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Abstract—In this work we describe a novel approach for the 

prediction of the flight plan to be sent by airspace users during the 

pre-tactical phase of Air Traffic Flow and Capacity Management 

(ATFCM). The proposed approach uses machine learning 

algorithms to extract airspace user preferences in terms of route 

characteristics, allowing the prediction of new routes not observed 

during the model training phase. We present the results obtained 

from applying this approach to short and medium range KLM 

flights for 52 weeks. Results show that the proposed solution is 

robust, scalable and capable of reducing the number of wrong 

predictions provided by the current Network Manager 

operational solution by 24.3% (4.5% increment on accuracy).  

Keywords—ATFCM, pre-tactical trajectory forecast; machine 

learning; airline preferences. 

I.  INTRODUCTION

The continued increase of air traffic experienced in the last 

decades, now temporarily stopped by the impact of COVID-19, 
was already stretching airspace capacity to its limits in many 

areas worldwide. The goal of Air Traffic Flow and Capacity 

Management (ATFCM) is to ensure that airport and airspace 

capacity meet traffic demand while optimising traffic flows to 

avoid exceeding the available capacity when it cannot be further 

increased, following a seamless process that spans from strategic 

planning to operations.  

In Europe, ATFCM is handled by EUROCONTROL, in its 

role of Network Manager, and comprises three phases: strategic 

planning, which covers the planning phase between 18 months 

and 7 days before operations; pre-tactical flow management, 

applied during the six days prior to the day of operations; and 
tactical flow management, which takes place on the day of 

operations. In order to detect demand and capacity imbalances, 

the Network Manager estimates the expected demand at a given 

timeslot and compares it with the expected available capacity in 

different airspace volumes (sectors) and airports. The 

information to estimate the demand comes from the airspace 

users (AUs), while the information on possible ways to sectorize 

the airspace and the expected capacity provision is given by the 

air navigation service providers (ANSPs).  

During the pre-tactical phase, few or no flight plans (FPLs) 

have been filed by the AUs and the only flight information 

available to the Network Manager are the so-called flight 

intentions (FIs), which include the flight call sign, the airline, the 

origin and destination airports, the estimated departure time, and 

the aircraft model to be used. Trajectory information becomes 

available only when the AUs send their FPLs. To forecast this 

information, the Network Manager relies on the PREDICT tool, 

which is used to predict the FPL before it is filed and provide the 

Network Manager Operations Centre (NMOC) with the 

information required to ensure a correct allocation of resources 
in coordination with the ANSPs [1]. PREDICT generates traffic 

forecasts according to the trajectories chosen by the same or 

similar flight codes in the recent past, without taking advantage 

of the information potentially encoded in historical FPLs and 

trajectory data.  

This paper proposes an Artificial Intelligence system that 

emulates the airline decision making process by exploiting the 

characteristics of the route that intervene in such decision. The 

use of machine learning models has two main advantages: the 

identification of trends and patterns which are not directly 

observable and the continuous improvement of the models with 
the increase of the available data. Nevertheless, the development 

of a machine learning system is not a trivial task and it requires 

detailed knowledge of the problem to be modelled. We argue 

that only the adequate combination of ATFCM-related expertise 

and machine learning can yield successful predictions.  

Our previous work in [2] and [3] demonstrated that machine 

learning can be successfully applied for FPL prediction during 

the ATFCM pre-tactical phase, outperforming the PREDICT 

tool. However, the models reported in these papers have a 

number of limitations related with the fact that the models were 

generated individually by Origin-Destination (OD) pair, so there 

was no real generalisation of the airline decision making 
process.  Additionally, the proposed models were constrained to 

predict one of the previously observed trajectories, and therefore 

are not able to predict a newly created trajectory.  

Following a different approach, the work in [4] applied 

machine learning techniques to calculate the probability of 



choosing different routes according to route charges, ground 

distance and the percentage of regulated flights in each one of 

the potential routes. In this case flights were segmented 

according to airline type and arrival time. This model was 

applied to the OD pair Istanbul-Paris. The paper shows that the 
model provides a fair performance. Nevertheless, it concludes 

the need of including more variables in the model.  

