dj ],

j ∈ [1, .., N ],

Ψ := Co

{[
A1 B1

C1 D1

]
,

[
A2 B2

C2 D2

]
, ...

[
AN BN

CN DN

]}
. (2.11)

and the matrices of the (2.9) can be rewritten as

A(θk) =
N∑
j=1

θj,kAj , B(θk) =
N∑
j=1

θj,kBj ,

C(θk) =
N∑
j=1

θj,kCj , D(θk) =
N∑
j=1

θj,kDj .

(2.12)

The polytopic LPV model is an appropriate choice for addressing the nonlinear

system control. Not only it can describe the inherent nonlinearity and time-varying

characteristics of the system, but it also allows controller designers to use linear-like

control theory for nonlinear system control. Therefore, it is suitable for the design of

MPC controllers that are scheduled based on some measurable variables. For this reason,

in recent years, the use of this type of system is extended for MPC applications (see,

e.g., [124][198]).

However, in real processes, the precise model parameters are seldom available and

hence Robust Model Predictive Control (RMPC) is more practical for real applica-

tions.In RMPC, the model parametric uncertainty can be dealt with within the frame
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of LPV systems. For the online RMPC, at each time, a min-max optimization problem

is frequently exploited to minimize the performance function of LPV systems, which

evaluates all the possible realization of model parametric uncertainty [115]. However,

this approach can lead to conservative results. To reduce the conservativeness, a class

of linear parameter-dependent Lyapunov functions has been introduced [215]. Then, a

linear controller is computed at every time instant. The control performance improve-

ments are remarkable at the price of an increased number of LMI conditions. In [49],

the RMPC method with the help of norm-bounding technology to restrict the states

affected by disturbances into the invariant ellipsoid is presented. In addition, in [65]

the special class of non-linear parameter-dependent Lyapunov functions is used and a

non-linear scheduled control law is obtained, which leads to further improvement of the

control performance. More recently, a less conservative RMPC controller was presented

based on polytopic LPV model when the input matrix is unique [29].

As highlighted in the previous subsection, in LPV systems, parameters take values

in prespecified sets and the dynamic characteristics involve time-varying parameters.

In the real world, many non-linear systems of practical interest can be represented as

quasi-LPV systems, where quasi is added since the scheduling parameters do not de-

pend only on external signals, but also on a system variable [188]. In other words, the

model parameters are exactly known at the current time, but their future evolutions

are uncertain and contained in the prescribed bounded sets. In some practical applica-

tions, the varying parameters (such as the atmospheric temperature) can be measured

and their change rates are limited, i.e. the current parameters can be known and the

rates of parameter changes are bounded. For this category of LPV systems, if the in-

formation about the parameters can be used properly, then the system model in the

future can be accurately predicted. By using the predicted future system behavior in

the RMPC scheme, a better control performance could be achieved. This inspires the

works of [134], [35], [136], [167]. In [126], [91], the controller design considers the time-

varying parameters of quasi-LPV systems having the bounds on their rate of variation.

[226] considers the quasi-LPV systems with a parameter-dependent control law. In this

way, LPV models allow applying powerful linear-like design tools to complex non-linear

models.

A Lyapunov-based EMPC (LEMPC) scheme for nonlinear systems that it is able to

manage asynchronous and delayed measurements and can be extended to distributed

MPC is proposed in [79, 39]. However, much of the research up to now on EMPC
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and stability issue for nonlinear systems has not considered the use of LPV models.

Moreover, nonlinear economic MPC (NEMPC) is computationally quite expensive and,

in general, there is no guarantee that the solution of the nonlinear optimization problem

is the global optimum. Alternatively, the optimization problem based on a nonlinear

system may be converted into a QP problem by using linearizing the non-linear model at

each iteration. [117]. However, in this method, it is not only required to update online

the system matrices applying the linearization method but also the equilibrium points

should be updated when the operating point changes, which is increases computational

time.

2.2.2 Takagi-Sugeno Modeling

A nonlinear system can be approximated through the TS fuzzy models. The TS models,

as introduced by Takagi and Sugeno [206], is described by fuzzy IF–THEN rules which

represent local linear input-output relations of a nonlinear system [207]. The main

feature of a TS fuzzy model is to express the local dynamics of each fuzzy implication

(rule) by a linear system model [38, 197]. TS fuzzy models are universal approximators,

since they can approximate any smooth nonlinear function to any degree of accuracy

[62, 90, 207, 227], so that they can represent complex nonlinear systems. TS models

are described by local models combined together by utilizing fuzzy IF–THEN rules as

follows:

IF θ1(k) is Mi1 and ... and θp(k) is Mip,

THEN

{
xk+1 = Aixk +Biuk,

yk = Cixk +Diuk i = 1, 2, ..., r,
(2.13)

where r is the number of model rules, Mij (j = 1, 2, ..., p) are the fuzzy sets and

θ1(k), ..., θp(k) are premise variables that can be functions of the state variables, ex-

ternal disturbances and/or time. Every linear model denoted by Aixk +Biuk is named

a subsystem. The TS systems can be modeled by means of sector-nonlinearity method-

ology [106, 160], which ensures that, the interpolated models are an exact formulation of

the nonlinear system, in a limited local region on the state space. Evidently, the models

are interpolated by membership functions. Then, the state and output equations of the
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TS models can be expressed as follows:

xk+1 =

r∑
i=1

wi(θk){Aixk +Biuk}

r∑
i=1

wi(θk)

,

=
r∑
i=1

hi(θk){Aixk +Biuk},

(2.14)

yk =

r∑
i=1

wi(θk){Cixk +Diuk}

r∑
i=1

wi(θk)

,

=
r∑
i=1

hi(θk){Cixk +Diuk},

(2.15)

where θk = [θi(k), ..., θp(k)] is the vector comprising all the singular premise variables.

In addition, wi(θk) and hi(θk) are written as follows:

wi(θk) =

p∏
j=1

Mij(θj(k)), (2.16)

hi(θk) =
wi(θk)

r∑
i=1

wi(θ(k))

, (2.17)

for all k. The term Mij(θj(k)) is a degree of membership of θj(k) in Mij and hi(θk) is

such that 
r∑
i=1

hi(θ(k)) = 1,

hi(θk) ≥ 0, i = 1, 2, ..., r.

(2.18a)

One of the first references based on fuzzy MPC with a certain entity is found in [46]

where the TS models are introduced in the MPC due to the capacity of these models

to be obtained online. A multi-step prediction is implemented where a fuzzy controller

obtained as a set. In the same line, there exist some works such as [139, 221]. Other
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interesting applications of the MPC to TS fuzzy models are shown in [190], in this article

the authors treat predictive control with all its basic ingredients. The optimization

problem is obtained with the linearized model in a plausible prediction of the model.

Moreover, in [128, 2, 204] the authors are used the same method. In [105] is used a

linear MPC by freezing the memberships at a particular instant and assuming that

they will be constant in the future; it might work in practice, but it lacks theoretical

justification in fast transients. The work [135] presents an interesting approach in which

a sequence of quadratic cost bounds and state-feedback gains solves (sub-optimally) the

MPC problem. The great advantage is its computational tractability; however, it is well

known that even for the linear case, under constraints, the optimal value function is not

quadratic in the state, so the approach is conservative.

An output-feedback MPC controller based on the TS model that includes bounded

disturbance is designed in [48]. Killian et al. [114] investigated a fuzzy MPC controller

based on TS fuzzy models. In this approach, a linear controller is intended for each rule of

the general TS framework. At that point, the general MPC law is obtained by the fuzzy

combination of those controllers. In [133], an MPC controller is designed based on the

interval type-2 TS fuzzy models. The membership functions of the Parallel Distributed

Compensation (PDC) controller can be separated from those of the TS fuzzy model

that implements relaxation by using the PDC controller. One fuzzy MPC controller is

presented for discrete-time TS framework based on piecewise Lyapunov functions (PLF)

in [230]. Nevertheless, the PLF are not suitable for a TS model obtained by the sector

nonlinearity approach [192].

Most of the previous studies have been only carried out in the standard tracking

MPC framework that it is formulated as an optimization problem which penalizes the

tracking error [179, 183]. The present thesis provides an EMPC approach based on TS

model providing stability guarantees.

2.3 Prognostics and Health Management

During the last decade, important improvements in safety, performance, availability, and

effectiveness of industrial systems have been achieved through prognostics and health

management (PHM) paradigm [168]. PHM is a systematic strategy that is utilized to
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assess the reliability of a system in its actual life-cycle conditions, predict failure pro-

gression, and decrease damage via control actions. PHM involves the application of

three concepts: diagnostics, prognostics and health management. Diagnostics identifies

the state of the system during its functioning, providing an accurate fault detection

and isolation capability with low false alarm rate [170]. Prognostic is now identified

as a principal process in maintenance strategies based on the remaining useful life of

the equipment, that it makes possible to avoid critical damages and reducing costs.

The Remaining Useful Life (RUL) is the useful life time that remains on an asset at a

particular time of operation [53, 169]. The principal aim of PHM is to increase safety

and decrease maintenance cost. To obtain this objective, some tasks, such as failure

prognosis, system monitoring, and RUL calculation, may be required. Therefore, some

operations like logistics requirements, maintenance performance, components replace-

ment or controller reconfiguration, among others, should be used in order to manage

the health of the system [92].

The generic structure of PHM is based on three steps: observation, analysis, and

decision-making [53, 170]. The observation step consists of data acquisition, processing,

storage or collection. The analysis step prepares the acquired data and extracting the

diagnostics, and prognosis information. In this step, the monitoring of the system is

performed based on the data acquired in the previous step. Next, the appropriate

decisions about logistics actions, maintenance, mission or control reconfiguration are

taken based on the information presented by the previous data analysis. In the analysis

step, various methods and algorithms are used in order to estimate the remaining useful

life of the asset. This process provides the diagnosis and prognosis results. In the

literature, there is a certain consensus about the distribution of these methodologies,

for instance, in [4] they are classified into four categories, such as physically based,

data-driven, hybrid and experimental based. The next step is the decision-making, that

consists in applying the convenient action based on the analyzed data to extend the

useful life of the system or components.

Research on PHM methodologies, motivated by the benefits it brings, has advanced

considerably in the last decade. For instance, a literature review on prognosis can be

found in [170], and a particular review of data-driven methods for PHM can be observed

in [210], a PHM study in the manufacturing process can be found in [214]. A review

on machinery PHM implementing CBM which summarizes the recent research with

emphasis on models, algorithms, and technologies for data processing and maintenance
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decision-making is presented in [86]. In [69] a diagnosis and prognostic method for power

electronic drives and electric machines (AC/DC, DC/DC and DC/AC systems) are

presented. This approach incorporates a low-cost monitoring using the power electronics

such as power MOSFETs and IGBTs. The proposed HAC strategy consists in reducing

the performance of the control accomplishing the mission with reduced performance.

2.3.1 Reliability analysis methods

The beginning of a reliable-control concept was introduced in [201], where the author

proposed the use of redundant controllers to improve the reliability of the control system

based on a decentralized control scheme. In this case, the reliability concept is related

to the control structure that included two or more independent controllers. Such a

structure guarantees stability under controller failures and perturbations in the plant

interconnection structure [202]. Reliability analysis of dynamical systems helps to pre-

vent failures which could be costly and sometimes disastrous. In complex systems or in

safety-critical systems, it is imperative to identify the key components of the system and

prevent the system failure. Regularly, this is done by implementing Conditioned-Based

Maintenance (CBM) methods, where decisions are supported by the reliability analysis

information [3, 86].

In the literature [20, 213, 19, 152], authors refer to the concepts of reliability, degra-

dation, deterioration, etc. In general, reliability directs to the concept of dependability,

successful operation or performance, and the absence of failures, whereas unreliability

leads to the opposite [20]. Hence, it is convenient now to give a clear definition of these

concepts.

Definition 2.2. Reliability is characterized as the probability that components, units,

types of equipment and systems will perform their predesignated function for a certain

period of time under some operating conditions and specific environments [68].

More specifically, reliability is the probability of success in performing a task or

reaching a desired property in the process, based on right operation of components.

Mathematically, reliability R(t) is the probability that a system will be successful in the

interval from time 0 to time t:

R(t) = P (T > t), t ≥ 0 (2.19)
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where T is a nonnegative random variable which represents time-to-failure or failure

time. Moreover, the definition of unreliability of actuators or a system is defined as

Definition 2.3. The unreliability of a component (or system) F (t) is defined as the

probability that the component or system experiences the first failure or has failed one

or more times during the time interval 0 to time t [7].

Since the component is always in one of the two possible states (operational or failed),

the following relation is satisfied

F (t) +R(t) = 1. (2.20)

On the other hand, the degradation can be viewed as a damage that the system

accumulates over time and eventually leads to a failure when the accumulated damage

reaches a failure threshold.

Definition 2.4. Degradation is the reduction in performance, reliability and lifespan

of assets [71].

From these definitions, note that reliability is reduced when assets degrade or de-

teriorate. The failure threshold provides a link between degradation and assets failure.

Therefore, it is possible to use the degradation signals to estimate the failure rate time

distribution, the RUL, etc [200]. The degradation signals are obtained by a proper degra-

dation model, which consists in developing a good probability model that is capable of

describing the degradation process.

Reliability is the ability of a system to operate successfully long enough to com-

plete its assigned mission under stated conditions. In reliability theory, various types

of probability distributions are used; for example, an exponential function [64, 223], a

Weibull function [89, 17], a Gamma function [122, 132, 211] or log-normal [40, 121],

among others. The exponential distribution is one of the most widely used in reliability

engineering because it is relatively easy to handle in performing reliability analysis, and

many engineering items exhibit constant hazard rate during their useful life [45]. In the

case of the Weibull distribution which is used to represent several physical phenomena

and the popularity of this distribution stands on the fact that, depending on the param-

eters, it may describe both increasing and decreasing failure rates [219]. The gamma

distribution is especially useful for reliability modeling of those asset lifetimes which
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degradation can be explained by the shock accumulation [209]. The log-normal distri-

bution is a continuous probability distribution of a random variable whose logarithm is

normally distributed. The log-normal distribution is applied to the description of the

dispersion of the component failure rate data [146].

Reliability can also be expressed as a stochastic process [161]. For example, it is

common to use Markov Chains (MC) to model the reliability of components [163].

However, in practice, the complexity of the system steer to a combinatorial explosion of

states resulting in an MC with a quite large size. The reliability information achieved

with the MC is generated using a Dynamic Bayesian Network (DBN) to the system which

includes temporal information to calculate the impact of the component reliability on

the system reliability [218].

2.3.2 Health-aware control

Health-aware Control (HAC) is a concept that connects the health monitoring and

prognostics with the control theory [80, 58]. HAC technique assesses the health system

while performing control over the system in a non-faulty situation. Furthermore, it

avoids faulty scenarios by mitigating health degradation via appropriate control actions

considering health indicators in the control objectives [92]. This is done by regularly

evaluating the system health indicators and making corrections through the control

actions based on those indicators.

In this paradigm, the information provided by the prognosis module about the com-

ponent system health should allow the modification of the controller so that the system

health is considered in the control objectives [92, 59]. In this way, the control actions

will be obtained to fulfill these objectives and, at the same time, to extend the life of the

system components. The prognosis module will estimate on-line the component ageing

for the specific operating conditions. In the non-faulty situation, the control efforts

are distributed in the system based on the proposed health indicator [60]. Figure 2.1

represents the different techniques involved in HAC paradigm found in the literature.

In recent years, there has been an increasing interest in combining control approaches

with reliability methods to develop system monitoring. For instance, in [171] the au-

thors propose to model the degradation process in terms of asset usage and then use
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−Reliability
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Figure 2.1: Control theory and health monitoring combination.

it to redistribute the control effort in a two-tank system by means of an MPC algo-

rithm which solves a quadratic optimization problem and a linear optimization problem

[171, 96]. In [77], the robust control methods are applied for maintaining the stability

and performance of the system near to the desired performance in case of component

faults is possible and in certain circumstances reduce the performance requirements to

achieve the objective. In [112, 111], the authors propose the integration of reliability

and reconfigurability analysis in an Fault-Tolerant Control (FTC) system for a tank

system and aircraft model, respectively. These works have in common the use of com-

ponents reliability as indexes to perform the control reconfiguration after the occurrence

of failures. In [113], the authors propose an FTC system based on a feedback controller

which guarantees the highest system reliability. This controller is synthesized using lin-

ear matrix inequalities (LMIs) and incorporating a reliability indicator. This reliability

indicator is the well known Birnbaum measure which indicates those system components

whose reliability are critical for the reliability of the system. Note that in the mentioned

works, the asset reliabilities are modeled using the exponential distribution function.

In [17, 16], a control problem is solved by combining reliability importance measures

to redistribute the control effort among the available actuators of a hydraulic system.

The reliability is modeled using a Weibull distribution function and it is computed by

a Dynamic Bayesian Network (DBN). In [129], the authors provide a reliable robust

tracking controller against actuator faults and control surface deterioration for aircraft
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bases on a mixed linear-quadratic (LQ)/H∞ performance indexes and multi-objective

optimization using LMIs.

In [110], the authors provide a reconfigurable control allocation problem for an over-

actuated system in which the redistribution factor is defined in terms of the actua-

tor reliabilities modeled by using the Weibull distribution function. Then, the control

allocation problem consists in assigning more control effort to those actuators whose

reliabilities are higher and to relieve those actuators whose reliabilities are lower.

In [184], the authors present an overview of modeling and control strategies including

fault-tolerant capabilities for wind turbines and wave energy devices. In these systems,

the reliability improvement is achieved by a significant reduction of periods of null or

very low power production.

2.4 Summary

In this chapter, a literature review on a Linear Parameter Varrying (LPV) and Takagi-

Sugeno (TS) modeling frameworks and Model Predictive control based on these ap-

proaches has been presented. Moreover, a literature review on prognosis and Health

Management, particularly in the historical development of Health-Aware Control

methodologies has been presented. Besides the attempts to address the problem of

HAC, a list of applications and control techniques used were given.



28 Chapter 2 : Research Background



Chapter 3

Case studies

In this chapter,case studies of the thesis are presented. The system descriptions and

mathematical preliminaries about the pasteurization process are presented. A nonlinear

model of the pasteurization plant and validation it by real data and how to embedding

in the LPV models in details are specified. Besides, a selected part of the drinking water

network of the city of Barcelona (Spain) is described as another case study. Finally, the

nonlinear model of autonomous racing vehicle is presented in details.

3.1 Pasteurization Process

3.1.1 Introduction

One of the important food preservation techniques is pasteurization, which is widely used

in food industries. The pasteurization process implies applying heat to some products

such as milk, cream, beer and others at a specified temperature for a specified period of

time [94]. The pasteurization process is divided into three phases that involve heating,

regeneration and cooling treatments. The most significant treatment is heating, which

contains heat exchanger devices to warm up the temperature of the product at the

desired setpoint, and afterward keeping up this temperature during a stable time.[148].

Among many pasteurization approaches, the High-Temperature Short-Time (HTST)

approach is generally accepted as the industry standard [5]. In this process, the time

temperature compound can change depending on the product and some of its properties

29
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as viscosity, fat percentage, solid residues, etc. Controlling and maintaining the tem-

perature of the process is an important key in pasteurization. Accordingly, a suitable

control system to control product temperature needs to be designed for keeping the

desired product quality [94]. The necessity of a significant control for the process arises

from the saving in energy, product and time if accurate tractability of the pasteurization

temperature is achieved from the specified value.

Furthermore, a pasteurization system includes typical behaviors of relevant pro-

cesses, such as complex dynamical models with nonlinearities [186]. Therefore, mathe-

matical modeling and process simulation are important tools for the design, evaluation

and control of continuous pasteurization processes, mainly to determine the thermal

effect of the process on quality and safety attributes of the product [72, 13, 107]. A

dynamic model of a continuous pasteurization process presents a virtual system that

can be useful for the design and tuning of controllers, the study of the influence of the

fouling, the scheduling of production and cleaning, and for personnel training [137, 41].

In the literature, there are different modeling approaches and controller strategies for

pasteurization systems. The development of dynamic models of a pasteurization unit

was driven by the need to design process controllers. In [153], author developed an em-

pirical model based on ARX type time series modeling to represent a pilot scale HTST

(high temperature short time) pasteurization system that consists of a PHE with two

sections (regeneration and heating), a holding tube and a hot water generator unit that

uses steam injection as heat source. In [109], an artificial neural network (ANN) used

to empirically model a milk pasteurization plant to design linear and nonlinear model.

In the AAN, the pasteurization temperature of the plant was expressed as a function of

the rate of steam injection in the two heating circuits.

In [84], the complete process model leads to a multi-variable first order with pure

delay transfer functions with variable parameters after decomposing the system into

functional subsystems. In [22], authors used a modular process simulator for the simu-

lation and optimization of a milk pasteurization process with three PHEs and a holding

tube, but the dynamics of the process were not investigated. Other models from the

whole system and/or some subsystems are obtained in [1, 148].

Motivated by the need of dynamic models to simulate pasteurization processes, one

of the objectives of this dissertation is to develop and to validate a nonlinear model of

a pasteurization process consisting of a heat exchanger, hot-water tank, pumps and a

holding tube for the HTST processing of a liquid food. Two dynamic models of the
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pasteurization plant based on different approaches and experimental data are presented

in this thesis.

• Pasteurization model 1: The block diagram of the pasteurization model and

experimental data are used for creating the first dynamic model are presented in

[85].

• Pasteurization model 2: The dynamical model is obtained based on physical

principles and fundamental laws such as energy balances and heat exchanger de-

sign, which the validation of this model is confirmed with the experimental data

from the pasteurization benchmark.

3.1.2 Pasteurization model 1

System description

The pasteurization process considered is the utility-scale plant PCT-23MKII, manufac-

tured by Armfield (UK) [12].This laboratory system is the small version (1.2m, 0.6m,

0.6m) of the real-time industrial pasteurization process. The system represents an in-

dustrial High-Temperature Short-Time (HTST) process. In this process, the goal is

to warm and maintain the product at a prearranged temperature for a minimum time.

This procedure is accomplished by flowing the heated fluid through a holding tube [102].

During the pasteurization process, as it can be seen in Figure 3.1, the fluid is pumped

at a prearranged flow speed from the storage tank to the heat exchanger. The heat

is transported to the product inward the first section of the heat exchanger, which is

named regenerator. By applying lost energy of the pasteurized product, the raw prod-

uct is heated to an average temperature. Later, in the second section, while utilizing a

hot-water flow Fh arising from a closed circuit with a heater, the product is heated from

that intermediate temperature to the complete pasteurization temperature. The Tpast

temperature is related to the output of the holding tube to monitor the temperature of

the product after the pasteurization procedure. Eventually, the product temperature is

reduced in the third section of the heat exchanger, where the resting heat is recuper-

ated from the incoming product. Briefly, from a control viewpoint, the pasteurization

processes can be regarded as a multiple-input-multiple-output (MIMO) system with the

power of the electrical heater, P , and the water pump speed, N , as inputs, and tem-

peratures of hot-water tank and pasteurization Tow, and Tpast, respectively, as outputs.
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Figure 3.1: Pasteurization plant scheme.

In addition, Tiw and Tic are disturbances of the plant, where Tiw is the temperature of

the water heater inflow and Tic is the temperature of cold water as input for the heat

exchanger.

Mathematical Model

The block diagram of the pasteurization model utilized in this paper is presented in

[85], whenever the ratio of hot/cold-water flow (R = Fh/Fc ) is modified as a function

of hot-water flow Fh. The modified block diagram of the pasteurization plant is exposed

in Figure 3.2.

Hot-water tank model: The hot-water tank subsystem is an electric heat storage

that is coated in order to decrease heat losses. In this subsystem, the water is heated by

using the power resistor, while the water pump including an upper limit of 700 ml/min

moves the heated water [94]. The flow is introduced as hot-water flow Fh, transmitting

heat to the pasteurization product in the heat exchanger, before returning product to the

water heater. In general, the hot-water flow varies over time in order to keep running of

the pasteurization process. The temperature Tiw and the power of the electrical heater

P are recognized as the inputs and the Tow temperature is the output of the hot-water

tank subsystem, that it is shown in Figure 3.2 (dotted red box).
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Figure 3.2: Block diagram of the pasteurization model 1.

Heat exchanger model: This part involves two sections. The first section is re-

lated to the regeneration section and the second one is based on the heating section.

The heating section (second section) is more complicated than the regeneration section

(first section), while the first section is obtained as a simplification of the second one,

hence, the heating section is studied first.

Heating section (second section). The block diagram from the heat exchanger is

presented in Figure 3.2 (dotted green box). As reported in [85], the transfer functions

are presented as

Gij(s) =
Kij(R)

1 + τij(Fc, Fh)s
, (3.1)

where τ and K are the time constant and static gain of the transfer functions, respec-

tively. The transfer function G21 mainly depends on the hot-water flow, while G12 and

G22 express the variations induced by the cold water flow. The pasteurization time (or

holding time) is fixed during the real pasteurization process. Hence, the cold water flow

should be preserved as a fixed value. Thus, G12 and G22 are transfer functions with

varying gain, changing with R as stated in (3.1). Note that the parameters of (3.1) were

obtained experimentally in [85] (see Appendix A. Tables A.2 and A.3 ).
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Regeneration section (first section). In the regeneration phase of the heat ex-

changer, both cold-water and hot-water flows are the same, thus the relation R = Fh/Fc

is constant and of unitary value.

Holding tube model: The holding tube model is not just a transport delay since

there are some heat losses. The model of the holding tube can be represented as a

single-input single-output system. According to [85], the estimated parameters of the

transfer function Ght (in Figure 3.2) are set as static gain Kht = 0.91 and time constant

τht = 21s.

LPV modeling

Collecting all the information above, the state-space LPV model can be written as

(2.9), where x ∈ Rnx is the state vector composed of hot-water flow, Fh, hot-water

tank temperature, Tow and pasteurization temperature, Tpast, u ∈ Rnu is the vector of

manipulated variables that includes the electrical power of the heater P and the water

pump speed N , y ∈ Rny is the vector of controlled variables that include of the hot-water

tank temperature Tow and pasteurization temperatures Tpast also the system matrices of

the pasteurization system including the varying parameters in function of the scheduling

variables (Fh and R) can be expressed in the discrete-time state-space form as follows:

A =



1 + −Ts
τ1(Fh(t))

0 0 0 0 0 0

0 1 + −Ts
τ2(Fh(t))

0 0 0 0 0

TsK21(R(t))
τ21(Fh(t))

TsK21(R(t))
τ21(Fh(t))

1 + −Ts
τ21(Fh(t))

0 0 0 0

0 0 0 1 + −Ts
τ12(Fh(t))

0 TsK12(R(t))
τ12(Fh(t))

0

0 0 0 0 1 + −Ts
τ22(Fh(t))

0 0

0 0 0 0 0 1 + −Ts
τf

0

0 0 0 TsKht
τht

TsKht
τht

TsKht
τht

1 + −Ts
τht


,
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B =



0 0 TsK1(R(t))
τ1

0

TsK2(R(t))
τ2(Fh(t)) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 TsK22(R(t))
τ22

0
TsKf
τf

0 0

0 0 0 0



, C =

1 1 0 0 0 0 0

0 0 0 0 0 0 1

 ,

(3.2)

where K is the static gain and τ is the time constant of the transfer functions of the

subsystems, that the indices of K and τ are related to the transfer functions of the each

subsystem from the whole pasteurization system (see Figure 3.2).

3.1.3 Pasteurization model 2

System description

In this part, the dynamical model is obtained based on physical principles and funda-

mental laws such as energy balances and heat exchanger design, which the validation of

this model is confirmed with the experimental data from the pasteurization benchmark

in laboratory. The system has the same information as previous part, a small-scale pas-

teurization plant PCT23 MKII that manufactured by Armfield. In this case of obtaining

the model, the pasteurization plant divides to five main section such as source tank, hot-

water tank, heat exchanger and peristaltic pumps (see Figure 3.3). The product to be

pasteurized is filled within tank A or B (the valve SOL2 allows to choose the tank). The

peristaltic pump N1 impulses the pro duct from these tanks to the regeneration phase

of the heat exchanger. In this phase, the product is preheated by the effluent of the

holding tube. Then, it moves through the heating phase in the same heat exchanger

where the product accomplishes the pasteurization temperature. The product quits the

exchanger at high temperature T4 and flows through the holding tube to maintain the

high temperature (pasteurization temperature) during a particular time. At the end of

the holding tube, there is a valve (SOL1) that opens in case that the temperature at

this point T1 is higher than the wanted. When the valve is open the fluid returns to the



36 Chapter 3 : Case studies

Figure 3.3: The pasteurization Plant 2.

exchanger and moves through two phases. The first one is the regeneration, where its

temperature reduces by preheating the product from tank A and B. The second phase

is cooling, where the goal is to cool the final product using water as a cooling fluid. On

the other hand, when the product temperature is not high enough (T1 is lower than

the requested temperature), the valve SOL1 is closed and it sends the product to the

feeding tank again.

Nonlinear modeling and experimental validation

The information of the dynamic response of each one of the components of the pasteur-

ization plant is significant in order to control it. According to the number of variables of

the system and by describing a physical process, it can be proposed a parametric model.

For developing the pasteurization model, the plant is divided into five parts such as feed-

ing pump, hot-water pump, hot-water tank, holding tube and heat exchanger. Physical

principles based on fundamental laws such as energy balances and heat exchanger design

are utilized to describe the main processes of the plant. The scheme of all the parts

of the pasteurization system is presented in Figure 3.4. In this part, the model based

on each element is presented. Moreover, the identification procedure to estimate the

constant parameters of the pasteurization plant is presented. The idea of the method
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Figure 3.4: The pasteurization Plant scheme of model 2.

is to compare, the data obtained from the real set-up with the data obtained by simu-

lating part of the continuous time non-linear model of the pasteurization process. This

is formulated as an optimization problem that allows finding the parameter values that

better approximate the real system in the least squares sense. Finally, in order to val-

idate the values obtained by identification, the simulation of the non-linear model has

been compared by the data obtained from the real system.

Feeding pump: The feeding pump, N1, is the one that arouses the product to be

managed from the feeding tank to the heat exchanger (Figure 3.4). The pump model

connects the speed of the pump N1 with the fluid flow through the tube F1. This

model is based on experimental data extracted from a flow meter installed in the plant.

Figure 3.5 displays the flow rate F1 for different values of rotor speed N1, in percentage.

The blue line represents the experimental flow increasing the pump speed in steps of

5% and the red line the experimental flow decreasing 5% the pump speed. Finally, the

green line represents the fitting curve. The figure shows a linear correlation for speeds
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Figure 3.5: Experimental relationship between the flow F1 and N1.

higher than 20 % described by the following equation:

F1 = KN1(N1 − 20), (3.3)

where F1 represent the mass flow circulating in the plant and KN1 is static gain of the

pump. Moreover, the flow (in ml/min) obtained in (3.3) is the same of the mass flow

expressed in g/min taking into account the density (water).

Hot-water pump: The hot-water pump pushes the hot-water from the hot-water

tank to the heat exchanger (Figure 3.4). The same method as pump N1 has been fol-

lowed to determine the relationship between the speed of the pump N2 and the flow F2.

However, in this case, a flow meter is not established hence the flow has been experimen-

tally determined at each speed. Figure 3.6 shows the flow rate F2 for different values of

rotor speed N2, in percentage. The blue line describes the experimental flow increasing

the pump speed in steps of 5% and the red line the experimental flow decreasing a 5 %

the pump speed. Finally, the green line represents the fitting curve. The equation in
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Figure 3.6: Experimental relationship between the flow F2 and N2.

the range 20 % to 100 % of speed is defined as:

F2 = KN2(N1 − 20), (3.4)

As with the feeding pump, it can be considered that the change of the speed immediately

exhibited the change of flow. The flow obtained in this equation (in ml/min) is the same

of the mass flow expressed in g/min taking into account the density (water).

Hot-water tank: In general, the hot water tank is a plastic cylindrical recipe, with

an internal radius of 7.5 cm and 20 cm length and thickness are 0.5 cm. The hot-water

tank keeps the water in high-temperature T2. This thermal energy is used in the heat

exchanger to the pasteurization process. Hot-water leaves the tank at a temperature

T2 and goes to the heat exchanger. When the exchange is fulfilled, water returns to the

tank at a lower temperature T2r . The value of this temperature depends on the speed

of the hot-water pump N2. Three different heat transfer processes are considered in

Hot-water tank subsystem Figure 3.7.

