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Abstract
Treatment of D- transposition of great arteries (DTGA) involves the Arterial Switch Operation (ASO), which can create PA 
branch stenosis (PABS) and alter PA blood flow energetics. This altered PA flow may contribute to elevated right ventricular 
(RV) afterload more significantly than stenosis alone. Our aim was to correlate RV afterload and PA flow characteristics 
using 4D flow cardiac magnetic resonance (CMR) imaging of a mock circulatory system (MCS) incorporating 3D printed 
replicas. CMR imaging and clinical characteristics were analyzed from 22 ASO patients (age 11.9 ± 8.7 years, 68% male). 
Segmentation was performed to create 3D printed PA replicas that were mounted in an MRI-compatible MCS. Pressure 
drop across the PA replica was recorded and 4D flow CMR acquisitions were analyzed for blood flow inefficiency (energy 
loss, vorticity). In post-ASO patients, there is no difference in RV mass (p = 0.07), nor RV systolic pressure (p = 0.26) in the 
presence or absence of PABS. 4D flow analysis of MCS shows energy loss is correlated to RV mass (p = 0.01, r = 0.67) and 
MCS pressure differential (p = 0.02, r = 0.57). Receiver operating characteristic curve shows energy loss detects elevated 
RV mass above 30 g/m2 (p = 0.02, AUC 0.88) while index of PA dimensions (Nakata) does not (p = 0.09, AUC 0.79). PABS 
alone does not account for differences in RV mass or afterload in post-ASO patients. In MCS simulations, energy loss is 
correlated with both RV mass and PA pressure, and can moderately detect elevated RV mass. Inefficient PA flow may be an 
important predictor of RV afterload in this population.
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Introduction

D-transposition of the great arteries (DTGA) is a cyanotic 
form of congenital heart disease (CHD) that affects approx-
imately 4.7 per 10,000 live births [1, 2] and invariably 
requires lifesaving surgical correction by way of the Jatene 
arterial switch operation (ASO) in the current surgical era 

[3]. Long-term outcomes of increased survivorship and 
decreased reoperation rates have been observed since the 
ASO was widely adopted in the 1990s, in place of atrial 
switch operations (i.e. Mustard, Senning operations) [4, 5]. 
The oldest ASO patients are reaching young adulthood, and 
while long-term consequences of repair are not yet fully 
realized [6], current evidence indicates that these patients 
can develop significant mid-term hemodynamic complica-
tions [7]. In particular, hemodynamic changes after ASO can 
include right ventricular (RV) diastolic dysfunction, hyper-
trophy, and increased afterload [7–10]. Importantly, the 
pulmonary artery (PA) is heavily manipulated in the ASO 
through the LeCompte maneuver, where the pulmonary 
trunk and its bifurcation are translocated anterior to the neo-
aorta [6]. This alteration of the PA morphology and how it 
affects the RV is a critical consideration to better understand 
the developing clinical picture of long-term complications.
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The ASO manipulation of the pulmonary trunk and 
resulting altered PA morphology can introduce new PA 
bending, stretching, and stenosis [10–12]. Pulmonary artery 
branch stenosis (PABS) has received significant attention 
in the literature as a common and hemodynamically rel-
evant complication, occurring in up to 60% of post-ASO 
patients [13]. PABS is thought to arise from both the ante-
rior, stretched course of PA branches around the ascending 
aorta, and potentially compression from surrounding struc-
tures (i.e. sternum) [13–16]. While PA stenosis is an appeal-
ing etiologic factor to explain RV afterload in these patients, 
elevated RV mass and afterload are still observed in cases 
without apparent PA stenosis [9, 10].

Cardiac magnetic resonance imaging (CMR) has dem-
onstrated that these variable PA morphologies lead to sig-
nificant modification of PA flow patterns and hemodynam-
ics [11, 14]. Flow irregularities observed in ASO patients 
include increased systolic flow velocity, asymmetric flow, 
and increased vortical flow dynamics compared to normal 
pulmonary vasculature [14]. Additionally, computational 
fluid dynamic (CFD) analysis using 3D mathematical mod-
eling of post-ASO anatomy has further corroborated and 
elaborated on these flow anomalies, demonstrating increased 
presence of shear layer instabilities, vortical and helical 
flow patterns, and turbulent-like states [11, 17]. When flow 
becomes turbulent, the normally organized flow curve sepa-
rates and forms secondary flow fields that create adverse 
pressure gradients and dissipate energy, causing flow inef-
ficiency. This has been documented in bicuspid aortic valve 
and coarctation of the aorta [18, 19]. Importantly, in patients 
without apparent PA stenosis, abnormal PA flow patterns 
are still observed in this population [14] (see supplementary 
materials for further detail and formulae for energy loss, 
vorticity, and wall shear stress).