Regarding the use of additional variables, the research 

carried out in [5] addresses the route prediction problem by 

considering the influence of 17 features. The authors observe 

that the most relevant variables are wind, thunderstorms and 

rain, followed by the miles in trail.  

Similar conclusions were obtained in [6] and [7], which 

predict the trajectories during the tactical phase. The presented 

experiments were performed using Hidden Markov Models 

(HMM) to select the most probable 4D trajectory. According to 

the authors, the probability of observing a certain trajectory 
depends on the weather, in particular temperature, wind speed, 

wind direction, and humidity. 

Based on the lessons learnt from previous studies, this paper 

proposes a novel machine learning model that predicts the routes 

flown by different airlines using a single model for each airline 

(independent of the OD pair) that, based on the recognition of 

the airline preferences, simplifies the prediction task and 

facilitates the training process. This methodology aims to 

provide a general and consistent solution able to predict routes 

that have not been previously observed.   

The rest of this paper is structured as follows: Section 2 
details the proposed methodology; Section 3 presents and 

discusses the main results of the experiments; finally, Section 4 

summarizes the main conclusions of the study and discusses 

future steps. 

II. APPROACH AND METHODOLOGY

A. Approach

A preliminary data exploration revealed that airlines tend to 

select the same route among the set of feasible routes for a given 

OD pair. The selected route is often the shortest one, although 

route charges can sometimes compensate the cost of a longer 

route. Additionally, we have observed that, for certain OD 

pairs, route choices depend on specific conditions, such as the 

day of the week, the route wind or the airport configuration.  

Overall, the common patterns determining airline route 

choice behaviour are apparently too complex to be modelled by 

simple rules. The approach followed in this work proposes to 

train a machine learning model which is fed with all potentially 

relevant variables. 

As the described behaviours have been observed to be 

different by airline, even for the same OD pair, the proposed 

approach contemplates the generation of an independent model 

by airline. From a machine learning perspective, the model 

attempts to predict the chosen route by performing route-based 

binary predictions to determine the probability to file a 

particular route given its characteristics (i.e., the probability to 

flight each route is predicted independently). In terms of the 

observations feeding the model, the decision of the airline to fly 

a particular route given its characteristics is an observation, but 

the decision of not flying another available route is also a valid 

observation. The use of both observations does not only provide 

more valid observations, but also helps to identify which routes 

are less likely to be flown under certain circumstances (e.g., 

during a storm). Ultimately, the model will provide the 

probability of flying each one of the available routes, so that the 

most probable route for each flight is finally selected. 

B. Data

The necessary condition for the proper training of machine 

learning models is the availability of sufficient data, especially 

when the feature space is large. The present research has used 

the following data sources:  

1) EUROCONTROL’s Demand Data Repository 2

(DDR2)

This is the main data source.  The extracted data, extracted 

from [8], covers AIRAC cycles 1801 to 1813, which correspond 

to 52 weeks of traffic in 2018. The information extracted from 

the DDR2 includes: 

 Flight Plans: they contain the route filed by the airline,
which is the expected output of our prediction model.

The flight plan available at the DDR2 is the last filed

Flight Plan (also known as M1).

 Route charges: unit rates by ANSP updated monthly.

 Airport location: geodesic reference location of each

airport.

2) Copernicus Climate Data Storage service (CDS)

CDS ([9]) provides geospatial weather information 

contained in different products. The ERA5 data product has been 

used. ERA5 data contains dozens of weather variables, 

particularly wind and severe weather variables, among others. 

Data is available by pressure level; nevertheless, as Flight Level 

(FL) is not taken into account in this work, a typical cruise level 

value of 200mb (~FL380) is used as default pressure altitude in 

the model.  

3) IOWA MESONET

The IOWA MESONET provides access to the airports 

METAR files through [10]. METAR files contain a time record 

of the airport’s meteorological station. 

4) Socioeconomic statistics

Gross Domestic product has been obtained using the gridded 

dataset provided by [11], which combines national and regional 

data and is provided with 0.5 geodesic degree resolution.  

