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Abstract We propose a C0 Interior Penalty Method (C0-IPM) for the com-
putational modelling of flexoelectricity, with application also to strain gradient
elasticity, as a simplified case. Standard high-order C0 finite element approxi-
mations, with nodal basis, are considered. The proposed C0-IPM formulation
involves second derivatives in the interior of the elements, plus integrals on
the mesh faces (sides in 2D), that impose C1 continuity of the displacement in
weak form. The formulation is stable for large enough interior penalty param-
eter, which can be estimated solving an eigenvalue problem. The applicability
and convergence of the method is demonstrated with 2D and 3D numerical
examples.

Keywords 4th order PDE · C0 finite elements · interior penalty method ·
strain gradient elasticity · flexoelectricity

1 Introduction

The rising interest on microtechnology evidences the need for mathematical
and computational models suitable for small scales, often giving rise to 4th

order Partial Differential Equations (PDEs). In particular flexoelectric effects
become relevant, and may be crucial, in the design of small electromechanical
devices or for the understanding of physical phenomena [23]. The modelling
of flexoelectricity involves a two-way coupling between strain gradient and
electric field; strain gradient elasticity is frequently also included in the model
to regularise the problem, leading to a system of 4th order PDEs.

Several numerical strategies have been recently proposed for the solution
of flexoelectricity problems, based on the use of C1 approximation spaces or on
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mixed formulations. Mixed formulations split the PDE in two 2nd order PDEs,
allowing the use of C0 Finite Element (FE) approximations [17,9]. The ap-
proximation spaces, for the primal unknown and for the additional unknowns,
must fulfill some conditions for stability that lead to approximation spaces
with cumbersome definitions, and difficult extension to 3D or high-order ap-
proximations. However, the main drawback of mixed formulations in the high
computational cost due to the additional unknowns.

On other hand, C1 approximations can be directly used for the discretiza-
tion of the weak form inH2, involving 2nd order derivatives, without additional
unknowns. The first successful attempt in this direction considered a meshless
method: the maximum entropy method [1]. Unfortunately, the computational
cost of accurate meshless methods is high, mainly due to the excessive num-
ber of integration points for accurate solutions, and the large stencils in the
discrete matrices. Aiming to improve the efficiency, a solution based on Isoge-
ometric Analysis (IGA) is proposed in [13]. The solution is approximated by
means of Non-Uniform Rational B-Splines (NURBS). An interesting critical
comparison of IGA, meshless and mixed methods for flexoelectricity can be
found at [19], although numerical examples are restricted to simple geometries.
The conclusion is that IGA is very efficient on regular grids, corresponding to a
transformation of a rectangle grid, where plain B-Spline approximations can be
easily defined. However, in a more general context, defining a NURBS approx-
imation with C1 continuity in a whole domain with complex shape may not be
straightforward, and the numerical integration of the resulting NURBS may
be, again, very expensive [22]. An efficient alternative for complex domains
is the immersed B-Spline method proposed in [7]. It considers B-Spline ap-
proximations based on a background regular grid, with an embedded domain.
The applicability of the proposal is demonstrated with 2D and 3D complex
geometries. The weak points of immersed B-Splines are the usual ones in the
context of embedded domains: the robust definition of numerical integration
in cropped cells (intersected by the domain boundary), which is specially chal-
lenging in 3D, and the ill-conditioning problems in the presence of cells with
a small portion in the domain, that can be alleviated with specific techniques
[8].

Here we propose a C0 Interior Penalty Method (C0-IPM) for the solution
of flexoelectricity. A standard C0 FE approximation is considered, and C1 con-
tinuity between elements is imposed in weak form by means of the Interior
Penalty Method (IPM). The procedure for the derivation of the C0-IPM weak
form is analogous to the derivation of the IPM in the context of DG methods
for 2nd order PDEs [3], or Nitsche’s method for weak imposition of Dirich-
let boundary conditions [20], but now applied to the continuity of normal
derivatives on element boundaries. The resulting weak form involves second
derivatives in the interior of the elements, plus integrals on the faces (sides in
2D) of the mesh, that impose C1 continuity of the displacement in weak form.
C0-IPM formulations overcome the disadvantages of other methods, because
they allow the use of standard C0 FE approximations. Namely, (i) the compu-
tational mesh can be adapted to any geometry, with localised refinement were
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needed, (ii) there is no need to use embedded discretizations, avoiding the
consequent ill-conditioning problems and the definition of special numerical
integration for cropped elements, (iii) there are no additional unknowns and
(iv) they handle material interfaces in a natural way. In summary, C0-IPM re-
tains the computational efficiency and the versatility that make standard FEs
the preferred method for many practitioners in the computational mechanics
community.

In [10], C0-IPM formulations, there referred to as continuous/discontinuous
finite elements, are applied to several problems modelled by 4th order PDEs,
including Kirchhoff plates and 1D strain gradient elasticity. Numerical experi-
ments show the applicability of the formulation in both applications, but con-
vergence studies are limited to 1D examples. The C0-IPM formulation is then
analysed in [5] for the 2D biharmonic equation, with first and second Dirich-
let conditions, including a convergence analysis that shows that the method
is convergent for p ≥ 2, but may have suboptimal convergence depending on
the degree and the penalty parameter. An experimental convergence study for
Kirchhoff plates can be found at [12]. The numerical results demonstrate the
applicability of the method for degree greater or equal to 3, and also show
slightly suboptimal convergence, that slowly deteriorates for larger penalty
parameter, in agreement with the analysis in [5]. Variations of C0-IPM have
also been applied to strain gradient dependent damage models in [24] and to
the Cahn-Hilliard equation in [10,4].