The goal of this study was to critically evaluate the role 
of PABS and PA flow patterns on RV afterload in repaired 
D-TGA patients using both clinical hemodynamic data and 
4D flow imaging of a 3D printed replica within an in vitro 
mock circulatory system (MCS). Specifically, we hypoth-
esized that RV afterload (defined by elevated RV mass and 
RV systolic pressure (RVSP)), would correlate with markers 
of PA flow inefficiencies from 4D flow (vorticity, energy 
loss), independent of pulmonary artery dimension.

Materials and methods

Patient selection and in vivo methods

Subjects and inclusion/exclusion criteria

This retrospective single-center study was approved by the 
Children’s National Hospital Institutional Review Board. 

Patients with D-TGA corrected via ASO with a clinically 
indicated CMR (including volumetry, 3D angiography and 
phase contrast imaging) and measurement of RV afterload 
(i.e. invasive pressure measurement or echocardiography 
estimate) within 6 months were reviewed for inclusion in 
this study. Subjects were excluded if there was evidence 
of pulmonary hypertension, previously placed pulmonary 
artery stent, or significant additional or residual heart dis-
ease was present (i.e. valve insufficiency, shunt, more than 
mild ventricular dysfunction, etc.). In subset analysis of this 
cohort for MCS simulations, patients were also excluded if 
the appropriate CMR sequences for volumetry analysis were 
unavailable. In the MCS experimental model, the physi-
ologic pulsatile flow pump was unable to replicate flows 
that exceeded 300 mL/s. Thusly, patients whose MPA flow 
exceeded this value were also excluded from the in vitro 
experiments.

Clinical imaging data—echocardiography/catheterization

Measurements of RVSP were obtained within a 6-month 
period of the CMR study by either standard transthoracic 
echocardiography or invasive pressure measurement during 
cardiac catheterization. For transthoracic echocardiogra-
phy, the RVSP was estimated by the tricuspid regurgitation 
jet gradient from continuous-wave Doppler added to the 
right atrial pressure (assumed to be 5 mmHg). When both 
echocardiogram and catheterization measurements were 
available, the catheterization measurement was utilized. 
Catheterization data predominated as the main source of 
RVSP measurements (50%, 11/22 patients) in this sample 
compared to echocardiography.

Clinical imaging data—CMR

All images were performed on a 1.5 T MR scanner (Aera; 
Siemens Healthcare, Erlangen, Germany) with an 18-chan-
nel body matrix array anteriorly. All sequence parameters, 
including repetition time (TR), echo time (TE), field-of-
view (FOV), and voxel size, were performed in accordance 
with laboratory standards for cine, angiography, and flow 
sequences [20, 21]. Standard volumetry and right ventricu-
lar mass measurements were performed using MedisSuite 
(Medis, Leiden, Netherlands), with mass calculated as the 
volume of tissue between the epicardial and endocardial 
borders indexed to body surface area. Borders included tra-
beculations in the RV mass measurement, and standardized 
tissue density thresholds were used across the cohort. Vessel 
diameter in the MPA, RPA, and LPA were performed on 
3D angiography datasets and referenced to obtain z-scores 
as previously reported in a healthy pediatric population by 
Knobel et al. [22]. PABS was defined as proximal right or 
left PA axial vessel diameter Z-scores less than negative two. 
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Flow measurements though the cardiac cycle were recorded 
in the MPA, RPA, and LPA from en face phase contrast 
images. Nakata index was chosen as a metric of PA size 
indexed to BSA, and was calculated as the sum of the cross-
sectional area of the RPA and LPA divided by the body 
surface area (m2) [23]. While the Nakata index was origi-
nally validated in Tetrology of Fallot as well as Rastelli and 
Fontan patients, it has been shown to be consistent across 
infants and adolescents [23]. Nakata index was utilized here 
as an indexed continuous variable of PA size without the 
confounder of BSA to evaluate relationships between PA 
dimensions and hemodynamic variables, similar to previ-
ous studies [24, 25]. All measurements were performed by 
a blinded observer.