• The transferred heat (Q0) depends on the power resistance utilized P . The power
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Figure 3.7: Scheme of the hot-water tank

is varied from 0 W up to 1600 W.

• The loss of heat due to the rotational flow in the heat exchanger (Q1), represented

by the following equation:

Q1 = F2Cp(T2 − T2r) (3.5)

where F2 is the mass flow of hot water that flows to the heat exchanger and returns

and Cp (J/K) is the particular heat of the water. T2 is the temperature inside the

reactor and T2r is the returned water temperature from the heat exchanger.

• The heat loss by the environment (Q2) defined by the convection equation [208]

Q2 = U A(T2 − Ta) (3.6)

where Ta (◦C ) is the room temperature, A (m2) is the area of the tank and U

(Wm2/K) is the convective heat transfer.

Then, by applying an energy balance, the model of hot-water tank can be defined

as:

CA
dT2(t)

dt
= P − F2Cp(T2 − T2r)− αT2(T2 − Ta) + βT2 (3.7)

where, CA(J/K) is the calorific capacity of hot-water tank, αT2 = UA and βT2 is offset

variable that are obtained by experimental data. The actuators are the power of the
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Figure 3.8: Verifying the simulation model of hot-water tank T2
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electrical resistance P and speed of the hot-water pump N2. Moreover,(3.7) involve three

temperatures T2, T2r are output and input of the hot-water tank and Ta is the room

temperature that are measurable variables. The hot-water model can be rewrite as:

dT2(t)

dt
= α1,T2P − F2Cp(T2 − T2r)− α2,T2T2 + α3,T2 , (3.8)

where can be only illustrated by estimating unknown parameters of the hot-water tank

temperature where the identification procedure is based on the knowledge of the non-

linear model of the hot-water tank temperature. It is assumed to have at access NT2

sets of data P j(k), N j
2 (k) for the hot-water tank temperature where j = 1, ..., NT2

and k = 1, ...,Kj where Kj is the number of samples of the j−th set of data. The

identification process determines the minimum of the following objective function over

the unknown parameters α1,T2 , α2,T2 and α3,T2 :

JT2 =

NT2∑
j=1

Kj∑
k=1

(
T j2 (k)− T̂ j2 (k)

)2

, (3.9)

where T̂ j2 (k) is the simulation provided by (3.7). The comparison between the simula-

tion data and the real data of the hot-water tank temperature is shown in Figure.3.8.

The error between the real data and simulation data of hot-water tank is presented in

Figure.3.9. The validation shows the model approximates the behavior of the hot-water

tank in a quite perfect behavior.

Holding Tube: The holding tube is an S-shaped thermal insulated tube. The

influent comes from the first stage of the heating exchanger (heating phase, Figure 3.4)

at a flow rate F1 and high-temperature T4. The input temperature has been considered

the same that at the output of the heat In spite that the tube is isolated, the heat loss

is expected. Small flow heat (Figure 3.10) is transferred to the environment producing

a lessening of the effluent temperature.

The energy balance can be described by:

Q = F1Cp∆T +M1Cp
dTin
dt

, (3.10)

where Tin is the variation of the internal mean temperature inside the tube (Tin =

(T1(t) + T4(t))/2) and ∆T = T1(t) − T4(t − τ) is the temperature between the output

(T1) at the instant t and the input (T4) at the instant t − τ , where τ is denoted the



3.1 : Pasteurization Process 43

Figure 3.10: Scheme of the holding tube.

delay. M1 is the mass of liquid. To describe the heat lost in the system Q, the general

design equation for head exchanged is considered as :

Q = −AU∆Tml, (3.11)

where A is the internal area in contact with the isolated material and U is the global

head transfer coefficient. Beside, ∆Tml is the logarithmic mean temperature. As the

mean temperature Tin is considered inside the whole tube, (3.11) can be rewrite as:

Q = −AU∆T,

= −AU(Tin − Ta),

= −AU
(
T1(t)− T4(t− τ)

2
− Ta

)
.

(3.12)

The model of holding tube taking into account the delay, (3.10) and (3.12) can be

expressed as:

F1Cp(T1(t)− T4(t− τ)) +M1Cp
dTin
dt

= −AU(Tin − Ta), (3.13)

where holding tube model can be rewrite as:

dT1

dt
=

2

M1CP
(−UAT1 + T4(t− τ)

2
− Ta)− F1Cp(T1 − T4(t− τ))− dT4(t− τ)

dt
. (3.14)

The delay τ in the holding tube can be obtained according the different behaviour

between the T4 and T1. It consists in changing the temperature T4 and determine the

effect over T1. To vary the temperature T4 the speed of the feeding pump N1 has been
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Figure 3.11: Verifying the simulation model of holding tube T1
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Figure 3.13: Verifying the simulation model of delay

increased from 30 to 80. Finally, the relation between the delay and N1 is obtained as:

τ(t) = −α1,τ (N1(t))3 + α2, τ(N1(t))2 − α3,τN1(t) + α4,τ , (3.15)

where α1,τ , α2,τ , α3,τ and α4,τ are unknown parameters and obtained by identification

procedure. It is assumed to have at access Nτ sets of data N j
1 (k) for the pump where

j = 1, ..., Nτ and k = 1, ...,Kj where Kj is the number of samples of the j−th set of data.

The identification process determines the minimum of the following objective function

over the unknown parameters:

Jτ =

Nτ∑
j=1

Kj∑
k=1

(
τ j(k)− τ̂ j(k)

)2

, (3.16)

where τ̂ j(k) is the simulation provided by (3.15). The comparison between the simula-

tion data and the real data of the temperature of holding tube and the delay are shown

in Figures.3.11 and 3.13, respectively. Moreover, the error between the real data and

simulation data of holding tube is shown in Figure.3.12. The validation show the model

approximates the behaviors of the temperature of holding tube and the delay are in a

quite perfect behavior.
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Heat exchanger: The heat exchanger is the system that provides the thermal en-

ergy exchange without joining the liquids. Heat exchange is controlled by the influent

temperature of the fluids and their mass flow. The heat exchanger of the pasteurization

system includes three phases with a different finality: heating, regeneration and cool-

ing. As mentioned before, the main goal in the pasteurization process is to control the

pasteurization temperature that is T1. Hence, only heating and regeneration phases are

considered. Moreover, the model of each phase is developed separately because each

phase operates have different conditions

Heating phase: An experimental assay is performed to obtain a model of the heating

phase. With this objective, the regeneration phase is stopped (closing the valve SOL1)

hence, the effluent of the feeding tank is the influent of the heating phase at the same

temperature (Tin = Ta, see Figures 3.3 and 3.14). Furthermore, for monitoring T2r

(water temperature that returns to the hot water tank), the sensor of the product

temperature (T3) are moved to that point.

Figure 3.14: Scheme of the heating phase

To present the model of the heating phase, an energy balance in dynamic conditions

is proposed as:

Feeding− product : q = m̄Ca(T4 − Tin) +M2Ca
dTin2

dt
,

Hot− water : q = m̄Ca(T2 − T2r),

F1Ca(T4 − Tin) +M2Ca
dTin2

dt
+Qloss1 = F2Ca(T2 − T2r)

(3.17)

where m̄ is the mass flow (F1 corresponding to the feed product and F2 to the hot-water)

in g/s, M2 is the product mass inside the exchanger and Tin2 = ((T4 + Tin)/2). T2 is

the temperature inside the hot-water tank and T2r the temperature of the water when

it returns to the hot-water tank. The heat exchanger is not isolated therefore a heat

loss to the environment Qloss1 should be considered, which is obtained by identification
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Figure 3.15: Verifying the simulation model of heating phase T4
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Figure 3.16: Error achieved during the simulation.
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procedure. Finally, by using the experimental data and 3.17 the heating section model

is proposed as:

dT4

dt
= −F1(T4Tin)+α1,T4F2(T2−T2r)−α2,T4−α3,T4N1(T4−Tin)+α4,T4N2(T2−T2r).

(3.18)

For obtaining the unknown parameters, it is assumed to have at access NT4 sets of

data T jin(k), T j2r(k), N j
1 (k), N j

2 (k) for the heating temperature where j = 1, ..., NT4

and k = 1, ...,Kj where Kj is the number of samples of the j−th set of data. The

identification process determines the minimum of the following objective function over

the unknown parameters α1,T4 , α2,T4 , α3,T4 and α4,T4 :

JT4 =

NT4∑
j=1

Kj∑
k=1

(
T j4 (k)− T̂ j4 (k)

)2

, (3.19)

where T̂ j4 (k) is the simulation provided by (3.18). The comparison between the simula-

tion data and the real data of the heating temperature is shown in Figure.3.15. The error

between the real data and simulation data of heating phase is presented in Figure.3.16.

The validation show the model approximates the behaviors of the heating temperature

is in a quite perfect behavior.

Regeneration section: In the regeneration phase, the product from the feeding tank

at a temperature Ta is preheated to reach Tin using as liquid heater the final pasteurized

product (Figure 3.17). Part of the energy applied in the pasteurization process is reused

in the own system. For extracting experimental data of this phase, the heating phase of

the heat exchanger is stopped during the experiment. The water of the hot-water tank

is applied as the pasteurized product in order to have a determined value of T1.

Figure 3.17: Scheme of the Regeneration phase
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Figure 3.18: Verifying the simulation model of regeneration phase Tin
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Figure 3.19: Error achieved during the simulation.
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By using the energy balance, the regeneration phase model can be described as :

Feeding− product : q = m̄Ca(Tin − Ta) +M2Ca
dTin3

dt
,

Pasteurized− product : q = m̄Ca(T1 − T3),

F1Ca(Tin − Ta) +M2Ca
dTin3

dt
+Qloss2 = F2Ca(T1 − T3)

(3.20)

where M2 is the product mass inside the exchanger and Tin3 = ((Ta + Tin)/2). T2r

is the temperature inside the hot-water tank and T2r the temperature of the water

when it returns to the hot-water tank. As explained before, the heat exchanger is not

isolated therefore a heat loss to the environment Qloss2 should be considered, which is

obtained by identification procedure. Finally, by using the experimental data and 3.20

the regeneration phase model is proposed as:

dTin
dt

=
α1,Tin(N1 − α2,Tin)(T1 − Tin)− α3,Tin(Tin − Ta)

M2
. (3.21)

For obtaining the unknown parameters, it is assumed to have at access NTin sets of

data T j1 (k), N j
1 (k) for the heating temperature where j = 1, ..., NTin and k = 1, ...,Kj

where Kj is the number of samples of the j−th set of data. The identification process de-

termines the minimum of the following objective function over the unknown parameters

α1,Tin , α2,T4 and α3,Tin :

JTin =

NTin∑
j=1

Kj∑
k=1

(
T jin(k)− T̂ jin(k)

)2

, (3.22)

where T̂ jin(k) is the simulation provided by (3.21). The comparison between the simula-

tion data and the real data of the regeneration temperature is shown in Figure.3.18. The

error between the real data and simulation data of heating phase is presented in Fig-

ure.3.16. The validation show the model approximates the behaviors of the regeneration

temperature is in a quite perfect behavior.

State T2r: The model of temperature that is going back to the hot water tank

(T2r) is required to obtain a correct energy balance of the heat exchanger. Moreover,

this temperature is not measurable due to lack of sensor in this part, then a model is

required in order to estimate it in future when the plant will run normally. Therefore,

sensor T3 is moved to T2r and then start the process with the production valve manually
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Figure 3.20: Verifying the simulation model of temperature T2r

According to the above discussion, the model of this temperature are obtained as

dT2r

dt
=F1(T4 − Tin) + α1,T2rF2(T2 − T2r)− α2,T2r(T2 − Ta)− α7N1(T4 − Tin)

+ α3,T2rN2(T2− T2r)− α4,T2r(T4 − Tin) + α5,T2r(T2 − T2r)− α1,T2r ,

(3.23)

where (α1,T2r−α6,T2r) are unknown parameters and obtained by identification procedure.

For obtaining the unknown parameters, it is assumed to have at access NT2r sets of data

T jin(k), T j4 (k), T j2 (k), F j1 (k), N j
2 (k) for the heating temperature where j = 1, ..., NT2r

and k = 1, ...,Kj where Kj is the number of samples of the j−th set of data. The

identification process determines the minimum of the following objective function over

the unknown parameters (α1,T2r − α6,T2r):

JT2r =

NTin∑
j=1

Kj∑
k=1

(
T j2r(k)− T̂ j2r(k)

)2

, (3.24)

where T̂ j2r(k) is the simulation provided by (3.23). The comparison between the simu-

lation data and the real data of the temperature T2r is shown in Figure.3.20. The error
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Figure 3.21: Error achieved during the simulation.

between the real data and simulation data is presented in Figure.3.21. The validation

show the model approximates the behaviors of the temperature T2r is in a quite perfect

behavior.

LPV modeling

According to nonlinear model of each subsystem and the delay inside the system non-

liner model of the pasteurization system is considered as:

ẋ = f(x, x(t− τ), u, u(t− τ), ω(t)), (3.25)

where, x = [T1 T2 T2r T4 Tin]> ∈ R5, u = [N1 N2 P ]> ∈ R3 and ω = [Ta] ∈ R1 are

states, inputs and disturbance of the pasteurization system, respectively. In addition,

state equation f : X × U −→ X and X ⊆ R5 is presented in Appendix A. (A.1). The

physical properties, process data and parameters related of the pasteurization model in

the identification process are described in Table A.4 in Appendix A.

Then, by using the non-linear embedding approach [119], the state-space LPV model
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of the pasteurization plant according to non-liner models of each subsystem can be

expressed as follows

A =



a11 0 0 0 0

0 a22 a23 0 0

0 a32 a33 a34 a35

0 a42 a43 a44 a45

0 0 a53 0 a55


, B =



b11 0 0

0 b22 b23

b31 b32 0

b41 b42 0

b51 0 0


, Bd =



bd,11

bd,21

bd,31

bd,41

0


,

Aτ =



0 aτ,12 aτ,13 aτ,14 aτ,15

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, Bτ =



bτ,11 bτ,12 0

0 0 0

0 0 0

0 0 0

0 0 0


,

C =

1 0 0 0 0

0 1 0 0 0

 , (3.26)

where the value of matrix parameters are introduced in Appendix A. (A.2).

3.2 Drinking Water Networks

3.2.1 Introduction

Some approaches presented in this thesis will be assessed with a case study of a large-

scale real system reported in [158], specifically a case study based on the Barcelona

drinking water network (DWN). DWNs are large-scale multisource/multi-node systems

which must be reliable and flexible to deal with continuously varying conditions, as

for example, unexpected changes in the demands or faults in some of the components

[177, 73]. DWN are multivariable dynamic constrained systems that are characterized by

the interrelationship of several subsystems (actuators, tanks, intersection nodes, sources

and consumer sectors). The general goal of this system is the temporal re-allocation

of water sources from nature to human society, maintaining in mind the quantitative
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and qualitative aspects of water accessibility and human needs. This network is cur-

rently managed by AGBAR1 and it supplies potable water to the Metropolitan Area of

Barcelona (Catalunya, Spain). Generally, the water network operates as an intercon-

nected system driven by flow demands; different hydraulic elements are used to collect,

store, distribute and supply drinking water to the associated population. In the DWN

case study, the water is applied from both superficial (i.e., rivers) and underground

sources (i.e., wells), contributing together with a flow of around 7 m3/s.

According to the geographical terrain, the water supply area is subdivided into 113

pressure levels, called tiers, and the DWN is structured in two management layers: the

transport network, which links the water treatment plants with the tanks established all

over the city, and the distribution network, which is sectorised in sub-networks that link

tanks to consumers. This thesis is focused on the transport network. Therefore, each

sector of the distribution network will be recognized as a pooled demand to be served by

the transport network. These demands are characterized by patterns of water usage and

can be predicted by time-series models, neural networks, among other methods [205, 18].

Throughout this thesis, three different network examples extracted from the original

graph of the DWN case study Barcelona DWN are used to present the numerical results.

The models related to each example are denoted as aggregate model and sector model.

The aggregate model is a simplification of the original graph, where groups of elements

have been aggregated (not discarded) in single nodes to reduce the size of the original

problem (see Figure 3.22). The sector model considers only a sector of the DWN (see

Figure 3.23).

3.2.2 Control-oriented modeling of water transport network

Several control-oriented modeling approaches dealing with DWNs have been proposed in

the literature (see, e.g., [145], [97]). A water transport and distribution system regularly

includes a number of flow- or pressure-control elements, established at the inlets to the

network; usually water production/treatment plants. Likewise, it involves flow and

pressure control elements within the network, such as valves and booster pumps. A

suitable description of the dynamic model of a water network is realized by counting

the set of flows through these control elements (pumps and valves) as the vector of

1Aguas de Barcelona, S.A. Company that manages the drinking water transport and distribution in
Barcelona (Spain)
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Figure 3.22: Barcelona DWN aggregate diagram

control variables u ∈ Rnu . The state of the network or the effect of control actions

can be considered in passive elements, such as water storage tanks. Therefore, the set

of nx tank volumes observed through a telemetry system is a vector of state variables

x ∈ Rnx . Water demand at consumer nodes can be considered a stochastic disturbance

in the model. Hence, d ∈ Rnd is a vector of stochastic disturbances including the values

of the demands at the nd consumer nodes in the network. Because the model is used for

predictive control, d will usually be a vector of demand forecasts, achieved by suitable

demand prediction models. The generalized dynamic model of the network in discrete-

time can be written as follows:

x(k + 1) = f(x(k), u(k), d(k)), (3.27)

while the effect on the network is described at time k + 1, produced by certain control

action u, at time k, when the network is described by x(k). Function f represents

the mass and energy balance in the water network and k denotes the instant values at
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Figure 3.23: DWN sector diagram

sampling time, d(k) is the demand prediction at time k.

Considering the set of compositional elements and the modeling methodology of

each component in the DWN (see [37] for more details), the network is dependent on

several capacity and operational constraints, and on measured stochastic flows driven

by customers water demand. The control-oriented model of DWN can be described by

the following set of linear discrete-time difference-algebraic equations for all time instant

k ∈ Z+:

x(k + 1) = Ax(k) +Bu(k) +Bddm(k), (3.28a)

0 = Euu(k) + Eddm(k), (3.28b)

y(k) = Cx(k), (3.28c)

where the difference equations in (3.28a) correspond to the dynamics of the storage

tanks, and the algebraic equations in (3.28b) come from the static relations in the

network (i.e., mass balance at junction nodes). Furthermore, x(k) ∈ Rnx is the volume

of the storage tanks, u(k) ∈ Rnu is the manipulated inputs, y ∈ Rny denotes the output

of the system and dm(k) ∈ Rnm is the demanded flow that can be as measured (or

estimated) disturbances. A ∈ Rnx×nx , B ∈ Rnx×nu , Bd ∈ Rnx×nd , Eu ∈ Rnd×nu , Ed ∈
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Rnd×nd and C ∈ Rny×nx are time-invariant matrices of suitable dimensions dictated by

the network topology.

3.2.3 System management criteria

The general aim in the management of the DWN case study is to control the hydraulic

performance and to minimize the economic investments of water provision as presented

in [97]. Hence, the control task for the operation of this system can be formulated as

a multi-objective optimization problem, which includes three operational goals in the

management of DWN with different nature such as:

• Economic: To provide the required amount of water minimizing water production

and transport costs.

• Safety: To guarantee the safety levels in each storage tanks that guarantee the

water supply under unexpected changes in the demand up to some level.

• Smoothness: To operate actuators in the DWN under smooth control actions to

avoid overpressure in pipes and damage in actuators.

Minimization of water production and transport cost

The main control objective of the DWN is to minimize the water distribution costs

that are related to water production costs and electrical costs associated to pumping.

Transferring drinking water to suitable pressure levels through the network includes

important electricity costs in booster pumping. Hence, the cost function associated to

this objective can be formulated as

`e(k) , α(k)>Weu(k), (3.29)

where α(k) , (α1 + α2(k)) ∈ Rnu , which α1 ∈ Rnu is a fixed water-production cost

which is constant and a time-varying water pumping electrical cost is presented by

α2 ∈ Rnu that changes at each time instant k according to the dynamic electricity tariff.

We denotes the weighting term that indicates the prioritisation of the economic control

objective.
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Guarantee safety management of water storage

With the aim of the preserving water supply in spite of the variation of water demands

between two consecutive MPC iterations, a suitable safety volume for each storage tank

must be maintained. A possible mathematical expression for this objective can be

expressed as follows

`s(k) ,

{
‖x(k)− xs‖p, ifx(k) ≤ xs
0, otherwise

(3.30)

where xs denotes the vector of the safety volumes for all the tanks. To avoid the piecewise

linear form of this formulation, this cost function can be also formulated by means of a

soft constraint by adding a slack variable ξ that can be expressed as

`s(k) , ξ>(k)Wsξ(k), (3.31)

where Ws is diagonal positive definite matrix and the following soft constraint is included

x(k) ≥ xs − ξ(k). (3.32)

Smoothing of control actions

The actuators in the DWN include valves and pumps. Thus, the flow-based control

actions determined by the MPC controller should be smooth in order to extend the

component lifespan. To ensure the smoothing effect, the slew rate of the control actions

between two consecutive time instants is penalized according to

`∆u(k) , ∆u(k)>W∆u∆u(k), (3.33)

where the `∆u(k) corresponds to the penalization of control signal variations ∆u(k) ,

u(k)− u(k − 1), and W∆u is a diagonal positive definite matrix. The controller should

also operate actuators and tanks inside their bounds and extend the reliability of the

system as will be presented later.
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3.3 Autonomous Racing Vehicle

3.3.1 Introduction

Some strategies proposed in this thesis will be evaluated with a case study of a mobile

system such as an autonomous vehicle. A mobile object can be presented by using

equations that describe the dynamic and kinematic behaviours. Unlike general mobile

robots, urban autonomous vehicles are systems with a larger mass and operating at a

higher velocity. Therefore, the use of dynamic models becomes necessary. In dynamic

models, the sum of forces existing over the vehicle is taken into account for computing

the vehicle acceleration. The motion is generated by applying forces over the driven

wheels and mass, inertial and tire parameters are considered. On the other hand, the

kinematic model is based on the velocity vector movement to compute longitudinal and

lateral velocities referenced to a global inertial frame.

3.3.2 System description and modeling

In racing, the race car driver’s goal is to win a race, which means finishing the race with

the quickest time. A race car driver has to drive the car as fast as possible without losing

control of the vehicle at the limits. Moreover, it has to keep and control consistently

the energy of the vehicle for keeping in the race. Therefore, a racing controller has

to robustly track the desired path and stabilize the vehicle. For obtaining an optimal

response in terms of tractability, it is required the vehicle to work in the dynamic limits

established. The dynamic model of the vehicle used in this paper is a standard bicycle

model version obtained from [166], such as:

v̇x = α+
−Fyf sin(δ)− µm g

m
+ ωvy,

v̇y =
Fyf cos(δ) + Fyr

m
− ωvx,

ω̇ =
Fyf lf cos(δ)− Fyrlr

I
,

(3.34)

where vx , vy and ω are the body frame velocities linear in x, linear in y in (m/s)

and angular velocity in (rad/s), respectively. δ is the steering angle in (rad) and α is

longitudinal acceleration in (m/s2), while both of them are control inputs of the system

(see Fig.3.24).
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Figure 3.24: Racing vehicle variables along the road

Moreover, Fyf and Fyr are the lateral forces produced in front and rear tires in (N),

respectively, given by

Fyf = Cf

(
δ − vy

vx
− lfω

vx

)
, (3.35)

Fyr = Cr

(
− vy
vx
− lrω

vx

)
. (3.36)

where variables Cf and Cr are the tire stiffness coefficient for the front and rear wheels.

m and I represent the vehicle mass and inertia. lf and lr are the distances from the

center of gravity to the front and rear wheel axes, respectively. µ and g are the friction

coefficient and the gravity value, respectively.

On the other hand, the kinematic model is based on the velocity vector movement

in order to obtain longitudinal and lateral velocities referenced to a global inertial frame

[6]. Kinematic based model has generally used because its low parameter dependency.

The kinematic model used in this paper is based on the error model which is obtained
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as the difference between the real position orientation states and their references. These

kinematic equations are determined by the following curvature-based equations:

ėy = sin(eθ)vx + cos(eθ)vy,

ėθ = ω − cos(eθ)vx − sin(eθ)vy
1− eyκ

κ,

ṡ =
cos(eθ)vx − sin(eθ)vy

1− eyκ
,

(3.37)

where ėy and ėθ are the heading lateral distance and angle error between the vehicle

and the path and s indicates the distance traveled along the centerline of the road. κ is

the circuit curvature and presents the lateral behaviour reference. The vehicle model is

concisely expressed in state space representation as

ẋ(t) = f(x(t), u(t)), (3.38)

where at time t the vectors x and u represent the state and input,

x = [vx vy ω ey eθ]
>, u = [δ α]>. (3.39)

3.4 Summary

This chapter presents the system descriptions and mathematical model of some case

studies used in this thesis. A nonlinear model of the pasteurization plant and validation

it by real data and how to embedding in the LPV models in details are specified. A

case study network bases on the Barcelona DWN is described as another case study.

Moreover, the nonlinear model of autonomous racing vehicle is presented in details for

evaluated other approaches.
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Chapter 4

Economic Model Predictive

Control for LPV/TS Systens

This chapter proposes an EMPC strategy for LPV/TS systems. Furthermore, the eco-

nomic optimization problem is solved by using a series of Quadratic Programming (QP)

problems at each time instant. The new approach reduces the computational load avoid-

ing the solution of a non-linear optimization problem. The stability of the proposed

approach is analyzed and the corresponding conditions are established. The proposed

algorithm for the EMPC strategy based on the LPV/TS approach is illustrated using

as a case study the pasteurization plant described in Chapter 3.

4.1 Introduction

Model predictive control (MPC) based on linear models is typically used in process con-

trol when operated around a particular set-point, since the on-line optimization problem

can be formulated as a convex problem by either linear or quadratic programming ap-

proaches. Nevertheless, for some systems, the nonlinear behavior can not be handled

in this manner. One way to deal with non-linear system is to represent the process

behavior by means of LPV/TS models [30]. The main advantage of LPV/TS models

is that it embeds the system nonlinearities in the varying parameters, which make the

nonlinear system become a linear-like system with varying parameters [94]. According

to Section 2.2, LPV/TS models allow applying powerful linear design tools to complex

non-linear models [189, 94].

65



66 Chapter 4 : Economic Model Predictive Control for LPV/TS Systens

Nonlinear economic MPC (NEMPC) involves optimization with nonlinear con-

straints, which may be computationally expensive and, in some cases, there may be

no guarantee that the solution of the nonlinear optimization problem is the global opti-

mum. Alternatively, a way of solving the optimization problem for a nonlinear system is

to transform the nonlinear problem into QP problem by linearizing the model at each it-

eration. [117]. This method requires updating online the system matrices, applying the

linearization method and also the equilibrium points when the operating point changes,

which increases computational time.

The main contribution of this chapter is to provide an EMPC strategy based on

quasi-LPV/TS models, in order to formulate an optimization problem that exploits the

functional dependency of scheduling variables and state vector to develop a prediction

strategy with numerically suitable solution. This solution is iteratively forced to an

accurate solution, thereby avoiding worst-case optimization. Additionally, this chapter

provides a rigorous analysis of using terminal penalties and terminal regions instead of

a terminal equality constraint for guarantying the stability of EMPC control scheme

based on the LPV/TS models. In comparison to other strategies mentioned above, the

proposed approach is less conservative and computationally quite effective because the

problem turns into solving a series of QP at each time instant. Finally, the small-scale

pasteurization plant is used in order to test the effectiveness of the proposed approach.

4.2 Problem statement

Generally the nonlinear dynamics of a plant could be modeled as the fallowing discrete-

time system:

xk+1 = f(xk, uk), (4.1)

where the discrete-time variable is denoted by k ∈ I≥0. The state x ∈ X ⊂ Rnx ,

input u ∈ U ⊂ Rnu and state-transition map f : X × U −→ X. Besides, the sets X and

U are defined as (2.2). It is assumed that the system has an equilibrium point (xs, us)

such that xs = f(xs, us), and the function model f(x, u) is continuous. The solution of

the system for a presented sequence of control inputs u and initial state x0 is denoted

as xk = φ(k;x0, u) for k where x0 = φ(0;x0, u). Additionally, the system is subject to
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the state and control constraints

(xk, uk) ⊂ Z, k ∈ I≥0, (4.2)

for some compact set Z ⊆ X× U.

As mentioned before, for obtaining the optimal solution based on the nonlinear

model, the optimization problem should be solved as a nonlinear problem which may be

computationally expensive and/or may have convergence problems. Then, the discrete-

time LPV/TS models are considered, as (2.9) and (2.13), respectively.

The controller design problem involves obtaining a control law that minimizes a

specific performance cost index

L(x̃, ũ) =

Np−1∑
i=0

`(xi|k, ui|k) `(x, u) : X× U −→ R. (4.3)

where `(x, u) characterized as an economic stage cost. Given the economic stage cost,

the economic controller should conduct the system to the optimal reachable steady state,

that is determined by using the implicit form of the optimization as follows:

Definition 4.1. The optimal reachable steady state and input, (xs, us), of the system

(4.1) satisfy

(xs, us) = argmin
(x,u)

`(x, u) (4.4a)

subject to:

x = f(x, u), (4.4b)

x ∈ X, (4.4c)

u ∈ U. (4.4d)

�

As mentioned in Chapter 2, in the case of tracking MPC, `(x, u) is typically designed

as a positive definite function with regard to (xs, us), i.e. In other words, `(x, u) ≥ 0

for all (x, u) ∈ X×U and `(x, u) = 0 if and only if (x, u) = (xs, us). Hence, the optimal

operation often steers to closed-loop stability of xs by using the standard MPC stability
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scheme [143]. In EMPC, `(x, u) is arranged pursuant to some economic criteria such

as production cost, energy saving and efficiency, etc. These economic criteria have to

be minimized or maximized in terms of profits and environmental issues for systems.

Therefore, in EMPC `(x, u) is not necessarily positive definite with regards to (xs, us).

Accordingly, stability properties and convergence in the optimal economic operation are

not guaranteed by using the standard MPC stability designs since these designs belong

on the positive definiteness of `(x, u).

4.3 Proposed LPV/TS-based EMPC approach

4.3.1 General approach of LPV-based EMPC

In order to derive an EMPC formulation based on LPV models, some basic assumptions

are required, as follows

Assumption 4.1. It assumed that θk = ψ(xk, uk) ∈ Rnθ and θk ∈ Θ∀k ≥ 0, where Θ

is a compact set.

Assumption 4.2. It assumed that (A(θ), B(θ)) is stabilizable for all θ ∈ Θ.

The focus in the predictive control framework is on minimizing the economic stage

cost

Lk =

Np−1∑
i=0

`k(xi|k, ui|k), (4.5)

and at each time instant k, the initial value of state and input are known and the

optimization problem

min
ũk,x̃k

Lk(x̃k, ũk) (4.6a)
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subject to:

xi+1|k = A(θi|k)xi|k +B(θi|k)ui|k, ∀i ∈ [0, Np − 1], (4.6b)

θi+1|k = ψ(xi|k, ui|k), ∀i ∈ [0, Np − 1], (4.6c)

ui|k,∈ U ∀i ∈ [0, Np − 1], (4.6d)

xi|k,∈ X ∀i ∈ [0, Np], (4.6e)

θ0|k = θk, (4.6f)

x0|k = xk, (4.6g)

xNp = xs, (4.6h)

is solved online for

ũk =


u0|k
ui+1|k

...

uNp−1|k

 ∈ U. (4.6i)

The control law is obtained by applying a receding horizon strategy, i.e., at time

instant k, only the first control action in the sequence (4.6i) is applied. Then, at time

k + 1, a new optimization problem Lk+1 is solved considering as the initial states xk+1

and producing the control sequence ũk+1 such that again only the first control in the

new sequence is applied.