This paper develops the C0-IPM method for flexoelectricity and, as a sim-
plified case, for strain gradient elasticity, for 2D and 3D computations. Section
2 presents the problem statement and recalls the weak form in H2. The deriva-
tion of the C0-IPM method for C0 approximations, not in H2, is presented in
section 3. An eigenvalue problem to determine a large enough penalty parame-
ter, ensuring coercivity of the strain gradient bilinear form, is derived in section
3.1. Finally, in section 4, 2D and 3D numerical experiments demonstrate the
applicability of the method and show, as expected, slightly suboptimal con-
vergence under uniform mesh refinement, but still with a robust high-order
convergence for p ≥ 3.
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2 Problem statement

We consider the model in [7], where flexoelectricity is ruled by the following
set of PDEs and boundary conditions:

∇ · (σ̂(u, φ)−∇ · σ̃(u, φ)) + b = 0 in Ω (1a)

∇ · D̂(u, φ)− q = 0 in Ω (1b)

u = g1 on ΓuD1
(1c)

t(u, φ) = tn on ΓuN1
(1d)

∂u

∂n
= g2 on ΓuD2

(1e)

r(u, φ) = rn on ΓuN2
(1f)

j(u, φ) = jext on C∂ΩN (1g)

φ = g3 on ΓφD (1h)

w(u, φ) = wn on ΓφN (1i)

where Ω ⊂ Rnsd is the domain, the displacement u and the electric potential
φ are the unknowns, σ̂ and σ̃ are the local and double stress tensors and D̂
is the electric displacement tensor, that is,

σ̂ = C : ε−E · e ≡ σ̂ij = Cijk` εk` − E` e`ij

σ̃ = h
...∇ε−E · µ ≡ σ̃ijk = hijk`mn

∂ε`m

∂xn
− E` µ`ijk

D̂ = κ ·E + e : ε+ µ
...∇ε ≡ D̂` = κ`mEm + e`ijεij + µ`ijk

∂εij

∂xk

ε is the strain tensor, that is εij = (∂ui/∂xj + ∂uj/∂xi)/2, E = −∇φ is the
electric field, C is the elasticity tensor, that depends on the Young modulus E
and the Poisson ratio ν, h is the strain-gradient tensor, defined as hijk`mn =
l2Cij`mδkn with the internal length scale parameter l, e and µ are the tensors
of piezoelectric and flexoelectric coefficients and κ contains the dielectricity
constants, see appendix B in [7] for detailed definitions.

In the previous equations, and in the rest of the document, Einstein’s
notation is assumed. That is, repeated indexes sum over the spatial dimensions.

The boundary of the domain is split in Dirichlet and Neumann boundaries,
for the first and second conditions of the mechanical problem and for the
electric problem, that is

∂Ω = ΓuD1
∪ ΓuN1

= ΓuD2
∪ ΓuN2

= ΓφD ∪ Γ
φ
N .

Note that all volume and boundary domains are assumed to be open domains,
not including their boundaries.
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The first mechanical boundary condition, (1c) or (1d), sets the displace-
ment u or the traction

ti(u, φ) =

(
σ̂ij −

∂σ̃ijk

∂xk
−∇Sk σ̃ikj

)
nj + σ̃ijkÑjk,

where ∇Sk σ̃ikj is the surface divergence of σ̃ikj , and Ñ is the second order
geometry tensor, see [7] for details. The second mechanical boundary condition,
(1e) or (1f), sets the normal derivative of the displacement ∂u/∂n or the double
traction

ri(u, φ) = σ̃ijknjnk.

The condition (1g) sets forces on the Neumann boundary edges. That is, the
domain boundary is assumed to be composed of smooth surfaces (curves in
2D) that are joined on sharp boundary edges (corners in 2D). C∂ΩN denotes
the union of the boundary edges that are shared by two surfaces with first
Neumann conditions, i.e. the edges in the interior of ΓuN1

. At the edges shared
by at least one Dirichlet surface the value on the edge is assumed to be the
one set on the surface, i.e. u = g1 for all edges in ΓuD1

. Line forces (punctual
forces in 2D) are defined on boundary edges as

ji(u, φ) = τLj σ̃
L
ij`n

L
` + τRj σ̃

R
ij`n

R
` ,

being nL and nR the unitary exterior normals on the left and right surfaces
sharing the boundary edge, and τL and τR the tangent vectors on each surface
pointing outward and perpendicular to the edge, see an example in figure 1
left. In 2D, τL and τR at a corner are just the tangent vectors on each curve
sharing the corner and pointing outward, as depicted in figure 1 right.

Fig. 1 Sketch of normal and tangent vectors on an edge (3D, left) and at a corner (2D,
right), for the computation of the corresponding line and punctual forces j(u, φ). The su-
perscripts L and R refer to the face (side in 2D) sharing the edge (corner in 2D).

Finally, the electric boundary condition, (1h) or (1i), sets the electric po-
tential φ or the surface charge density

w(u, φ) = −D`(u, φ)n`.
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Remark 1 For the sake of simplicity, we initially restrict to the case with sec-
ond Neumann boundary conditions in the whole boundary, i.e.meas(ΓuD2

) = 0,
where meas denotes Lebesgue measure. The treatment of second Dirichlet con-
ditions (1e) is commented in remark 2. It is also worth mentioning that the
rationales in this work can also be applied to other models, including converse
flexoelectricity or expressed in terms of polarization, see for instance [19].

If an approximation in H2(Ω) can be considered, multiplying (1a) by a
weighting vector v, applying integration by parts twice, and using the sym-
metries of the stress tensors, leads to∫

Ω

v · b dΩ =

∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
∂Ω

vi

(
σ̂ij −

∂σ̃ijk

∂xk

)
nj dS−

∫
∂Ω

∂vi

∂xj
σ̃ijk nk dS,

where ∇ε
...σ̃ = ∂εij/∂xk σ̃ijk.

Now, to properly treat boundary conditions, the derivative ∂vi/∂xj on the
boundary is split in normal and tangential derivatives, and the surface diver-
gence theorem is applied to the term with the tangential derivative, leading
to ∫

Ω

v · bdΩ =

∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
∂Ω

v · t(u, φ) dS−
∫
∂Ω

∂v

∂n
· r(u, φ) dS−

∫
C∂Ω

v · j(u, φ) dl,

(2)

where C∂Ω is the union of all sharp edges of the domain, and the integral on
it reduces to a sum evaluating at the boundary corners in 2D.