In vitro experimental model—the mock circulatory 
system

3D model creation

Segmentation was performed on contrast-enhanced MR 
angiograms to create models of the pulmonary artery bifur-
cation that were 3D printed and mounted in an MRI-com-
patible mock circulatory system (MCS). Segmentation was 
performed using standard techniques in commercial software 
(Materialise Mimics, Leuven, Belgium) and a 3D printable 
model was created (Materialise 3-matic, Leuven, Belgium) 
using our previously described lab standard [10, 11, 26, 27]. 
Models included the main pulmonary artery (MPA) origin 
to the first-order branch PA, with 5 mm extensions to gently 
transition to the uniform diameter and shape of circuit tub-
ing. All models were 3D printed by stereolithography using 
a rigid polycarbonate-like material (Xometry, Gaithersburg, 
MD).

Mock circulatory system circuit layout and calibration

The models were submerged in water within a modular tank 
and connected in series to a closed circulatory circuit (Fig. 1) 
with major components including: MR-compatible pulsatile 
flow pump (CardioFlow 5000MR, Shelley Medical Imaging 
Technologies, ON, Canada), bilateral compliance-simulat-
ing chambers, and bilateral resistance-simulating adjustable 
valves. Flow parameters were recreated in a patient-specific 
manner, including flow over cardiac cycle, heart rate, and 
differential blood flow to right and left PAs. Two patients 
had in vivo 4D flow data, and this was used to validate the 
test bench model setup by comparison of in vivo and in vitro 
4D flows. (see supplemental Fig. S1). Pressure transducers 
(Utah Medical Products, Midvale, UT) with data acquisi-
tion via LabView (National Instruments, Austin, TX) were 
utilized to calibrate system total resistance and collect pres-
sure data. Maximum pressure differential (ΔP) across each 
model MPA to either branch PA (averaged over 10 cardiac 
cycles) was recorded as an analog of RV afterload. Iterative 
optimization of compliance model was performed using a 
two-element Windkessel model [28, 29]. After tuning the 
Windkessel, both in vivo and in vitro 4D flow data from a 
single patient geometry were compared (Figure #) with good 
agreement between average and unsteady flow conditions 
as validation. Given that not all patients had catheteriza-
tion data, the overall resistance of the MCS circuit (set by 
pinch valves, Fig. 1E) was constant across the sample and 
optimized by iterative titration until the resultant pressure 
vs. time curves most closely matched the available kinetics 
and RVSP seen this cohort. Elements in the circuit were con-
nected using semi-flexible tubing and a 40% glycerin-water 
(weight per volume) fluid mixture at room temperature was 
used to mimic blood viscosity [30, 31].

Fig. 1   Schematic of the Mock 
Circulatory System experimen-
tal setup. Included components 
of reservoir A, pulsatile and 
MR-compatible pump B, 
patient-specific PA model with 
pressure transducers contained 
within water tank C, compli-
ance chambers D, and right 
and left lung resistance gate 
valves E 
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In vitro CMR and 4D data processing

A standard concentration of gadolinium contrast was added 
to this circuit and the flow pump setup was placed in a 1.5 T 
Siemens Aera scanner (Siemens Healthcare, Erlangen, 
Germany). Velocity encoding parameters were set based on 
in vivo PA velocity histogram and 4D flow sequences were 
acquired with the following settings: VENC 200–450 cm/s; 
echo time = 2.21 ms; repetition time = 38.16 ms; spatial 
resolution = 2.0 mm × 2.0 mm; slice thickness = 1.8 mm; 
flip angle = 15°; parallel acceleration factor = 2; number of 
phases = 30. Scanning time for 4D flow was approximately 
7 min. 4D Flow sequences of each simulation were exported 
for offline analysis. Variables including peak systolic vorti-
city, energy loss during systole, and peak systolic wall shear 
stress were quantified (formulae available in supplementary 
materials) using ITFlow© software (Cardio Flow Design, 
Japan). Energy loss and vorticity are expressed as values 
and units normalized to segmented PA volume (mW/m3, 
and s−1, respectively).