It is not possible to solve the optimization problem (4.6) using LPV modelling,

because the future state sequence cannot be predicted. Indeed the predicted states

depend not only on the future control inputs uk (the decision variables), but also on

the future scheduling parameters, which for a pure LPV model are not assumed to be

known a priori but only to be measurable online. On the contrary, for a quasi-LPV

model, where the scheduling parameters θk are determined by xk and/or uk, the state

trajectory can be predicted. Lemma 4.1 is introduced according to Lemma 1 [44] which

will be used in the following parts of this chapter.

Lemma 4.1. [44]. In the quasi-LPV model (4.6b), the predicted varying parameter

vector θi+1|k in (4.6c) can be determined for each i in the prediction horizon Np knowing

some estimation of xi|k and ui|k as follows: θ̂i+1|k = ψ(x̂i|k, ûi|k).
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Thus, instead of solving the optimization problem (4.6) by using (4.6c) that will

provide the exact solution, the proposed solution is to use an approximation based on

using the θ̂ estimation instead of θ in (4.6c). This means that the varying parameters

along the prediction horizon are estimated and considered in the EMPC controller as

known. Therefore, the vector

Θk =


θ̂0|k
θ̂i+1|k

...

θ̂Np−1|k

 ∈ RNp,nθ , (4.7)

contains the sequence of estimated parameters in the prediction horizon Np. Then, by

using (4.7), the predicted states can be conveniently written in vector form as

xk = A(Θk)xk + B(Θk)ũk, (4.8)

where A ∈ Rnx×nx and B ∈ Rnx×nu are given by (4.9) and (4.10).

A(Θk) =



I

A(θ̂k)

A(θ̂k+1)A(θ̂k)
...

A(θ̂k+Np−1)A(θ̂k+Np−2) . . . A(θ̂k)


(4.9)

and

B(Θk) =



0 0 0 . . . 0

B(θ̂k) 0 0 . . . 0

A(θ̂k+1)B(θ̂k) B(θ̂k+1) 0 . . . 0
...

...
. . .

. . .
...

A(θ̂k+Np−1) . . . A(θ̂k+1)B(θ̂k) A(θ̂k+Np−1) . . . A(θ̂k+2)B(θ̂k+1) . . . B(θ̂k+Np−1) 0


(4.10)

Hence, the optimization problem (4.6) now can be rewritten as

min
ũk,x̃k

Lk(ũk,A(Θk)xk + B(Θk)ũk) (4.11a)
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subject to:

ui|k ∈ U, ∀i ∈ [0, Np − 1], (4.11b)

xi|k ∈ X, ∀i ∈ [0, Np], (4.11c)

θ0|k = θk, (4.11d)

x0|k = xk, (4.11e)

xNp
= xs. (4.11f)

In this way, the online optimization problem can be solved as a QP problem, which is sig-

nificantly easier than solving a general nonlinear optimization problem. The parameter varying

estimation will be done by means of the following approach at each discrete time k:

• In the first iteration (k = 0), the optimization problem (4.6) is solved as a linear problem

since the quasi-LPV model (4.6b) is replaced by the LTI model that is obtained considering

θ0|i ' θ1|i ' θ2|i ' ... ' θNp−1|i along the prediction horizon Np and where θ0|0 =

ψ(x0|0, u0|0).

• In the next iterations, the sequence of the estimated varying parameters Θk in (4.7)

according to Lemma 4.1 is obtained using as estimation for the states x̂∗k−1 and controls

û∗k−1 that are the state and input sequences obtained from the optimal solution (4.11) in

the previous iteration k − 1.

4.3.2 Adaptation to the TS-EMPC case

As mentioned in section 2.2.2, nonlinear systems can be approximated through the TS fuzzy

models. Modeling the process behavior by means of the TS model is one way to deal with

nonlinear systems.Hence, the general formulation of EMPC deals with discrete-time TS fuzzy

models of the following form:

x(k + 1) =

r∑
i=1

hi(θ(k))(Aix(k) +Biu(k)). (4.12)

where the sets X and U are defined as (2.2). Besides, the system is subject to the control

constraint and state (4.2). The task of control is to satisfy constraints whilst the economic stage

cost function is represented as ` : X× U −→ R.

Considering the economic stage cost (4.5), the economic controller aims to drive the system to

the optimal accessible steady state, that is defined by using the implicit form of the optimization



as: The optimal accessible steady state and input, (xs, us) for TS model, satisfy

(xs, us) = arg min
(x,u)

`(x, u) (4.13a)

subject to:

x =

r∑
i=1

hi(θ)(Aix+Biu), (4.13b)

x ∈ X, (4.13c)

u ∈ U. (4.13d)

Analogously to the LPV-based EMPC controller presented in the previous section,
the EMPC controller based on the TS fuzzy model (4.12) is obtained by solving a finite-
time horizon optimization problem (FHOP).

By considering the same economic objective function (4.5), the system initial condi-
tions and assuming premise variables are dependent on the function of states and inputs,
the optimization problem associated to the TS-MPC can be formulated as

min
x̃,ũ

L(x̃, ũ) (4.14a)

subject to:

x(l + 1) =
r∑
i=1

hi(θ(l))(Aix(l|k) +Biu(l|k)), ∀l ∈ [0, Np − 1], (4.14b)

θ(l|k) = f(x(l|k), u(l|k)), ∀l ∈ [0, Np − 1], (4.14c)

u(l|k) ∈ U, ∀l ∈ [0, Np − 1], (4.14d)

x(l|k) ∈ X, ∀l ∈ [0, Np], (4.14e)

θ(0|k) = θ(0), (4.14f)

x(0|k) = x(0), (4.14g)

x(Np) = xs, (4.14h)

is solved online for

ũ(k) =
[
u(l|k), u(l + 1|k), ..., u(Np − 1|k)

]
∈ U. (4.14i)

Similarly to the LPV case, when using the TS model (4.12) in the optimization
problem (4.14), the future premise variables sequence (4.14c) is not known. In fact,
the structure (4.14b) is linear but because of (4.14c), the problem becomes nonlinear.
Actually, this issue makes the problem (4.14) not easy to solve. Then, by using the same
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approach proposed for the LPV case, (4.14) is solved as a QP problem which consists
in transforming the exact NEMPC into an approximate linear EMPC.

Hence, by using a vector that contains the sequence of the estimated premise va-
riables Θk in a similar way that (4.7) in the LPV case, the predicted states can be
conveniently written in vector form as (4.8) by defining

A(θk) =
r∑
i=1

hi(θ(k))Ai, (4.15)

B(θk) =

r∑
i=1

hi(θ(k))Bi, (4.16)

The predicted states can be formulated in vector form as (4.8), where A ∈
RNp, nx×Np, nx and B ∈ RNp, nx×Np, nu are given by (4.9) and (4.10). Then, the op-
timization problem (4.14) can be represented as

min
ũ,x̃

L(A(Θ(k))x(k) + B(Θ(k))ũ(k), ũ) (4.17a)

subject to:

u(l|k) ∈ U, ∀l ∈ [0, Np − 1], (4.17b)

x(l|k) ∈ X, ∀l ∈ [0, Np], (4.17c)

θ(0|k) = θ(0), (4.17d)

x(0|k) = x(0), (4.17e)

x(Np) = xs. (4.17f)

As in the LPV case, the sequence of the estimated premise variables Θk in (4.8)
according to Lemma 4.1 is obtained using as estimation for the states x̂∗k−1 and controls
û∗k−1 that are the state and input sequences obtained from the optimal solution (4.17)
in the previous iteration k − 1.

4.4 Stability and convergence analysis

For the first time in control research, asymptotic stability of the EMPC was established
in [182] with an assumption of linear plant dynamic and stringently convex cost functi-
onal. In Section 4.3, the propose EMPC approach is provided by considering terminal
equality constraints x(Np) = xs. However, this constraint can not guarantee the stabi-
lity of EMPC based on the LPV model because the terminal constraint is just around
a point. In this section, it will be shown that by considering the terminal state belongs
to a compact set the stability of the approach can be improved and ensured.

In this chapter, by following [8, 9], the main proof of stability strongly relies on
imposing a region constraint on the terminal state instead of a point constraint and
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adding a penalty on the terminal state to the regulator the cost. Moreover, the stability
analysis is adjusted for terminal constraint EMPC taking into account that the strict
dissipativity is sufficient for guaranteeing asymptotic stability of the closed-loop system.
Hence, the economic objective function defined as

L(x̃, ũ) :=

Np−1∑
i=0

`(xi, ui) + Vf (xNp), (4.18)

where Vf : Xf −→ R is the penalty on the terminal state, and Xf ⊆ X is a compressed
terminal region including the steady-state operating point in its interior. For LPV
models, one can ofter determine Xf when a control Lyapunov function is available. In
this formulation, the system using EMPC is stabilized by adding the requirement that
the terminal state extends in this terminal region, rather than at the optimal steady
state. According to [10] and for simplifying the method of improving the stability of
EMPC, the following definition and some assumptions are presented.

Definition 4.2. A control system (2.9) is dissipative regarding by stock rate s : X ×
U −→ R whereas there exists a function γ : X −→ R

γ(A(θk)xk +B(θk)uk)− γ(x) ≤ s(x, u), (4.19)

for all (x, u) ∈ Z ⊆ X× U. Additionally, if ρ : X −→ R≥0 is definite positive1 then

γ(A(θk)xk +B(θk)uk)− γ(x) ≤ −ρ(x− xs) + s(x, u), (4.20)

finally, it can be said the system is stringently dissipative.

�

Assumption 4.3. (Strict dissipativity) System model (2.9) is strictly dissipative with
respect to the supply rate that defined as s(x, u) := `(x, u)− `(xs, us).

Assumption 4.4. The stage cost and model are continuous on Z. The terminal cost
function Vf (.) is continuous on Xf .

Assumption 4.5. The storage function γ(.) is continuous on Z.

Assumption 4.6. (Stability assumption) A compact terminal region Xf ⊆ X, contai-
ning the point xs in its interior and control law Kf (θk) : Xf −→ U are exist, in such a
way that the following holds

Vf
(
(A(θk) +B(θk)Kf (θk))xk

)
≤ Vf (x)− `(x,Kf (θk)xk) + `(xs, us) (4.21)

Remark 4.1. Assumption 4.6 implies the set for Xf (x∗s) for all k ∈ Z+ to be invariant
under the control law uk = Kf (θk)xk. ♦

1A function is positive definite according to some points xs ∈ X if it is continues, ρ(xs) = 0 and
ρ(x) ≥ 0 for all x 6= xs.
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Remark 4.2. Considering Assumption 4.6 is the only condition on Vf , it can be assumed
without loss of generality that Vf (xs) = 0 for all k ∈ I+. It should be remarked
that unlike the standard MPC problem, Vf (x) is not significantly positive definite with
respect to xs. ♦

In order to analyse the asymptotic stability of the closed-loop model, the following
rotated regulator cost functions with terminal costs are considered:

L(x, u) := `(x, u)− `(xs, us) + γ(x)− γ(A(θk)xk +B(θk)uk), (4.22a)

V̄f (x) := Vf (x)− Vf (xs) + γ(x)− γ(xs), (4.22b)

with the costs V̄fand L, the following auxiliary optimal control problem is introduced:

min
ũ,x

L̄(x, ũ) :=

Np−1∑
i=0

L(xi, ui) + V̄f (xNp), (4.23)

subject to (4.11b)-(4.11f).

The constraints in problem L̄(x, ũ) are the same as in problem L(x, ũ). Therefore,
solutions exist for both problems for x ∈ XNp .Consequently, both problems have an
identical feasible set for all k ∈ I+.

Remark 4.3. According to Assumption 4.6, it can be assumed that γ(xs) = 0 for all
k ∈ I+ without loss of generality. ♦

Lemma 4.2. Considering Assumptions 4.4, 4.5 and 4.6 hold. The solution of the
auxiliary problem L̄(x, ũ) is identical to the solution of the original problem L(x, ũ).

Proof . By considering that both problems only differ in the cost function, expanding
the rotated regulator cost function yields

L̄(x, ũ) =

Np−1∑
i=0

L(xi, ui) + V̄f (xNp)

=

Np−1∑
i=0

`(xi, ui)− `(xs, us)

+ γ(x)− γ(A(θi)xi +B(θi)ui) + Vf (xNp)− Vf (xs) + γ(xNp)− γ(xs)

= L(x, ũ)− Vf (xs) + γ(xNp))− γ(xs) + γ(x)− γ(xNp)−
Np−1∑
i=0

`(xs, us).

Subsequently, according to Remark 4.3, it is obtained that

L̄(x, ũ) = L(x, ũ) + γ(x)−
Np−1∑
i=0

`(xs, us). (4.25)
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Since

Np−1∑
i=0

`(xs, us) and γ(x) are independent of the decision variable ũ for a provided

initial state x ∈ X, the two cost functions L̄(x, ũ) and L(x, ũ) are different only by a
constant. Therefore, the two optimization problems have the same identical solutions
at all time steps k ∈ I+. �

Now, it can be seen that the modified terminal cost obtains the basic stability con-
dition of the original terminal cost, due to the equivalence of the problems is improved.

Lemma 4.3. The modified costs L and V̄f satisfy the following property if and only if
Vf (.), `(.) satisfies Assumption 4.6.

V̄f
(
(A(θk) +B(θk)Kf (θk))xk

)
≤ V̄f (x)− L(x,Kf (θk)x) (4.26)

Proof . The proof follows from the results presented in [8]. By considering
Remark 4.3, Remark 4.2 and proper manipulation of (4.22b) by adding the term
γ(x) + γ((A(θk) +B(θk)Kf (θk))xk) to both sides. �

Lemma 4.4. [108] Let ρ(x) : C −→ R≥0 be a positive definite function that defined on
the compact set C. Then, there exists a class K function ζ(.) such that

ρ(x) ≥ ζ(|x|), ∀x ∈ C. (4.27)

Lemma 4.5. Let Assumptions 4.3 to 4.6 hold. The terminal cost V̄f and rotated stage
cost L are satisfied for following inequalities:

L(x, u) ≥ ζ(‖x− xs‖) ≥ 0, ∀(x, u) ∈ Z (4.28)

ζ(‖x− xs‖) ≤ V̄f ≤ ζ̂(‖x− xs‖), ∀(x) ∈ Xf (4.29)

where functions ζ(.) and ζ̂(.) are class K.

Proof . From (4.20), (4.22a) and Assumption 4.3, it holds that L(x, u) ≥ ρ(‖x−xs‖)
for all (x, u) ∈ Z, which according to Lemma 4.4, leads to (4.28). By following [8], it

can be shown from (4.26) and (4.28) that V̄f (x) ≥
∞∑
i=0

L(xi,Kf (θk)xi). Moreover, from

Assumption 4.4, V̄f (x(k)) is bounded and by V̄f (xs) = 0, thus, it can be upperbounded

by a class K function, i.e., V̄f (x) ≤ ζ̂(‖x− xs‖) for all x ∈ Xf . �

Theorem 4.1. Let Assumptions 4.3 to 4.6 hold. Then, the steady state solution is
asymptotically for all feasible initial states. The candidate Lyapunov function is L̄0(xk),
and satisfies

L̄0(xk) ≤ ζ(‖x− x∗s‖), (4.30)

L̄0(xk+1)− L̄0(xk) ≤ −ζ(‖x− x∗s‖), (4.31)

for all xk ∈ X(Np), where ζ(.) being a class K functions.
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Proof . The lower and upper bounds that imposed by inequality (4.30) follow from
Lemma 4.5. Condition (4.31) can be proved by following analysis that considers the
optimal modified cost functions

L̄(x, ũ) =

Np−1∑
i=0

L(x(i), u(i)) + V̄f (xNp)). x ∈ X(Np) (4.32)

There is feasible solution for the current state which gives optimal input and state
sequences denoted respectively as u∗(k) = {u∗(k + i|k)}i∈I[0,Np−1]

and x∗(k) = {x∗(k +

i|k)}i∈I[0,Np] . A candidate input sequence and a associated state sequence for the next
time step are chosen as following:

ū(k + 1) = {u∗(k + 1|k), ..., u∗(k +Np|k),Kf (x∗(k +Np|k))},
x̄(k + 1) = {x∗(k + 1|k), ..., x∗(k +Np|k), x∗(k +Np + 1|k)},

where x∗(k+Np+1|k) = ((A(θk)+B(θk)Kf (θk)))x
∗(k+Np|k). Because of the terminal

constraint and Assumption 4.6, it holds x∗(k+Np+1|k) ∈ Xf (x∗(k+Np)). Furthermore,
the cost is given by

L̄(x∗(k + 1|k), ū(k + 1)) =

Np−1∑
l=1

L(x∗(k + i|k), u∗(k + i|k))

+ L(x∗(k +Np|k),Kf (x∗(k +Np|k)))

+ V̄f (x∗(k +Np + 1|k))

=L̄0(xk)− L(x(k), u∗(k|k))

+ L(x∗(k +Np|k), (θ(k))Kf (x∗(k +Np|k)))

− V̄f (x∗(k +Np|k)) + V̄f (x∗(k +Np + 1|k)).

From Assumption 4.6 and Lemma 4.3, it follows that

L̄(x∗(k + 1|k), ū(k + 1)) ≤ L̄0(xk)− L(xk, u
∗(k|k)). (4.35)

Since L̄0(x∗(k+ 1|k), ū(k+ 1)) ≤ L̄(x∗(k+ 1|k)), hence, from (4.35) and Lemma 4.5
it follows that

L̄0(xk+1)− L̄0(xk) ≤ −ζ(‖x− x∗s‖), (4.36)

which completes the proof. �

4.4.1 Computation of the Terminal Components

For completely determining the stabilizing of the proposed EMPC controller based on
LPV model, it is necessary to compute the terminal components. By following [8], a
systematic procedure is presented where a fixed terminal region around the optimal
steady state was used. Then, terminal sets and quadratic cost functions are computed
based on the LPV model in a stabilizing MPC context.
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Assumption 4.7. There exist Kk ∈ R, k ∈ I[1,Np−1], such that the matrices Ãk :=
Ak +BkKk are Schur.

The computation of the terminal components of (4.6) needs in addition the presence
of a terminal control law, which is determined as follows:

Kf = Kk(x− x∗s(k)) + u∗s(k), (4.37)

where Kk is the feedback gain satisfying Assumption 4.7, and the pair (x∗s(k), u∗s(k)) are
elements of the optimal steady state and input trajectories.

The terminal penalty is introduced based on the ellipsoidal level sets correlated to
quadratic functions of the form

Vf (x) :=
1

2
(x− x∗s(k))>Pk(x− x∗s(k)), (4.38)

for all k ∈ Z+. Therefore, the terminal regions are centered around the nominal trajec-
tory and defined as

Xf (x∗s(k)) := {x ∈ R|(x− x∗s(k))>Pk(x− x∗s(k)) ≤ δ}, (4.39)

where δ ∈ R+. The scaler δ must ensure that the state and input constraints are
perpetually satisfied under the use of terminal controller (4.37), i.e., x(k) ∈ Xf (x∗s(k)) ⊂
X and Kf (θk)xk ∈ U for all k ∈ I+. To derive an appropriate terminal function Vf for
the economic cost based on the LPV model, the procedure in [8] is suitably modified.
First, assume that the economic costs `(.) are twice continuously differentiable and let
¯̀(xk) := `(xk,Kf (θk)xk)−`(x∗s(k), u∗s(k)). Then, from [8], for all x ∈ X, (x∗s(k), u∗s(k)) ∈
Z and k ∈ I[0,Np−1], there exists a matrix Qk such that Qk− ¯̀

xx(xk) ≥ 0. Moreover, the
quadratic cost functional

`q(x) :=
1

2
(x− x∗s(k))>Qk(x− x∗s(k)) + q>(x− x∗s(k)), (4.40)

where q := ¯̀
x(x∗s(k), u∗s(k)) for all k ∈ I+, is such that for all x ∈ X the inequality

`q(x) ≥ ¯̀(xk) + (1/2)(x − x∗s(k))>(x − x∗s(k)) holds. Hence, the candidate terminal
function is defined as

Vf (x) :=
∞∑
i=0

`q(x(i)), (4.41)

where x(k+ 1 + i) = Ak+ix(k+ i) +Bk+i

(
Kk+i(x− x∗s(k+ i)) + u∗s(k+ i)

)
fo all i ∈ I+.

To obtain an explicit definition of (4.41), it can use x∗s(k + 1) = Akx
∗
s(k) + Bku

∗
s(k).

From Assumption 4.7 and (4.37), the error dynamics are given by

(x(k + 1)− x∗s(k + 1)) = Ãk(x(k)− x∗s(k)), ∀k ∈ I+. (4.42)

The so-called monodromy matrix of system (4.42) with NP models, is given by

Ψk :=

Np−1∏
l=0

Ãk+l, ∀k ∈ I+. (4.43)
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Then, according to (4.40), (4.42) and (4.43), the terminal function (4.41) can be
written as follows

Vf (x) =
1

2

Np−1∑
l=0

(x(k + l)− x∗s(k + l))>
( ∞∑
i=0

(Ψi
k+l)

>Qk+l(Ψ
i
k+l)

)
(x(k + l)− x∗s(k + l))

+ ¯̀
x(x∗s(k + l), u∗s(k + l))>

∞∑
i=0

(Ψi
k+l)(x(k + l)− x∗s(k + l))

=
1

2

Np−1∑
l=0

(x(k + l)− x∗s(k + l))>Pk+l(x(k + l)− x∗s(k + l)) + p>k+l(x(k + l)− x∗s(k + l)),

(4.44)

with x(k + 1 + l) = Ak+lx(k + l) + Bk+l

(
Kk+l(x(k + l) − x∗s(k + l)) + u∗s(k + l)

)
fo

all l ∈ I[0,Np−1] and p>k = ¯̀
x(x∗s(k + l), u∗s(k + l))>(I − Ψk+l)

−1. For the given k and
each l ∈ I[0,Np−1], matrices Pk+l are the solutions to the discrete Lyapunov equations

Ψ>k+lPk+lΨk+l − Pk+l = −Qk+l. Through (4.41), it follows that the candidate functi-
on Vf satisfies condition Assumption 4.6. In fact, from Assumption 4.7 and suitable
manipulation of (4.41)-(4.44) the following balance may be derived:

Vf ((A(θk) +B(θk)Kf (θk))xk)− Vf (x(k))

=
1

2
(x(k)− x∗s(k))>(Ã>k PkÃk − Pk)(x(k)− x∗s(k))− ¯̀

x(x∗s(k), u∗s(k))>(x(k)− x∗s(k)).

(4.45)

Hence, (4.41) and (4.45) yield the following Lyapunov equation

Ψ>k PkΨk − Pk = −Qk, ∀k ∈ I[0,Np−1]. (4.46)

It is important to express that matrices Pk and Kk must provide in addition the
following condition:

Ã>k PkÃk − Pk ≤ 0, ∀k ∈ I[0,Np−1]. (4.47)

The main problem to do so is that the matrices in (4.43) lead to non-linear matrix
inequalities that cannot be solved directly. Despite the mentioned difficulty for solving
(4.46), it is still conceivable to obtain a set of matrices satisfying Assumption 4.7. To do
so, relax condition (4.46) and consider instead Ã>k PkÃk−Pk ≤ −Qk for all k ∈ I[0,Np−1].
This theory is formalized with the following result.

Theorem 4.2. Consider the system function x(k + 1) = (A(θk) + B(θk)Kf (θk))xk
satisfying Assumption 4.4, control low (4.37) and the pair (x∗s(k), u∗s(k)) ∈ Z for all
k ∈ I[0,Np−1]. Let Xk ∈ Snx++, Yk ∈ Rnu×nx and δ ∈ R+ be decision variables, and solve

max
Xk�0,Yk∈Rnu×nx ,δ∈R+

−logdet(X0) (4.48a)
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subject to  Xk ∗ ∗
AkXk +BjYk Xk+1 ∗

Q1/2Xk 0n×n δIn

 ≥ 0, (4.48b)

for all k ∈ I[0,Np−1] while, Xopt,k, Yopt,k and δopt indicate the solution of (4.48). Moreo-
ver,

Pk := X−1
opt,kδopt, Kk := YkX

−1
k , ∀k ∈ I[Np−1]. (4.49)

If problem (4.48) can be solved, then Assumption 4.6 is satisfied.

Proof . At first, it should be indicated that the solution of (4.48) presents the ter-
minal sets defined in (4.39) for system x(k+ 1) = (A(θk) +B(θk)Kf (θk))xk with Kf as
defined in (4.37). To do so, remark that for k ∈ I+ the the terms x(k) ∈ Xf (x∗s(k)) is
equal to the following quadratic functional condition

F0 = (x(k)− x∗s(k))>Pk(x(k)− x∗s(k))− δ ≤ 0.

Similarly, the requirement that x(k + 1) ∈ Xf (x∗s(k + 1)) is equivalent to

F1 = (x(k + 1)− x∗s(k + 1))>Pk+1(x(k + 1)− x∗s(k + 1))− δ ≤ 0.

According to Lemma C.1, the term that x(k) ∈ Xf (x∗s(k)) signifies x(k + 1) ∈
Xf (x∗s(k + 1)), is equal to the existence of ωk � 0, such that

(x(k+1)−x∗s(k+1))>Pk+1(x(k+1)−x∗s(k+1))−δ−ωk((x(k)−x∗s(k))>Pk(x(k)−x∗s(k))−δ) ≤ 0.
(4.50)

From (4.42), the mentioned inequality can be edited as a quadratic functional of
(x(k) − x∗s(k)) for all k ∈ I+. Therefore, by Lemma C.2, an equivalent linear matrix
inequality condition can be established, i.e.,[

Ã>k Pk+1Ãk − ωkPk 0
0 ωk − δ

]
≤ 0.

The above inequality can be decoupled to obtain, 0 ≺ ωk ≤ δ, and

Ã>k Pk+1Ãk − ωkPk ≤ 0. (4.51)

As reviewed in [21], there exists a ωk such that (4.51) is equivalent to

Ã>k Pk+1Ãk − Pk ≤ −Qk. (4.52)

By recovering Xk and Yk according to (4.49) and applying the Schur complement
to (4.48b), and pre- and post-multiplying the result with Pk, it can be indicated that
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(4.48b) is equal to (4.51) with k ∈ I[0,Np−1]. Finally, for proving (4.21), (4.52) is pre-

and post-multiplied with (x(k) − x∗s(k))> and (x(k) − x∗s(k)) and yields the following
inequality

(x(k)− x∗s(k))>(Ã>k Pk+1Ãk − Pk)(x(k)− x∗s(k)) ≤ −(x(k)− x∗s(k))>Qk(x(k)− x∗s(k))
(4.53)

for all k ∈ I+. By using (4.42), (4.43) and summing up (4.53) from k = 0 to k = Np−1,
(4.53) can be written as

(x(k)−x∗s(k))>(Ψ>k Pk+1Ψk−Pk)(x(k)−x∗s(k)) ≤ −
Np−1∑
k=0

(x(k)−x∗s(k))>Qk(x(k)−x∗s(k)).

(4.54)

Then, by multiplying (4.53) with (1/2) and adding −¯̀(x∗s(k), u∗s(k))>(x(k)− x∗s(k))
to both sides of its, lead to

1

2
(x(k)− x∗s(k))>(Ψ>k Pk+1Ψk − Pk)(x(k)− x∗s(k))− ¯̀(x∗s(k), u∗s(k))>(x(k)− x∗s(k))

≤ −1

2

Np−1∑
k=0

(x(k)− x∗s(k))>Qk(x(k)− x∗s(k))− ¯̀(x∗s(k), u∗s(k))>(x(k)− x∗s(k))

≤ −1

2
(x(k)− x∗s(k))>Qk(x(k)− x∗s(k))− ¯̀(x∗s(k), u∗s(k))>(x(k)− x∗s(k))

≤ ¯̀(x(k)) = `(x(k),Kf (x(k)))− `(x∗s(k), u∗s(k)),

(4.55)

for all k ∈ I+. The second inequality comes from the positive definiteness of Qk, and the
last inequality is obtained from the description of `q(x) in (4.40). Hence, according to
(4.44) and (4.55), condition (4.21) is satisfied. Furthermore, Theorem 4.2 can be proved
by solving (4.48) to obtain terminal components considering Assumption 4.6. �

4.5 Numerical results

In this part, application results in simulation of the proposed EMPC strategy based
TS/LPV model for the pasteurization process are presented and analyzed in detail.

4.5.1 Cost function parameters

One of the important objectives of the pasteurization process is to ensure that the pas-
teurization temperature is attained and preserved close to the set-point temperature for
a pre-established time. However, the set-point is different for several products. Simul-
taneously, the decrease of energy consumption of the system considered an economic
target should be achieved by minimizing the power of the resistor of the hot-water tank
for reducing the cost of the heater. The control aim is to minimize a convex multiob-
jective stage cost function that probably anticipates each functional connection to the
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economic aspect and to achieve a suitable temperature for maintaining the performance
of the system.

The EMPC objective function for the pasteurization process involves three opera-
tional purposes with several characteristics, i.e., minimizing energy cost, maintaining
safety bounds for temperature, and control input smoothness.

Minimization of energy costs

One of the main control objective in the pasteurization process is to minimize the cost
energy consumption of the system that includes minimizing the power of the hot-water
tank for reducing the energy cost of the heater. Then, the cost function related to this
objective can be formulated as

`(k) , α(k)Weu(k)∆t, (4.56)

where α(k) is time-varying electricity cost that changes in each time instate k according
the dynamic electricity tariff. Moreover, We denotes the weighting term that indicates
the prioritisation of the economic control objective and ∆t is the sampling time in
second.

Guarantee of safety temperature

For preserving the value of the pasteurization temperature Tpast, and the hot-water
tank temperature Tow between the pre-specified minimal and maximal of the suitable
output temperatures, a appropriate safety bounds for each output temperature must be
maintained. The mathematical expression for this objective is formulated as

`t(k) =

{
||Cx(k + 1)− yS ||2, if Cx(k + 1) ≤ yS .
0, otherwise.

(4.57)

where yS is the safety output temperatures of the pasteurization temperature Tpast,
and the hot-water tank temperature Tow and ||.||2 is the squared 2-norm symbol. The
safety cost function can be also obtained by means of a soft constraint, adding a slack
variable ξ, which can be reformulated as

`t(k) , ξ(k)>Wtξ(k), (4.58)

where ξ > 0 is a slack variable that it is presented for preserving the feasibility of the
optimization problem by considering the following soft constraint:

Cx(k + 1) ≥ yS − ξ(k), (4.59)

and Wt is a diagonal positive definite matrix that shows the prioritisation of the safety
objective.
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Smoothness of control actions

Pumps and electric heater resistor are known as the actuators of the pasteurization
plant. The control actions found by the EMPC controller are should be smooth in order
to extend the lifespan of physical components. The objective function for this part can
be written as

`∆(k) , ∆u(k)>W∆u∆u(k), (4.60)

where the `∆(k) indicates the penalization of control signal variations ∆u(k) , u(k) −
u(k − 1) and W∆u is weighting term for smoothness of control actions as a diagonal
positive definite matrix.

Multi-objective cost function

According to the previous explanation about the different control objectives, the multi-
objective cost function for the operational management of the pasteurization plant can
be rewritten as

LG(k) = [`(k) + `t(k) + `∆(k)]. (4.61)

4.5.2 Simulation results

As mentioned before, one of the most important goal of the pasteurization process is
to guarantee that the pasteurization temperature is reached and maintained as close as
possible to the desired thermal temperature margin. At the same time, the reduction of
energy consumption of the system expressed as a economic objective should be achieved
by minimizing the power of the hot-water tank for reducing the cost consumption based
on power of heater. For this purpose, the input temperature of hot-water tank Tiw and
the cold temperature Tic are maintained constant at 40◦C and 30◦C, respectively. Furt-
hermore, the power of the electrical heater P can take values in the range [0, 1.5] kW. The
states are constrained to be [0, 0, 0, 0, 0, 0, 0]> ≤ xk ≤ [120, 120, 120, 120, 120, 800, 120]>.
The states of the model are arranged by the initial states x0 = [28, 0, 0, 0, 0, 155, 22]>

and sampling time is chosen ∆t = 1 second. The control objective is to preserve the
principle temperatures for products pasteurization such that the constraints are always
satisfied while minimizing an economic cost function given by (4.61), where weighting
matrices are We = 10, Wt = [80, 0; 0, 20], W∆u = 0.001 and the prediction horizon has
been selected as Np = 5.