Thus, applying boundary conditions (1c)-(1i), under the assumptionmeas(ΓuD2
) =

0, and adding the weighted residual of the electric potential problem (1b) with
(1h) and (1i), the weak form of (1) in H2(Ω) is: find u ∈ [H2(Ω)]nsd and
φ ∈ H1(Ω) such that (1c) and (1h) hold and∫

Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω

∇ε(v)
...σ̃(u, φ) dΩ +

∫
Ω

∇ψ · D̂(u, φ) dΩ

= s(v)−
∫
Ω

ψq dΩ −
∫
ΓφN

ψwn dS

(3)

for all v ∈ [H2(Ω)]nsd and ψ ∈ H1(Ω) such that v = 0 on ΓuD1
and ψ = 0 on

ΓφD where

s(v) =

∫
Γu
N1

v · tn dS +

∫
Γu
N2

∂v

∂n
· rn dS +

∫
C∂ΩN

v · jext dl +

∫
Ω

v · b dΩ. (4)
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This weak form is not suitable when considering C0 FE approximations,
but the same derivation can be applied in the interior of each element of the
mesh, as detailed in the next section.

It is important noting that the discretization of the weak form with a piece-
wise polynomial approximation – such as C1 finite elements or B-Splines – re-
quires at least polynomial degree 2, since a degree 1 approximation would can-
cel out or clearly underrepresent the second derivatives in the strain-gradient
and flexoelectricity terms. Thus, from now on degree 1 approximation is dis-
carded.

3 C0 Interior Penalty Finite Element method

The domain Ω is now split in FEs {Ωe}nel
e=1, and a C0 piece-wise polynomial

approximation is considered. That is, the approximation space for the compo-
nents of the displacement and for the potential is

Vh = {v ∈ H1(Ω) such that ϕ−1
e (v|Ωe) ∈ Pp for e = 1, . . . , nel} 6⊂ H2(Ω),

where ϕe is the isoparametric transformation from the reference element to the
physical element Ωe, and Pp is the space of polynomials of degree less or equal
to p for simplexes, and less or equal to p in each direction for quadrilaterals
and hexahedra, with degree p ≥ 2.

Since the approximation space is not in H2(Ω), we can not consider the
weak form (3). However, the approximation is H2(Ωe); thus, considering (2)
in each element we have

∫
Ωe

v · b dΩ =

∫
Ωe

ε(v) : σ̂(u, φ) dΩ +

∫
Ωe

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
∂Ωe

v · te(u, φ) dS−
∫
∂Ωe

∂v

∂ne
· re(u, φ) dS−

∫
C∂Ωe

v · je(u, φ) dl,

(5)

where C∂Ωe is the union of the edges (corners in 2D) of the element Ωe and je

is the line force (punctual force in 2D) on C∂Ωe ; see a representation in figure
2a. The superscripts highlight that the surface and line forces, and the normal
vector, are from the element Ωe.
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Summing for all elements, and noting that v is continuous but ∂v/∂n is
not, we get∫

Ω

v · bdΩ =

∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
I
v · (tL(u, φ) + tR(u, φ)) dS

−
∫
I

(
∂vL

∂nL
· rL(u, φ) +

∂vR

∂nR
· rR(u, φ)

)
dS

−
nedg∑
k=1

∫
Ck

v ·

 ∑
e∈E(k)

je(u, φ)

 dl

−
∫
∂Ω

v · t(u, φ) dS−
∫
∂Ω

∂v

∂n
· r(u, φ) dS,

(6)

where I is the union of all the internal element faces and Ω̂ is the union of
the interior of the elements, where second derivatives are well-defined, i.e.

Ω̂ =

nel⋃
e=1

Ωe, I =

nel⋃
e=1

∂Ωe\∂Ω,

see figure 2b. The supercripts R and L now denote the evaluation from the
elements to the left and right side of the face in I (see figure 2c), and {Ck}

nedg

k=1

are all the edges (corners in 2D) in the mesh, being E(k) the set of indexes of
the elements sharing the edge Ck.

C

(a) (b) (c)

Fig. 2 Example of 2D discretization: (a) interior corner Ck (i.e. interior mesh vertex), as
seen from element Ωe, and representation of the normal and tangent vectors corresponding
to the left and right side of the element sharing the corner, for the definition of the punctual
force je at the corner, (b) interior faces I in white and broken domain Ω̂ in blue, (c) normal
vectors on one face shared by its left and right elements, for the computation of the jump
on a face.

Now, let us recall that the conditions for interfaces in the domain (also in
the case of discontinuous material parameters) are the ones corresponding to
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both continuity for the Dirichlet values and equilibrium of Neumann forces.
That is,

Ju⊗ nK = 0 (7a)

Jt(u, φ)K = 0 (7b)
t
∂u

∂n

|

= 0 (7c)

Jr(u, φ)⊗ nK = 0 (7d)

on the faces in I, where the jump operator is defined as

JaK = aL + aR,

with the supercripts R and L denoting again the evaluation from the elements
to the left and right side of the face in I, and being a a scalar, vector or tensor
function. Note that the jump operator is used always involving a change of
sign due to an odd appearance of the normal vector. For instance, Ju⊗ nK =
(uL−uR)⊗n and, therefore, (7a) imposes continuity of the displacement, i.e.
uL = uR on I.

In addition, we have to impose equilibrium of forces on the mesh edges.
That is, each element Ωe contributes with a force je on its edges (corners in
2D); and for each edge Ck, the sum of the forces for all elements sharing the
edge (i.e. for Ωe with e ∈ E(k)) must be zero, or in internal equilibrium with
the external forces. That is,∑

e∈E(k)

je(u, φ) =

{
0 on Ck 6⊂ C∂Ω
jext on Ck ⊂ C∂ΩN

(8)

where jext is the force set in (1g). Note that {Ck 6⊂ C∂Ω} includes interior
edges and also element edges on ∂Ω, just excluding the ones in the domain
sharp edges. For the edges in ΓuD1

no value is set, and the sum of the forces
will be in equilibrium with the reaction forces associated to the prescribed
displacement (1c).