Statistical analyses

All statistical analyses were performed using GraphPad 
Prism version 8.4.3 for Windows (GraphPad Software, La 
Jolla, California USA). Comparisons of categorical variables 
performed with Fisher’s exact test and comparisons of con-
tinuous variables were performed using paired or unpaired 
two-way t-tests. Correlations between continuous variables 
were assessed using Pearson correlation coefficient. Prob-
ability values < 0.05 were considered statistically significant.

Results

Demographics and clinical characteristics

22 patients (age = 11.9 ± 8.7 years, mean BSA = 1.2 ± 0.5 m2, 
68% male) were included in the clinical cohort analysis of 
RV afterload. Further investigation of this cohort with the 
MCS simulation was possible for 16 patients for pressure 
differential comparisons, and for 13 patients for RV mass 
comparisons after application of relevant exclusion crite-
ria. Table 1 contains clinical characteristics of the cohort, 
including mean RV ejection fraction (58.7 ± 8.1%), mean 
right pulmonary blood distribution (53.5 ± 13.0%), mean 
RVSP of 38.4 (± 11.8) mmHg, and mean RV mass of 32.0 
(± 10.5) g/m2.

Full cohort analysis of RV afterload in the presence 
and absence of PABS

When dividing the clinical cohort by presence of PABS 
(proximal right or left PA axial vessel diameter Z-scores 
less than −2), we found that 64% of patients (14 of 22) had 
some form of PABS (unilateral or bilateral, Table 1). While 
2 patients had bilateral stenosis, RPA stenosis was far more 
prevalent, as 50.0% of RPAs and 22.7% of the LPAs in the 
cohort were stenotic. Varying degrees of PABS were rep-
resented in this sample, with a mean Nakata index [23] of 
163.33 (± 94.6) mm2/m2 (reference range in original study 
population 330 ± 30 mm2/m2). Flow measurements in the 
unilateral PABS cases demonstrated the average %RPA 
flow in the right-sided PABS group was 38.5% and 64.7% 

Table 1   Subject demographics, 
anatomy, and clinical 
characteristics

Values among subjects with and without pulmonary arterial branch stenosis (PABS), represented as 
mean ± standard deviation, with p-values provided
* Native anatomy of all other participants was TGA with ventricular septal defect
† Odds ratio 95% confidence interval: 0.1–3.5
‡ Odds ratio 95% confidence interval: 0.6–2.8

Full Cohort  + PABS − PABS P-Value

Demographics n = 22 n = 14 n = 8
 Age (years) 11.9 (± 8.7) 14.7 (± 5.1) 10.7 (± 9.9) 0.387
 Male Gender 68% (15/22) 64% (9/14) 75% (6/8) 0.999†
 Body Surface Area (m2) 1.2 (± 0.5) 1.1 (± 0.6) 1.4 (± 0.4) 0.164

Native Anatomy
 TGA, IVS* 68% (15/22) 71% (10/14) 63% (5/8) 0.999‡

Clinical Characteristics
 RV Systolic Pressure (mmHg) 38.4 (± 11.8) 40.6 (± 13.1) 34.5 (± 7.3) 0.259
 RV Mass (g/m2) 32.0 (± 10.5) 28.2 (± 10.8) 37.47 (± 6.9) 0.066
 RV Ejection fraction 58.7% (± 6.5) 58.0% (± 5.6) 59.0 (± 7.5) 0.851
 PA Flow Distribution (% RPA Flow) 53.5% (± 13.0) 51.7% (± 15.0) 56.7% (± 7.4) 0.409
 Nakata Index (mm2/m2) 182.2 (± 96) 168.2 (± 109.2) 206.8 (± 59.6) 0.389
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in the unilateral left PABS group. When comparing metrics 
of RV afterload in these subgroups, there was no differ-
ence in indexed RV mass (p = 0.066) nor composite RVSP 
(p = 0.259) between the PABS + and PABS- groups (Fig. 2).

