
Combining Long-Short Term Memory and Reinforcement 

Learning for Improved Autonomous Network Operation 
 

Fatemehsadat Tabatabaeimehr, Sima Barzegar, Marc Ruiz, and Luis Velasco* 

Optical Communications Group (GCO), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain 

e-mail: luis.velasco@upc.edu 

 

Abstract: A combined LSTM and RL approach is proposed for dynamic connection capacity 

allocation. The LSTM predictor anticipates periodical long-term sharp traffic changes and 

extends short-term RL knowledge. Numerical results show remarkable performance. © 2021 

The Authors1 

1. Introduction 

The traffic generated by many 5G services is complex and hard to model due to the presence of multiple 

periodicities ranging from few hours to several days [1]. Although 24h is still the dominant periodicity for most 

services, other periodicities with shorter or larger period can introduce sharp traffic changes that significantly 

distort the typical daily profile. This fact makes impractical applying traditional predictive approaches in many 

multilayer optical network automation scenarios, e.g., dynamically allocating capacity to a traffic flow 

according to traffic prediction [2]. 

Aiming at modelling complex time series, such as network traffic, Long-Short Term Memory (LSTM) artificial 

neural networks were proposed in [3] due to its ability to learn data with long-term sequential dependencies and 

indefinite duration. Together with LSTMs, specific loss functions have been recently proposed to minimize 

prediction error in the presence of sharp changes [4]. Nevertheless, although the overall accuracy of LSTMs can 

be higher than that of alternative traffic prediction methods, they still incur in occasional errors that can reduce 

robustness for autonomous network operation. Particularly, traffic under-prediction can lead to connection 

capacity under-provisioning, which translates into traffic loss. 

In contrast, Reinforcement Learning (RL) has proved to autonomously adapt connection capacity to complex 

traffic evolution, by penalizing those actions that cause traffic loss while reducing capacity overprovisioning 

(see, e.g., [5], [6]). However, capacity management based on low-complex RL does not perform that well in the 

event of sharp traffic changes, which might require incrementing their complexity to deal with both short- and 

long-term dependencies. Note that complex RL algorithms present some drawbacks, such as unstable and long-

time learning process. 

In this work, we propose combining a LSTM-based traffic prediction model and a low-complex RL algorithm 

for dynamic connection capacity allocation, aiming at outperforming both methods when used separately. In 

particular, we consider that traffic flows show some periodical components that produce: i) a traffic evolution 

with smooth changes that can be easily learnt by a RL algorithm; and ii) some periodical long-term sharp traffic 

changes, which are detected and quantified by the LSTM-based predictor. The latter feeds the RL algorithm to 

extend its knowledge without adding extra complexity. 

2. Traffic prediction and RL for autonomous operation 

In this section, we present our proposal for autonomous capacity management of connections transporting 

packet traffic flows. Without loss of generality, we consider a connection to be either a customer connection 

transporting a few Gb/s traffic flow or a virtual link supporting flow aggregation with traffic of hundreds Gb/s. 

The objective is to allocate, at every time t, the minimum capacity to the connection to support the flow for the 

next period, while meeting the intended performance, e.g., avoiding loss due to capacity under-provisioning. 

Fig. 1 illustrates the three considered approaches for implementing autonomous capacity management: i) 

threshold-based (Fig. 1a); ii) a low-complex RL algorithm (Fig. 1b); and iii) a LSTM-based prediction (Fig. 1c). 

Fig. 1d sketches the expected evolution of the allocated capacity (solid-colored lines) for a traffic flow (dotted 

line) that experiences a sharp traffic increase. Under the threshold-based approach, future capacity is reactively 

adjusted according to the current traffic. A threshold value is statically defined, which must be set low enough to 

guarantee no loss during sharp traffic changes, which leads to high overprovisioning. In contrast, a low-complex 

RL-based algorithm allows a finer capacity allocation by learning fast the right margin of capacity that needs to 

be allocated to guarantee no loss. Here, the environment computes the state and reward according to short-term 

monitoring data and feeds an agent that does both model learning and decision making by taking the most 

proper action (increase or decrease) capacity according to the current state. However, long-term periodical sharp 

traffic changes will be poorly learnt with a short-term perspective and some losses can be expected. Finally, 

LSTM can be used to predict long-term periodic traffic. Notwithstanding the good overall accuracy, LSTM 

underestimates traffic at the beginning of the peak, which can lead to loss, and largely overestimates traffic 

during and after the sharp change, which produces capacity overprovisioning. 