On other hand, using the algebraic identity (aLnL)bL + (aRnR)bR =
{a} JbnK + JanK {b}, and the equilibrium condition (7d), we can rewrite

∂vL

∂nL
· rL(u, φ) +

∂vR

∂nR
· rR(u, φ)

= {∇v} : Jr(u, φ)⊗ nK +

t
∂v

∂n

|

· {r(u, φ)}

=

t
∂v

∂n

|

· {r(u, φ)} ,

(9)

with the mean operator {a} = (aL+aR)/2, being again aL and aR the evalua-
tion of a from the element to the left and right side of the face in I, respectively.
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Note that, the definition is similar to the definition of the jump operator J K,
but a different symbol is used to highlight that J K is always used with an even
(or non) appearance of the normal vector. Thus, as the name indicates, the
mean does not involve a change of sign.

Now, replacing in (6) the identity (9), the Neumann boundary conditions
(1d) and (1f), the homogeneous Dirichlet condition v = 0 on ΓuD1

related
to (1c), the first interface equilibrium condition (7b) and the equilibrium at
interior edges (8), and under the assumption meas(ΓuD2

) = 0, (6) simplifies to∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
I

t
∂v

∂n

|

· {r(u, φ)} dS = s(v),

(10)

with s(v) defined in (4).
The first two integrals in (10) are symmetric and coercive bilinear forms in

v and u, as expected for the weak form of a strain gradient elasticity operator.
However, it is not the case for the integral on the interior faces I.

The idea of IPM is adding terms that are analytically zero, thanks to
the continuity interface condition (7c), to recover symmetry and coercivity of
the strain gradient bilinear form. The resulting weak form for flexoelectricity,
under the assumption meas(ΓuD2

) = 0, is: find u ∈ [H1(Ω) ∩ H2(Ω̂)]nsd and
φ ∈ H1(Ω) such that (1c) and (1h) hold and∫

Ω

ε(v) : σ̂(u, φ)dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ +

∫
Ω

∇ψ · D̂(u, φ) dΩ

−
∫
I

t
∂v

∂n

|

· {r(u, φ)} dS−
∫
I
{r(v, ψ)} ·

t
∂u

∂n

|

dS

+

∫
I
β

t
∂v

∂n

|

·

t
∂u

∂n

|

dS

= s(v)−
∫
Ω

ψq dΩ −
∫
ΓφN

ψwn dS

(11)

for all v ∈ [H1(Ω) ∩ H2(Ω̂)]nsd and ψ ∈ H1(Ω) such that v = 0 on ΓuD1
and

ψ = 0 on ΓφD.
The parameter β is a stabilization parameter that must be taken large

enough to ensure coercivity of the strain gradient bilinear form, to get a well-
defined saddle point problem [7]. Although β is usually refered to as penalty
parameter, it is in fact a stabilization parameter in a consistent formulation,
and high-order convergence can be achieved with β of order h−1, where h is
the characteristic element size. Thus, in practice, not very large values are
needed for accurate solutions, avoiding the unaccuracy or ill-conditioning that
typically suffer non-consistent penalty methods [11].
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The minimum value of the stabilization parameter β can be estimated
solving an eigenvalue problem, as commented in section 3.1.

Remark 2 (Second Dirichlet conditions) If second Dirichlet boundary condi-
tions (1e) are imposed (i.e. meas(ΓuD2

) 6= 0), an additional term
∫
Γu
D2

∂v/∂n ·
r(u, φ) dS appears in (10) and, consequently, in the weak form (11). Follow-
ing the same IPM rationale, two new terms, that are null thanks to (7c),
are also added in (11) to recover again symmetry and coercivity, namely∫
Γu
D2

r(v, ψ) · (∂u/∂n− g2) dS+βD
∫
Γu
D2

∂v/∂n · (∂u/∂n− g2) dS, where βD

is a new stabilization parameter that can be taken equal to β or tuned sepa-
rately.

Remark 3 It is interesting to note that the C0-IPM weak form (11) reduces
to the one for H2(Ω), i.e. (3), when a C1(Ω) approximation is considered.
The C0-IPM formulation keeps the consistency and is valid for standard C0

FE approximations, just introducing the proper integrals on the faces I. Also
note that the second integral in (11) is in the interior of the elements, Ω̂, to
account for the fact that second derivatives are not defined on I.

3.1 Estimate of the interior penalty parameter β

In this section we derive an eigenvalue problem to numerically compute a
value of the IPM parameter, β, providing coercivity of the C0-IPM mechanical
bilinear form, which is necessary for a well-posed strain gradient elasticity or
flexoelectricity discrete problem [18,15,7]. The derivation is the usual one in
IPM and Nitsche’s formulations [14,7,12].

The mechanical bilinear form is

A(u,v) = a(u,v)−
∫
I

t
∂v

∂n

|

· {rsg(u)}dS−
∫
I
{rsg(v)} ·

t
∂u

∂n

|

dS

+ β

∫
I

t
∂v

∂n

|

·

t
∂u

∂n

|

dS

(12)

with

a(u,v) =

∫
Ω

ε(v) : C : ε(u) dΩ +

∫
Ω̂

∇ε(v)
...σ̃sg(u) dΩ. (13)

where rsgi = σ̃sgijknjnk and σ̃sg(u) = h
...∇ε(u), that is, the mechanical part

of the second traction and the double stress tensor.
The bilinear form a is coercive in the space of non-rigid body displacements

Uh := {u ∈ [Vh]nsd such that ε(u) 6= 0},

for any value of the internal length scale parameter l. The C0-IPM bilinear
form A, including the integrals on the faces I, keeps the same coercivity for
large enough β, as stated in the next lemma.
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Lemma 1 (Coercivity) If there is a constant K > 0 such that

‖{rsg(u)}‖2L2(I) ≤ Ka(u,u) ∀u ∈ Uh, (14)

then, the C0-IPM mechanical bilinear form (12) is coercive in Uh for any real
β > K.

Proof The condition for coercivity is A(u,u) > 0 ∀ u ∈ Uh with

A(u,u) = a(u,u)− 2

∫
I

t
∂u

∂n

|

· {rsg(u)} dS + β

∫
I

t
∂u

∂n

|

·

t
∂u

∂n

|

dS.