Cohort subanalysis of PA flow patterns using MCS 
simulations

RV mass measurements directly correlated with in vitro 
measurement of maximum systolic energy loss (mW/m3) 
from the MCS (p = 0.012, r = 0.67, Fig. 3A). Similarly, 
RV mass significantly correlated with maximum systolic 
vorticity (s−1) (p = 0.012, r = 0.67, Fig. 3B). Finally, RV 
mass showed no correlation with presence of pulmonary 
artery stenosis, as measured by the Nakata index (p = 0.071, 
r = 0.52, Fig. 3C).

Benchtop ΔP measurements from the MCS were sig-
nificantly correlated to maximum systolic energy loss 
(p = 0.021, r = 0.57, Fig. 4A) and maximum wall shear 
stress (p < 0.001, r = 0.85, Fig.  4B), demonstrating a 
direct relationship between pressure drop over the right 
ventricular outflow tract and flow inefficiency. There was 
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no correlation between ΔP and Nakata index (Fig. 4C, 
p = 0.927, r = − 0.03), indicating that pulmonary artery 
stenosis is not singularly responsible for these flow inef-
ficiencies. Of note, ∆P was also shown not shown to be 
statistically significantly correlated with RV mass in this 
cohort (p = 0.408, r = 0.43).

Given the persistent association of energy loss to both 
RV mass and MCS pressure differential, we next sought to 
investigate if energy loss could predict the variation in RV 
mass better than stenosis alone via receiver operating char-
acteristics (ROC) analysis. This demonstrated that maxi-
mum systolic vorticity from the branch pulmonary arteries, 
but not Nakata index, moderately detected the presence of 
elevated RV Mass (> 30 g/m2) (p = 0.022, AUC 0.88; and 
p = 0.087, AUC 0.79; respectively, Fig. 5C). There was no 
significant correlation between maximum systolic energy 
loss and left or right PA proximal axial diameter Z-score 
(p = 0.076, r = 0.46 and p = 0.965, r = − 0.01, respectively, 
Fig. 5D).

Discussion

Our study highlights the correlation between RV afterload 
and inefficient PA flow patterns that is not explained by 
presence of pulmonary artery stenosis in patients who have 
undergone the ASO. These data reveal that in a clinical 
cohort analysis, stenosis alone does not account for differ-
ences in RV mass or afterload in post-ASO patients. When 
further investigated in an MCS simulation, energy loss 
from inefficient flow is correlated with both increased RV 
mass and increased PA pressure and can moderately detect 
patients with elevated RV mass while PA dimension index 
alone cannot. This study reinforces earlier work regard-
ing the importance of flow inefficiencies in post-ASO PA 
morphology and their impact on the development of RV 
failure [10, 11, 14].

Right ventricular hypertrophy is an important clinical 
endpoint to follow in the lifelong management of TGA 
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patients, but its etiology remains poorly understood [8–10, 
32]. Evidence from the context of pulmonary hypertension 
has enhanced the understanding of the RV maladaptive 
response to afterload [33]. In pulmonary hypertension 
pathophysiology, strain can lead to deficits in RV regional 
contractility and RV systolic and diastolic dysfunction, 
which have also been previously reported in TGA patients 
[8, 34, 35]. It’s possible that circumferential RV strain pat-
terns that are seen post-ASO may be an important precur-
sor to RV hypertrophy [34].

The complex story of the etiology of RV hypertrophy in 
this context may also involve factors of proximal PA dis-
tensibility and coronary insufficiency. Evidence from CMR 
imaging of repaired aortic coarctation showed aortic stiff-
ness was associated with increased LV Mass [36]. This rela-
tionship may apply to the RV as well, as retrospective cohort 
analysis in healthy adults has demonstrated an association 
between PA stiffness and RV hypertrophy and dysfunction 
[36, 37]. In the post-ASO heart, early work has suggested 
that PA stiffness is prevalent and this may be an important 
factor contributing to RV hypertrophy in these patients [38, 
39]. Additionally, coronary abnormalities are frequent com-
plications that may go unnoticed post-ASO and are thusly 
difficult to study [8]. Ischemic damage secondary to coro-
nary insufficiency remains an additional contributing factor 
to the adaptive response of the RV and the development of 
RV hypertrophy after ASO [9, 40].