 
1The research leading to these results has received funding from the Spanish MINECO TWINS project (TEC2017-90097-R) and by the ICREA institution. 
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Fig. 1. (a) Thr-based, (b) RL, (c) LSTM, and (d) expected capacity 
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Fig. 2. Cooperative LSTM + RL approach 

In view of the above, we propose combining LSTM-based traffic prediction model and low complex RL-based 

capacity allocation; the approach (LSTM+RL) is illustrated in Fig. 2. This approach includes an extended 

environment that integrates LSTM-based traffic prediction to generate inputs that add knowledge to be 

considered in the state definition and reward computation without increasing RL model complexity. In this 

approach, LSTM-based model training is tuned to produce unbiased (larger than expected) traffic estimation by 

means of a dedicated loss function. Once trained, the LSTM-based model is used to generate several predictions 

(labeled 1 in Fig. 2) that, jointly with the current traffic, are then analyzed by a module that estimates whether it 

is likely that the traffic will sharply increase (2). If so, the expected traffic increase is computed by combining 

different estimations and sent for state and reward computation (3). Such expected extra traffic is combined with 

the monitored traffic and processed as actual current measurements (4); this directly affects the inputs that the 

agent needs to learn and take actions (5). The formal details of the extended environment blocks are presented in 

the next section. 

3. Extended RL Environment with LSTM-based traffic prediction 

Table 1 summarizes the used notation. We consider that a monitoring data set is available for every connection, 

which consists of samples <y(t), z(t)>, with the traffic and capacity at time t, respectively. For the sake of 

simplicity, let us consider that a LSTM model is represented by eq. (1); it receives as input the last w traffic 

monitoring samples and produces traffic predictions ŷ with different upper confidence intervals to be used at 

time t. It is of paramount importance, as mentioned above, training the model to benefit over-prediction instead 

of typical centered (unbiased) prediction. To this aim, we consider a truncated mean square error (trMSE) 

component in the loss function (see eq. (2)) that returns the MSE if and only if the relative error between real 

and prediction is above a given β value. To avoid extremely large and meaningless over-prediction, the 

proposed loss function weights trMSE and MSE with parameter α, as defined in eq. (3). Once trained, LSTM 

model f is used to generate three predictions based on different confidence intervals at every time t: i) ŷd(t) used 

for sharp increase detection, ii) ŷh(t+1) for traffic prediction only during sharp increase, and iii) ŷl(t+1) for traffic 

prediction when no sharp increase has been detected. The sharp traffic estimation module takes the set of 

predictions, as well as current and last monitored traffic, and it estimates the expected traffic increase ∆y(t) that 

will be considered for state and reward computation, following eq. (4). Note that the traffic prediction is based 

on different traffic estimations depending on whether a sharp increase has been detected or not. 

Finally, the Q-learning algorithm presented in [5] has been extended in two ways: i) the state s is computed not 

only based on the current monitored traffic y(t), but also on the expected increase ∆y(t), as defined in eq. (5), 

where ns represents the number of discrete states; and ii) the reward function component related with capacity 

overprovisioning (r) has been modified to avoid penalizing when ∆y(t) is different than 0; a large capacity  
 

Table 1. Notation 

y(t) Actual traffic at time t. 

z(t) Allocated connection capacity at time t. 

ŷ Traffic prediction 

f LSTM model 

α, β Loss function weight and minimum relative error 

ŷd(t) Traffic prediction for sharp increase detection 

ŷh(t) Traffic prediction during sharp increase  

ŷl(t) Traffic prediction during no sharp increase 

∆y(t) Expected traffic increase 

r, s RL reward and state 
 

{𝑦̂(𝑡 + 𝑖), 𝑖 = 1. . 𝑚}~𝑓({𝑦(𝑡 − 𝑗), 𝑗 = 0. . 𝑤}) (1) 

𝑡𝑟𝑀𝑆𝐸(𝑡; 𝛽) = {(𝑦(𝑡) − 𝑦̂(𝑡))
2

, (𝑦(𝑡) − 𝑦̂(𝑡))/𝑦(𝑡) ≥ 𝛽

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

𝑙𝑜𝑠𝑠(𝑡; 𝛼, 𝛽) =  𝛼 · 𝑡𝑟𝑀𝑆𝐸(𝑡; 𝛽) + (1 − 𝛼) · 𝑀𝑆𝐸(𝑡) (3) 

∆𝑦(𝑡) = {
𝑦̂ℎ(𝑡 + 1) − 𝑦(𝑡), 𝑦(𝑡) > 𝑦̂𝑑(𝑡)

𝑦̂𝑙(𝑡 + 1) − 𝑦(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

𝑠(𝑡) = min (⌈𝑛𝑠 · (𝑦(𝑡) + ∆𝑦(𝑡))/𝑧(𝑡)⌉) (5) 