In addition, the range of hot water flow is considered as Fh ∈ [150, 695] and by
applying the well-known sector nonlinearity approach [160], the nonlinear model of the
pasteurization plant can be expressed by a T-S fuzzy model with r = 2nθ fuzzy If-Then
rules as follows:

Rule 1: If θ(k) is M11 Then x(k + 1) = A1x(k) +B1u(k),
Rule 2: If θ(k) is M12 Then x(k + 1) = A2x(k) +B2u(k),
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Figura 4.1: Evolution of controlled temperature of TMPC strategy
and the EMPC based on TS model

where θ(k) = Fh(k) is the premise variable, M11 and M12 are the membership functions
which can be defined as:

M11 =
Fh(k)− Fh
Fh − Fh

, M12 = 1−M11. (4.62)

According to (??) and cost function (4.61), the optimal steady-state of the pasteu-
rization system is obtained as xs = [42.35, 38.58, 58.17, 0, 33.49, 0, 73.41]> and
us = [623.37, 0]>. Moreover, the stability issue of approach based on TS model is sa-
tisfied same as section 4.4 for LPV model. Then, the convergence of the system to the
optimal circuit (if desired) can be ensured due to the pasteurization system is strictly
dissipative with respect to the supply rate s(x, u) := `(x, u)− `(xs, us) while the storage
function is γ = (1/2)x. By solving (4.48), it is obtained a sub-level δ = 1444.6196 and
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matrices Pk, Kk as:

P(0) =



560.65 0.0530 0.5636 −0.0001 −0.0001 0.0000 −0.0021
0.0530 567.51 0.5107 −0.0001 −0.0001 0.0000 −0.0017
0.5636 0.5107 566.41 0.0118 0.0128 −0.0000 0.2833
−0.0001 −0.0001 0.0118 567.54 0.0127 0.0536 0.2793
−0.0001 −0.0001 0.0128 0.0127 561.35 −0.0000 0.3056
0.0000 0.0000 −0.0000 0.0536 −0.0000 561.34 −0.0002
−0.0021 −0.0017 0.2833 0.2793 0.3056 −0.0002 569.53


,
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K(0) =



0 0 −631.07 0
−1362.50 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −11.83
0 −0.0263 0 0
0 0 0 0


,

P(1) =



560.62 0.0234 0.3806 −0.0001 −0.0001 0.0000 −0.0014
0.0234 567.49 0.3449 −0.0001 −0.0001 0.0000 −0.0011
0.3806 0.3449 566.59 0.0118 0.0128 −0.0000 0.2826
−0.0001 −0.0001 0.0118 567.27 0.0127 0.2119 0.2802
−0.0001 −0.0001 0.0128 0.0127 561.35 −0.0000 0.3056
0.0000 0.0000 −0.0000 0.2119 −0.0000 561.35 −0.0008
−0.0014 −0.0011 0.2826 0.2802 0.3056 −0.0008 569.54


,

K(1) =



0 0 −631.29 0
−1368.50 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −11.51
0 −0.0263 0 0
0 0 0 0



P(2) =



560.62 0.0191 0.3448 −0.0000 −0.0001 0.0000 −0.0013
0.0191 567.49 0.3125 −0.0000 −0.0001 0.0000 −0.0010
0.3448 0.3125 566.63 0.0118 0.0128 −0.0000 0.2825
−0.0000 −0.0000 0.0118 567.22 0.0127 0.2418 0.2804
−0.0001 −0.0001 0.0128 0.0127 561.36 −0.0000 0.3056
0.0000 0.0000 −0.0000 0.2418 −0.0000 561.35 −0.0009
−0.0013 −0.0010 0.2825 0.2804 0.3056 −0.0009 569.54


,

K(2) =



0 0 −631.33 0
−1369.73 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −11.45
0 −0.0263 0 0
0 0 0 0
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P(3) =



560.63 0.0183 0.3378 −0.0000 −0.0001 0.0000 −0.0013
0.0183 567.4906 0.3062 −0.0000 −0.0001 0.0000 −0.0010
0.3378 0.3062 566.63 0.0118 0.0128 −0.0000 0.2825
−0.0000 −0.0000 0.0118 567.21 0.0127 0.2475 0.2805
−0.0001 −0.0001 0.0128 0.0127 561.36 −0.0000 0.3056
0.0000 0.0000 −0.0000 0.2475 −0.0000 561.35 −0.0009
−0.0013 −0.0010 0.2825 0.2805 0.3056 −0.0009 569.54


,

K(3) =



0 0 −631.33 0
−1369.65 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −11.44
0 −0.0263 0 0
0 0 0 0



P(4) =



560.64 0.0427 0.5083 −0.0001 −0.0001 0.0000 −0.0019
0.0427 567.50 0.4606 −0.0001 −0.0001 0.0000 −0.0015
0.5083 0.4606 566.46 0.0118 0.0128 −0.0000 0.2831
−0.0001 −0.0001 0.0118 567.46 0.0127 0.1026 0.2796
−0.0001 −0.0001 0.0128 0.0127 561.35 −0.0000 0.3056
0.0000 0.0000 −0.0000 0.1026 −0.0000 561.34 −0.0004
−0.0019 −0.0015 0.2831 0.2796 0.3056 −0.0004 569.53


,

K(4) =



0 0 −631.16 0
−1364.84 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −11.73
0 −0.0263 0 0
0 0 0 0



Then, according to matrices P, terminal penalty may be defined as (4.38). While
this Vf (x) can be satisfied (4.21) for all x ∈ Xf ⊂ X and kf = Kk(x− x∗s) + u∗s.

To evaluate the advantage and economic efficiency of the presented strategy for
EMPC controller based on the TS fuzzy model, the tracking MPC (TMPC) strategy is
implemented on the TS model of pasteurization system. The TMPC based on the TS
fuzzy model is done solving the following optimization problem:

min
u(k)

Np−1∑
l=0

‖Cx(l + 1|k)− yref (l + 1)‖p,w1 + ‖∆u(l + 1|k)‖p,w2 , (4.64)

subject to (2.14) and (2.15) and same constraints in (4.61). Moreover, p denotes the
norm used for this chapter is squared norm and the weighting matrices w1 ∈ Rnx×nx
and w2 ∈ Rnu×nx are applied to verify the priority of the several control objectives.
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All tests were done using the same weights, initial conditions and prediction horizon
as mentioned above. All simulation and computations have been carried out on an i7
2.40-GHz Intel core processor with 12 GB of RAM running MATLAB R2016b, and
the optimization problem is solved by using YALMIP toolbox with Cplex solver. In
addition, the numeric assessment of the above-mentioned controllers is carried through
different key performance indicators (KPIs), which are detailed as follows:

KPIe :=
1

ns + 1

ns∑
k=0

α>uk ∆t, (4.65a)

KPI∆u :=
1

ns + 1

nu∑
i=1

ns∑
k=0

(∆u(i, k))2, (4.65b)

where KPIe denotes the average economic performance of the pasteurization process
and KPI∆u evaluates the smoothness of the control actions. Moreover, ns ∈ I+ is the
number of seconds considered in the simulations and ∆t is the sampling time in seconds.
It should be noted that in KPIe and KPI∆u lower values signified better performance
results.The comparison results of different key performance indicators (KPIs) plus the
simulation time between EMPC and TMPC strategies based on T-S model are presented
in Table 4.1.
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Taula 4.1: Comparison of control performance.

Controller KPIe KPI∆u Simulation Time

EMPC 12177 6824 3562
TMPC 44339 15430 3025

Figures 4.1 and 4.2 provide the evaluation of the controlled output temperature re-
sults that include the pasteurization temperature, Tpast and hot-water tank temperature,
Tow. These output temperatures obtained under the new strategy of the EMPC based
on the T-S fuzzy model with hard constraints in input and output temperature in order
to save energy and avoid overheating the product. In Figure 4.1, it can be seen that the
pasteurization temperature, Tpast and hot-water tank temperature, Tow from EMPC
approach are within expected ranges Tpast ∈ [65◦C, 74◦C] and Tow ∈ [76◦C, 83◦C],
respectively.

The TMPC is designed just for reaching the predefined references where their re-
ferences are the mean values of the expected ranges of the output temperatures. The
results of output temperature behaviour from the TMPC controller based on the T-S
fuzzy model that designed to achieve the references are presented in Figure 4.1. From
Figure 4.1, it can be observed that the pasteurization temperature Tpast and hot-water
tank temperature Tow are tracked the predetermined references and achieved them.
However, Tpast has overshoot behaviour.

Figure 4.3 shows the simulation results of the power of the electrical heater and
speed of pump based on the EMPC and TMPC strategies. By analyzing theses results
from economic point of view, it can be observed that the appropriate pasteurization
temperature Tpast and hot-water tank temperature Tow are obtained with the EMPC
controller while the power of the electrical heater is decreased and the value of the
power is less than the TMPC strategy. The output temperatures of both strategies
achieve the suitable temperature according to the economic objective. In the meantime,
the performance of products is kept, it means the product is pasteurized in a suitable
temperature and not burnt while the economic cost in EMPC is almost reduced three
times compared to the TMPC.

4.6 Summary

This chapter focused on the design of an economic model predictive control algorithm
for a class of LPV/TS models. The constrained optimization problem for LPV/TS
model are solved iteratively by a series of QP problems while the scheduling parameters
are calculated at each time instant. The model is predicted in the horizon by using the
previous sequence of scheduling variable and state of the model. The proposed approach
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is extended based on the TS model. The asymptotic stability of EMPC based on LPV
models is provided by satisfying a strong dissipativity assumption to prove stability. The
proposed approach is attractive because the implementation of this method is basically
the same algorithm as for LTI systems. Finally, the EMPC strategy based on TS model
has been satisfactorily designed and tested in a simulation of a small-scale pasteurization
system. The TS model of the pasteurization system has been obtained by considering
the hot-water flow Fh as premise variable. Then, the comparison between the EMPC
approach and the classic tracking MPC is done and the results show the advantages of
EMPC for decreasing the economistic cost. Moreover, this approach will be extended
in the next chapter by considering the time delay in the system.
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Caṕıtol 5

MPC for LPV systems with
parameter-varying delays

This chapter presents MPC strategy for LPV systems with varying delays affecting sta-
tes and inputs. The proposed control approach allows the controller to accommodate
the scheduling parameters and delay change. By computing the prediction of the state
variables and delay along a prediction time horizon, the system model can be modifi-
ed according to the evaluation of the estimated state and delay at each time instant.
Moreover, the solution of the optimization problem associated with the MPC design
is achieved by solving a series of Quadratic Programming (QP) problems at each time
instant. The pasteurization plant system is used as a case study to demonstrate the
effectiveness of the proposed approach.

5.1 Introduction

The effect of time delay in a process increases the complexity of the control problem.
The delays can affect the states, inputs or/and outputs, and they can be time-varying
or constant, unknown or known, deterministic or stochastic depending on the systems
under study.

Recently, many researchers focus on robust model predictive control (RMPC) based
on linear models with constant or varying delays [66, 123]. In [34], a RMPC with
constant state delay by using linear matrix inequalities (LMIs) is proposed. The work of
[87] proposes an MPC algorithm for uncertain time varying systems with state delays.
Besides, a synthesis strategy for predictive control based on LPV models with state
delays was provided in [87]. However, there exist only a few MPC methods that consider
time-delayed LPV models [222, 229]. In [222], authors proposed a parameter-dependent
state-feedback controller based on LPV model with parameter-varying time delay and
proved the stability by using parameter-dependent Lyapunov functionals. However,
there exists a limitation to apply input constraints which are required when controlling
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many practical plants. Also, an RMPC based on LPV model with state delay was
presented in [229] by using a Lyapunov function augmented with the current state and
the time-delayed states. But, still delay is considered to be constant in the RMPC.
Therefore, an MPC controller that can overcome the drawbacks mentioned above is
needed to enable handling effects of varying delays and constraints.

In this chapter, an MPC controller based on the LPV models with varying parameters
delays is provided. The main contribution consists of designing an improved LPV-
based MPC strategy in order to formulate an optimization problem that exploits the
functional dependency of scheduling variables and varying delays to develop a prediction
strategy with a numerically suitable solution. This solution is iteratively forced to an
accurate solution, thereby avoiding the use of non-linear optimization. In addition, the
optimization problem is decomposed into a series of QP problems that are solved at
each time instant. Finally, the small-scale pasteurization plant that presents nonlinear
behavior with varying delays is used in order to test the effectiveness of the proposed
approach.

5.2 Problem statement

Consider the following discrete-time state-space LPV model with parameter-varying
delays in inputs and states:

x(k + 1) =A(θ(k))x(k) +Aτ (θ(k))x(k − τ(θ(k)))

+B(θ(k))u(k) +Bτ (θ(k))u(k − τ(θ(k))),

y(k) =C(θ(k))x(k) + Cτ (θ(k))x(k − τ(θ(k))),

(5.1)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are the state vector, input vector and output vector,
respectively. Moreover, A(θ(k)) ∈ Rnx×nx , B(θ(k)) ∈ Rnx×nu and C(θ(k)) ∈ Rny×nx are
system matrices with the appropriate dimensions, which depend affinely on the varying
parameter θ(k) ∈ Θ ∀k ≥ 0 where Θ is a given compact set. Moreover, τ is a scalar
function representing the parameter-varying delay and satisfies 0 ≤ τm ≤ τ(θ(k)) ≤ τM ,
where τM and τm are the upper bound and lower bound of τ(θ(k)). Throughout this
paper, it is assumed that (A(θ), B(θ)) is stabilizable for all θ ∈ Θ.

The MPC controller design with a quadratic objective function subject to input and
states constraints based on the LPV model (5.1) can be formulated as follows:

min
ũ(k)

J(k) =

Np−1∑
i=0

‖x(i|k)‖pw1
+ ‖u(i|k)‖pw2

, (5.2a)
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subject to

x(i+ 1|k) =A(θ(i|k))x(i|k)

+Aτ (θ(i|k))x(i− τ(θ(i|k))|k)

+B(θ(i|k))u(i|k)

+Bτ (θ(i|k))u(i− τ(θ(i|k))|k),

(5.2b)

u(i|k) ∈U, (5.2c)

x(i|k) ∈X, (5.2d)

x(0|k) =x(k) (5.2e)

θ(0|k) =θ(i|k), (5.2f)

and for all i ∈ Z[0,Np−1], it is solved online for

ũ(k) =
[
u(i|k), u(i+ 1|k), ..., u(Np − 1|k)

]> ∈ U, (5.3)

where ũ(k) is the decision sequence of Np predicted control inputs. Moreover, w1 ∈
Rnx×nx and w2 ∈ Rnu×nu are positive definite weighting matrices that establish the
trade-off between state and the control input effort, respectively. The super-index p is
the squared norm. Furthermore, the sets X and U are defined as (2.2).

The control law is applied in a receding horizon manner. Also, x(i|k) is the predicted
state at time i, with i = 1, ..., Np, obtained by starting from the state x(0|k) = x(k).

The LPV model can not be evaluated before solving the optimization problem (5.2)
because the future state sequence is not known. Indeed x(i|k) depends not only on the
future control inputs u(k), but also on the future scheduling parameters θ(k) and delay,
which for a general LPV system, are not assumed to be known a priori, but only to be
measurable online at current time k. In addition, in the case of a system with varying
delay, the delay varies with the scheduling variables. Hence, predicting the future states
regarding the dynamic of the system is more difficult. But, for a quasi-LPV system,
where the scheduling parameters θ(k) are defined by x(k) and u(k), the delay and state
trajectory can be predicted.

5.3 Proposed approach

This section proposes an MPC controller design in order to solve the optimization pro-
blem of an LPV model with parameter-varying delay where the parameters and delays
change along the prediction horizon. The solution for this problem is based on the
estimation of the scheduling variables and subsequently the delays into the prediction
horizon and then, using them to update the system matrices of the model used by the
MPC controller. In fact, the sequence of the control input is used to modify the delay
and system matrices of the model used along the prediction horizon. Therefore, the
sequence of states and predicted parameters can be obtained from the control sequence
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ũ(k) as

x̃(k) =


x(i+ 1|k)
x(i+ 2|k)

...
x(Np|k)

 ∈ RNp, nx , Θ(k) =


θ̂(i|k)

θ̂(i+ 1|k)
...

θ̂(Np − 1|k)

 ∈ RNp, nθ . (5.4)

Since the delays depend on the scheduling parameters, the delays can be estimated
based on the sequence of predicted parameters as

τ̃(k) =


τ(i|k)

τ(i+ 1|k)
...

τ(Np − 1|k)

 ∈ RNp, ,nτ . (5.5)

Thus, with slight abuse of notation, ψ and φ can be used as: Θ(k) =
ψ([x>(k) x̃>(k)]>, ũ(k)) and τ̃(k) = φ([x>(k) x̃>(k)]>, ũ(k)), respectively. The vec-
tor Θ(k) includes parameters from time k to k + Np − 1 whilst the state prediction is
accomplished for time k + 1 to k +Np.

Consequently, by using the vectors (5.4) and (5.5), the x̃(k) can be simply formulated
as follows:

x̃(k) = A(Θ(k))x(k) +Aτ (Θ(k))x(k − τ̃(Θ(k)))

+ B(Θ(k))ũ(k) + Bτ (Θ(k))ũ(k − τ̃(Θ(k))),
(5.6)

where A and Aτ ∈ Rnx×nx and B and Bτ ∈ Rnx×nu are given by (4.9) and (4.10).

By using (5.6) and augmented block diagonal weighting matrices w̃1 = diagNp(w1)
and w̃2 = diagNp(w2), the cost function (5.2a) can be represented in vector form as

min
ũ(k)

J(k) =
(
x̃(k)>w̃1x̃(k) + ũ(k)>w̃2ũ(k)

)
, (5.7a)

subject to

u(i|k) ∈ U, (5.7b)

x(i|k) ∈ X, (5.7c)

x(0|k) = x(k) (5.7d)

θ(0|k) = θ(i|k), (5.7e)

for all i ∈ Z[0,Np−1]. Since the predicted states x̃(k) in (5.6) are linear in control inputs
ũ(k), the optimization problem can be solved as a QP problem, which is significantly
easier than solving a nonlinear optimization problem.

However, the variation of delays at each iteration and inside the prediction horizon
makes it difficult to solve the optimization problem considering a specific value of the
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Algorithm 5.1 LPV-MPC based on LPV models with varying delay

1: k ←− 0
2: repeat
3: i←− 0
4: if k = 0 then
5: Solve the optimization problem (5.7) by considering θ(0|k) ' θ(1|k) ' θ(2|k) '

... ' θ(Np − 1|k)
6: Calculate Θ(k) and τ̃(k) using x̃(k) and ũ(k)
7: else
8: Determine Θ(k) = {θ̂(i|k)}Np−1

i=0 and τ̃(k) = {τ(i|k)}Np−1
i=0 , where θ̂(i|k) =

ψ(x(i|k − 1 + 1), u(i|k − 1)) and τ(i|k) = φ(x(i|k − 1 + 1), u(i|k − 1)
9: Compute the difference value g = τ̃(k)− τ̃(k − 1)

10: if g ≤ 0 then

11: x̃(k) = {x(i|k)}Np−|g|i=0 and ũ(k) = {u(i|k)}Np−1−|g|
i=0

12: else
13: x̃g(k) = repmat(x̃(Np − 1), [1, g])

x̃(k) = {x̃(k), x̃g(k)}
14: end if
15: Solve the optimization problem (5.7)
16: i←− i+ 1
17: end if
18: Apply the first value of the optimal input sequence to the system
19: Define Θ0(k + 1) = ψ(x̃1(k), ũ0(k)) and τ̃0(k + 1) = φ(x̃1(k), ũ0(k))
20: Modify the size of Np, Np > τ
21: k ←− k + 1
22: until end

prediction horizon length because this should include the (varying) delay [101]. Hence,
when solving MPC optimization problem the prediction horizon length should be adap-
ted considering the delay value. Thus, because of the change of the prediction horizon,
the size of states and inputs vectors should be adapted accordingly. This procedure is
summarized in Algorithm 5.1.

5.4 Numerical results

According to Section 3.1, the pasteurization model is represented using the equations
of each subsystem, namely, holding tube, power, water pump, heat exchanger and hot
water tank. In this chapter, the second model (3.25) of the pasteurization process is
used due to the delay in the model. The non-linear model of the pasteurization system
is considered as

ẋ = f(x, x(t− τ), u, u(t− τ), ω(t)), (5.8)

where, x = [T1 T2 T2r T4 Tin]> ∈ R5, u = [N1 N2 P ]> ∈ R3 and ω = [Ta] ∈ R1 are states,
inputs and disturbance of the pasteurization system, respectively. Then, by using the
non-linear embedding approach [119], the state-space LPV model of the pasteurization
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Figura 5.1: Evaluation of the output temperatures (Delay is constant
during the prediction horizon)

plant is expressed as (3.26). The pasteurization temperature must be kept as close as
possible to the set-point value for a pre-established time. According to this, temperature
T1 is the output of the holding tube for monitoring the temperature of the product after
the pasteurization procedure, so that controlling T1 to track set-points is one of the main
objectives. On the other hand, the hot-water tank is the thermal energy source used to
heat the product and proper system operation, T2 should always be greater than T1 to
achieve the final temperature desired. Hence, in order to guarantee the energy for the
process, T2 should be controlled.

5.4.1 Simulation results and discussion

In this section, the proposed algorithm based on the system with constant delay and
varying delay is compared with the state-of-the-art NMPC approach based on the sys-
tem with the same information. The comparison is made both in terms of closed-loop
performance and computational timing performance.

All simulation and computations have been carried out using a commercial computer
with i7 2.40-GHz Intel core processor with 12 GB of RAM running MATLAB R2016b.
Optimization problems (5.7) and (5.2) are solved by using the linear and nonlinear
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Figura 5.2: Evaluation of the output temperatures (Delay is varied
during the prediction horizon)

programming solvers available in YALMIP [131]. All tests were done using the same
prediction horizon, parameters and constraints as mentioned in Table 5.1.

Figures 5.1 and 5.2 present the comparison of the tracking response results obtained
under the LPV-based MPC approach and the NMPC controller based on the pasteuriza-
tion model with constant and varying delay during the prediction horizon, respectively.
Moreover, the responses to the control actions using a controller based on the proposed
approach and on NMPC, with constant and varying delay, are provided in Figures 5.3
and 5.4, respectively. The comparison of computation time of LPV-based MPC and
NMPC is summarized in Table 5.2. Actually, in the pasteurization process, the delay
of the system depends on the control action. Therefore, in the constant delay case, the
delays of the system are varied at each time instant k, but during the prediction horizon,
delays are considered as constant delays, where the value of delay in the next iteration
k+1 is computed by the first elements of the optimal input. For more clarity of how the
delay is varied in the new proposed approach during prediction horizon, Figure.5.5 shows
the evolution of delay when it is considered constant and varying during the prediction
horizon.

According to these results, it can be observed that the proposed LPV-based MPC

97



Taula 5.1: Physical properties and process data

Parameter Description Value Unit

U constant of convective heat transfer 10 [Wm2/K]
A area of the tank 0.0248 [m2]
Cp specific heat of the hot-water 4.186 [J/g◦C]
M1 mass of liquid inside the tank 82 [g]
M2 mass product inside the regeneration section 24.85 [g]
Ta room temperature 24.5 [◦C]
T1 temperature at the end of holding tube [0,80] [◦C]
T2 temperature inside hot water tank [0,80] [◦C]
T2r returned water temperature from the heat exchanger [0,80] [◦C]
T4 temperature at the exit of heat exchanger [0,80] [◦C]
Tin temperature after regeneration section [0,80] [◦C]
N1 percentage speed of feeding pump [40-80] [%]
N2 percentage speed of hot-water pump [20-80] [%]
P power of the electric resistor [0-1500] [W]

controller is tracked and reached the set-point and the performance of the proposed
algorithm is almost the same as the NMPC one. In terms of computational time, there
is a quite clear difference: although the average time shows that the LPV-based MPC
is on average four times faster than NMPC, in fact, the algorithms are only as good
as their worst-case performance, in which case it is clear that the proposed approach is
approximately an order of magnitude faster. To sum up, the simulation results show
that the proposed LPV-based MPC controller is able to control LPV time-delay systems
while improving the performance of the closed-loop system and achieving the specified
set-point.

Taula 5.2: Comparison of each strategies timing performance.

Configuration Maximum time Average time Standard deviation r.m.s. error (T1) r.m.s. error (T2)

NMPC constant delay into NP 4.4540 2.0091 0.9071 4.9703 4.3479
LPV-MPC constant delay into NP 0.1640 0.0785 0.0078 5.243 4.425
NMPC varying delay into NP 24.887 6.9558 3.9441 5.117 4.7791
LPV-MPC varying delay into NP 0.8771 0.2480 0.1409 5.402 4.820
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5.5 Summary

This chapter focused on the design of a model predictive control algorithm based on a
class of Linear Parameter Varying (LPV) models with varying parameters delay. The
constrained optimization problem for an LPV model with parameter varying and cons-
tant delay is solved iteratively by a series of QP problems while the scheduling para-
meters and delay are calculated at each time instant. The model with varying delay
is predicted in the horizon by using the previous sequence of scheduling variable and
state of the model. Based on the variation of the delay, the prediction horizon length
is changed during the simulation. The proposed approach is easier to implement than
NMPC, because the implementation of this method is basically the same algorithm as
for linear systems. Also, as shown, the computation time required for the proposed
approach has appreciably faster than other mentioned approach.

The content of this chapter was based on the following works:

F. Karimi Pour, V. Puig and C. Ocampo-Martinez. Model predictive control
based on LPV models with parameter-varying delays 18th European Control Con-
ference (ECC), (pp. pp. 3644- 3649) IEEE, Denmark, 2019.
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Caṕıtol 6

Multi-Layer Health-Aware
Economic Predictive Control
based on Components Fatigue

This chapter proposes two different health-aware economic predictive control strategies
to minimize the damage of components in a pasteurization plant. The damage is assessed
with the rainflow-counting algorithm that allows estimating the components fatigue. By
using the results obtained from this algorithm, a simplified model that characterizes the
health of the system is developed and integrated into the predictive controller. The
overall control objective is modified by adding an extra criterion that takes into account
the accumulated damage. The first strategy is a single-layer predictive controller with
integral action to eliminate the steady-state error that appears when adding the extra
criterion. In order to achieve the best minimal accumulated damage and operational
costs, the single-layer approach is improved with a multi-layer control scheme, where the
solution of the dynamic optimization problem is obtained from the model in two different
time scales. Finally, to achieve the advisable trade-off between minimal accumulated
damage and operational costs, both control strategies are compared in simulation over
a utility-scale pasteurization plant.

6.1 Introduction

As mentioned in Section3.1, pasteurization implies that a food product is exposed to
some temperature profile during a predetermined period of time, in order to reduce
the proportion of microorganisms. Controlling and maintaining the temperature of
the process are key aspects in the pasteurization process. Hence, a suitable control
strategy for the system needs to be designed in order to manage the product temperature
for keeping the desired product quality. The necessity of a significant control of the
process arises from the savings in energy, product and time if an accurate tracking
of the setpoint is performed. On the other hand, due to the high number of load
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cycles that occur during the life of a pump within a pasteurization process, its fatigue
estimation is an important factor for the proper control of such processes. For this
reason, research regarding the integration of control with a fatigue-based prognosis of
components has been developed in recent years. Fatigue leads to the breakdown of the
material subject to stress, especially when frequent series of stresses are applied [162].
Damage has been widely and exhaustively studied from different perspectives [149]. In
this chapter, the Palmgren-Miner linear damage rule is used to perform fatigue analysis
[100]. This rule, commonly called the Miner’s rule, is being currently used throughout
the industry and in academia [142]. On the other hand, MPC has been recently proved as
an adequate strategy for implementing health-aware control schemes. Several economic-
oriented controllers have recently been proposed within the MPC framework [55, 74] but
without considering safety issues of the system components. In fact, both safety stock
and actuator lifetime are competing with the economic performance of the system. For
this reason, it is required to have a flexible control strategy that allows to trade off the
economic optimization and the safety of the system.

This chapter presents a health-aware control (HAC) with economic objectives that
considers the information about the system health to adapt the objectives of the control
law to extend the remaining useful life (RUL) of the considered system. Thus, the
control inputs are generated to fulfill the control objectives/constraints but at the same
time to extend the lifespan of the system components. In this way, the HAC makes an
effort to attain maximum performance while not degrading the system too much. In case
that the controller is implemented using MPC, the trade-off is based on modifying the
control objective including new terms that take care of the system health. This leads to
solving a multi-objective optimization problem where a trade-off between system health
and performance should be established [171].

The main contribution of this chapter consists in the design of an improved health-
aware economic MPC strategy. This strategy minimizes the damage of the pasteuriza-
tion components and reduces the power consume of the electrical heater as economic
objective, while still the pasteurization temperature tracks the suitable references rela-
ted to the products, extending the result presented in [102]. The novelty is a multi-layer
scheme including the health-aware and economic operation that extends and improves
the preliminary ideas presented in [102]. The upper layer solves an optimization pro-
blem with an economic cost function and a new objective to minimize the accumulated
damage at slow time scales. In the lower layer, a linear MPC controller forces the
process dynamics to track the trajectory provided by the upper layer. Finally, a com-
parison between the multi-layer and single-layer control schemes is performed by using
a high-fidelity simulator of a utility-scale pasteurization plant.

6.2 Problem statement

According to section 3.1.2, the control-oriented pasteurization model is represented in
terms of behavioral equations of each subsystem, consisting of power, water pump, heat
exchanger and hot water tank. The controlled inputs are the power of the electrical
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heater, P , and the pump rotational speed of the second pump, N , respectively. The
input temperature of the water heater, Tiw, and the temperature of cold water, Tic, are
measured non-controlled inputs (disturbances). Therefore, the matrix B in model (3.2)
is separated to the matrices B and E. In this chapter, the LTI model of pasteurization
plant is used based on a operating point of model (3.2). Finally, to design the MPC
controller, this model is discretized and expressed in state space form

xk+1 = Axk +Buk + Edk, (6.1a)

yk = Cxk, (6.1b)

where x ∈ Rnx is the state vector including hot-water flow, Fh, hot-water tank tempe-
rature, Tow and pasteurization temperature, Tpast, u ∈ Rnu is the vector of manipulated
variables that includes the electrical power of the heater P and the pump rotational
speed N , d ∈ Rnd is the vector of measured disturbances that include input tempera-
ture of the water heater, denoted by Tiw, and the temperature of cold water, denoted
by Tic. Finally, y ∈ Rny is the vector of controlled variables that include pasteurization
temperature, denoted by Tpast. Moreover, the input matrix B and disturbance matrix
E of the model in (6.1) can be represented in the discrete-time domain as

B =



0 0
TsK2
τ2

0

0 0
0 0

0 TsK12
τ12

0 0
0 0


, E =



TsK1
τ1

0

0 0
0 0
0 0

0 TsK22
τ22

0 0
0 0


, (6.2)

where K and τ are a static gain and a time constant, respectively.

6.2.1 Operational Control

As previously mentioned, the main goal is to guarantee that the pasteurization tem-
perature is reached and maintained as close as possible to the set-point value for a
per-established time. At the same time, reduction of energy consumption and health
management of the system expressed should be achieved by formulating a multi-objective
control problem. This optimization problem should be solved considering as constraints
the mathematical model of the pasteurization system (6.1) and the operational cons-
traints defined by (2.2).

Thus, the MPC controller design is based on the solution of the following FHOP:

min
uk

Np−1∑
i=0

‖xk+i|k‖pw1
+ ‖uk+i|k‖pw2

+ ‖∆uk+i|k‖pw3
, (6.3a)
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subject to:

xk+i+1|k = Axk+i|k +Buk+i|k + Edk+i|k, (6.3b)

uk+i|k ∈ U, (6.3c)

xk+i|k ∈ X, (6.3d)

(xk|k, uk−1|k, dk|k) = (xk, uk−1, dk), (6.3e)

for all i ∈ Z[0,Np−1], where uk = {uk+i|k}i∈Z[0,Np−1]
is the decision sequence, with uk

being the sequence of controlled inputs. Furthermore, p denotes the norm used for this
chapter is squared norm, ∆uk+i|k = uk+i|k − uk+i−1|k are the input increments and the
weighting matrices w1 ∈ Rnx×nx , w2 ∈ Rnu×nu and w3 ∈ Rnu×nu are used to establish
the priority of the different control objectives.