The contribution of 4D flow CMR technology to the 
understanding of congenital heart disease hemodynamics 
has drawn attention to the significance of flow disturbances 
in this context. Four dimensional flow technology has 
brought improved spatial and temporal encoding of CMR 
acquisitions, allowing for observation of vortical and helical 
patterns in the vessels of healthy control subjects as well as 
pathological study subjects [11, 41, 42]. The flow in normal 
PAs has been found to be smooth and highly hemodynami-
cally efficient [43], supposedly as a result of the optimal 
curvature of the pulmonary bifurcation and uniform veloc-
ity profiles at the MPA inlet. In contrast, many authors have 
supported the observation of a greater degree of inefficient 
flow profiles in the pulmonary trunk of post-ASO patients 
[11, 14, 44]. From a mechanistic standpoint, flow inefficien-
cies (here quantified via energy loss) significantly contribute 
to increased RV systolic mechanical work, especially in the 
low-pressure biomechanical environment of the pulmonary 
circuit. This study adds to this understanding and provides 
an important clinical correlate of RV mass. Future work 
that continues to assess how flow patterns relate to clinical 
endpoints is warranted for furthering our understanding and 
clinical management of congenital heart disease.

Our study adds to a growing body of work aimed at 
understanding the broader effects of PA morphology on 
fluid mechanics and hemodynamics and is important to the 

context of optimization of the surgical strategy in TGA. An 
example of variation in surgical strategy for TGA involves 
the spiral technique, aimed at emulating the normal spiral 
relationship that the great vessels have in healthy subjects 
[14, 17, 45]. In this surgical variation, CMR evaluation has 
shown the spiral technique to be associated with less helical 
flow and less vortex formation compared with LeCompte 
[45]. Similarly, computational fluid dynamics modeling indi-
cates this arrangement to be associated with more homoge-
neous distribution of wall shear stress and outflow velocity 
in the RVOT [17]. Even in patients with ASO and LeCompte 
maneuver, analysis of pulmonary trunk position relative to 
the aorta in D-TGA patients showed that an anterior position 
was associated with increased MPA flow velocity, asymmet-
ric flow, and increased vortical flow. While the LeCompte 
maneuver remains standard of care [46], these studies high-
light the need for continued attention to these morphological 
differences as we learn more about the associated clinical 
outcomes.

Our study had several limitations. The single-center and 
retrospective nature, along with relatively limited sam-
ple size, limit the external validity of results. Exclusion 
of patients with previous PA stents and significant RVOT 
obstruction misses a subset of post-ASO patients, as these 
are relatively common mid-late term complications post-
ASO [3, 47]. In addition, study participants most often 
underwent CMR and hemodynamic evaluation due to clini-
cal concern for PABS, potentially introducing a bias in our 
sample that over-samples these more extreme PA geometries 
compared to the full post-ASO population. Additionally, our 
study did not examine velocity profiles of blood flow in the 
PAs in the evaluation of stenosis and focused on PA dimen-
sions only. Clinical measurements of RVSP can be limited 
by acoustic windows and incomplete tricuspid regurgitation 
jets (echo) and by sedated/anesthetized loading conditions 
altering preload and afterload (cath). Other important limita-
tions to this study arise from technical assumptions made in 
the MCS methodology. Our PA models were printed using 
a rigid material similarly to previously reported [48–50] 
whereas more recent MCS studies are investigating incor-
porating elastic models [28, 49, 51]. Rigid models offer 
advantages such as technical feasibility and standardization 
of vessel elasticity and compliance and comparison with 
computational fluid dynamics simulations that use rigid 
wall assumptions [48, 49]. However, variation in PA stiff-
ness is observed post-ASO and elastic models incorporate 
the element of proximal vessel compliance into the MCS 
simulation, an element that could be reproduced even in a 
patient-specific manner [48, 49].

Our study is among the first of a growing body of lit-
erature that associates 4D flow-derived variables of fluid 
mechanics with clinically relevant factors in congenital heart 
disease. We found that RV afterload was associated with 
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inefficient PA flow patterns independently of PA dimensions 
alone. With further research, markers of flow inefficiency 
from 4D flow CMR may prove to be a clinically useful pre-
dictive tool for the management of complications and opti-
mization of surgery in this growing patient population.
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