Population density has been obtained from NASA´s 

Socioeconomic Data and Applications Center ([12]). The data is 

based on counts consistent with national censuses and 
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population registers with respect to relative spatial distribution 

and is also provided with 0.5 geodesic degrees resolution. 

Finally, kerosene daily prices are extracted from the Federal 

Reserve Economic Data ([13]). 

C. Route clustering

Route clustering is implemented to group routes that have 

minor geographic variations but do not involve a relevant 

difference from ATFCM perspective. 

The application of clustering facilitates data processing as 

routes are afterwards identified with a cluster tag and the process 

just needs to keep track of a unique route (also called central 

route) per cluster tag. 

Clustering techniques were already used in [2], which 

performed a clustering using the area between two routes as 

distance metric and DBSCAN as clustering algorithm. Two 

changes have been implemented with respect to this work: 

 The minimum number of routes to consider a cluster is

now one. This means that all routs belong to a cluster,

in contrast with the case of [2], where in order to define

a cluster, a minim number of 5 routes was required. This

leads to a number of cluster-less routes which were

grouped in a cluster defined as noise.

 The clustering is performed independently by AIRAC,

i.e., the central routes obtained for each AIRAC are now

the routes considered available for that AIRAC.

It is important to note that, while the training process has 

access to historical routes, the list of routes to be flown is not 

known beforehand, in other words, the algorithm cannot have 

the available route options for prediction. This issue could be 

solved in the operational domain by using a route catalogue or a 

path finder algorithm, which could generate a set of valid routes, 

given an OD pair, providing the different route options for the 

prediction problem. However, these tools are not publicly 

available. To overcome this limitation, we assume that the 
available routes are the observed routes in the validation AIRAC 

cycle. Therefore, the clustering follows the same approach both 

for the training and the prediction datasets. 

D. Cluster variable asignment

The model developed considers two kinds of features: 

general variables and cluster variables. 

Cluster variables are dependent on the route under study. A 

simple route characteristic, e.g., route length, cannot provide 

information to the model by itself, as it is actually the length 

difference with other available routes what is relevant for the 

route choice problems. In other words, the model needs a 

reference. 

It is also important to highlight that route variability in the 

FPLs is relatively low. Around 80% of the flights of an airline 

for a given OD pair follow the same route, i.e., airlines tend to 

consistently take the same route and select a different one only 

under specific conditions. It thus seems logical to take the most 
flown route as reference. For each AIRAC cycle, we have 

considered as a reference route the most flown in the previous 

cycle. For example, if the length of a route is 1,000 km and the 

length of the most flown route is 1,100 km, the reference value 

for the first route will be -100 km. 

The cluster variables considered in the model are listed 

below. 

1) Ground distance

The ground distance is probably the first variable motivating 

airline’s choice. It is calculated by summing the projected 

ground length of the different segments composing the route. 

Following EUROCONTROL’s recommendations, we have 

discarded the trajectory waypoints that were located closer than 
40 NM to the origin and destination airports, in order to avoid 

introducing noise in the analysis of routes with minor differences 

in the terminal airspace. 

2) Air distance

The wind length is calculated by adjusting the ground 

distance with the wind extension. The wind extension is 

calculated using the average wind projected along the flight path 
for each cluster central route and multiplying this average wind 

by the central route flight duration.  

The air distance could be shorter (net tailwind) or longer (net 

headwind) than the route length. 

3) Fuel cost

Fuel cost is known to be one of the main direct costs in the 
aviation industry. According to [14], the cost of the fuel alone 

can represent more than 30% of the airline operating costs. The 

calculation of fuel cost has two major components: fuel 

consumption and fuel price. One of the proposed features, air 

distance, is a used as a basis to calculate fuel consumption. 

Although climbs and descents are typically longer than 40NM, 

in this paper we assume that the air distance computed above is 

entirely flown in cruise conditions. Then, fuel consumption can 

be approximated by multiplying the air distance by the typical 

economic cruise fuel consumption. The typical economic cruise 

consumption for the Boeing 737-800, obtained from [15], has 

been taken as a reference value, as it is the most common aircraft 
in KLM’s fleet; for other aircraft, fuel consumption has been 

assumed to be linear with the Maximum Take-off Weight 

(MTOW). Finally, fuel cost is estimated according to daily 

kerosene price. 