Moreover, u?k denotes the optimal solution of (6.3) at time step k. According to
the MPC receding horizon philosophy, only the first optimal control input is applied,
i.e., uk = u?k|k. Then, the new measurements are used to update the initial conditions

(6.3e) and then the optimization problem (6.3) is solved again using the receding horizon
principle, as described in subsection 2.1.2.

6.3 Rainflow Counting Algorithm (RFC)

The damage accumulation process on a component produced by cyclic loading is known
as fatigue. Fatigue is as frequent cause of failure in industrial machinery such as
pumps [157]. In reality, fatigue failure occurs because of the application of fluctuating
stresses that are much lower than the stress required causing failure during a single
application of stress [100]. The commonly recognized and used measure for fatigue
damage estimation is the so-called rainflow counting (RFC) method. RFC algorithm,
first introduced by [56], has a complex consecutive and nonlinear structure in order to
analyze ideal sequences of loads into cycles. Ordinarily, to compute a lifetime estimate
from a given structural stress input signal, the RFC method is exerted by computation
cycles and maxima, jointly with the Palmgren-Miner rule to calculate the expected
damage. The input signal is received from time signal of the loading parameter of
interest, such as torque, force, strain, stress, acceleration, or deflection [125]. Figure 6.1
shows the rain-flow counting procedure.

There are several types of RFC algorithms with different rules proposed by [56] and
[156], which, at the end, yield in quite similar results. The RFC algorithm used in this
chapter is presented in [156]. This algorithm computes the stress for each rainflow cycle
in four steps:

• the stress history is converted to an extremum sequence of alternating maxima
and minima of stress;

• for each local maximum Mj , the left (m−j ) and right (m+
j ) regions where all stress

values are below Mj are identified;
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Figura 6.1: Rainflow counting damage procedure.
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Figura 6.2: Rainflow counting damage estimation.

• the minimum stress value is mj = min{m−j ,m+
j };

• the equivalent stress per rainflow cycle sj related to Mj is granted by either the

amplitude sj = Mj −mj or the mean value sj =
Mj−mj

2 .
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In most of the materials, there is an explicit relationship between the number of
cycles and cycles of failure, which is known as S − N or Wöhler curves, whereas the
damage D is calculated by using the S−N curve at each stress cycle [120]. An often-used
model for S −N curve is

scwN = Ksp, (6.4)

where cw and Ksp are material-specific parameters and N is the number of cycles to
failure at a given stress amplitude s. The damage imposed by a stress cycle with a range
sj is computed as

Dj ≡
1

Nj
=

1

Ksp
scwj . (6.5)

Then, the total damage under the linear accumulation damage (Palmgren-Miner)
rule is given as

Dac =
λ∑
j=1

1

Nj
=

λ∑
j=1

1

Ksp
scwj , (6.6)

for damage increments Dac associated to each counted cycle, where Nj is the number
of cycles of failure associated to the stress amplitude sj and the number of all counted
cycles λ. These sequences are presented in Figure 6.2. On the top-left and top-right part
of Figure 6.2, the input stress and the same signal converted into a sequence of maxima
and minima are shown, respectively. The instantaneous damage and the accumulated
damage are displayed in the bottom part of Figure 6.2.

For real-time systems, applying the customary rainflow counting algorithm is quite
challenging and computationally demanding. Considerable amounts of data must be
stored and provided periodically to obtain a quantity of data in equivalent regular cycles.
Besides, the algorithm must be applied to a stored set of data. One of the objectives
of this chapter is to analyze the fatigue due to pump load of the pasteurization system.
Loads in the pump structure arise from several factors, the typical reason for pump
failure is bearing damage. However, pressure and pump rotational speed are two damage
factors that have the greatest influence on the shaft bearing life. Both variables could be
chosen as stress indicators for the pasteurization pump. In this chapter, the rotational
speed of the pump is used as stress for RFC damage estimation.

Utilizing the RFC algorithm, the accumulated damage is obtained as a function
of the cycles of the pump rotational speed stress signal. In order to have available
an accumulated damage variable that can be integrated with a linear MPC model, a
simplified approach to compute fatigue on time series signal is proposed based on the
RFC theory. The outcome of this approach is that the accumulated damage is obtained
as a function of time instead of the number of cycles. The proposed approach finds the
changes of the sign that correspond to a cycle in the stress time signal. The obtained
function at each time instant k is the following:

Dk =

{
0 if Ik = Ik−1,

1
Ksp

scwk if Ik 6= Ik−1,
(6.7)
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where sk is a stress at time k defined as

sk =
1

L

k∑
q=k−L

Ns,q, (6.8)

L is the number of samples per cycle, Ns is the pump rotational speed moment, q is
the difference between the number of samples per cycle and time instant and Ik is the
signal adapted to indicate cycle, i.e.,

Ik = Ns,k − sk. (6.9)

Then, the accumulated damage is calculated by

Dacc,k = Dacc,k−1 +Dk. (6.10)

Note that, at the end of the scenario, the accumulated damage based on the function
of time and rainflow-counting method is practically the same. Figure 6.3 indicates the
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accumulated damage value obtained with each one. The small difference depends on
the fact that the damage obtained by the RFC technique is represented in terms of
the cycles while the other is a function of time. The degradation procedure of the
pasteurization pump can be characterized by using the water pump rotational speed
sensor information. In order to decrease the accumulated damage, a new objective is
included in the MPC controller that aims at minimizing the pump degradation assessed
by means of a linearized RFC model. The slope m of the accumulated damage curve
in function of time is computed and then employed as one of the parameters in the
linear fatigue damage model. According to [186], an experimental model that relates
the values of the pump rotational speed and flow in steady state is used. The model for
the pump rotational speed is a linear model with a slope α1 and a constant value α0

N̄s,k = α1uF,k + α0, (6.11)

where uF is the hot-water flow. To sum up, a linear fatigue damage model is considered
as a relationship between the accumulated damage of the pump and the control signal

zk+1 = zk +
m

L
(α1uF,k + α0), (6.12)

where zk+1 is the accumulated damage of the pump. Then, (6.12) can be included into
the control-oriented model of the MPC as a new state and an additional objective is
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added into the MPC cost function (6.3) to minimize the accumulated damage. The
degree of fitting between the RFC approximation as a function of time presented in
(6.10) and the linear damage model in (6.12) can be compared in Figure 6.4.

6.4 Health-aware MPC

In this section, two MPC structures are proposed for adding the health-aware objective
into the MPC cost function in order to minimize the accumulated damage.

6.4.1 Design of Single-layer Health-aware MPC Controllers

First, a health-aware MPC controller based on a single-layer scheme is proposed. In this
approach, a single-layer MPC that includes a new objective that assesses the system
health by means of (6.12) is considered. The problem formulation of this controller is
similar to (6.3). Taking into account (6.12), the proposed approach relies on solving the
following optimization problem at each time instant k:

min
uk

Np−1∑
i=0

‖ek+i|k‖pw1
+ ‖uk+i|k‖pw2

+ ‖∆uk+i|k‖pw3

+ ‖zk+i|k‖pw4
+ ‖ξk+i|k‖pw5

,

(6.13a)

subject to:

xk+i+1|k = Axk+i|k +Buk+i|k + Edk+i|k, (6.13b)

ek+i+1|k = rk+i+1|k − Cxk+i|k (6.13c)

zk+1 = zk +
m

L
(α1uF,k + α0), (6.13d)

Tow(k+i|k) − Tpast(k+i|k) ≥ ζ + ξk+i|k (6.13e)

uk+i|k ∈ U, (6.13f)

xk+i|k ∈ X, (6.13g)

for all i ∈ Z[0,Np−1], where ek+i|k is the tracking error and rk+i|k is the set-point for the
controlled variables while the weighting matrix w5 is used to manage the penalization
of slack variable ξ ∈ R that is used for softening the output constraints and ζ is tempe-
rature differences between Tow and Tpast [186]. The value of ζ is considered as a design
parameter, which was specified by iterative simulations to have a safety temperatures
difference. The health-aware objective with the corresponding weight w4 is appended in
the MPC cost function to minimize the accumulated damage. However, the new state in
the model of the MPC controller can lead to steady-state offset. Different mechanisms
for steady-state offset elimination have been proposed in the literature [70][150]. The
strategy used in this chapter is introduced in [150]. This method is based on augmenting
the process model that includes a constant step disturbance to eliminate the steady-state
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offset. This disturbance, which is estimated from the measured process variables, is usu-
ally considered to be constant in the future and its effect on the controlled variables is
eliminated by shifting the steady-state target for a controller. Thus in order to remove
the steady state error, the process state-space model is augmented with an integrator
as follows: [

xk+1

ek+1

]
=

[
A Ge
0 I

] [
xk
ek

]
+

[
B
0

]
uk, (6.14a)

yk =
[
C 0

] [xk
ek

]
, (6.14b)

where Ge is a matrix that determines the effect of the disturbances on the states. In
this chapter, considering (6.1) and (6.14a), Ge = E. The states of the process model
and the unmeasured disturbance model must be estimated simultaneously using the
augmented system model (6.14). The state estimation can be performed either within
a stochastic framework using a Kalman filter or within a deterministic framework using
a Luenberger observer. In both cases, a gain LG = [Lx, Le]

T can be determined using
standard methods provided the augmented system is detectable [118]. Thus, the steady-
state observer equation for a time k is given by

x̂k+1 =Ax̂k +Buk̄ +Geêk + Lx[yk − C(Ax̂k +Buk

+Geêk)],
(6.15)

êk+1 =êk + Le
[
yk − C(Ax̂k +Buk +Geêk)

]
, (6.16)

where Lx and Le are the observer gains that correspond to the states estimation x̂k, and
the tracking error êk. In this chapter, the observer gain LG that includes Lx and Le
is obtained with the Linear Matrix Inequalities (LMI) pole placement technique [174],
which allows to place the eigenvalue of the A−LGC inside the unit circle using an LMI
region [

−rX qX +XTA−W TC
qX +ATX − CTW −rX

]
< 0, (6.17)

where q and r denote the center and the radius of a circular LMI region, respectively,
X is the unknown symmetric matrix and W = LGX. Finally, LG is obtained as

LG = WXT . (6.18)

Then, A − LGC is Schur hence the convergence of the observer in (6.15) and (6.16) is
guaranteed.

The control scheme presented in Figure 6.5 shows the integration of the control with
the estimation scheme. In this scheme, there is an MPC regulator block that forces the
system to a steady state (xs and us), which represents the accessible steady-state input
and state target, respectively. Moreover, a Target Calculus block is in charge to compute
these steady-state values, while the variables usp and ysp correspond to the input and
output set-points. Note that the Target Calculus stage does not take into account any
economic criterion to be optimized. Moreover, the dynamic control is detached from the
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fatigue model and linear regulator.

set-point calculation: the Targets Calculus block is completely dedicated to obtaining
the constant values, while the MPC regulator block is devoted to leading the states x̂k
to its corresponding targets. Then, the optimization problem that must be solved in the
regulatory block is as follows:

min
ũk

Np−1∑
i=0

‖Cx̃k+i|k‖pw1
+ ‖ũk+i|k‖pw2

+ ‖∆ũk+i|k‖pw3

+ ‖zk+i|k‖pw4
+ ‖ξk+i|k‖pw5

,

(6.19a)

subject to:

xk+i+1|k = Axk+i|k +Buk+i|k + Edk+i|k, (6.19b)

zk+1 = zk +
m

L
(α1uF,k + α0), (6.19c)

Tow,k+i|k − Tpast,k+i|k ≥ ζ + ξk+i|k (6.19d)

ũk−1 = uk−1 − us, (6.19e)

x̃k = x̂k − xs, (6.19f)

umin ≤ ũk+i + us ≤ umax, (6.19g)

∆umin ≤ ∆ũk+i ≤ ∆umax, (6.19h)

uk−1|k ∈ U, (6.19i)

xk+i|k ∈ X, (6.19j)

for all i ∈ Z[0,Np−1], ∆ũk+i|k = ũk+i|k − ũk+i−1|k are the input increments, ∆umin and
∆umax are minimum and maximum value of ∆u, where it can be seen that the state
and input are led to the targets xs and us in (6.19f) and (6.19e), respectively. The role
of this part is to steer the shifted states and inputs to zero. Thus, the capability of
offset elimination strategy depends on the computation of the targets xs and us. For
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obtaining this optimal operating point, the following optimization problem is solved:

min
us,xs

Vk
∆
={(ysp,k − yak)TQ(ysp,k − yak) + (us,k − usp,k)T

R(us,k − usp,k)},
(6.20a)

subject to:

xs,k+1 = Axs,k +Bus,k +Geêk, (6.20b)

yak
∆
= Cxs,k, (6.20c)

umin ≤ us,k ≤ umax, (6.20d)

where ysp,k stands for the output set-points, and yak is the achievable stationary output.
Also, Q and R are positive definite weighting matrices. Following the strategy described
in Figure 6.5, two optimization problems must be solved at each time instant k.

On the contrary, from (6.16), the states and disturbances presented by the observer
satisfy

x̂k̄+1 = Ax̂k̄ +Bûk̄ +Geêk̄, (6.21a)

yk̄ = Cx̂k̄. (6.21b)

Then, subtracting (6.20b) from (6.21a) will be

(x̂k̄+1 − xs,k+1) = A(x̂k̄ − xs,k) +B(ûk̄ − us,k), (6.22)

which relates to the original system considered by the target tracking optimization. The
regulator will lead the states x̃k to zero, that is

(x̂k̄+1 − xs,k+1) = 0. (6.23)

Then, subtracting (6.20c) from (6.21b)

(yk̄ − ysp) = C(x̂k̄ − xs,k). (6.24)

Finally, from (6.23) and (6.24) leads to

yk̄ = ysp. (6.25)

Therefore, both optimization problems should be solved simultaneously in the case
of using an augmented model. However, in the single-layer health-aware MPC scheme,
since the models of chemical processes are often complex and nonlinear, this leads to
long solution times of the optimization problem. Moreover, long optimization horizons
and many degrees of freedom increase the computational load. Hence, for chemical
processes, one is faced with the trade-off between sub-optimality and computational
effort.
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6.4.2 Design of Multi-layer Health-aware MPC Controllers

In general, the design of multi-layer control architectures can be related to the diverse
nature of the control objectives, which would not be able to be coupled into a single-
layer architecture. In particular, the control objectives can be ranked in the following
way:

• Foremost, the objectives of process operation are to maximize economic benefits
and minimize the system degradation. Hence, the process operation is assessed
by economic decision criteria and the health-aware objective, which are organized
in the objective function of the upper layer optimization. For this reason, the
degradation takes more time than the tracking trajectory for evaluation, the model
considers the slow dynamics of the system.

• Furthermore, the goal of process control is to guarantee a stable operation under
the effect of the degradation state and tracking the trajectory, which should be
guaranteed by the lower-layer controllers that operate at fast dynamic model.

The control strategy addressed in this part is based on a multilayer (hierarchical) con-
trol structure that is shown in Figure 6.6. The proposed control system is a two-layer
hierarchical architecture, where the solution of the dynamic optimization problem is
calculated considering two different time-scales. In the upper layer, an optimization
problem is solved with an economic cost function and a health-aware objective. The up-
per layer considers the slow dynamics of the system and uses larger sampling times than
the low layer (slow time scale). Since the accumulation of damage cannot be assessed
in a short period of time, the upper layer MPC has been implemented by using a longer
prediction horizon, where the sampling time for the discretization of the system is larger

115



than the system in the lower layer. In the lower layer, the tracking controller receives
the trajectory calculated by the upper layer and determines the setpoint trajectories for
the base-layer control system by considering the faster dynamics of the plant (fast time
scale). The current state values are required to provide initial conditions for dynamic
real-time optimization (DRTO) and the tracking controller, that have to be estimated
by means of measurements from the process. Thus, a time-scale separation of the mea-
surements from the process must be performed, as the upper layer is operating at a lower
sampling rate and should only take into account the slow trend in the measurements.

Upper-layer controller

In the optimization problem of the upper layer, the goal is to minimize accumulated
damage by inserting (6.12) as a new state and a new objective in the MPC controller
and a trajectory planner calculates a reachable reference yr as close as possible to the
exogenous reference signal r. At the same time, minimizing the economic objective that
is the electrical power consumed by the heater is the second control goal of this layer.

Taking into account (6.12), the proposed approach relies on solving the following
optimization problem at each time instant k:

min
{uk,Zk,xrk,ξk}

Npu−1∑
i=0

‖rk+i+1|k − yrk+i|k‖pw1
+ ‖uk+i|k‖pw2

+ ‖∆uk+i|k‖pw3
+ ‖zk+i|k‖pw4

+ ‖ξk+i|k‖pw5
,

(6.26a)

subject to:

xrk+i+1|k = Axrk+i|k +Buk+i|k + Edk+i|k, (6.26b)

yrk+i|k = Cxrk+i|k, (6.26c)

zk+1 = zk +
m

L
(α1uF,k + α0), (6.26d)

Tow(k+i|k) − Tpast(k+i|k) ≥ ζ + ξk+i|k (6.26e)

uk+i|k ∈ U, (6.26f)

xrk+i|k ∈ X, (6.26g)

for all i ∈ Z[0,Npu−1], and the new objective with the corresponding matrix weight w4 is
appended in the MPC cost function to minimize the accumulated damage. Npu is the
prediction horizon of the upper layer and the sampling time of the upper layer is tu.

Lower-layer controller

The lower-layer controller is tracking the optimal trajectory under the influence of high
frequency of the accumulated damage and is executed at sampling time tl of the process.
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In the lower-layer, the predictive controller is designed to track the calculated reference
obtained from the upper layer. This generates from the following optimization problem:

min
uk

Npl−1∑
i=0

‖ek+i|k‖pw1
+ ‖∆uk+i|k‖pw2

, (6.27a)

subject to:

xk+i+1|k = Axk+i|k +Buk+i|k + Edk+i|k, (6.27b)

uk+i|k ∈ U, (6.27c)

xk+i|k ∈ X, (6.27d)

for all i ∈ Z[0,Npl−1], where Npl is the prediction horizon of the lower layer. Moreo-
ver, ek+i|k = Cxrk+i|k − Cxk+i|k is the error between the calculated references that are
obtained from the upper layer and measured output. Since the accumulated damage
should be assessed in a long prediction horizon, Npl < Npu should be established and
the sampling time of the upper layer should be greater than on from the lower layer,
tu > tl.

6.5 Simulation Results

In this section, the performance of the proposed different health-aware MPC schemes is
assessed with the pasteurization plant case study described in section 3.

6.5.1 Design of an MPC Controller with Health-aware Capabilities
and Economic Objectives

In order to test the behavior of the proposed health-aware MPC scheme in two different
manners, several simulations were carried out and the results obtained are presented
in this part. The operating point for the hot-water flow is chosen as 200 ml/min.
The behavior of the controlled temperature Tpast from the pasteurization plant under
the health-aware hierarchical MPC and single-layer MPC with and without the health-
aware objective are presented in Figure 6.7 with its corresponding references, while
the controlled variable Tpast tracks the references. In Figure 6.8, an evolution of the
accumulated damages obtained from multi-layer and single-layer MPC with and without
a health-aware objective are provided.

Scenario 1 (Health-aware single-layer MPC)

The health-aware MPC is designed as described in Section 6.4.1, by adding the accumu-
lated damage model presented before, as a new state introduced in (6.12). In addition,
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Figura 6.7: Evolution of pasteurization temperature Tpast with and
without the health-aware objective in the MPC.

to remove steady state offset that appears with the augmented model in the health-aware
MPC is augmented again. Therefore, According to the complete model of the pasteuri-
zation system (3.2), the matrix E is utilized as disturbance in this chapter. Now with

118



0 100 200 300 400 500 600 700 800 900 1000 1100

t (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
c
c
D

a
m

 [
-]

×10-3

with health-aware objective

without health-aware objective

t (s)

0 100 200 300 400 500 600 700 800 900 1000 1100

A
c

c
D

a
m

 [
-]

×10-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

with health-aware objective

without health-aware objective

(a) Accumulated damages by single-layer structure. (b) Accumulated damages
by multi-layer structure.

Figura 6.8: Evolution of accumulated damages with and without
health-aware objective in the MPC.

the disturbance model as follows:

xn,k+1 = Asxn,k +Bsuk + Esdk, (6.28a)

yn,k = Csxn,k, (6.28b)

where As, Bs, Cs, and Es are matrices of proper dimensions including accumulated
damage and disturbance model given by (6.12) and (6.14a). The MPC controller has
been implemented considering that the prediction horizon is chosen as Np = 400 and the
sampling time is 4 s. The control objective of the MPC controller for the pasteurization
system is the pasteurization temperature Tpast tracking the setpoint, while at the same
time, the accumulated damage is evaluated as in (6.12) and the power of the electrical
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heater P are minimized. From Figure 6.7a and Figure 6.8a, it can be seen that the cost
and degradations are decreased while the temperature is tracking the references without
steady-state offset.

Scenario 2 (Health-aware multi-layer MPC)

Alternatively, as discussed in Section 6.4.2, the health-aware MPC can be implemented
using a two-layer hierarchical structure, where the solution of the optimization problem
considered in the single-layer scheme is solved at different time scales. The two-layer
MPC implemented in the new model is presented by

xn,k+1 = Ahxn,k +Bhuk + Ehdk, (6.29a)

yn,k = Chxn,k, (6.29b)

where the state and output vector are given by xn = [x; z] and yn = [y; z], respectively.
Moreover, Ah, Bh, Ch, and Eh are state matrices of proper dimensions with included
accumulated damage given by (6.12). The control objectives of the upper layer for the
pasteurization system aim at minimizing the accumulated damage evaluated as (6.12)
and reducing the power of the electrical heater as economic objective and at the same
time. The appropriate pasteurization temperature Tpast is calculated in order to save
energy and avoid overheating the product. Due to the accumulation of damage can not
be assessed in a short horizon, the upper layer MPC has been implemented by using
prediction horizon Nu = 300, where the sampling time for the discretization of continues
state-space model of the pasteurization plant(3.2) is 120 s. On the other hand, the
control objective in the low layer MPC forces that the pasteurization temperature Tpast
is tracking the calculated appropriate pasteurization temperature in the upper layer.
The prediction horizon is chosen Npl = 5 and sampling time is 4 s. Figure 6.7b are
the behavior of pasteurization temperature Tpast with and without the health objective
are presented. Moreover, the reduction of accumulated damage under multi-layer MPC
scheme is presented in Figure 6.8b.

6.5.2 Results and Comparison Assessment

According to the results, it can be observed that the results of the inclusion of the
fatigue objective in single-layer approach and two-layer approach are almost the same
(see Figure 6.8). In particular, the accumulated damage is mitigated about 88% in both
of them. However, from Figure 6.9 it can be seen the power of the electrical heater P
from the multi-layer MPC is minimized more than in the single-layer MPC. This implies
that the multi-layer health-aware MPC controller can achieve better results related to
the economic cost objective. While there is some degree of flexibility playing with the
temperature set-point for achieving the best result of minimizing accumulated damage
in the multi-layer scheme. In order to have better cooperation between the two diffe-
rent control scheme, several simulation with different tunings have been implemented.
Finally, the trade-off curves between the health objective and economic cost for single-
layer and multi-layer schemes are presented in Figure 6.10. Moreover, Figure 6.10 shows
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that independently of the tuning, the two-layer scheme is able to produce better results
and it can be observed that the economic objective in single layer is not optimized as in
the case of the multi-layer scheme.

6.6 Summary

In this chapter, the integration of MPC with fatigue-based prognosis to minimize the
damage of components in a pasteurization plant and the optimization economic objective
has been presented. The integration of a system health management module with MPC
control has provided the pasteurization plant with a mechanism to operate safely and
optimize the trade-off between components lifetime while saving energy, product and
time. The MPC controller objective has been modified by adding an extra criterion
that takes into account the accumulated damage plus including the economic objective.
First, a single-layer health-aware MPC controller based on economic optimization by
including integral action to eliminate steady state offset by adding extra criterion has
proposed. Then, the single layer has been transformed to multi-layer scheme one taking
into account the different dynamics of the objectives. The multi-layer health-aware MPC
controller based on two optimization layer has been implemented with different time-
scale. Both control schemes have been satisfactorily implemented using high-fidelity
simulator of a utility-scale pasteurization plant. The results obtained show that there
exists a trade-off between the minimization of the accumulated damage and tracking
setpoint that manipulated for saving energy. Finally, these control schemes are compared
and the results show that the multi-layer control scheme can minimize the economic cost
more than the single layer and keeping the same degradation level for the components.

The content of this chapter was based on the following works:

F. Karimi Pour, V. Puig and C. Ocampo-Martinez. Multi-layer health-aware
economic predictive control of a pasteurization pilot plant. International Journal
of Applied Mathematics and Computer Science,28(1), 97-110), 2018.

F. Karimi Pour, V. Puig and C. Ocampo-Martinez. Health-aware model predic-
tive control of pasteurization plant. In Journal of Physics: Conference Series,(Vol.
783, No. 1, p. 012030), 2017.
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Caṕıtol 7

Health-aware MPC-LPV based
on system Reliability

This chapter addresses economic health-aware MPC-LPV controller for industrial sys-
tems; in particular, the economic health-aware model predictive control (MPC) for
drinking water transport network, including an additional goal to extend the reliability
of the components and system. The components and system reliability are incorporated
in the MPC model using a Linear Parameter Varying (LPV) modelling approach. The
proposed MPC-LPV control approach described in chapter 4 allows the controller to
accommodate the parameter changes. Then, chance-constraint programming is used to
compute an optimal water storage volume policy based on a desired risk acceptability
level, managing to dynamically designate safety stocks in flow-based networks to satisfy
varying flow demands. Finally, the proposed approach is applied to a part of a real
drinking water transport network of Barcelona for demonstrating the performance of
the method.

7.1 Introduction

Based on 3.2, Drinking Water Networks (DWNs) are critical infrastructures in urban
environments. Also, the increasing complexity of the DWNs would generate some com-
plications for the management under multiple objectives, such as economic operations,
as well as safety, reliability and sustainability. MPC can provide appropriate techniques
to perform the operational control of water systems to develop their performance since
it allows to compute optimal control strategies ahead of time for all the flow and pres-
sure control elements [36]. According to optimal control approaches for management
water systems, MPC is not applied in a classical way because there is no reference to
be tracked. Unlike conventional MPC, the common operational goal of many process
industries, as DWNs, is the minimization of economic costs of the energy consumptions.
To this aim, Economic MPC (EMPC) contributes a systematic approach for optimizing
economic performance [99].
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The application of control strategies by considering the system and components
reliability becomes necessary to ensure the quality of service. In order to increase the
system reliability, anticipate the appearance of faults, actuator health monitoring and
reduce the operational costs must be considered. In fact, actuator health monitoring is
focused on observing and estimating the safety and reliability of each actuator according
to the actuator information. Recently, system reliability has been taken into account in
system control process through a Prognosis and Health Management (PHM) framework
[96]. In this context, the reliability is a standard procedure for estimating how long the
system will perform its function exactly and can be used to predict future damages in the
system given the state of its elements [168, 53]. On the other side, from control point
of view and according to physical constraints and multi-objective cost functions, the
MPC approach has been proved as an adequate strategy for implementing health-aware
control (HAC) designs. In the HAC approach, the online prognostic information of the
system or component is used to adjust the control actions or to develop the mission
objective in order to maintain a high level of system health [97].

DWN reliability depends on several factors such as the quality and the quantity
of the water available at the sources, the failure rates of the pumps and the valves
failures, among others [102].The actuator reliability is usually modelled using an expo-
nential function of the control input [53, 96]. On the other hand, the system reliability
is determined from the combination of each actuator reliability taking into account
the interconnection topology. In [164], the reliability analysis methodologies of wa-
ter distribution systems are described based on tailor-made ‘lumped supply–lumped
demand’ approach and Monte Carlo framework. In [43], a structure is proposed for
devising a proactive risk-based integrity-monitoring approach for the control of urban
water distribution networks. One significant disadvantage of the previous methods for
reliability-based MPC is that they consider the reliability at the actuator level, not at
the system level based on the interconnection topology, because of the non-linearity of
the resulting constraints which would lead to the non-linear MPC. Moreover, Economic
Nonlinear MPC (ENMPC) is usually computationally expensive and, in general, there
is no guarantee that the solution of the optimization problem is the global optimum
[98]. Another way of solving the optimization problem in case of a nonlinear system is
translating the nonlinear problem into a quadratic problem by means of linearization
approach. This approach has been recently improved by means of Linear Parameter
Varying (LPV) models [30].

The main contribution of this chapter is to provide a health-aware MPC-LPV con-
troller on the basis of PHM information provided by the on-line evaluation of the system
reliability. The system reliability is integrated into the control algorithm using a LPV
framework. The augmented model considering both the reliability and DWN models is
interpreted as an LPV model. Moreover, an additional contribution of the chapter con-
siders the use of chance constraints programming to compute an optimal water storage
volume policy based on a desired acceptable risk level, system reliability and presenting
the advantage of a given system and component reliability that is computed on-line in
an MPC-LPV strategy is another contribution of this chapter. The first objective of this
chapter is to present the interest of taking into account system and component reliability,
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measured on-line in an MPC-LPV method. The second objective consists in designing
a health-aware MPC-LPV strategy in order to formulate an optimization problem that
exploits the functional dependency of scheduling variables and state vector. Moreover,
using chance constraint programming to manage dynamically designated safety stocks in
flow-based networks to satisfy time-varying demands and system reliability.Finally, the
case study considered in this chapter to show the effectiveness of the proposed approach
is based on a part of the DWN case study described in Chapter 3.

7.2 EMPC Formulation of DWN

In this chapter, the modeling approach based on flow introduced by the authors in
[36, 37] is used. The pressure is not considered in this control-oriented model because the
pressure is managed at distribution level of water network not transport network. The
control-oriented model of DWN is considered as a set of linear discrete-time difference-
algebraic equations (3.28).

The purpose of using MPC methods for controlling water distribution networks is
to compute, ahead of time, the input commands to obtain the optimal performance of
the network based on a set of control objectives [159]. The control objective can be
formulated as the minimization of a convex multi-objective cost function that involves
three operational goals for managing of DWN with different nature which mentioned
in section 3.2.3. The controller should also operate actuators and tanks inside their
bounds and extend the reliability of the system as will be presented later. The system
is subject to hard input and state constraints provided by convex and closed polytopic
sets defined as

x(k) ∈ X := {x ∈ Rnx |Gx ≤ g}, (7.1a)

u(k) ∈ U := {u ∈ Rnu |Hu ≤ h}, (7.1b)

for all k ∈ Z≥0, where G ∈ Rmx×nx , g ∈ Rmx , H ∈ Rmu×nu and h ∈ Rmu are vec-
tors/matrices collecting the system constraints, signifying mu ∈ Z≥0 and mx ∈ Z≥0

the number of input and state constraints, respectively. Concerning the operation of
the generalized flow-based networks, the following assumptions are used noticed in this
chapter.

Assumption 7.1. The demands in dm(k) and the states in x(k) are observable at each
time instant k ∈ Z≥0, also the pair (A,B) is stabilisable.

Assumption 7.2. The realization of demands at the current time instant k ∈ Z≥0 can
be analyzed as

dm(k) = dm(k) + d̃m(k), (7.2)

where dm is the vector of expected disturbances and d̃m is the vector of probabilistic in-
dependent forecasting errors with non-stationary uncertainty and a known (or approxi-
mated) quasi-concave probability distribution D

(
0,
∑

(dm,(j)(k))
)
, e.g., logistic, normal,

exponential distribution, among others. Hence, the stochastic nature of each j-th row of
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dm(k) is described by dm,(j)(k)D(j)
(
dm,(j)(k),

∑
(d̃m,(j)(k))

)
, where dm,(j)(k) denotes its

mean, and
∑

(d̃m,(j)(k)) its variance.