Using the Cauchy-Schwarz and Young’s inequalities we can bound the interface
terms as

−2

∫
I

t
∂u

∂n

|

· {rsg(u)} dS + β

∫
I

t
∂u

∂n

|

·

t
∂u

∂n

|

dS

≥ −2 ‖{rsg(u)}‖L2(I)

∥∥∥∥∥
t
∂u

∂n

|∥∥∥∥∥
L2(I)

+ β

∥∥∥∥∥
t
∂u

∂n

|∥∥∥∥∥
2

L2(I)

≥ −1

ε
‖{rsg(u)}‖2L2(I) + (β − ε)

∥∥∥∥∥
t
∂u

∂n

|∥∥∥∥∥
2

L2(I)

,

for any positive scalar constant ε. Now, using hypothesis (14), we have

A(u,u) ≥
(

1− K

ε

)
a(u,u) + (β − ε)

∥∥∥∥∥
t
∂u

∂n

|∥∥∥∥∥
2

L2(I)

∀u ∈ Uh

and, therefore, A(u,u) > 0 ∀u ∈ Uh, if 1 −K/ε ≥ 0 and β − ε > 0 for some
ε > 0. Taking ε = K, we have, then, that the bilinear form A is coercive for
any β > K. ut

From a practical point of view, the constant K in hypothesis (14) can be
computed as the largest eigenvalue, λ, of the generalised eigenvalue problem

Bx = λAx,

where B and A are the discrete matrices corresponding to the bilinear forms
b(u,v) and a(u,v) in the reduced discrete space Uh, with

b(u,v) =

∫
I
{rsg(v)} · {rsg(u)}dS.

The computation of the maximum eigenvalue in the reduced space Uh can be
done from the problem stated in the complete discrete space [Vh]nsd setting
nodal values to reduce the space or using the so-called eigenvalue problem
deflation [2].
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Note that A is a positive definite matrix, and B is a non-null semipositive
definite matrix, for ` 6= 0. Thus, the maximum eigenvalue K is positive, ensur-
ing the fulfillness of hypothesis (14) for ` 6= 0. On other hand, in the particular
case of ` = 0, the bilinear form reduces to

A(u,v) =

∫
Ω

ε(v) : C : ε(u) dΩ + β

∫
I

t
∂v

∂n

|

·

t
∂u

∂n

|

dS,

which is coercive in Uh for any β ≥ 0. Nevertheless, for the solution of flex-
oelectricity problems, β > 0 is considered in all numerical tests to, weakly
impose C1 continuity.

Remark 4 The linear elasticity bilinear form is coercive, thus, for ` 6= 0, coer-
civity of the C0-IPM bilinear form can also be ensured imposing coercivity of
A with

a(u,v) =

∫
Ω̂

∇ε(v)
...σ̃sg(u) dΩ,

(that is, without the linear elasticity term) in the space

Uh := {u ∈ [Vh]nsd such that ∇ · ε(u) 6= 0}.

Lemma 1 also applies in this case, and the matrices in the eigenvalue prob-
lem, B and A, scale as O(E2l4hnsd−5) and O(El2hnsd−4), respectively, with
characteristic element size h. Thus, the maximum eigenvalue of (14) scales as
O(El2/h). Consequently, for ` 6= 0, we can consider

β = αEl2/h, (15)

with a large enough constant α, independent of the material parameters and
the characteristic element size h, which can be computed solving the eigenvalue
problem, or simply tuned, in a coarse mesh with any value of E and l.

It is important noting that, differently to non-consistent penalty meth-
ods, IPM and Nitsche’s methods provide accurate solutions and high-order
convergence with moderate values of β of order O(h−1) for any degree of ap-
proximation p ≥ 2, as shown in the numerical examples in section 4 and in
[11]. Considering the eigenvalue problem with (13), that is with the linear
elasticity term, leads to a smaller (sharper) value for β, specially for small l.
However, since the matrix A in this case scales as O(El2hnsd−4)+O(Ehnsd−2),
the dependency on the mesh size and material parameters is not so obvious.

3.2 Implementation aspects

The current implementation considers high-order Lagrange nodal basis, with
Fekete nodes in the reference element to minimise the condition number of
elemental matrices. For degree p ≥ 3, special attention must be paid to the
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position of interior nodes in curved physical elements to keep high-order con-
vergence, see [6]. High-order mesh generators, see for instance [21], produce
curved meshes taking care of this important aspect.

The computation of the system involves two separated loops: in elements
for volume integrals, and in faces for the computation of integrals on I. To do
so, the standard C0 reference element is extended including second derivatives
of the basis functions at the element integration points, the value of element
basis functions and their derivatives at the integration points of the reference
element faces, a list of the nodes corresponding to each face in the reference
element and permutations for the integration points of the reference face for
flipping.

The so-called flipping is a permutation (usually for the nodes in DG meth-
ods, but for integration points in our IPM implementation) that has to be
applied to the face when seen from the second element, to match the orien-
tation of the corresponding face in the first element. In 2D the flipping is the
same for any side of the mesh, just using a reverse ordering for the second ele-
ment sharing the side. In 3D the possible rotations of the face have to be taken
into account to choose the proper permutation for the integration points.

A variable storing, for each face, the number of the elements sharing the
face, the local numbering of the face in each one of the two elements and the
rotation to be applied for the second element, is also computed from the mesh
as a preprocess.

Dirichlet conditions (1c) are imposed in strong form, just setting the corre-
sponding nodal values, as usual in standard FE computations. Second Dirichlet
conditions can be imposed in weak form as commented in remark 2.

4 Numerical examples

Several numerical examples are included in this section to study the conver-
gence of the C0-IPM formulation in 2D and 3D, and to validate the compu-
tational tool by comparison with previous works. Homogeneous first, second
and corner Neumann boundary conditions are assumed where no boundary
condition is specified.

4.1 2D convergence test

The convergence of the method for the solution of problem (1) is studied in this
section. To test the method with non-regular meshes and curved boundaries,
the problem is solved in a square with a hole, Ω = (0, 1)2\B((0.5, 0.5), 0.2).
Figure 3 shows the coarsest mesh for nested refinement, with degree p = 4.