4) Route charges

AUs pay different charges to cover different ATM services. 

These charges can be airport or route charges. As origin and 
destination airports are already fixed for the prediction, the only 

possible differences are in the route charges. The work done in 

[16] suggests that European airlines take into account the route

charges when filling their flight plans. European route charges

are calculated according to the entry and exit points on the

different national airspaces that the flight navigates in.

Under the valid route charging scheme for the analysed 

period (2018), airlines paid charges according to the FPL, not 
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the flown route. This situation changed in January 2020, when 

AUs started to get charged for the actual flight path. 

5) Direct cost

The variable “direct cost” aggregates the charges and the fuel 

cost.  

6) Convective phenomena

Convective phenomena features are calculated along the 
central routes. For each meteorological indicator, the average 

and the maximum values observed are calculated as features. 

The meteorological indicators used are:  

 K-index: also known as George´s index, it is a measure

of thunderstorm potential. It is a function of

Temperature and Dew Point at several altitudes.

 CAPE: convective available potential energy. It is a

measure of the instability in the atmosphere.

 Humidity: the presence of a relatively high fraction of

water in the atmosphere is a necessary condition for

some events such as storms to happen.

7) Local wind at origin/destination airport

Local wind is extracted from the origin and destination 

airports METAR files for the expected departure and arrival 

time. Based on the analysis of previous work, the airport 

configuration, which is highly dependent on the local wind, we 

have identified airport runway configuration as a feature having 

significant influence on route selection. This effect cannot be 
seen in every OD pair as it appears to be related with those cases 

in which arrival/departure points are rather separated in the 

terminal area, the ground distances are almost equally large for 

both options, and the convenience of using one of them depends 

on the airport configuration.  

There are two components of the wind to be taken into 

account: the wind speed and the wind direction. Wind speed is 

just a scalar magnitude, so it can be directly used as a feature, 

while wind direction requires further processing. The hypothesis 

behind the wind direction is that, assuming the availability of 

similar routes that depart from/approach the airport in different 

directions, the airline will select the route that minimizes the 
need for manoeuvres. In other words, the airline will select the 

route whose first/last segments of the trajectory are more aligned 

with the take-off/landing direction. As operations are preferred 

to be done with head wind, especially landing, the wind may 

serve as a proxy of the airport runway configuration and the 

angle between the wind and the last/first segments should 

indicate the alignment with the airport configuration. An 

example of this calculation is presented in Figure 1. Ideally, the 

value of this angle would be 180 degrees if the last segment and 

the airport configuration (wind) were fully aligned. 

8) Military zones

The impact of the military zones on aircraft trajectories has 

been addressed in [17] under a tactical scope. While it is clear 

that airspace restrictions will have a significant impact on 

pre-tactical planning, it is important to discuss the particularities 

of the European military airspace. 

The European ATM system works under the Flexible Use of 

Airspace (FUA) concept, which means that airspace is no longer 

designated as purely "civil" or "military" and any necessary 

segregation is temporary, based on real-time usage within a 

specific time period. As a result of the application of FUA, the 

routes going through military airspace receive the name of 

Conditional Routes (CDR). Depending on the usability of these 

routes, they can be divided in three types: 

 CDR 1 - Permanently plannable CDR during the times
published. Available most of the time, not available

under specific conditions (e.g., activation of a military

training zone)

 CDR 2 - Non-permanently plannable CDR. Available

under specific conditions, such as to facilitate traffic

flow and increase ATC capacity

 CDR 3 - Not plannable CDR. Available on short notice,

useable only on ATC instructions.

For the purpose of this work, CDR 3 routes have no impact 

as they can never be included in the FPLs. As for CDR 1 and 2, 

there is no practical difference, as both are announced to be 
opened or closed in advance to the flight planning phase, so their 

usage is supposed to be known the day before operations and 

therefore, both are treated equally in our model. 