Considering the network mathematical model (3.28) and three operational goals in
the management of DWN that are introduced in subsection 3.2.3, the EMPC controller
design is based on minimizing the finite horizon cost

J =

Np−1∑
l=0

(`e(l|k) + `s(l|k) + `∆u(l|k)), (7.3)

where Np is the prediction horizon. At each time instant, the optimization problem

min
u(k),x(k),ξ(k)

J(u(k), x(k), ξ(k)), (7.4a)

subject to:

x(l + 1|k) = Ax(l|k) +Bu(l|k) +Bddm(l|k), l = 0, · · · , Np − 1 (7.4b)

0 = Euu(l|k) + Eddm(k), l = 0, · · · , Np − 1 (7.4c)

x(l|k) ≥ xs − ξ(l|k), l = 1, · · · , Np (7.4d)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (7.4e)

x(l|k),∈ X, l = 1, · · · , Np (7.4f)

ξ(l|k) > 0, l = 0, · · · , Np (7.4g)

x(0|k) = x(k), (7.4h)

is solved online obtaining the optimal sequences u∗(k) = {u(l|k)}l∈Z[0,Np−1]
, x∗(k) =

{x(l|k)}l∈Z[1,Np]
and ξ∗(k) = {xi(l|k)}l∈Z[1,Np]

. Constraint (7.4g) is considered to gua-
rantee the slack variable that is a positive value. Moreover, optimization problem is
solved based on receding horizon philosophy that explained in chapter 2.

7.3 Chance-constrained Model Predictive Control

The different approaches to reliability analysis with MPC in the literature tend to produ-
ce a conservatism of the obtained control policy that effects negatively on the efficiency
of the DWNs operation. Furthermore, in real applications, the boundedness assumption
of disturbances might not hold, since, constraint violations are inescapable due to un-
expected events, faults, etc, may appear. A more realistic qualification of uncertainty is
the stochastic paradigm, which manages to produce less conservative control methods
by incorporating explicit models of disturbances in the design of control laws and by
transforming hard constraints into probabilistic constraints to cope with inevitable un-
certainties, a stochastic strategy is a sophisticated theory in the field of optimization,
but a revived consideration has been provided to the stochastic programming methods
as powerful tools for control design, heading to the stochastic MPC, which has a parti-
cular alternative called Chance-Constrained MPC (CC-MPC) [31], a stochastic control
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approach that represents robustness in terms of probabilistic(chance) constraints, and
requires that the probability of violation of any operational condition or physical cons-
traint is below a designated value. By placing this value suitably, the user/operator can
deal with preservation against performance. Related works that address the CC-MPC
approach in water systems can be found in [67, 165]. Some economic-oriented controller
that respect to the reliability issue has been proposed [73], but without considering re-
liability at the system level and probabilistic constraints based on the reliability of the
system.

If the stochastic nature of disturbances (demands) and reliability of components
of the system is not explicitly considered, an optimal solution of (7.4) satisfying all
constraints can not be found in real scenarios [173]. Therefore, in order to guaran-
tee feasibility of the optimization problem (7.4), it is appropriate to relax the original
constraints that involve stochastic elements with probabilistic statements in the form
of chance constraints. In this manner, the constraints must be satisfied with prede-
fined risk levels to manage the uncertainty and component reliability of the system.
Chance-constrained programming is a technique of stochastic programming dealing with
constraints of the general form as

P[f(v, ζ) ≤ 0] ≥ 1− δζ , (7.5)

where P indicates the probability operator, v ∈ Rnv is the decision vector, ζ ∈ Rnζ a
random variable and f : Rnv × Rnζ −→ Rnc a constraint mapping. The level δζ ∈ (0, 1)
is user given and defines the preference for safety of the decision v. The constraint
(7.5) means that we wish to take a decision v that satisfies the nc-dimensional random
inequality system f(v, ζ) ≥ 0 with high enough probability. As demonstrated in [93], if
f(., .) is jointly convex in (v, ζ) and Φ =∆ P[.] is quasi-concave, then the feasible set

Ψ(δζ) =∆ {v|P[f(v, ζ) ≤ 0] ≥ 1− δζ} (7.6)

is convex for all δζ(0, 1). All chance-constrained models need prior knowledge of the
acceptable risk δζ connected with the constraints. A lower risk acceptability proposes
a harder constraint. In general, joint chance constraints lack from analytic expressions
because they involve multivariate probability distribution [75]. In this chapter, by fo-
llowing the results in [75, 93], a uniform distribution of the joint risk is approximated
by upper bounding the joint constraint and assuming a similar distribution of the joint
risk amongst a set of individual chance constraints are transformed inside equivalent
deterministic constraints.

By considering the general joint chance constraint (7.5), and defining f(v, ζ) =∆ ζ−Fv,
with F ∈ Rζ×nv , the additive stochastic element is separable and the following chance
constraint is achieved:

P[ζ ≤ Fv] ≥ 1− δζ . (7.7)

Then, by rewiring ω =∆ Fv, for any duple (ζ, ω), it follows that

Φζ(ω) = P[{ζ1 ≤ ω1, ..., ζnc ≤ ωnc}]. (7.8)
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Describing the events Ci =∆ {ζi ≤ ωi},∀i ∈ Znc1 , which it can be assumed the events
as faults that occurred in the accouters, it follows:

Φζ(ω) = P[Ci ∩ ... ∩ Cnc ]. (7.9)

Indicating the complements of the events Ci by Cci =∆ {ζi > ωi}, and it is obvious
from probability theory that

C1 ∩ ... ∩ Cn = (Cc1 ∪ ... ∪ Ccnc)c, (7.10)

and consequently

Φζ(ω) = P[Ci ∩ ... ∩ Cnc ] (7.11a)

= P[(Cc1 ∪ ... ∪ Ccnc)c] (7.11b)

= 1− P[(Cc1 ∪ ... ∪ Ccnc)c] ≤ 1− δζ . (7.11c)

By using the union bound, the Boole inequality allows bounding the result in (7.11c),
declaring that for a countable set of events, the probability that at least one event occurs
is not higher than the sum of the individual probabilities [75], so that

P
[
∪nci=1 Ci

]
≤

nc∑
i=1

P[Ci], (7.12)

and, by applying (7.12) to 7.11c, it appears that

nc∑
i=1

P[Cci ] ≤ δζ ⇐⇒
nc∑
i=1

(1− P[Ci]) ≤ δζ . (7.13)

Then, a set of constraints rises from previous results as sufficient conditions to enforce
the joint chance constraint (7.7), by allotting the joint risk δζ in nc separate risks δζ,i, i ∈
Znci . These constraints are described as follows

P[Ci] ≥ 1− δζ,i, ∀i ∈ Znc1 (7.14a)
nc∑
i=1

δζ,i ≤ δζ , (7.14b)

0 ≤ δζ,i ≤ 1, (7.14c)

where (7.14a) produces the set of nc effective individual chance constraints, which
bounds the possibility that each inequality of the receding horizon problem maybe de-
clines. Moreover, (7.14b) and (7.14c) are conditions forced to bound the new single risks
in such a way that the joint risk bound is not breached. Each solution that satisfies the
aforesaid constraints is guaranteed to provide (7.7).

Since the satisfaction of each individual constraint is an event Ci, ∀i ∈ Znci , a joint
chance constraint requires that the connection of all the individual constraints is satisfied
with the desired probability level such as:

P
[
∩nci=1 Ci

]
≥ 1− δζ . (7.15)
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Considering that each individual constraint is probabilistically dependent, the level
of conservatism can be derived by using the inclusion-exclusion principle for the union
of finite events,Ci,∀i ∈ Znc1 , which proves the following equality:

P
[
∪nci=1 Ci

]
=

nc∑
i=1

P[Ci]−
∑

1≤i<j≤nc
P
[
Ci ∩ Cj

]
+

∑
1≤i<j<k≤nc

P
[
Ci ∩ Cj ∩ Ck

]
− ...+ (−1)nc−1P

[
∩nci=1 Ci

]
.

(7.16)

It should be noted that, by introducing the event as a fault in the actuator, it can
be observed (7.16) has similar as formulation as the one used for evaluating the system
reliability based on the component reliability.

In a DWN, the constraints come from the model (7.4b)-(7.4d) that can be formulated
as chance constraints statements taking into account the probabilities associated to the
component reliability. Considering only faults in actuators, the reliability of the system
is related to the system inputs ui(k) . Hence, (7.5) can be formulated in case of the
actuators as follows

P[f(ui(k), ζi(k)) ≤ 0] ≥ 1− δζi , (7.17)

where ζ(k) ∈ {1, 0} is input variable which considers if the actuator is one of two states
{Available, Unavailable} (or {1, 0}) defined as follows:

ζi(k) =

{
1, Ri(k) 6= 0 ,

0, Ri(k) = 0,
(7.18)

where Ri(k) is the reliability for each actuator. In case that ζi(k) = 1 the input ui(k)
associated to the i-th actuator is bounded by (7.1), otherwise an additional constraint
setting ui(k) should be included. Furthermore, to determine the reliability associated to
the system that associates a probability to the system model constraint (3.28), the joint-
chance constraint probability calculation (7.16) should be used leading to the following
probabilistic formulation for the MPC optimization problem (7.4)

min
u(k),x(k),ξ(k)

J(u(k),x(k), ξ(k)), (7.19a)

subject to:

P
[
Ax(l|k) +B(ζi)u(l|k) +Bddm(l|k), (7.19b)

Eu(ζi)u(l|k) + Eddm(k)

]
≥ 1− δ, l = 0, · · · , Np − 1 (7.19c)

x(l|k) ≥ xs − ξ(l|k), l = 1, · · · , Np (7.19d)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (7.19e)

x(l|k),∈ X, l = 1, · · · , Np (7.19f)

ξ(l|k) ≥ 0, l = 0, · · · , Np (7.19g)

x(0|k) = x(k). (7.19h)
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In this case, (7.19) depends on the probability distribution involved in the chance
constraints. The main difficulty in solving this stochastic problem lies in computing the
multivariate integration of the density function of the uncertain variables. In this chap-
ter, the stochastic process of disturbances is addressed analytically and an uncertainty
description given by a multivariate Gaussian distribution is chosen to use its properties
and reformulate the chance constraints into a set of deterministic equivalents. The sa-
tisfaction of the probabilities of (7.19b) is associated with the reliability of the actuator
and whole of the system. Hence, to evaluate these probabilities we can introduce the
reliability of each actuator and the system in the model and guaranty the reliability of
the model.

7.4 Reliability Assessment

7.4.1 Failure Rate and Reliability Concept

As mentioned before, the reliability is the ability of a system or component to perform
its expected functions and it is described as Definition 2.2. Moreover, the definition of
unreliability of actuators or a system is presented as Definition 2.3.

Many different functions have been accepted to describe the reliability functions of
time. Some of the more general reliability functions consist the log-normal, exponential
and Weibull distributions [89, 104]. In this chapter, the exponential distribution is used
for modelling the component failure rate. In particular, engineering systems are organi-
zed to sustain varying amounts of loads where they can be expressed in terms of usage
rate or occupied period. Revising the literature, it has been established that the function
load strongly affects the component failure rate [100]. Therefore, it is necessary to con-
sider the load versus failure rate relation when considering system reliability evaluation.
In this work, failure rates are determined from actuators under different levels of load
according to the applied control input. One of the commonly used relations is based on
assuming that actuator fault rates vary with the load by the following exponential law

λi = λ0
i exp

(
βiui(t)

)
, i = 1, 2, ...,m. (7.20)

where λ0
i indicates the baseline failure rate (nominal failure rate) and ui(t) is the control

action at time t for the ith actuator. βi is a constant parameter that depends on the
actuator characteristics.

In the useful period of life, elements can be characterized at a given time t by a
baseline reliability measure R0(t). Then, R0,i(t) will denote the reliability of the i-th
actuator obtained under nominal operating conditions

R0,i(t) = exp
(
− λ0

i t
)
, i = 1, 2, ...,m. (7.21)

Hence, the component reliability of a system with the i-th component can be computed
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by applying the exponential function and the baseline reliability level R0,j as follows

Ri(t) = R0,i exp

(
−
∫ t

0
λi(s) ds

)
, i = 1, 2, ...,m (7.22)

In discrete-time, it can be rewritten as

Ri(k + 1) = R0,i(k) exp

(
− Ts

k+1∑
s=0

λi(s)

)
, i = 1, 2, ...,m (7.23)

where λi(s) is the failure rate that is obtained from the i-th component under different
levels of load and Ts is the sampling time.

7.4.2 Overall Reliability

The lifetime of a system can be quantified by the overall system reliability, denoted as
RG(k). The overall system reliability is computed based on the reliabilities of elementary
components (or subsystems). Therefore, RG(k) depends on the actuators’ configuration
which can generally be obtained from series and/or parallel combinations of subsystems
(or components) [14]. However, there are some systems that do not follow the series,
parallel or combination of series and parallel structures. To deal with the more general
situation, a graph network model can be used in which it is possible to determine
whether the system is working correctly by determining existance of a successful path
in the system. A path for the graph network is a set of components, such that if all the
components in the set are successful, the system will be successful. A minimal path Ps
is a set of components that belongs to it, but the removal of any one component will
generate the resulting set not to be a path [14]. Then, the overall system reliability
RG(k) can be computed as

RG(k) = 1−
s∏
j=1

(
1−

∏
i∈Ps,j

Ri(k)

)
, (7.24)

where j = 1, .., s is minimal paths number. As mentioned above, there is indirect
relationship between conservatism of probability and the overall system reliability. In
fact, the formula obtained for overall reliability system (7.24) is consistent with the
(7.16).

7.4.3 System Reliability Modeling

For the purpose of integrating the reliability function in the MPC model as a new state
variable, a conversion is needed that allows to compute reliability in a linear-like form.
The proposed transformation is based on applying the logarithm (7.24). As stated in
(2.20), the (7.24) can be rewritten as

log(QG(k)) = log

( s∏
j=1

(
1−

∏
i∈ps,j

Ri(k)

))
, (7.25)
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and by introducing a change of variable

zj(k) = 1−
∏
i∈ps,j

Ri(k), (7.26)

equation (7.25) leads to

log(QG(k)) =
s∑

i∈ps,j
log(zj(k)). (7.27)

According to (7.26), the log(zj(k)) can be obtained as

log(zj(k)) =
log(zj(k))

log(1− zj(k))

∑
i∈ps,j

logRi(k). (7.28)

Then, by renaming βj(k) =
log(zj(k))

log(1−zj(k)) in (7.28), (7.25) can be rewriten as

log(QG(k)) =

s∑
i∈ps,j

βj(k)
∑
i∈ps,j

logRi(k). (7.29)

Finally, the system unreliability can be estimated from the baseline system unreliability
as follows:

log(QG(k + 1)) = log(QG(k)) +
s∑

i∈ps,j
βj(k)

∑
i∈ps,j

logRi(k). (7.30)

7.5 Economic health-aware MPC-LPV

7.5.1 General approach of economic health-aware MPC-LPV

This section presents the incorporation of reliability information in the predictive control
law as a new state of the model. As mentioned in Section 7.4, the reliability of the DWN
can be estimated using the control input (actuator commands) information. In order to
include a new objective in the MPC that proposes to extend the system reliability, the
reliability model is represented by means of the model (7.30). In fact, the new control
model of DWN that includes the reliability and dynamic model of DWN is obtained
based on the structure shown in Figure 7.1. Actually, there is a direct relationship
between the dynamic model of DWN and its system reliability.

Thus, the new MPC model has the following structure

xr(k + 1) = Arxr(k) +Bru(k) +Br,ddm(k),

yr(k) = Crxr(k),
(7.31)

where the state and output vector are given by xr = [x, log(QG), log(R1), ..., log(Ri)]
T

and yr = [y, log(QG)]T , respectively. The new matrices are defined as
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Figura 7.1: Digram of the new proposed control model approach.

Ar =



A 0nx×ni+1

01×nx 1
∑s

i∈ps,j βj(k)

0ni×nx Ini×ni


, Br =



Bnu×nu

0

−λi × Ini×ni


,

Bd,r =



Bd,nu×nu

0ni+1×nBd


, Cr =

[
C 0 0 · · · 0
0 1 0 · · · 0

]
.

(7.32)

Therefore, the new MPC model (7.31) can be viewed as an LPV model that has as
scheduling variable the control action ui(k) related to each state and actuator. The new
MPC model (7.31) cannot be estimated before solving the optimization problem (7.4)
since the future state sequence is not identified. In fact, x(l|k) depends on the future
control inputs u(k) and scheduling parameters, where for general LPV models are not
expected to be known but only to be measurable online at current time k. The idea is
to obtain a solution to the problem (7.4) by solving an online optimization problem as a
QP problem. The solution for this problem is to modify the exact MPC-LPV to a linear
approximation of the MPC-LPV. This approximation uses an estimation of scheduling
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variables, θ̂ instead of applying θ. Indeed, the scheduling variables in the prediction
horizon are determined and used to update the matrices of the model adopted by the
MPC controller. In fact, the same approach in chapter 4 is applied in this chapter for
solving this problem. Hence, based on the optimal control sequence u(k), the sequence
of states and predicted parameters may be obtained.

X(k) =


x(l + 1|k)
x(l + 2|k)

...
x(Np|k)

 ∈ RNp,nx , Θ(k) =


θ̂(l|k)

θ̂(l + 1|k)
...

θ̂(Np − 1|k)

 ∈ RNp,nθ . (7.33)

Therefore, with slight abuse of notation f can be defined as: Θ(k) =
f([xT (k) XT (k)],u(k)). The vector Θ(k) includes parameters from time k to k+Np−1
whilst the state prediction is accomplished for time k + 1 to k +Np.

Hence, by using the definitions (7.33), the predicted states can be simply formulated
as follows

X(k) = A(Θ(k))x(k) + B(Θ(k))u(k) +Br,ddm(k), (7.34)

where A ∈ Rnx×nx and B ∈ Rnx×nu are given by (4.9) and (4.10).

By using (7.34) and augmented block diagonal weighting matrices w̃1 = diagNp(w1)
and w̃2 = diagNp(w2), the cost function (7.3), with new additional objective to maximize
the system reliability, can be rewritten in vector form as

min
u(k),ξ(k),logQG(k)

Np∑
l=0

[`e(l|k) + `s(l|k) + `∆u(l|k)− `Rg(l|k)], (7.35a)

subject to:

X(k) = A(Θ(k))x(k) + B(Θ(k))u(k) +Br,ddm(k), (7.35b)

0 = Euu(l|k) + Eddm(k), (7.35c)

x(l + 1|k) ≥ xs − ξ(l|k) (7.35d)

logQG(l + 1|k) = x̃nx+1(l|k) (7.35e)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (7.35f)

x(l|k),∈ X, l = 1, · · · , Np (7.35g)

ξ(l|k) ≥ 0, l = 0, · · · , Np (7.35h)

x(0|k) = x(k), (7.35i)

where `Rg(k) , logQ>Gw3 logQG is an additional objective with the corresponding
weight w3 into the EMPC-LPV cost function to maximize the system reliability. Since
the predicted states Θ(k) in (7.34) are linear in control inputs u(k), the optimization
problem can be solved as a QP problem, that is significantly further easier than solving
a general nonlinear optimization problem.
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7.5.2 Enhancing system reliability using chance constraints

Because of the stochastic nature of water demands, the DWN prediction model includes
exogenous additive uncertainties. Therefore, the fulfillment of constraints for a given
control input cannot be ensured. Hence, it is relevant to substitute the original cons-
traints that include stochastic elements (7.1), by probabilistic statements in the frame
of chance constraints (7.5). Regarding the Section 7.3 and the form of state constraint
set X, two types of chance constraints are existed. The form of a state joint chance
constraint is described as

P[G(r)x ≤ g(r), ∀r ∈ Z[1,mx]] ≥ 1− δx, (7.36)

where δx ∈ (0, 1) is the risk acceptability level of constraint violation for the states, G(r)
and g(r) indicate the rth row of G and g, respectively. This entails that all rows r have
to be jointly satisfied with the probability 1 − δx. Also, the form of a state individual
chance constraint is described as

P[G(r)x ≤ g(r)] ≥ 1− δx, ∀r ∈ Z[1,mx] (7.37)

which requires that each rth row of the inequality has to be satisfied individually with
the respective probability 1 − δx,r, where δx,j ∈ (0, 1). Then, according to (7.14), the
state constraints can be described as follows:

P[G(r)x ≤ g(r)] ≥ 1− δx,r, ∀r ∈ Z[1,mx] (7.38a)
mx∑
r=1

δx,r ≤ δx, (7.38b)

0 ≤ δx,r ≤ 1, (7.38c)

and, as recommended in [154], specifying a constant and equal value of risk to each
individual constraint, that is δx,r = δx/mx for all r ∈ Z[1,mx], then (7.38b) and (7.38c)
are fulfilled.

By considering a known (or approximated) quasi-concave probabilistic distribution
function for the efficacy of the stochastic disturbance in the dynamic model (3.28), it
can follow that

P[G(r)x(k + 1) ≤ g(r)] ≥ 1− δx,r ⇔ FG(r)Bddm(k)(g(r)−G(r)(Ax(k) +Bu(k))) ≥ 1− δx,r
⇔ G(r)(Ax(k) +Bu(k)) ≤ g(r)− F−1G(r)Bddm(k)(1− δx,r),

(7.39)

for all r ∈ Z[1,mx], where FG(r)Bddm(k)(.) and F−1
G(r)Bddm(k)(.) are the cumulative distribu-

tion and the left-quantile function of G(r)Bddm(k), respectively. In order to guarantee a
safety stock at each storage node of a flow-based network for decreasing the probability of
stock-outs due to possible uncertainties in the network, a chance constraint strategy may
be used. In this way, according to the (7.38a), the safety stocks are optimally assigned
and designed by the constraint back-off effect caused by the term FG(r)Bddm(k)(1− δx,r)
in (7.36). Therefore, the original state constraint set X is adjusted by the effect of the
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mx deterministic equivalents in (7.39) and substituted by the stochastic feasibility set
provided by

Xs(k) :={x(k) ∈ Rnx |∃ u(k) ∈ U, such that

G(r)(Ax(k) +Bu(k)) ≤ g(r)− F−1
G(r)Bddm(k)(1− δx,r) ∀r ∈ Z1,mx

and Euu(k) + Edd̄(k) = 0},
(7.40)

where d̄(k) = E[dm] is the first moment of dm for all k ∈ Z0≥0. The set Xs(k) is convex
when non-empty for all δx,r ∈ (0, 1) in most distribution function, due to the convexity
of G(r)x(k + 1) ≤ g(r) and the log-concavity assumption of the distribution. For some
particular distributions, e.g., Gaussian, convexity is preserved for δx,r ∈ (0, 0.5] [75].

According to section 7.4, component and system reliability can be computed and
maximized in the EMPC controller as states in the control model. Besides, (7.40) provi-
des a new constraint set according to the deterministic equivalents in (7.39). However,
(7.40) does not consider the states related to the component and system reliability of
system hence, it is appropriate to adjust the constraint set (7.40) with probabilistic
statements based on the component and system reliability states. Therefore, the system
reliability is considered to be ruled by the probabilistic constraints.

In this way, according to general consent of chance constraints (7.5), (7.8) and (7.31)
that it shows the system reliability is included in the state, the constraint set based on
system reliability state by using the probabilistic statement can be proposed as:

xRg(k) ∈ {xRg ∈ RnR |P[GRgxRg ≥ gRg] ≥ (1− δRg)} (7.41)

where xRg(k) ∈ RnRg is system reliability state, δRg ∈ (0, 1) is the risk acceptability
level of constraint violation for the state. According to the above discussion and the
effect of stochastic reliability in the model (7.31), (7.41) can be rewritten as follows

P[GRgxRg(k + 1) ≥ gRg] ≥ (1− δRg)⇔ FGRgη(gRg −GRgxRg(k + 1)) ≥ 1− δRg
⇔ GRgxRg(k + 1) ≥ gRg + F−1

GRgη
(1− δRg),

(7.42)

where η is a random vector whose components lie in a normal distribution, FGRgη(.)

and F−1
GRgη

(.) are the cumulative distribution and the left-quantile functions involved
in the state and actuator-health deterministic equivalent constraints, respectively. The
deficiency of reliability in the system can cause that the actuator operation compromise
the network supply service, unless demands are reachable from other redundant flow
paths or a fault-tolerant mechanism is activated. Hence, a preventive strategy can
be performed to increase overall system reliability by guaranteeing that the system
reliability at each time instant to remain above a safe threshold until a predefined
maintenance horizon is reached. Thereupon, the probabilistic constraint (7.42) can be
formulated in the predictive controller as

GRgxRg(k +Np|k) ≥ gRg(k) + F−1
GRgη

(1− δRg), (7.43a)

gRg(k) = xRg, min(k) := xRg(k) +Np
Rtresh − xRg(k)

kM +Np + k
, (7.43b)
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where xRg, min(k) ∈ RnRg is the vector of minimum reliability of the system allowed
for time instant k and Rtresh ∈ RnRg is the vector of threshold for the terminal system
reliability at a maintenance horizon kM ∈ Z≥0. The right-hand side of (7.43b) is an
identical restriction of the remaining allowable system reliability (Rtresh− xRg(k)), that
is updated at each time step, according to the applied control actions and guarantees
that xRg(k) ≥ Rtresh for k = kM .

Chance-constraints health-aware EMPC-LPV reformulation

First, the inclusion of system reliability in the control law as an additional state of
the control model and discussing about how to use the probabilistic statements for sta-
te and especially reliability constraints and enforcing them to deterministic equivalent
constraints. Next, the setting of the proposed economic health-aware MPC-LPV contro-
ller including deterministic equivalent constraints is shown, which consolidates into its
optimization problem both the dynamic safety stocks and the system reliability theory,
in order to improve the flow supply service level in a given network, handling demands
uncertainty and equipment damage.

In this way, for a given sequence of demands d, predicted system reliability, accep-
table risk levels δx and δRg, the optimization problem associated with the deterministic
equivalent for selected application at each time step k is expressed as follows:

min
u(k),ξ(k),x(k)xRg(k)

Np∑
k=0

[`e(k) + `s(k) + `∆u(k)− `Rg(k)], (7.44a)

subject to:

X(k) = A(Θ(k))x(k) + B(Θ(k))u(k) +Br,ddm(k), (7.44b)

0 = Euu(l|k) + Eddm(k), (7.44c)

x(r)(k + l + 1|k) ≤ xmax(r)− Φxk,r(δx), (7.44d)

x(r)(k + l + 1|k) ≥ xmin(r) + Φxk,r(δx) (7.44e)

GRgxRg(k +Np|k) ≥ xRg, min(k) + Φ
xRg
k,η (δRg), (7.44f)

x(k + l + 1|k) ≥ xs − ξ(k + l|k), (7.44g)

ξ(k + l|k) ≥ 0, (7.44h)

xRg(l + 1|k) = x̃4(k), (7.44i)

u(k), uk+1, ..., uk+Np−1 ∈ U, (7.44j)

x(k|k), d̄m(k|k)) = (x(k), dm(k)), (7.44k)

for all l ∈ Z[0,Np−1] and all r ∈ Z[0,mr], where the terms Φxk,r(δx) = F−1
G(r)Bddm(k)

(
1− δx

nxNp

)
and Φ

xRg
k,η (δRg) = F−1

GRgη

(
1 − δx

Np

)
are the quantile functions involved in the states and

system reliability deterministic equivalent constraints.
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7.6 Application to the water network case study

In this section, two motivational examples are used to assess the implementation of
the proposed economic health-aware MPC-LPV based on system reliability assessment
using the water network case study described in details in Chapter 3. For both part,
results were obtained using a 2.4 GHz and 12.00 Gb RAM Intel(R) Core(TM)i7-5500
CPU. Matlab and Yalmip toolbox were used to perform the simulations.

7.6.1 Water transport Network (3-Tanks)

In the first example, the proposed study concentrates on a small network based on the
DWN case study. Two sources of water and four demand sector which is represented
the district metered area (DMA), are considered (see Figure 7.2). It is assumed that the
demand forecast (dm) at each demand sector is known and that every single source can
provide this water demand (Figure 7.3). First, system components must be identified.
In this case, there are 3 pumps, 3 valves, 2 sources, 3 tanks, 2 intersection nodes, and
several pipes. Afterwards, according the definition of minimal path Ps in subsection 7.4.2
the minimal path sets is determined for the water network, while the Ps is determined
based on the relation and the possible connection between the each source and demand
sector. By considering all the paths from all the sources to the demand sector, the
combination of all flow paths should follow the functional requirements necessary to
satisfy the consumer demands. A minimal path set is composed by those elements which
allow a flow path between sources and demand sector, such as pipes, tanks, pumps and
valves. Based on this analysis, the following list of each minimal paths is presented in
Table 7.1. There are five minimal path sets in the system of Figure 7.2. The reliability
of each minimal path set depends on the reliability of its components. Tanks and pipes
are supposed to be perfectly reliable. However, sources are involved in the minimal path

Figura 7.2: Drinking water network diagram (Three-tanks).
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Figura 7.3: Drinking water demand for the three tanks example.

sets only for illustrative purposes of the proposed procedure. Table 7.2 provides the
simulation parameters used.

Figure 7.4 shows the evolution of the valves and pumps behaviors that were obtained
using the new approach of the health-aware MPC-LPV in the three tanks example with
and without the health-aware objective. As it can be seen in Figure 7.4, the behaviour of

Taula 7.1: Success minimal paths of the water transport network of
Barcelona (3-Tanks) .

Path Component Set

P1 {Source1, V alve1, V alve3, Demand4}
P2 {Source1, V alve1, Pump3, Demand3}
P3 {Source1, V alve1, V alve2, Demand2}
P4 {Source1, V alve1, V alve2, Pump2, Demand1}
P5 {Source2, Pump1, Demand1}
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Taula 7.2: Simulation parameters.

Parameter Value

Np 24
Ts[h] 1
Tm[h] 200

α1
α1 α2 α3 α4 α5 α6

0.123 0 0 0.054 0 0

umin [m3/s]
u1 u2 u3 u4 u5 u6

0 0 0 0 0 0

umax [m3/s]
u1 u2 u3 u4 u5 u6

1.297 0.05 0.12 0.015 0.0317 0.022

λ0[h−1 × h−4]
λ1 λ2 λ3 λ4 λ5 λ6

1.2 3.45 6.3 9.5 1 1

xmin [m3]
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0 0 0 0 0 0 0 0 0

xmax [m3]
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

470 960 3100 1 1 1 1 1 1 1

x0 [m3]
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0.75 0.62 0.34 0 1 1 1 1 1 1

control actions that related to the valves is different from the pumps actuators. However,
in all of them, the behaviours of control actions in both scenarios are almost the same.
Considering the health-aware objective does not significantly affect the behaviour of the
valves and pumps. The comparison of the volume evolution of three tanks based on
the health-aware MPC-LPV with and without the health-aware objective is presented
in Figure 7.5. The safety volumes of the tanks are satisfied hence, the pressure of
the network may be guaranteed, subsequently ensuring the hydraulic performance. The
system reliability prediction of the DWN that is obtained when using proposed controller
with and without the health-aware objective is presented in Figure 7.6. According to
these results, it can be observed that with the use of health-aware objective in the MPC,
the network reliability is better preserved compared to the case that the reliability is not
considered in the MPC objectives. However, the responses of water tanks are similar
in both scenarios. The trade-off between the decreasing operating cost and increasing
system reliability can be observed in Figure 7.6. Note that the differences in the amount
of the operational cost using the proposed approach is similar to the EMPC controller
without reliability objective. Figure 7.6 shows that the system reliability is increased
from 0.9071 to 0.9891 and that is about 9.06% of improvement, while the accumulated
cost is increased from 114.6 to 116.7 that is about 1.74% of increment.

140



0 50 100 150 200

Time [h]

0

0.05

0.1
F

lo
w

 [
m

3
/s

]
Evolution of control action u1

0 50 100 150 200

Time [h]

0

0.01

0.02

F
lo

w
 [

m
3
/s

]

Evolution of control action u2

0 50 100 150 200

Time [h]

0

0.05

0.1

F
lo

w
 [

m
3
/s

]

Evolution of control action u3

0 50 100 150 200

Time [h]

0

0.005

0.01

0.015

F
lo

w
 [

m
3
/s

]

Evolution of control action u4

0 50 100 150 200

Time [h]

0

2

4

6

F
lo

w
 [

m
3
/s

]

10
-4 Evolution of control action u5

0 50 100 150 200

Time [h]

0

0.01

0.02

F
lo

w
 [

m
3
/s

]

Evolution of control action u6

Control action with reliability objective

Control action without reliability objective

90 100 110 120 130
0

1

10
-4

Figura 7.4: Evaluation of the control actions results of 3-tanks.