First Dirichlet and second Neumann conditions are imposed on all the
boundary. The body force b, the free charge q and the boundary data are set
so that the solution is

u = [sin (2π(x1 + x2)), cos (2π(x1 + x2))]
T
,

φ = sin(2π(x1 + x2)) + cos(2π(x1 + x2)),
(16)
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Fig. 3 2D convergence test: initial mesh for the nested refinement, with degree p = 4.

the material parameters are

E = 2.5, ν = 0.25,
l = 1.1, κL = 1.21,
eL = 7.2, eT = 1.33, eS = 1.73,
µL = 1.5, µT = 1.34, µS = 5.47,

(17)

and the piezoelectric principal direction is x1. The definition of the material
tensors in terms of these parameters can be found, for instance, in appendix
B of [7].

First we consider the uncoupled problem (with e = 0 and µ = 0), that is,
an uncoupled solution of a strain gradient elasticity problem and an electric
potential problem. The convergence plots are shown in figure 4, for penalty pa-
rameter β = 100El2/h (that is, α = 100 in remark 4), and degree p = 1 . . . 4.
For strain gradient elasticity, the displacement error behaves in agreement
with the results for Kirchhoff plates in [12]. With degree p = 1, the sec-
ond derivatives of the displacement in the strain gradient elasticity terms and
the flexoelectricity terms cancel out, or are almost zero for curved elements.
Thus, as expected, the method does not converge for linear approximation.
For degree p = 2 much finer meshes would be necessary to reach assymptotic
convergence, reducing its practical applicability. Accurate results with high-
order convergence are obtained for degree p ≥ 3, with slightly suboptimal
convergence for p = 3, in agreement with the analysis in [5] for the biharmonic
equation. In this particular example, p = 4 behaves better than expected, ex-
hibiting slightly superoptimal convergence. The expected optimal convergence
is observed for the uncoupled electric potential problem for any degree.

Figure 5 shows the convergence plots for the flexoelectricity problem, with
piezoelectric and flexoelectric coupling. The coupling leads to a reduction in
the convergence rate, not relevant for the displacement, but around one for
the potential, for p ≥ 3. This is probably due to the, small but still present,
discontinuity of the displacement derivative across element sides, affecting the
potential through the flexoelectricity coupling.
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Fig. 4 2D convergence test for the uncoupled problem (strain gradient elasticity and po-
tential equations) with β = 100El2/h: L2 error under nested mesh refinement (the coarsest
mesh is shown in figure 3), for degree of approximation p = 1 . . . 4. The numbers are the
slopes for each segment.
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Fig. 5 2D convergence test for the coupled flexoelectricity problem with β = 100El2/h.

The conclusion is then that, even though convergence is suboptimal, the
method is able to reach high accuracy with high-order convergence for degree
p ≥ 3. The C0-IPM method is therefore promising for an efficient solution of
flexoelectricity.

Similar results can be observed with quadrilateral meshes, with better be-
haviour for the p = 2 approximation thanks to the richer approximation space
and the presence of interior nodes in the element.

4.2 Robustness with respect to the interior penalty parameter β

The effect of the interior penalty parameter in the accuracy of the numerical
solution is studied next, with the 2D example and meshes of the previous
section. Following remark 4, the parameter is taken as (15), with different
orders of magnitude for α, independent of the characteristic element size h.

Figure 6 shows the convergence plots for the flexoelectricity coupled prob-
lem, for the displacement u (left) and for the potential φ (right), for degree
p = 3 (top) and p = 4 (bottom). The slopes of the segments are shown for the
plots with α = 10 for p = 3, and with α = 100 for p = 4. We can observe the
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Fig. 6 Effect of the β parameter in the solution of the flexoelectricity problem: convergence
plots for the example in section 4.1 with β = αEl2/h and different values of α, for degree
p = 3 (top) and p = 4 (bottom).

poor performance of the method for α = 1, due to the fact that it is not large
enough for a coercive mechanical bilinear form.

For degree p = 3, α = 10 is large enough and provides the best results.
Larger values of α, several orders of magnitude larger, also lead to high-order
convergence, proving the robustness of the method; but, in agreement with
the analysis in [5] the convergence rate slowly decreases for increasing α.

Looking to the results for p = 4 we can observe that, for α = 10, the bilinear
form is coercive for the first meshes, because the elasticity part dominates in
the coefficients of the matrix. This is not the case for the last mesh, where
higher order terms become more relevant. With α ≥ 100 the condition in
remark 4 is satisfied and convergence is close to p + 1 = 5 for u and around
p = 4 for φ, with almost no loss in the accuracy for increasing β.

Thus, from this experiment we conclude that C0-IPM with degree p = 4
provides excellent results, with convergence rates close to p+ 1 = 5 for u and
around p = 4 for φ, and with little dependency on the particular value of β,
for β ≥ 100El2/h.

The same analysis is performed now for strain gradient elasticity. Figure 7
shows the convergence plots for the displacement u for degree p = 3 (left) and
degree p = 4 (right), with the same conclusions.
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Fig. 7 Effect of the β parameter in the solution of the strain gradient elasticity problem:
convergence plots for the displacement, for the example in section 4.1, with β = αEl2/h
and different values of α, for degree p = 3 (left) and p = 4 (right).

4.3 Cantilever beam

The cantilever beam depicted in figure 8 is considered. The aspect ratio is 20,
and the width a varies to show the size-dependent nature of flexoelectricity.
The beam is fixed to a wall and grounded on its left end, and it undergoes a
punctual force F at the top-right corner. The boundary conditions are thus

L

x2

a

F

Fig. 8 Cantilever beam under bending and open-circuit boundary conditions.

u = 0 at x1 = 0
j2(u, φ) = −F at x = (L, a/2)

φ = 0 at x1 = L,
(18)

where L = 20a is the beam length. To reproduce the results obtained in [7]
with B-splines, the material parameters are

E = 100 GPa, , κ11 = κ22 = 11 nJ V−2 m−1,
eT = −4.4 J V−1 m−2, µT = 1 µJ V−1 m−1,
l = ν = µL = µS = eL = eS = 0,

(19)

and the piezoelectric principal direction is x2. A uniform discretization with
2 × 2 × 40 triangular elements (with characteristic element size h = 0.5a) of
degree p = 4, and with β = 100, is considered. Since l = 0, any positive value
of β provides good results.
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Fig. 9 Cantilever beam: (left) normalised effective piezoelectric constant e′ as a function
of the normalised beam thickness a′, and (right) electric field modulus |E| with a′ = 1.76
for piezoelectric (a), pure flexoelectric (b) and flexo-piezoelectric (c) beams.