𝑟(𝑡) = [𝑧(𝑡) − 𝑦(𝑡) > ∆𝑦(𝑡)] (6) 
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Fig. 3. Traffic and LSTM performance 

0

20

40

60

80

7890 7930 7970 8010

20

30

40

50

60

70

80

7919 7921 7923 7925

0

20

40

60

80

7400 7440 7480 7520

traffic thr-based
RL LSTM
LSTM+RL

0

10

20

30

40

7420 7421 7422 7423 7424 7425

LSTM+RL

RL

LSTM

Thr

LSTM+RL

Thr
LSTM

RL

Tr
af
fi
c
o
r
C
ap

ac
it
y
(G
b
/s
)

Tr
af
fi
c
o
r
C
ap

ac
it
y
(G
b
/s
)

Tr
af
fi
c
o
r
C
ap

ac
it
y
(G
b
/s
)

Tr
af
fi
c
o
r
C
ap

ac
it
y
(G
b
/s
)

Time

Time Time

Time

(a)

(b)

(c)

(d)

 
Fig. 4. Approaches comparison for low (a, b) and high (c, d) traffic  

 

provisioning caused by an extra traffic added is not penalized, provided that such overprovisioning is within the 

magnitude of the extra traffic (see eq. (6)). In this way, the effect of the sharp change is not considered for 

learning background smooth traffic, which is the main target of the RL algorithm. 

4. Numerical Results 

For evaluation purposes, we have generated 6 months of synthetic traffic data for one traffic flow, which 

includes: i) one main traffic component with daily variation. For the sake of comparability, we have used the 

same traffic as in [5], and ii) an on-off traffic profile with several periodicities ranging from 6h to 5 days. One 

day of traffic with the defined components is presented in Fig. 3a, where traffic is normalized to the maximum 

value. The first half of the traffic (3 months) has been used for training and validating the proposed LSTM-

based traffic prediction. To this aim, we have focused only on the sharp traffic component and evaluated several 

configurations of the LSTM model to tune loss function parameters. Fig. 3b shows the prediction error 

(normalized to the minimum value) as a function of α, for β=0.2. As it can be observed, balancing trMSE and 

normal MSE, i.e., α in (0,1), provides the best performance, which validates the usefulness of the proposed loss 

function. Specifically, α=0.5 was selected to train and test the final LSTM model, which consists of 3 layers and 

3 neurons per layer (each with a tanh() activation function) and a final dense layer to generate the final output. 

With that model, we evaluated the formulation in Section 3; the results are shown in Fig. 3c. For the sake of 

clarity, the prediction curve is the sum of the predicted ∆y(t) and previous traffic y(t-1). We observe a tight 

correlation of real and predicted traffic that supports concluding that the proposed sharp increase estimator 

clearly captures the evolution of sharp traffic, which is key for the success of the proposed combined approach. 

The performance of the LSTM+RL approach has been evaluated using the last 3 months of traffic data, which 

has been scaled to emulate a flow having daily variations ranging between 3 and 45 Gb/s. The extended 

environment was implemented in the simulator presented in [5] and used to evaluate the proposed approach, as 

well as the other considered methods for comparison purposes. Fig. 4 highlights the behavior of all the 

approaches at some intervals of the simulation, where different traffic load is observed. For low load (Fig. 4a-b), 

LSTM and RL approaches are not able to anticipate enough the sharp traffic increase, which leads to capacity 

under-provisioning and traffic loss, whereas the threshold-based approach fits capacity remarkably close to 

actual traffic, resulting into a very good performance in terms of capacity over-provisioning. For high loads 

(Fig. 4c-d), the bad performance of LSTM and RL is confirmed, while threshold-based allocates more  
 

capacity than our proposed combined solution. 

Table 2 summarizes the simulation results, where the combined 

LSTM and RL approach provides no losses. In contrast, the 

LSTM and RL approaches, when working separately, are unable 

to anticipate the sharp traffic changes and thus, they produce 

significant traffic loss. Note also that those approaches require 

slightly lower over-provisioning than the combined one, and thus 

the overprovisioning of the latter seems to be close to optimal. 

5. Conclusions 
 

Table 2. Summary 

Approach 
max loss 

(Gb/s) 

max cap 

(Gb/s) 

Avg over-

prov (%) 

Threshold 0 75 73% 

RL 10 51 20% 

LSTM 5 63 36% 

LSTM+RL 0 67 49% 
 

Autonomous connection capacity management has been proposed based on extending short-term RL knowledge 

with LSTM for long-term traffic prediction. The approach exhibited noticeable performance under daily traffic 

profiles with on-off sharp changes, which resulted in no losses and moderate capacity overprovision. 
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