7.6.2 Chance-constraints health-aware EMPC-LPV for water trans-
port network of Barcelona (17-Tanks)

Now, a more complex and realistic example also based on the DWN case study is
considered as a case study. This case includes 17 tanks and 9 sources, consisting of five
underground and four surface sources, which currently provide an inflow of about 2 m3/s.
The case study also includes 61 actuators (valves and pumps), 12 nodes and 25 demands.
Figure 7.7 presents the general topology of the network, showing a complex system in
terms of its elements and the relationships and connections between them. Figure 7.8
presents the graph obtained from this network; the nodes correspond to reservoirs or pipe
merging/splitting nodes and the arcs correspond to actuators (pumps and valves).The
graph of the water network is obtained from the state space representation of the system
where this approach are explained with more detail in [203].

As in the previous example, demand sectors, sources, pipelines and tanks are consi-
dered perfectly reliable whereas actuators are not [218]. Moreover, it is expected that
the demand forecast (dm) at each demand sectors is known and that every single source
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Figura 7.5: Results of the evolutions of storage tanks for 3-tanks.
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Figura 7.7: Barcelona drinking water network (17-Tanks).

Figura 7.8: Case study based on the DWN case study.
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Figura 7.9: Drinking water demand for several sinks.

can supply the required water demand (see some demand sectors in Figure 7.9). The
economic health-aware MPC-LPV formulation proposed in previous section has been
applied to a simulation model of DWN presented in Figure 7.9.

From the reliability analysis, it could be obtained which states are structurally con-
trollable, since the path computation analysis provides all possible paths from a source
to target sectors. Moreover, for each path, an approximate operational cost (according
to the electricity cost of each element) and a maximal water flow (according to the
physical constraints of the actuators) can also be derived.

Tables 7.3 and 7.4 present important number of crucial actuators within the network,
according to the topology and the way network elements are linked, as most actuators
(pumps or valves) have only one connection between tanks and demands. Subsequently,
if an actuator fails, then the corresponding demand will not be satisfied. Note that the
information presented in Tables 7.3 and 7.4 is particularly significant for an operator
because it shows the critical elements in the network for monitoring/improvement poli-
cies to be performed in the event of element damage. Considering to the DWN (Figures
7.7), Tables 7.3 and 7.4 and the study of the success minimal path of the water network,
607 minimal path sets are specified inside the system. A representation of the success
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Taula 7.3: Structural actuators (towards tanks).

No. Name No. Name No. Name No. Name

u1 VALVA u16 VALVA309 u33 CC130 u47 VPSJ
u3 CPIV u17 bPousE u34 CC70 u48 CMO
u4 bMS u19 CGIV u35 VB u49 VMC
u5 CPII u20 CPLANTA50 u36 CF176 u50 VALVA60
u6 VALVA47 u21 PLANTA10 u37 VCO u51 VALVA56
u7 bCast u23 CRE u38 CCO u52 VALVA57
u8 VCR u24 CC100 u39 VS u53 CRO
u9 bPouCast u25 VALVA64 u40 V u54 VBMC
u10 CCA u26 VALVA50 u41 VCT u55 bPousB
u11 CB u27 CC50 u42 CA u56 VALVA53
u12 VALVA308 u28 VF u43 VP u57 VALVA54
u13 VALVA48 u29 CF200 u44 VBSLL u58 VALVA61
u14 VCA u30 VE u45 CPR u59 VALVA55
u15 CPLANTA70 u32 VZF u46 VCOA u60 VCON

Taula 7.4: Structural actuators (towards demands).

No. Name No. Name No. Name No. Name

u2 VALVA45 u18 VSJD-29 u22 CE u31 VRM
u61 VALVA312

Taula 7.5: Success minimal paths of the DWN case study.

Path Component Set

P1 {aMS, bMS, c125PAL}
P2 {AportA, V ALV A, V ALV A45, c70PAL}
P3 {AportA, V ALV A, V ALV A47, CPIV, c125PAL}
P4 {AportA, V ALV A, CPII, c110PAP}
P5 {ACast, bCast, c115CAST}

...
...

P607 {AportT, V ALV A312, c135SCG}
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Figura 7.10: Evaluation of the control actions results.

minimal paths from the water network is presented in Table 7.5. The reliability of each
minimal path set depends on the reliability of its components. Tanks and pipes are
supposed perfectly reliable. However, sources are involved in the minimal path sets only
for illustrative purposes of the procedure. The objective of the MPC is to minimize
the multi-objective cost function (7.44). The prediction horizon is 24 hours because the
system and also the electrical tariff have periodicity of 1 day. The analysis is exhibited
a time period of 11 day (264hours) with sampling time of 1 hour. The weights of the
cost function (7.44a) are We = 100, Ws = 1, W∆u = 1 and WRg = 10. The weighting
matrices are founded by iterative tuning until the desired performance is achieved. The
tuning of these parameters is arranged based on that the objective with the highest
preference is the economic cost, which must be minimized maintaining proper levels of
safety volumes and control action smoothness and the same time should maximize the
system reliability.

In order to analyze and assess the benefits of the proposed economic Health-aware
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MPC-LPV approach, a comparison with respect to baseline control strategies described
in the literature of chapter 2 for the same case study is considered. Especially, the
evaluated methods are the following:

Health-aware economic MPC-LPV with chance-constraints (HACCEMPC-LPV):
This is the approach proposed in this chapter, that depends on solving Problem (7.44).
This approach takes into account time-varying stochastic demand uncertainty and stoc-
hastic whole reliability of the system. Therefore, the base stock constraint, the hard
bounds of the states and the terminal constraint of the system reliability are in the form
of chance constraints.

Economic MPC-LPV (EMPC-LPV): This approach is based on the new control
model of the network while the reliability objective is not considered in the cost functions.
Moreover, it does not consider the stochastic demand uncertainty, chance-constraints or
terminal constraint of the system reliability of the network.

Chance-constrained economic MPC-LPV (CCEMPC-LPV): This approach includes
robustness only for demand uncertainty by replacing the state deterministic constraints
with chance-constraints. Moreover, the CCEMPC-LPV controller includes neither the
reliability objective nor the terminal constraint of the system reliability of the network.

Health-aware economic MPC-LPV (HAEMPC-LPV): This approach relies on solving
problem (7.35). In this approach, an additional goal is included to the controller in order
to extend the components and system reliability. The HAEMPC-LPV does not consider
stochastic demand uncertainty and chance constraints.

Table 7.6 exhibits the numeric assessment of the above-mentioned controllers through
different key performance indicators (KPIs), which are detailed below:

KPIe :=
1

ns + 1

ns∑
k=0

α>(k)uk∆t, (7.45a)

KPI∆u :=
1

ns + 1

nu∑
i=1

ns∑
k=0

(∆u(i, k))2, (7.45b)

KPIs :=

nx∑
i=1

ns∑
k=0

max{0, xs(i, k)− x(i, k)}, (7.45c)

KPIR := xRg(k), (7.45d)

KPIt := topt(k), (7.45e)

where KPIe denotes the average economic performance of the water network, KPI∆u

evaluates the smoothness of the control actions, KPIs comprises the quantity of water
utilized from safety stocks, KPIR denotes the value of the whole system reliability of
the DWN and KPIt defines the difficulty to solve the optimization tasks associated with
each approach accounting topt(k) as the average time that gets to solve the correspon-
ding FHOP. In KPIe,KPI∆u ,KPIs and KPIt lower values signify better performance
results. However, a higher KPIR value shows better performance in system reliability
of the DWN. Furthermore, Table 7.7 presents details of the production and operational
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Figura 7.11: Results of the evolutions of control action.

costs associated with each approach, which are one of the most important objectives for
the DWN managers.

Figures 7.11 and 7.10 show the evolution of the valves and pumps commands and
tank volumes for comparison of different considered MPC approaches for DWN, respec-
tively. Figure 7.11 shows that pumps always try to operate at the minimum cost, i.e.,
when the electrical tariff is cheaper. Moreover, 7.12 shows the comparison of evolution
of the valves and pumps commands during the 48 hours. Figure 7.10 shows the proper
replenishment planning that the predictive controller dictates according to the cyclic
behavior of demands. Note that the net demand of each tank is properly satisfied along
the simulation horizon.

Although the behavior of the control inputs (valve and pump commands) (see Figure
7.11) and selected storage tanks (see Figure 7.10) are very similar in all the approaches,
Figure 7.13 shows comparison of the system reliability predictions and accumulated
economic cost of the DWN that obtained from the different MPC approaches.

As shown in Figure 7.11, the behavior of the valves and pumps in CCEMPC-LPV and
HACCEMPC-LPV approaches are almost the same while the amount of the inputs at
HACCEMPC-LPV method is increased. On the other hand, the evaluation of the valves
and pumps in EMPC-LPV and HAEMPC-LPV methods are the same. Simultaneously,
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Figura 7.12: Results of the evolutions of control action in 48 h.

this situation has appeared in the evolutions of selected storage tanks that are presented
in Figure 7.10. According to these results and reviewing the results in Tables 7.6 and
7.7, it can be observed that the robustness enhancements of the HACCEMPC-LPV
approach is outperform the other controllers in terms of reliability. The EMPC-LPV
controller has low values in most of the KPIe but, the guarantee of reliability and robust
or problematic feasibility is not considered. The main disadvantage of this controller is
that control actions are computed based on economic criteria. In this case the controller
overexploits those actuators that have lower operational costs, quickening their damage
and hazarding the service reliability. The HAEMPC-LPV strategy reached the lowest
KPIe with the EMPC-LPV controller by including the reliability objective in the control
law. However, the stochastic demand uncertainty and stochastic uncertainty of the
system reliability is not recognized.

In order to manage the stochastic demand uncertainty, CCEMPC-LPV and
HACCEMPC-LPV controllers incorporated the robustness for demand uncertainty by
replacing the state deterministic constraints with chance constraints. Generally, chance
constraints create an optimal back-off from real constraints as a risk-averse mechanism
to face the non-stationary uncertainty included in the prediction of states.

Table 7.7 presents the details of water production and electricity cost of each appro-
ach. The HACCEMPC-LPV approach has quite similar costs to those of the baseline
CCEMPC-LPV approach, but with the advantage of a better handling of constraints
and considering the system reliability into the control law. Generally, the proposed
HACCEMPC-LPV approach leads to a higher total closed-loop operational cost if con-
sidering only the water and electric costs as signs for economic performance. This is the
trade-off for increasing the reliability of the system.
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Figura 7.13: Evaluation of system reliability and accumulated
economic cost.

Taula 7.6: Comparison of control performance.

Controller KPIe KPI∆u KPIs KPIR KPIt Simulation Time

EMPC-LPV 3779.81 0.5271 28951.72 0.8772 1.5628 412.599
CCEMPC-LPV 4029.09 0.4910 28955.69 0.9186 1.9051 502.952
HAEMPC-LPV 3980.07 0.5317 28952.62 0.9263 1.78348 470.841
HACCEMPC-LPV 4029.19 0.4903 28955.90 0.9386 1.9664 519.147

7.7 Summary

In this chapter, an economic health-aware MPC-LPV strategy based on the system reli-
ability for water transport network has been proposed to deal with the management of
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Taula 7.7: Comparison of daily average costs of the MPC approaches.

MPC Approach Water Average Cost Electric Average Cost Daily Average Cost
(e.u./day) (e.u./day) (e.u./day)

EMPC-LPV 44162.44 3053.08 47215.53
CCEMPC-LPV 51237.98 3262.43 54500.42
RHEMPC-LPV 44369.90 3121.84 47491.75
RHCCEMPC-LPV 51438.13 3262.64 54700.77

flow-based networks, considering both demand uncertainty and system reliability with
probabilistic constraints. The considered control-oriented model of the water transport
network is based on flows. By considering chance constraints programming to compute
an optimal tank policy based on a desired risk acceptability level, the system reliability
is introduced as state variables inside the control model, which involves a nonlinear term.
This is changed in to a linear-like form through the LPV structure. The scheduling pa-
rameters at each time instant are updated with the state vector value at that time. The
new health-aware MPC-LPV method is solved iteratively by a series of QP problems
and the MPC model is updated through the scheduling parameters estimated at each
time instant. Moreover, varying flow demands and system reliability are satisfied by
considering chance-constraint programming. The results obtained show that the system
reliability of the DWN network is maximized with the proposed controller while the cost
increases. The level of resultant back-off is variable and belongs to the volatility of the
forecasted demand and system reliability at each prediction step and the agreement of
the probabilistic distributions employed to model uncertainties. The reality of unboun-
ded disturbances in the system prevents the guarantee of robust feasibility with these
schemes. Therefore, the strategy proposed in this chapter is based on a service-level
guarantee and a probabilistic feasibility.

The content of this chapter was based on the following works:

F. Karimi Pour, V. Puig, and G. Cembrano. Economic Health-Aware LPV-MPC
Based on System Reliability Assessment for Water Transport Network. Energies,
12(15), 3015,2019.

F. Karimi Pour, V. Puig, and G. Cembrano. Economic Health-aware MPC-LPV
based on DBN Reliability model for Water Transport Network. 6th Internatio-
nal Conference on Control, Decision and Information Technologies (CoDIT),(pp.
1408-1413). IEEE, France,2019.

F. Karimi Pour, V. Puig, and G. Cembrano. Health-aware LPV-MPC based
on system reliability assessment for drinking water networks. IEEE Conference
on Control Technology and Applications (CCTA),(pp. 187-192). IEEE, Denmark,
2018.
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(SAFEPROCESS),IFAC-Papers OnLine,51(24), 1285-1291, Poland, 2018.
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PapersOnLine, 52(23), 88-93, Netherlands, 2019.
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Caṕıtol 8

Health-aware
optimization-based control
design for autonomous racing
vehicle

The accurate estimation of the State of Charge (SOC) and an acceptable prediction of
the Remaining Useful Life (RUL) of batteries in autonomous vehicles are essential for
safe and lifetime optimized operation. The estimation of the expected RUL is quite
helpful to reduce maintenance cost, safety hazards, and operational downtime. This
chapter proposes an innovative health-aware control approach for autonomous racing
vehicles to simultaneously control it to the driving limits and to follow the desired path
based on maximization of the battery RUL. To deal with the non-linear behaviour of the
vehicle, a Linear Parameter Varying (LPV) model is developed. Based on this model, a
robust controller is designed and synthesized by means of the Linear Matrix Inequality
(LMI), where the general objective is to maximize progress on the track subject to win
racing and saving energy. The main contribution is to preserve the lifetime of battery
while optimizing a lap time to achieve the best path of a racing vehicle. The control
design is divided into two layers with different time scale, path planner and controller.
The first optimization problem is related to the path planner where the objective is to
optimize the lap time and to maximize the battery RUL to obtain the best trajectory
under the constraints of the circuit. The proposed approach is formulated as an optimal
on-line robust LMI based Model Predictive Control (MPC) that steered from Lyapunov
stability. The second part is focused on a controller gain synthesis solved by LPV based
on Linear Quadratic Regulator (LPV-LQR) problem in LMI formulation with integral
action for tracking the trajectory. The proposed approach is evaluated in simulation
and results show the effectiveness of the proposed planner for optimizing the lap time
and especially for maximizing the battery RUL.
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8.1 Introduction

In the last decades, autonomous driving technology has become a significant focus in
automotive industry. Autonomous driving technology is anticipated to decrease driver
errors, prevent possibly dangerous situations and simplify the driver’s work [155]. The
advanced driver assistance systems (ADAS) or even autonomous driving are fast develo-
ping field, with interest in both industry and academia. ADAS can be found nowadays
in many commercial vehicles such as cruise control or lane keeping which are based on
classic control strategies [26]. However, lateral control of an autonomous vehicle still
needs to be more investigated because of the difficulties it poses

The recent research on autonomous driving incorporates different fields, containing
perception, planning, and control. The purpose of perception is to acquire information
for autonomous vehicles from their situations. The goal of control is to obtain the
suitable parameters for systems to follow the planned path and planning is the decision-
making frame between perception and control [83]. The specific object of planning is
to steer vehicles with a safe path, without collision, to their destinations, considering
vehicle dynamics and road lines. Path planning has been widely investigated in mobile
robotics applications [50]. In [224], the grid-based approach is used for dynamic path
planning where the environment is planned to a set of cells and each cell describes
the behaviour of an obstacle at that situation in the environment. A hierarchical path
planning approach for mobile robot navigation in complex situations is presented in
[199]. Both approaches perform well for path planning in low-speed applications but are
not proper for high-speed driving. The control goal is to follow the references generated
by the trajectory generator. This is a complicated task that must guarantee certain
levels of performance and ensure vehicle stability. The trajectory-tracking problem is
very crucial for autonomous racing vehicles, and many control algorithms have been
proposed such as fuzzy controller [52], Linear Quadratic Regulator (LQR) [61] and
Model Predictive Control (MPC) [180]. In [88], authors propose a model predictive
path tracking controller according to the vehicle dynamics and actuators conditions in
its path tracking. However, it is feasible that the planned path is not available to be
tracked by the vehicle since the vehicle dynamics and its constraints are not included
in path generation [57]. A path tracking scheme for a mobile robot based on neural
predictive control is introduced in [76], where a multi-layer back propagation neural
network is employed to model kinematics of the robot.

In general, the main objective of the autonomous racing is to make the lap in the
shortest possible time while maintaining a smooth driving behaviour [103]. However, if
the objective is the minimization of the lap time, the controller has to plan the trajectory
on an adequately time horizon to avoid steering the vehicle outside the track [187]. In
this area, there are some research such as in [28] that propose an adaptive MPC approach
for solving lane keeping problem. In [212], a real-time MPC control scheme is introduced
that solves the racing problem and test it in miniature race cars. Also, the Learning
MPC is proposed to provide a solution to the racing problem in [187]. To minimize the
time in a circuit implies going as fast as possible without exceeding circuit limits. But,
it also affects the energy consumption of the vehicle and a trade-off between these two
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objectives have received great interest in recent years, particularly in the area of car
racing. Several studies solve this problem by using an optimal control technique, [27]
and [212]. However, the considered control framework requires the use of safe energy
mechanisms which still have not been considered in scientific literature. In this chapter,
we propose to develop a framework for optimal compromise between control and energy
management increasing enlarging the autonomous operation of the vehicle.

The increasing requirement for considering the reliability and availability of auto-
nomous vehicles has led to the improvement and integration of prognostics and health
management (PHM) techniques with automated systems [95]. The remaining useful life
(RUL) is defined as the remaining time that a component (or system) will be able to
perform its expected operation. This time regularly depends on the ageing of the com-
ponents and the operating conditions. Regularly, the energy source of an autonomous
racing vehicle is based on a battery. Obtaining more information about battery lifetime
behaviour would result in the construction of cost-effective and long-lasting batteries.
The performance of the racing vehicle is progressively reduced over time because of the
battery ageing. The effect of ageing is characterized by losing power. This deteriorati-
on is caused by several factors such as high-rate cycling, overburden and overdischarge
[217]. To avoid damages and decrease the ageing rate during the charge/discharge cycles
of the battery, it is required to monitor the State of Charge (SoC). The SoC is the pro-
portion of the possible charge, compared to the total charge available when the battery
is fully charged at a specific time.

A recent summary of methods for battery diagnosis can be found in [228]. The
battery RUL prediction and the uncertainty management by using the particle filter
(PF) approach (applying the practical degradation model to create a state transition
equation) are provided in [193]. An integrated method based on a mixture of Gaussian
process model and PF for battery SoH estimation is presented in [127]. Using the model-
based tracking approach is a general way to obtain suitable results [228]. The usage of
Kalman filtering for monitoring the SoC was reported in a lot of studies, e.g.[172, 194].
On the other side, motion control actions are observed as a source of stress degradation
such as [96]. In [185] the authors proposed an approach to estimate RUL based on
assuming a decisive relation between the degradation and the control input. To the
knowledge of the authors, there is no study detected to consider SoC and RUL battery
inside the model of the racing vehicle. In this work, we propose a health-aware control
approach for a racing vehicle as a novel approach to solve driving control problems and
at the same time to maintain and minimize the consumption of the battery energy.

The main contribution of this chapter is to provide a health-aware control design
for a racing vehicle that generates an optimal path for the racing by optimizing the
lap time and maximizing the RUL of the battery in the planner. The control design
is divided into two layers (path planner and controller) with different time scales. The
first layer included a path planner whose objective is to optimize the lap time and
maximize the battery RUL to obtain the best trajectory under the constraints of the
circuit. The second layer is focused on a controller gain with integral action for tracking
the trajectory obtained by the planner. Both optimization problems are solved using
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Linear Matrix Inequality (LMI) approach for MPC considering an LPV model of the
vehicle and the input and output constraints. Several reasons justify the use of LMIs
[24]. In fact, the resulting LMI-based optimization problems can be solved in polynomial
time, using interior-point methods and the optimal solution is global [11]. Finally, the
proposed approach is assessed in simulation and results show the effectiveness of the
proposed planner for optimizing the lap time while at the same maximizing the RUL of
the battery.

8.2 System Modeling

In this chapter, the vehicle model (3.38) is modified to (8.1) by including the disturbances
and noise. Then, the vehicle model is concisely expressed in state space representation
as

ẋ(t) = f(x(t), u(t), wd(t), vn(t)), (8.1)

where at time t the vectors x, u, w and v represent the state, input, disturbances and
noise

x = [vx vy ω ey eθ]
>, u = [δ α]>, (8.2)

and vn is the measurement noise that is applied into measurable states and wd is the
friction force disturbances that is considered as a variation of the nominal Ffriction =
µmg.

In order to achieve the best trajectory where the lap time is optimized, the time
(t) should be considered as a state variable. This is achieved by formulating kinematic
model (3.37) in the space domain considering the time (t) as a state variable which will
be used for optimizing the lap time. Furthermore, because of the problem consists on
computing the best path, the curvature (κ) has to be implemented in terms of the driven
distance, since the time evolution is unknown at the beginning of the optimization. By
considering xc = [ey, eθ, s]

> as the state vector of kinematic model (3.37), then, a new
state vector x̃c = [ẽy, ẽθ, t]

> is determined by applying

˜̇xc =
dxc
ds

=
dxc
dt
.
dt

ds
= ẋc

1

ṡ
. (8.3)

Then, the following kinematic model equation is obtained when the time is considered
as a state in the model

˜̇ey = sin(eθ)vx + cos(eθ)vy,

˜̇eθ =
ω

ṡ
− κ,

ṫ =
1

ṡ
.

(8.4)

The main goal is to maximize the Remaining Useful Life (RUL) of the battery
vehicle that has a direct connection by reducing vehicle energy consumption as low as
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possible considering that the energy is stored in the battery. In order to minimize the
vehicle energy and maximize the RUL, the state of charge (SoC) of the battery must be
considered as a state variable. The SoC of a battery at a given time is the proportion of
the charge available, compared to the total charge available when it is fully charged. The
range of SoC ∈ [0, 1], where 0 denotes the battery is fully discharge, and 1 corresponds
to 100% of the charge, i.e., that, the battery is fully charged. Based on the previous
study [194], the most common used approach to compute the SoC is described as follows:

SoC(t) = SoC(t0)− 1

CT

∫ t

t0

Ibatt(t)dt, (8.5)

where t0 presents the initial time and CT is total capacity of the battery. However,
to include the SoC of the battery in the vehicle model, the SoC can be expressed as a
function of the velocity of the vehicle. Then, the SoC in the battery can be modeled as
follows

SoC(t) = SoC(t0)− Pbatt(t),

Pbatt(t) = Pmove(t) + Pfriction(t),

Pbatt(t) =
1

2
CdρArv

2
x + µmgvx,

(8.6)

where Cd is drag coefficient for the wheel, Ar indicates the vehicle front area and ρ is
the air density at 25◦C.

Therefore, based on the (3.34) and (8.3)-(8.6), , Eq.(8.1) can be expressed as:

˙̃x(t) = f̃(x̃(t), u(t), w(t), v(t)), (8.7)

where the augmented vector of states is defined as follows

x̃(t) = [vx, vy, ω, ẽy, ẽθ, t, SoC]>. (8.8)

8.2.1 LPV modeling

Given vehicle nonlinear characteristics, time-varying parameters and parametric uncer-
tainties, vehicle steering control systems regularly exhibit strong nonlinearities. The
previous vehicle non-linear model will be transformed into an LPV representation by
embedding the nonlinearities inside model parameters. As a result, there parameters
are expressed in terms of some system variables called scheduling variables that vary
in a known bounded interval. This procedure leads to the following LPV model in
discrete-time

x̃(k + 1) = A(θ(k))x̃(k) +B(θ(k))u(k) + Ew(k)

ỹ(k) = Cx̃(k) +Dv(k),
(8.9)
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where the discrete time is denoted by k ∈ Z, and v ∈ Rny is The matrices A, B, C and
E are obtained as:

A(θ(k)) =



a11 a12 a13 0 0 0 0

0 a22 a23 0 0 0 0

0 a32 a33 0 0 0 0

0 1 0 0 a45 0 0

0 a52 a53 0 1 0 0

a61 a62 0 0 0 0 0

a71 0 0 0 0 0 1


, B(θ(k)) =



b11 1
b21 0
b31 0
0 0
0 0
0 0
0 0


, E =



1/m
0
0
0
0
0
0


,

C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 . (8.10)

where the matrix values are presented in Appendix A. (B.1). Vector θ(k) :=
[θ1,k, θ2,k, ..., θN,k]

T ∈ RN is the vector of scheduling parameters and each variable, θj
is known and varies in a defined interval θj ∈ [θj , θj ] ∀j ∈ [1, ..., N ], which belongs to a

convex polytope Θ defined by (2.10). Clearly, as θ(k) varies inside the convex polytope
Θ, the matrices of the system (8.9) vary inside a corresponding polytope Ψ, which is
defined (2.11) and the matrices of the system (8.9) can be rewritten as (2.12).

8.3 Problem Statements

The main control goal for the vehicle is to obtain the best path trajectory according to
the vehicle dynamics and its limits for racing. Then, the controller forces the vehicle
to track the trajectory obtained online by the planner. However, if the objective is
only the minimization of the lap time, the controller has to plan the trajectory on
an adequately time horizon to avoid steering the vehicle outside the track. However,
this plan also affects the energy consumption of the vehicle. Thus, the management
of the trade-off between these two objectives is an open problem in the area of car
racing. Therefore, in addition to obtaining a planned trajectory with optimal lap time,
the energy consumption of the vehicle that depends on the battery RUL should be
considered into the optimization problem solved by the planner.

Generally, the design of multi-layer control structures can be related to the diffe-
rent type of control objectives, which would are not adequately solved in a one layer
architecture[100]. Specifically, the control objectives can be arranged in the following
way:

• The objectives of planner operation are to optimize time and maximize lifetime.
Since, assessing the battery SoC requires more time than the tracking trajectory
evaluation, the planner operates at a slower time scale than the controller.
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Figura 8.1: Block diagram of control approach

• The objectives of controller are to guarantee a stable operation of the vehicle while
tracking the trajectory provided by the planner.

The control strategy presented in this chapter is based on a multilayer (hierarchical)
control structure including the energy management. This structure, conceptualized in
Figure 8.1, is a two-layer hierarchical architecture, where the solution of the problem is
obtained by decoupling the problem into two different time-scales. In the upper layer, the
planner solves an optimization problem that has a objective to provide the optimal path
(reference that is shown by index r in Figure.8.1) to the automatic control (low layer).
In the lower layer, the tracking controller receives the path trajectory calculated by the
upper layer and determines the best trajectories for the controller-layer control system
by considering the faster dynamics of the plant, which is operated by pole placement
method.

8.4 Proposed approach

8.4.1 LPV MPC Planner

The main goal of the planner part is to find the path within the circuit and provide
such information to the automatic control. In general, the path trajectory is obtained
according to the body frame velocities of the vehicle. In this chapter, for solving these
optimization problems to obtain the best path, a robust LMI-based MPC controller,
which is robust against parametric uncertainties and velocity-varying according to cons-
traints is presented. Hence, the optimal control problem can be restated as the following
robust LMI-based MPC [116], which minimizes the infinite horizon quadratic objective
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function:

J∞(k) =
∞∑
i=0

(‖ x̃(k + i|k) ‖Q1 + ‖ ũ(k + i|k) ‖R), (8.11)

where ũ = [δ α]> is the control input generated by the planner. Moreover, x̃(k + i|k)
and ũ(k + i|k) denote the state predicted based on the measurements and the control
input at time k + i, computed at time k, respectively. x̃(k) = x̃(k|k) and ũ(k) = ũ(k|k)
denote the measured state and control input applied to the system plant at time k,
respectively. Besides, Q1 = Q>1 > 0 and R> > 0 are positive definite weighing matrices.

The control law is obtained by minimizing cost function (8.11) with respect to the
control moves, that is:

min
ũ(k+i|k),i≥0

max
[A(k+i),B(k+i)]∈Ψ,i≥0

J∞(k), (8.12)

where the maximization in (8.12) is taken over the set Ψ of uncertain systems. The
solution of leads to a state feedback law for the planner given by:

ũ(k + i|k) = K(θ(k))x̃(k + i|k), (8.13)

where the state feedback gain is given by

K(θ(k)) =

N∑
j=1

µj(θ(k))Kj . (8.14)

8.4.2 LMI control design of Planner including health management

One of the motivations in this work is to integrate the information about the battery SoC
in the planner and controller design. Accordingly, the battery lifetime will be estimated
by means of the RUL computed using an approach based on the SoC.

RUL computation via SoC assessment

Once the battery SoC is calculated for the racing vehicle, an approach to evaluate RUL
function is introduced.

Proposition 8.1. Considering that RUL is computed when the state of charge behaviour
reaches or exceed the state of charge thresholded value which noted SoCthresh. Therefore
the expected RUL is given by

RUL(k) =
SoCthresh − SoC(k)

−ub(k)
, (8.15)

where ub is the battery input.
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Demostració. The derivative of the state of charge of the battery is given by

d(SoC)

dt
= udischarge(t), (8.16)

or, equivalently in discrete-time can be rewritten as follows

SoC(k + 1)− SoC(k)

∆t
= udischarge(k). (8.17)

Assuming the SoC(k + 1) reaches the SoC threshold (SoCthresh), where SoC thres-
hold is the point at which the battery would no longer reliably provide energy for moving
the vehicle. Then, (8.17) can be rewritten as:

SoCtresh − SoC(k)

∆t
= udischarge(k) (8.18)

According to (8.18), the definition of the RUL and considering that ∆t provides an
estimation of the RUL yields to:

RUL(k) =
SoCthresh − SoC(k)

udischarge(k)
, (8.19)

where, udischarge is considered the negative value of the battery input which dented
−ub.

LMI control design based RUL objective

The LMI control design for the planner based on the optimizing the lap time and RUL
objectives is now proposed for the racing vehicle. The objective of the trajectory planner
is modified to find the best path within the circuit that optimizes the lap time t and
at the same time maximize the lifetime of the system. In order to increase the RUL
of the battery and optimizing the lap time, the optimization planner objective (8.11)
should be modified according to the new objectives. According to the (8.15), there is
a relation between the RUL and battery SoC and control input. Moreover, the SoC
model (8.6) and (8.4) are considered as new states in the vehicle model. Hence, the
optimization planner can be updated based on the RUL and lap time and the robust
LMI optimization problem of the planner (8.11) is reformulated as follows:

min
ũ(k+i|k),i≥0

max
[A(k+i),B(k+i)]∈Ψ,i≥0

Jg,∞(k) =
∞∑
i=0

(‖ t ‖2λ1 + ‖ 1

RUL
‖2λ2), (8.20)

where λ1 and λ2 are positive definite weighing matrices.