Figure 9 left shows the normalised effective piezoelectric constant, e′, versus
the normalised beam thickness, a′, defined as

a′ = −aeTµ−1
T , e′ :=

keff

keff|µ=0
, keff :=

√ ∫
Ω
E · κ ·E dΩ∫

Ω
ε ·C · ε dΩ

,

where keff|µ=0 is the effective piezoelectric constant in the absence of flexo-
electric effects, i.e. with µ = 0.

The results are in perfect agreement with the B-spline results in [7], and
with the analytical approximation in [16]:

e′|flexo(a′) '

√
12

a′2
, e′|flexo-piezo(a′) '

√
1 +

12

a′2
.

The plots in figure 9 also illustrate how flexoelectricity is a size dependent
phenomenon, with relevant and even crucial effect for very small scales.

L

x2

a

F

V

Fig. 10 Cantilever beam under closed-circuit boundary conditions.
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4.4 Open and Closed circuit in the cantilever beam

For further validation of the C0-IPM computational model, we now consider
the open and closed circuit example in [1], where maximum-entropy approxi-
mations (LME) were used. The problem is solved on the same beam with the
same FE mesh. The material parameters are now

E = 100 GPa, ν = 0.37,
κ11 = 11nJ V−2 m−1, κ22 = 12.48 nJ V−2 m−1,
eT = −4.4 J V−1 m−2, µT = µL = 1 µJ V−1 m−1,
l = µS = eS = eL = 0,

and the the piezoelectric principal direction is again x2. The mechanical bound-
ary conditions are the same as in the previous case.

For the electrostatic boundary conditions, two different cases are consid-
ered: open and closed circuit. The open circuit is the one considered in the
previous example, with grounded right end, that is φ = 0 at x1 = L, as shown
in figure 8. In the closed circuit, the upper side is grounded and an electrode
is placed on the bottom side, that is

φ =

{
0 for x2 = a/2
V for x2 = −a/2,

where V is a free constant value, see figure 10. The electrode condition is
enforced setting all potential nodal values on the bottom boundary to be equal
to the first one, with Lagrange multipliers in our implementation.

(a)

(b)

0 1 2 3 4 5 6 7 8
a'

0

0.5

1

1.5

2

2.5

e
'

Fig. 11 Normalised effective piezoelectric constant as a function of the normalised beam
thickness, and example of the distribution of electric potential φ in a flexo-piezoelectric
beam with closed (a) and open (b) circuit. Note that the aspect ratio of the beams has been
modified to better observe the potential distribution along the beam.
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Figure 11 shows the normalised effective piezoelectric constant e′ as a func-
tion of the normalised thickness a′. Again, we observe that flexoelectricy be-
comes relevant for small scales. For the open circuit, comparing to the previous
results in figure 9, where ν = µL = 0, this more general model gives lower val-
ues for the normalised effective piezoelectric constant. On other hand, the
open circuit setting leads to larger values of the effective piezoelectric con-
stant. The numerical results are in perfect agreement with the LME results in
[1] demonstrating again the applicability of C0-IPM for the study and design
of flexoelectric devices.

4.5 Actuator example

In this section we consider an actuator beam also from [1]. The displacement
is fixed on the left boundary, and a potential difference is applied at the top
and bottom sides, leading to a bending of the beam. That is,

u(0, x2) = 0, φ
(
x1,

a

2

)
= 0, φ

(
x1,−

a

2

)
= V,

on the same beam, i.e. Ω = (0, 20a) × (−a/2, a/2). The material parameters

Fig. 12 Actuator beam with width a = 2.5 µm and l = 0: deformed beam and potential.

are (19) and the applied voltage is V = −8a MV.
Figure 12 shows the potential on the deformed beam for width a = 2.5 µm.

The potential seems to be smooth, but the section along x2 = 0 in figure 13
reveals a sharp variation close to the right end. Consequently, the electric field
also presents sharp variations close to the right end, as shown in figure 14.

These results have been computed on the adapted quadrilateral mesh in
figure 15 (top), with degree p = 4 and β = 1. The mesh has been refined to
capture the sharp variations in the solution; otherwise, numerical oscillations
spoil the solution in the whole domain. It is also worth mentioning that the
plot in figure 14 coincides in magnitude and shape with the results in [1] with
LME, but getting rid of the smooth oscillations.

Sharp variations along the boundary in the solution of flexoelectricity prob-
lems can be even more pronounced, as can be observed in figure 16. In this
case the problem is solved with strain gradient elasticity, with l = 0.1a, on the
p = 4 adapted mesh in figure 15 with min(h) = a/25; with smaller element
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Fig. 13 Actuator beam with width a = 2.5 µm and l = 0: normalised potential (φ/250)
along the x2 = 0 horizontal mid section. The potential presents a sharp variation close to
the right boundary. Magenta dots correspond to the boundary of the p = 4 quadrilaterals.
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Fig. 14 Actuator beam with l = 0: detail of the normalised vertical electric field (E2/109)
close to the right end, and plot of the components of the normalised electric field at the
right end (x1 = 20a).

Fig. 15 Adapted p=4 quadrilateral FE mesh for l = 0 with min(h) = a/12 (top) and for
l = 0.1a with min(h) = a/25 (bottom).

size along the boundary to capture the high curvatures in the electric field.
The stabilization parameter is again taken as β = 100El2/min(h), providing
stable results.

In this examples, the element size to capture sharp variation on the bound-
ary has been been experimentally tuned. As expected, it is related to the thick-
ness of the boundary layer where the sharp variation occurs. The estimate of
the boundary layer thickness in terms of the material parameters is considered
as future work.
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Fig. 16 Actuator beam with l = 0.1a: detail of the normalised vertical electric field E2

close to the right end, and plot of the components of the normalised electric field at the
right end (x1 = 20a).