Given that t is a state of the model and the RUL is estimated based on the SoC
which is another state of vehicle model, the optimization problem (8.20) can be solved
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as a LQR problem based on the robust LMI similarly to (8.12) with some new condition.
Therefore, the state feedback control law can be formulated for the LPV planner model
as follows:

ũ(k + i|k) = Kg(θ(k))x̃(k + i|k), (8.21)

where the state feedback gain matrix is given by

Kg(θ(k)) =

N∑
j=1

µj(θ(k))Kj , (8.22)

that is obtained using the following theorem based on the [116], but adapted to the racing
vehicle and using the new objective function (8.20). Before presenting the theorem let’s
consider some Lemmas such as:

Lemma 8.1. [51] Consider A as a symmetric matrix. Then

λmax(A) ≤⇐⇒ γA− γI ≤ 0. (8.23)

Lemma 8.2. [51] consider A a matrix of appropriate dimensions, and γ a positive
scalar. Hence,

A>A− γ2I ≤ 0⇐⇒
[
−γI A
A> −γI

]
≤ 0. (8.24)

Lemma 8.3. (Schur complement lemma)[
Q(x) S(x)
S>(x) R(x)

]
> 0, (8.25)

where Q(x) = Q>(x), R(x) = R>(x) and S(x) is the affine function of x. Then,(8.25)
is equivalent to the following conditions:

Q(x) > 0, R(x)− S>(x)Q−1(x)S(x) > 0,

R(x) > 0, Q(x)− S(x)R−1(x)S>(x) > 0.
(8.26)

Theorem 8.1. Considering x̃(k|k) is the state of the system (8.9) measured at each
sampling time k and there are constraints on the output and control input where ũmax
and ỹmax are the maximum values of control input and output of vehicle. The state
feedback matrix Kg in the control law ũ(k + i|k) = Kg(θ(k))x̃(k + i|k) that minimizes
the upper bound on the performance objective function at sampling time kg given by
Kg = Y Q−1 can be found, if there exist Kg, Q, γ and γ ∈ R1×1 > 0, Q = Q> ∈
R7×7 > 0, Y ∈ R2×7 where Q and Y are obtained from the solution of the following
linear objective minimization problem

min
γ,Q,Y

γ (8.27)

subject to, [
1 x̃(k)>

x̃(k) Q

]
≥ 0, (8.28)
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Q ∗ ∗ ∗

AjQ+BjY Q 0 0

Q
1/2
1 Q 0 γI 0

R1/2Y 0 0 γI

 > 0, (8.29)

[
−γI (−1/RUL(k))

(−1/RUL(k))> −γI

]
≤ 0, (8.30)

[
u2
maxI Y
Y > Q

]
≥ 0, (8.31)[

Q (AjQ+BjY )>C>

C(AjQ+BjY ) ỹ2
max

]
≥ 0, (8.32)

Demostració. The proof is obtained in following few steps:

(1) Proof for the stability and optimization.

By considering a quadratic Lyapunov-Krasovskii function V (x(k)) = x̃>(k)Px̃(k) >
0, where P > 0 is a symmetrical positive-definite matrix, the upper bound on the
objective function J∞ is obtained.

To guarantee the existence of the upper bound on the performance at sampling time
k, the following inequalities must be satisfied

V (x̃(k + i+ 1|k))− V (x̃(k + i|k)) ≤ −Jg,∞(k)

∀[A(k + i), B(k + i)] ∈ Ψ, i ≥ 0
(8.33)

Then, by requiring x̃(∞|k) = 0 such that V x̃((∞|k)) = 0 and summing (8.33) from
i = 0 to i =∞, it can be obtained

max
[A(k+i),B(k+i)]∈Ψ,i≥0

J∞ ≤ V (x̃(k|k)). (8.34)

Minimizing of V (x̃(k)) = x̃(k)>Px̃(k), P > 0 is equivalent to

min
γ,P

γ

s.t x̃(k)>Px̃(k) ≤ 0.

Defining Q = γP−1 > 0 and using the Schur-complement [51], equation (8.28) is esta-
blished. Then, by substituting (8.21) and (8.9), inequality (8.33) becomes:

x̃(k + i|k)>
(
(A(k + i) +B(k + i)Kg)

>P (A(k + i) +B(k + i)Kg)− P
+K>g RKg +Q1

)
x̃(k + i|k) ≤ 0.

163



and it is defined in [A(k+i), B(k+i)]. Then, it is satisfied for all [A(k+i), B(k+i)] ∈ Ψ.
Hence, by substituting P = γQ−1, Q > 0, Y = KgQ, pre - and post- multiplying by Q
and using Lemma 8.3, equation (8.29) is obtained.

(2) Proof for maximizing the RUL of battery. According to objective (8.20) and
definition of ‖ (1/RUL) ‖2, we have

‖ (1/RUL) ‖2= (λmax((1/RUL)>(1/RUL)))
1
2 .

Then, by using Lemmas (8.1) and (8.2), for γ > 0

‖ (1/RUL) ‖2≤ γ
⇐⇒ λmax((1/RUL)>(1/RUL)) ≤ γ2,

⇐⇒ (1/RUL)>(1/RUL)− γ2 ≤ 0,

⇐⇒
[

−γI (−1/RUL(k))
(−1/RUL(k))> −γI

]
≤ 0.

(3) Proof for output and input constraints.

Consider the Euclidean norm bound and maximum bound on the constraints of input

‖ũ(k + i|k)‖2 ≤ umax.

Following [116],

V (x̃(k + i|k)) = x̃(k + i|k)>Q−1x̃(k + i|k)

≤ x̃(k|k)>Q−1x̃(k|k) ≤ 1,
(8.35)

is state-invariant ellipsoid. Therefore, it can be obtained

max
i≥0

‖ũ(i|k)‖22 = max
i≥0

‖Y Q−1x̃(i|k)‖22

≤ λmax(Q−1/2Y >Y Q−1/2) ≥ u2
max

where λmax denotes the largest generalized eigenvalue and by using Lemma 8.3, the
(8.31) is established.

The output constraints (8.32) is satisfied based on the

‖y(k + i|k)‖2 ≤ ymax.

Thus,

max
i≥1

‖y(i|k)‖2 = max
i≥0

‖[C 0](Ag +BgKg)x̃(i|k)‖2

≤ λmax([C 0](Ag +BgKg)Q
1/2) ≤ ymax
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Then, by multiplying on the left and right by Q1/2

Q1/2((Ag +BgKg)[C 0]>[C 0](Ag +BgKg))Q
1/2 ≤ y2

maxI

such that by using using Lemma 8.3, the inequality (8.32) is satisfied.

8.4.3 Tracking Controller

The controller objective is to track the reference that is generated by the planner con-
sidering the same constraints on inputs and states. The controller is designed by pole
placement and augmenting the plant with an integrator to remove steady state errors.
The integrator can be including the following equation in the state space model of the
vehicle

z(k + 1) = z(k) + (yr(k)− Cx̃(k)), (8.38)

where yr is the references that are obtained by the planner such that the augmented
system (8.9) with integrator is[
x̃(k + 1)
z(k + 1)

]
=

[
A(θ(k)) 0
−TsC I

] [
x̃(k)
z(k)

]
+

[
B(θ(k))

0

]
u(k) +

[
0
TsI

]
yr(k) +

[
E
0

]
w(k)

y(k) =
[
C 0

] [x̃(k)
z(k)

] (8.39)

Then, the feedback control law can be formulated as follows using state feedback

u(k) = [Kc(θ(k))]

[
x̃(k)
z(k)

]
, (8.40)

where Kc = [Kc1Kc2] is the feedback gain matrix obtained using the following proposi-
tion which presents a LMI based formulation for solving the LPV LQR problem via an
H2 problem.

For obtaining a faster dynamics in the lower layer than in the upper layer, the
position of poles should be forced close to zero and inside the unit circle region. To
determine and analyze the stability and location of poles in the low layer optimization
can be used D-stability. By using the definition of the D-stability based on the region
and [42], which is a subset D of the complex plane determined for a symmetric matrix
a = [akl] ∈ Rm×m and a matrix b = [bkl] ∈ Rm×msuch that:

D = {g ∈ C : fg < 0},

where fD(g) is the characteristic function, defined as:

fD(g) = a+ gb+ g∗b = [akl + gbkl + g∗bkl]1≤k,l≤m (8.41)

and g∗ denotes the complex conjugate of g.
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By considering the close-loop mode, therefore the M can be described by:

M = {(Aj +BjKj) : eig (Aj +BjKj) ∈ D}. (8.42)

Therefore, by following the [42], the close-loop mode is quadratically D-stable if
there exists a symmetric matrix P > 0 such that:

a⊗ P + b⊗ (Aj +BjKj)P + b> ⊗ ((Aj +BjKj)P )> < 0, (8.43)

then, by substituting Wj = KjP and to assess that all the poles of closed-loop are inside
the circular region centered in (q, 0) with radius r, it can be shown that:[ −rP qP +AjP +BjWj

qP + PA>j +W>j B
>
j −rP

]
< 0. (8.44)

Therefore, by considering (8.44) and the dimensions of the system (8.8), the following
proposition based on [51] can be modified considering the vehicle LPV model.

Proposition 8.2. [24] Given the LQR parameters Q = Q> ∈ R7×7 > 0, Y ∈ R2×7, a
state feedback control in the form of u(k) = Kc(θ(k))[x̃(k), z(k)]> exists such that γ > 0,
if and only if there exist P ∈ R7×7, Y ∈ R2×7 and Wj ∈ R2×7 satisfying

(AjP +BjWj) + (AjP +BjWj)
> + x̃0x̃

>
0 < 0, (8.45)

trace

(
Q1/2X(Q1/2)>

)
+ trace(Y ) < γ, (8.46)

[
−Y R1/2Wj

(R1/2Wj)
> −P

]
< 0, (8.47)

[ −rP qP +AjP +BjWj

qP + PA>j +W>j B
>
j −rP

]
< 0. (8.48)

where a feedback gain is given by Kc,j = WjP
−1.

Remark 8.1. It is important to note that the optimal solution from the planner in online
mode may fail to exist. For such cases, the planner and controller optimization problems
are solved separately. It means that the robust LMI problem is solved by an optimal
offline trajectory planner that calculates the best trajectory under the constraints of the
circuit. Then, the controller part using that trajectory as references for tracking the
best path under the same constraints.

8.5 Simulation results and discussion

The performance of the proposed approach involving a planner that includes battery
energy management and tracking controller is assessed with a case study based on the
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Berkeley autonomous racing vehicle. This vehicle can be modelled using the non-linear
model (3.34)-(3.36) with the parameters presented in Table 8.1.

An oval circuit is chosen for assessing the proposed strategy that endeavors to co-
ver various driving conditions as acceleration platforms and speed loss on curves also
driving on different road situations. Therefore, there exist the unknown friction forces
related to the different situations which is considered as disturbances. According to the
different velocity and circuit shape, a trajectory planner has responsibility for creating
a feasible trajectory by using a polynomial curve production method [15]. In additi-
on, computing consecutive and differentiable curves (accelerations and velocities) under
an overall constrained vehicle acceleration are consisted. Hence, in an on-line mode,
the planner algorithm including the health management creates the linear and angular
velocity references plus requested positions and orientations for the control loop.

The planner tuning is based on finding a best trade-off between maximizing the
battery RUL and minimizing lap time In order to achieve the best performance, the
small values of LQR parameters (Q1, R) are considered inside the planner optimization
problem presented in Table 8.1.

Figure 8.2 presents the trajectory path that obtained using the planner based on
the oval circuit shape with and without considering maximization of the RUL objective
(8.30) inside the robust LMI problem of planner. From Figure 8.2, it can observed that
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Figura 8.2: Comparison of planner racing laps with and without
RUL objective.
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Figura 8.4: The reference and response of racing lap with RUL
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Figura 8.5: Comparison of the velocity with and without the RUL
objective.

the racing trajectory of the planner in the case of the RUL objective after some iteration
goes to close to the lower bound of the circuit for saving the energy of battery. However,
at the same time the trajectory lap is shorter than without the RUL criteria which
makes a small trade-off between maximizing the battery RUL and optimizing the time.

According to the general control approach Figure 8.1, the solution of the planner
optimization problem (upper layer) will be used as reference variables for the controller
optimization problem (low layer). In the control optimization, the tuning aims to mi-
nimize the velocity and lateral errors while computing smooth control actions for the
vehicle. The weighting matrices are founded by iterative tuning until the desired perfor-
mance is achieved. The values of the parameters is used in the simulation are presented
in Table 1.

Figures 8.3 and 8.4 show the optimal results of the tracking of the trajectory path
that achieved, in an online mode, by the planner without and with considering the RUL
objective, respectively. According to these figures, it can observed that the controller is
able perfectly to track the optimal trajectory provided by the planner in both cases.

Figure 8.5 presents the reference and the response of the longitudinal velocity profile
in both scenario of the RUL objective. From this figure, it can be observed that in the
scenario with RUL criteria, the response of velocity from the planner is modified based
on the RUL and it is less than the velocity without the RUL criteria. In both scenarios,
the results from the controller tracking part are quite good and the response of velocity

169



5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

E
rr

o
r 

X
 [

m
]

5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

E
rr

o
r 

Y
 [

m
]

5 10 15 20 25 30 35 40 45 50

Time [s]

-0.5

0

0.5

E
rr

o
r 

v
x
 [

K
m

/h
]

With SoC criteria

Without SoC criteria

Figura 8.6: Error achieved during the simulation racing laps.

have tracked the reference from the planner.

The good performance of the controller tracking is shown in Figure 8.6. It can be
perceived that the controller is able to reduce the errors to zero in spite of the complexity
of driving in a high lateral acceleration situation. The comparison of the RUL of battery
is presented in the Figure 8.7, where it can be seen the battery RUL is increased 11.71
according to the solving the robust LMI of planner without the RUL objective.

To evaluate the effectiveness and RUL efficiency of the presented approach based on
the robust LMI problem, the response of the tracking controller from the system model
including the friction force disturbance and measurement noise with the system model
without them are compared in Figure 8.8. Moreover, Figure 8.9 depicts the response
of the longitudinal velocity profile in both scenario of the friction force disturbance
and measurement noise where the level of noise considered as random value of 20% of
steady-state level of velocity and friction force disturbance is shown in Figure 8.10.

Furthermore, to show the differences of time scale between the upper layer and lower
layer, the position of closed loop poles from both layers in a specific operating point are
illustrated in Figure 8.11. From this figure, it can be observed that the poles of both
loops satisfy the stability of the system behaviors. According to using LPV framework
model and varying of the linear models can not be used fixed eigenvalue in closed loop
but, in every iteration try to force and obtain the poles near to zero. Moreover, the
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Taula 8.1: Model parameters value.

Parameter Value unit

lf 0.125 m
lr 0.125 m
Cf 68 N/rad
Cr 71 N/rad
Cd 0.36 N/rad
I 0.03 kg/m2

m 1.98 kg
µ 0.5 N/rad
ρ 1.184 kg/m3

Ar 1.91 m2

Ts 0.1 s
SoCthreshold 0.1

poles position from the two layers are shows the dynamic behaviour of low layer is faster
than upper layer.
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8.6 Summary

This chapter has proposed methodology for autonomous steering a vehicle based on
the robust LMI-based MPC approach. The nonlinear model of vehicle is modified by
including the time and the battery model as states into the vehicle model. Then, to
take into account the nonlinearities of the vehicle, the nonlinear model is transformed
into an LPV model using a polytopic approach. The proposed approach is designed to
solve driving control problems and at the same time to maintain and minimize the con-
sumption of the battery energy. The proposed solution is divided into two layers with
different time scale: path planner and controller. The pole placement approach is used
dynamic decoupling between both layers. The optimal planning algorithm minimizes
the lap time while at the same time maximizes the lifetime of battery. The controller
is designed using a LPV-LQR approach using LMI formulation. The model of the con-
troller is augmented with integral action for improving the trajectory tracking obtained
on-line by the planner. To evaluate the effectiveness and RUL efficiency of the presented
approach, the force friction disturbance and noise is considered inside the system. The
strategies are tested in simulation using the Berkeley autonomous vehicle with different
scenarios including the comparison of system behaviours and battery RUL. The results
show that the RUL of the battery is maximized in all scenarios. For future research, it
would be interesting to consider the fault in the system and implementing the proposed
approach on the real benchmark of the vehicle.

The content of this chapter was based on the following works:

F. Karimi Pour, D. Theilliol, V. Puig, and G. Cembrano. Health-aware
Optimization-based Control Design: Application to Autonomous Racing based
State of Charge. 4th In 2019 4th Conference on Control and Fault Tolerant Sys-
tems (SysTol), (pp. 244-249), IEEE. Morocco, 2019.

F. Karimi Pour, D. Theilliol, V. Puig, and G. Cembrano. Health-aware Con-
trol Design based on Remaining Useful Life Estimation for Autonomous Racing
Vehicle. Accepted in ISA Transactions.
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Part IV

Conclusions and perspectives
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Caṕıtol 9

Concluding Remarks

As a concluding remark, the objectives proposed in the beginning of the thesis were
fulfilled. Furthermore, during the thesis development new objectives and tasks have
appeared that enrich the proposed approaches and have complemented the obtained
results. Therefore, this chapter summarizes the main contributions of the thesis. It is
worth mentioning that these contributions were reported at each corresponding chapter.
Furthermore, the proposal of future ways to continue the research developed in the thesis
will be pointed out in this chapter.

9.1 Conclusions

In the following, the contributions related to the different proposed objectives are sum-
marized.

• Develop an economic MPC strategy for nonlinear systems

– The nonlinear systems have been transformed into quasi-LPV/TS models

– The optimization problem has been exploited as a functional dependency of
scheduling variables and state vector to develop a prediction strategy with a
numerically suitable solution.

– the economic optimization problem is solved by using a series of QP problems
at each time instant.

– The stability of the proposed approach has been certified and investigated.

– The rigorous analysis of using terminal penalties and terminal regions inste-
ad of a terminal equality constraint for guarantying the stability of EMPC
control scheme based on the LPV/TS models has been provided.

– The comparison between standard EMPC and the proposed approach has
been performed in order to show the proposed approach is less conservative
and computationally quite effective.
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– The proposed algorithm for EMPC strategy based on the quasi-LPV/TS has
been illustrated through a pasteurization plant as a case study while it is
described by a quasi-LPV model/ TS models.

• Design a MPC controller for nonlinear system with varying delays affecting states
and inputs by using LPV framework.

– The new MPC strategy based on LPV models with varying delays affecting
states and inputs has been provided.

– The proposed control approach allows the controller to accommodate the
scheduling parameters and delay change.

– By computing the prediction of the state variables and delay along a pre-
diction time horizon, the system model can be modified according to the
evaluation of the estimated state and delay at each time instant.

– The prediction of the state variables and delay have been computed along a
prediction time horizon.

– The system model has been modified according to the evaluation of the esti-
mated state and delay at each time instant.

– A pasteurization plant system has been used as a case study to demonstrate
the effectiveness of the proposed approach.

• Modeling the degradation of actuators and reliability of system/actuators as a
function of affected by control actions.

– The damage is assessed with the rainflow-counting algorithm that allows to
estimate the components fatigue.

– The accumulated damage has been obtained as a function of time instead of
the number of cycles.

– The MPC controller objective has been modified by adding an extra criterion
that takes into account the accumulated damage plus including the economic
objective.

– Two different health-aware economic predictive control strategies have been
proposed that aims minimizing the damage of components.

– The single-layer predictive controller by including integral action to eliminate
steady state offset by adding extra criterion has been provided.

– The multi-layer health-aware MPC controller based on two optimization layer
has implemented with different time-scale.

– To achieve the advisable trade-off between minimal accumulated damage and
operational costs, both control strategies have been compared.

– Both control schemes have been satisfactorily implemented using high-fidelity
simulator of a utility-scale pasteurization plant.

• Develop a health-aware MPC for a complex system
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– a health-aware MPC-LPV controller on the basis of PHM information has
been provided by the on-line evaluation of the system reliability.

– The actuator reliability has been modelled using an exponential function of
the control input.

– The system reliability is determined from the combination of each actuator
reliability taking into account the interconnection topology.

– The system reliability has been introduced as state variables inside the control
model, which includes nonlinear term and it have been changed in a linear-like
form through the LPV structure.

– The proposed health-aware MPC-LPV control approach has been effectually
solved iteratively by a series of QP problems that applies an update MPC
model updated through the scheduling parameters estimated at each time
instant.

– The economic health-aware MPC for a complex system has been developed
to extend the components and system reliability based on a finite horizon
stochastic optimization problem with joint probabilistic (chance) constraints
in order to manage dynamically designate safety stocks in the system.

– The proposed approach has been applied to a part of a real drinking water
transport network of Barcelona for demonstrating the performance of the
method.

• Design and develop health-aware control strategy based on remaining useful life
estimation using a LPV-LQR approach.

– The health-aware control design has been provided for a racing vehicle that
generates an optimal path for the racing by optimizing the lap time and
maximizing the RUL of the battery in the planner.

– A new control has been designed to solve driving control problems and at the
same time to maintain and minimize the consumption of the battery energy.

– The Remaining Useful Life (RUL) of the battery has been obtained according
to estimate the state of charge (SoC) of the battery.

– The new model of the vehicle has been presented by including the lap time
and SoC of battery.

– The control design has been divided into two layers with different time scale,
path planner and controller.

– The optimization problem of path planner has been solved where the objective
is to optimize the lap time and maximize the battery RUL to obtain the best
trajectory under the constraints of the circuit.

– The second optimization problem of controller gain with integral action for
tracking the trajectory has been obtained by an optimal on-line from the
planner.

– Both optimization problems are solved via a set of robust Linear Matrix
Inequality (LMI) based on the MPC for LPV model of vehicle by subject to
input and output constraints.
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9.2 Future Research

There are still some open problems regarding the role of evolutionary health aware
controller for the industrial systems. Some suggested ideas for future directions are
outlined next:

• The stability results for EMPC controller based on the LPV models have been ob-
tained. It is still an open problem to proof the stability and feasibility of proposed
approach for the system with varying delay in state and input.

• The contributions regarding the design of MPC-LPV controller have been pre-
sented for systems without the disturbance and noise. It would be interesting to
extend the design methodologies for system by considering the uncertainty and
sensitivity of disturbance in the model.

• The health-aware MPC control approach has been applied in systems which work
in healthy operation. It would be interesting to investigate the proposed approach
based on enhancing the sensitivity of faults in actuators or system.

• The contributions regarding predication of the reliability have been proposed based
on the exponential function model. The prediction of the reliability of component
or system can be obtained based on other approach and it would be investigating
the results of their comparison.

• The health-aware control have been used based on the model of the degradation
or reliability and subsequently RUL. It would be interesting to use the data of
the system degradation or reliability and use machine-learning for modeling the
system degradation or reliability.
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Appendix A

Pasteurization Plant

Taula A.1: Time constants and gains of the hot-water tank

Parameters

Fh(ml/min) τ1(s) τ2(s) K1 K2

150 0.6268 0.0597 1636 1638
230 0.7213 0.0448 1219 1219
300 0.7707 0.0367 993 993
400 0.8176 0.0292 784 784
550 0.8585 0.0223 593 593

Taula A.2: Time constants of the Gij transfer functions

Parameters

Fh(ml/min) τ1(s) τ2(s)

Fh(ml/min) τ21(s)

155 14 53
180 21 40
230 25 26
305 28 18
410 25 14
557 29 13
694 9 9

For obtaining the pasteurization model, physical principle based fundamental laws
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Taula A.3: Gains of the Gij transfer functions

Gains

R = Fh/Fc K22 K21 K12

0.238 0.757 0.243 0.926
0.46 0.533 0.435 0.87
1.11 0.317 0.68 0.606
1.22 0.35 0.65 0.57
1.57 0.27 0.729 0.47
1.61 0.257 0.742 0.468
1.66 0.246 0.753 0.455
1.8 0.15 0.849 0.476
1.88 0.154 0.845 0.46
1.94 0.197 0.8 0.428
2.17 0.183 0.816 0.388
2.7 0.165 0.834 0.34
3.85 0.068 0.928 0.257
4.06 0.055 0.94 0.25

Taula A.4: The adjusted parameters

Parameter Value Parameter Value

α1 2.2× 10−4 α14 4× 10−4

α2 1.6× 10−4 α15 3.96× 10−1

α3 3.74× 10−3 α16 16.8154
α4 10−4 α17 6.814× 10−2

α5 3.09× 10−2 α18 2.68× 10−1

α6 1.44× 10−1 α19 16.3567
α7 1.8× 10−3 α20 9.62× 10−4

α8 4.8× 10−4 α21 4
α9 6.54× 10−2 α22 1.87× 10−1

α10 5.18× 10−3 α23 11.81
α11 2.5× 10−3 α24 269.44
α12 22× 10−2 α25 5.8× 10−4

α13 1.16× 10−3

such as energy balances and heat exchanger design are utilized to describe the main
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processes of the plant. Therefore, Energy balance and Bernoulli’s law give

dT1

dt
=

2

M1CP
(−UAT1(t) + T4(t− τ)

2
− Ta)

− F1Cp(T1(t)− T4(t− τ))− dT4(t− τ)

dt

(A.1a)

dT2

dt
=α1P (t)− F2Cp(T2(t)− T2r(t))

− α2T2(t) + α3

(A.1b)

dT2r

dt
=F1(T4(t)− Tin(t)) + α4F2(T2(t)− T2r(t))

− α5(T2(t)− Ta)− α6 − α7N1(t)

(T4(t)− Tin(t)) + α8N2(t)(T2(t)− T2r(t))

− α9(T4(t)− Tin(t)) + α10(T2(t)− T2r(t))

(A.1c)

dT4

dt
=− F1(T4(t)− Tin(t)) + α11F2(T2(t)− T2r(t))

− α12 − α13N1(t)(T4(t)− Tin(t))

+ α14N2(t)(T2(t)− T2r(t))

(A.1d)

dTin
dt

=
α15(N1(t)− α16)(T1(t)− Tin(t))

M2
(A.1e)

where

F1 = α17(N1(t)− α16),

F2 = α18(N2(t)− α19),

and the delay of system is

τ(t) =− α20 − α21(N1(t))3 + α22(N1(t))2

− α23N1(t) + α24.

The value of arrays of state-space matrices for the controller used in the pasteuriza-
tion model 2 are presented below.
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a11 =
−UA
M1Cp

− F1Cp

a22 = −F2Cp − α2

a23 = F2Cp

a32 = F2α4 +N2(k)α8 + α10 − α5

a33 = −F2α4 −N2(k)α8 − α10

a34 = −N1(k)α7 + F1 − α9

a35 = N1(k)α7 − F1 + α9

a42 = F2α11 +N2(k)α14

a43 = −F2α11 −N2(k)α14

a44 = −N1(k)α13 − F1

a45 = N1(k)α13 + F1

a53 =
α15(N1(k)− α16)

M2

a55 =
−α15(N1(k)− α16)

M2

b11 = −α17Cp(T1(k)− T4(k − τ))

b22 = −α18Cp(T2(k)− T2r(k))

b23 = α1

b31 = (α17 − α7)(T4(k)− Tin(k))

b32 = (α18α14 + α8)(T2(k)− T2r(k))

b41 = (−α17 − α7)(T4(k)− Tin(k))

b42 = (α18α11 + α14)(T2(k)− T2r(k))

b51 =
α15(T2r(k)− Tin(k))

M2

bd,11 = α25Ta

bd,21 = α3

bd,31 = α5Ta − α6

bd,41 = α12

aτ,12 = −F2α11 −N2(k)α14

aτ,13 = F2α11 +N2(k)α14

aτ,14 =
UA

M1Cp
+ F1Cp + F1 + α13N1(k)

aτ,15 = α13N1(k)− F1

bτ,11 = (α17 + α13)(T4(k − τ)− Tin(k − τ))

bτ,12 = (−α11α18 − α14)(T2(k − τ)− T2r(k − τ))

(A.2)
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Appendix B

Racing Vehicle

The value of arrays of state-space matrices for the controller used in the racing vehicle
model are presented below.

a11 =
−µg
vx

, a13 =
Cf lf sin(δ)

mvx
+ vy,

a12 =
Cf sin(δ)

mvx
, a22 = −Cr + Cf cos(δ)

mvx
,

a23 = −Cf lf cos(δ)− Crlr
mvx

− vx, a32 = −Cf lf cos(δ)− Crlr
Ivx

,

a33 = −
Cf l

2
f cos(δ) + Crl

2
r

Ivx
, a45 = vx,

a52 = − κ

1− eyκ
, a53 =

κ sin(eθ)

1− eyκ
,

a61 =
cos(eθ)

1− eyκ
, a62 = − sin(eθ)

1− eyκ
,

a71 = −1

2
CdρAr − µmg, b11 = − 1

m
sin(δ)Cf ,

b21 =
1

m
cos(δ)Cf , b31 =

1

m
cos(δ)Cf lf .

(B.1)
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Appendix C

Some Lemma

Lemma C.1. (cf. [25]) Let F0, F0, ..., Fp be quadratic functions of the variable ω ∈ Rnx,
i.e.

Fi(ω) , ω>Miω + 2y>i + zi,

for all i ∈ I1,p, while yi ∈ Rnx ,M>i = Mi ∈ Rnx×nx and zi ∈ R. If there exists a scalar
ω > 0, such that for ω

F0(ω)−
p∑
i=1

ωFi(ω) ≤ 0,

hence, F0(ω) ≤ 0 for all ω such that Fi(ω) ≤ 0 for all i ∈ I1,p.

Lemma C.2. (cf. [225]) Let M ∈ Rnx×nx , y ∈ R and z ∈ R. The inequality

x>Mx+ 2y> + c ≤ 0

is proved for all x ∈ Rnx if and only if[
M y
y> z

]
� 0.
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[70] A. González, E. Adam, and J. Marchetti. Conditions for offset elimination in state
space receding horizon controllers: A tutorial analysis. Chemical Engineering and
Processing: Process Intensification, 47(12):2184–2194, 2008.

[71] N. Gorjian, L. Ma, M. Mittinty, P. Yarlagadda, and Y. Sun. A review on degra-
dation models in reliability analysis. In Engineering Asset Lifecycle Management,
pages 369–384. Springer, 2010.

[72] K. Grijspeerdt, L. Mortier, J. De Block, and R. Van Renterghem. Applications of
modelling to optimise ultra high temperature milk heat exchangers with respect
to fouling. Food Control, 15(2):117–130, 2004.

[73] J. M. Grosso, C. Ocampo-Mart́ınez, and V. Puig. A service reliability model
predictive control with dynamic safety stocks and actuators health monitoring for
drinking water networks. In Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on, pages 4568–4573. IEEE, 2012.

[74] J. M. Grosso, C. Ocampo-Martinez, and V. Puig. Reliability–based economic
model predictive control for generalised flow–based networks including actua-
tors? health–aware capabilities. International Journal of Applied Mathematics
and Computer Science, 2016.

[75] J. M. Grosso, P. Velarde, C. Ocampo-Martinez, J. M. Maestre, and V. Puig.
Stochastic model predictive control approaches applied to drinking water networks.
Optimal Control Applications and Methods, 38(4):541–558, 2017.

[76] D. Gu and H. Hu. Neural predictive control for a car-like mobile robot. Robotics
and Autonomous Systems, 39(2):73–86, 2002.

[77] F. Guenab, P. Weber, D. Theilliol, and Y. Zhang. Design of a fault tolerant con-
trol system incorporating reliability analysis and dynamic behaviour constraints.
International Journal of Systems Science, 42(1):219–233, 2011.

[78] D. He, J. Sun, and L. Yu. Economic mpc with a contractive constraint for nonlinear
systems. International Journal of Robust and Nonlinear Control, 26(18):4072–
4087, 2016.

[79] M. Heidarinejad, J. Liu, and P. D. Christofides. Economic model predictive con-
trol of nonlinear process systems using lyapunov techniques. AIChE Journal,
58(3):855–870, 2012.

[80] A. Heng, S. Zhang, A. C. Tan, and J. Mathew. Rotating machinery prognostics:
State of the art, challenges and opportunities. Mechanical systems and signal
processing, 23(3):724–739, 2009.

196



[81] C. Hoffmann and H. Werner. A survey of linear parameter-varying control appli-
cations validated by experiments or high-fidelity simulations. IEEE Transactions
on Control Systems Technology, 23(2):416–433, 2015.

[82] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V. Kolmanovsky. The development of
model predictive control in automotive industry: A survey. In IEEE International
Conference on Control Applications (CCA), pages 295–302, 2012.

[83] X. Hu, L. Chen, B. Tang, D. Cao, and H. He. Dynamic path planning for auto-
nomous driving on various roads with avoidance of static and moving obstacles.
Mechanical Systems and Signal Processing, 100:482–500, 2018.

[84] J. Ibarrola, J. Guillén, J. Sandoval, and M. Garćıa-Sanz. Modelling of a high
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