4.6 Periodicity

The implementation of periodicity boundary conditions in the C0-IPM method
is straightforward, by simply considering the periodicity faces as interior faces
and imposing the periodicity constraints on the boundary nodal values. Con-
sidering the periodicity faces as interior faces, that is in I, ensures that C1

continuity is enforced in weak form and that internal forces are equilibrated
also on the periodicity boundary. The periodicity conditions for the nodal val-
ues can be implemented, for instance, by means of Lagrange multipliers, or
reducing the system to the periodic space.
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Fig. 17 Convergence test for the solution of the flexoelectricity equations in a square do-
main, with periodicity in the x1 direction.

As a verification example, figure 17 shows the evolution of the error under
nested refinement for the solution of the flexoelectricity coupled problem (1) in
a square domain Ω = (0, 1)2 with a regular triangular mesh, with 8 triangles of
size h = 0.5 in the initial mesh, and uniform nested refinement. First Dirichlet
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and second Neumann conditions, (1c) and (1d), are set on the top and bottom
boundaries, and periodicity is imposed in the x1 direction. That is, (7) is
imposed identifying the left and right boundary as the same boundary and
including it in I. The body force b, the free charge q, and the data for the
boundary conditions on the top and bottom boundaries, are set so that the
analytical solution is (16). The stabilization parameter is (15) with α = 100.

The errors exhibit the same behavior as in the convergence analysis in
section 4.1.

Fig. 18 3D mesh for degree p = 2 and second level of refinement.

4.7 3D convergence test

The flexoelectricity equations are now solved in a cube, Ω = (0, 0.5)3, to show
the applicability of the method also in 3D. The mesh for degree p = 2 and
the second level of refinement is shown in figure 18. First Dirichlet and second
Neumann boundary conditions are considered in the whole boundary, and the
material parameters are (17). The data is set so that the solution is

u = [cos(2π(x1 + 2x2 − x3)), sin(2π(x1 + 2x2 − x3)), cos(2π(x1 + 2x2 − x3))]
T
,

φ = sin(2π(x1 + 2x2 − x3)).

Figures 19 and 20 show the convergence plots with β = 100El2/h, for strain
gradient elasticity (solving the decoupled problem) and for flexoelectricity,
respectively, with charactaristic element size h = 0.5, 0.5/2, 0.5/4, 0.5/8. As in
2D, the method does not converge for degree p = 1; thus, we show the results
for p = 2, 3, 4.

Robust high-order convergence is observed in all cases, providing accurate
results. Again, in agreement with the analysis in [5], the convergence is sub-
optimal; but still with order close to p + 1 for the displacement in the strain



A C0-IPM for flexoelectricity 25

-1.5 -1 -0.5 0
log10(h)

-4

-3

-2

-1

0
lo

g
10

(L
2 

er
ro

r 
u)

u

1.4

2.2

2.2

2.7

3.2

3.9

4.0

4.6

p=2
p=3
p=4

-1.5 -1 -0.5 0
log10(h)

-5

-4

-3

-2

-1

0

lo
g

10
(L

2 
er

ro
r 

)

2.4

2.8

2.9

3.5

3.9

4.0

4.6

4.9

Fig. 19 3D solution in a cube: convergence plots for strain gradient elasticity and electric
potential (decoupled problem).
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Fig. 20 3D solution in a cube: convergence plots for the coupled flexoelectricity problem.

gradient elasticity problem for p ≥ 3. Again, we also observe that the flexo-
electricy coupling provokes a loss in the convergence rate and the accuracy of
the solution; with order close to p for the displacement and the potential in
this example.

Further numerical experiments show that, with these regular hexahedra
meshes, the error has very little dependency on the particular value of β ≥
100El2/h.

5 Conclusions

A novel C0-IPM formulation for strain gradient elasticity and flexoelectricity
is proposed. The weak form involves second derivatives of the displacement
in the interior of the elements, plus integrals on the element faces, weakly
imposing continuity of the displacement derivatives, as well as equilibrium of
internal forces across element faces and on interior edges (vertexes in 2D).

The formulation is stable, with a symmetric and positive definite matrix
for the strain gradient elasticity operator, for large enough interior parameter
β. An eigenvalue problem is stated to determine a proper value for β, which
leads to a general formula for the parameter: β = αEl2/h, with constant α
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independent of the element size. Thus, differently to non-consistent penalty
methods, and as usual in interior penalty methods, moderate values for β
provide stable and accurate results. The analysis of the well-posedness of the
saddle-point flexoelectricity weak form is future research.

Standard C0 FE approximations with degree p ≥ 2 are considered, re-
taining the advantages and computational efficiency of high-order FE. The
implementation is based on assembly of elemental matrices, with standard
FE numerical integration and nodal approximation, the discretization can be
adapted to the geometry and locally refined where needed, no additional un-
knowns are needed, and material interfaces can be directly considered just
adapting the mesh, as usual in FE computations.

The application of C0-IPM to problems with periodicity boundary condi-
tions is straightforward, just considering the periodicity faces as interior faces
(thus, imposing C1 continuity and equilibrium of forces in weak form) and
setting the periodicity conditions on the nodal values.

Convergence tests, on 2D non-uniform curved triangular meshes and on
3D hexahedra regular meshes, show high-order convergence of the method for
degree p ≥ 3. A slow continuous loss in the convergence rate for increasing β is
observed for p = 3, which is in agreement with the analysis for the biharmonic
equation in [5] and the results for Kirchhoff plates in [12]. Fortunately, for p = 4
the convergence shows little dependency on β. In any case, in all examples,
the convergence rates are at least close to p for both variables, demonstrating
the good behaviour of the method for p ≥ 3.

The computational tool is also validated by comparison with previous
works solving realistic actuator and sensor problems on a beam, with perfect
agreement. In the last beam example, the solution exhibits sharp variations
on the boundary, and the mesh is consequently adapted. Estimating the thick-
ness of the boundary layer in terms of the material parameters, to estimate a
proper element size, is considered as future work.
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