The airspace information included in the DDR2 repository 

contains the geographic description of the different military 

zones in Europe. Yet, it does not include the schedule of 

activation/deactivation of these zones or CDR time availability. 

The following approach was used to estimate the activation of 

the military zones: 

1. Calculate occupancy (based on FPLs) for each military

sector, day and hour.

2. Calculate the average occupancy for each sector and hour
of the day.

Figure 1. Local wind direction calculation for the pair LIRF-EHAM 

Wind

Last segment

α
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3. If, for a particular sector, day and hour, occupancy drops

are below a certain threshold, a military activation is

flagged.

Regarding the time windows in which the occupancy is 

calculated, selecting a large time (e.g., 6 hours) could lead to 
misdetections of the military closure, while a short period 

(e.g., 5 minutes) would generate a large number of false 

positives. After discussion with several ATM experts, the time 

window was set to one hour. 

Once the closure of military zones is estimated, each of the 

available routes is intersected with the active military zones at 

each given time and they are discarded as an observation if any 

of the crossed military zones was active. 

It is important to highlight that the estimated closure of the 

military zones is just a workaround developed in the frame of 

this research due to data access restrictions. A hypothetical 

operational deployment of the proposed solution will not need 
to estimate the airspace closure as this information should be 

available for the Network Manager.   

E. General variable asignment

Taking into account the results reported in [2] and [3], the 

following general variables have been selected: 

1) Day of week (DoW)

It is broadly accepted that air traffic has a strong weekly 

component. The DoW has been used in two ways: 

 Model feature: an integer number from 0-Monday to 6-

Sunday

 Route filter: routes only flown during weekdays were

not considered on weekends and the other way around.

2) Time of flight

We have used the Estimated Take-off Time (ETOT) of the 

flight. To capture the continuity between consecutive days, i.e., 

the fact that a flight departing at 23:55 will behave similarly to 

another departing at 0:10, a sin-cos transformation has been 

applied. The sin-cos transformation consists in the generation of 

two new features for each variable (see (1)), so they are always 

continuous. 

ℎ𝑐 = cos
2𝜋𝑉

𝑇
 ℎ𝑠 = sin

2𝜋𝑉

𝑇
 

where V is the variable to transform, the time of flight, and T the 

period (T=24 for the time of flight). 

3) Day of Year (DoY)

The DoY is the ordinal position of any day of the year 

starting from the 1st of January (e.g., 21st of May 2018 is DoY 
141). Following the same approach as for the time of flight, the 

DoY is also considered using a sin-cos transformation with 

T=365 (366 for a leap year). 

4) Flight direction

The airline behaviour is not expected to be uniform for all 

the flights. One of the variables that might capture these 

variations is the flight direction. Flight direction is composed by 

two variables, the geodesic longitude difference between the 

origin and destination airports and the latitude difference. 

Following the usual conventions, North and East are considered 

positive. As an example, the flight direction for the OD pair 
Roma Fiumicino (LIRF) – Amsterdam Schiphol (EHAM) will 

be (-10.51, 7.47). 

5) Airport socioeconomic variables

Nowadays, many airlines, especially legacy airlines, are 

profitable thanks to business travelling. Business travellers are 

often treated differently, so ultimately airline behaviour could be 

different for those flights that carry a significantly larger amount 

of business travellers.  

It is not possible to estimate the amount of business tickets 

in each OD pair with the information at our disposal. Since 

business trips typically have origin and/or destination in densely 

populated and richer areas, we have used the local population 

and GDP in the origin and destination airports as proxies, taking 

the closest point of the grids defined in Section II.B. 

6) OD pair competition

Following a similar approach as for the airport 

socioeconomic variables, it is possible that the competition in 

the OD pair might be affecting the airline behaviour. To take this 

into account, two proxy variables are considered: the OD pair 

frequency (computed as the number of flights) and the share of 

flights for each particular airline.  

7) Maximum take-off weight (MTOW)

The MTOW of the aircraft is used as a numerical variable 

that characterizes the aircraft model. It is expected that the 

airline decision is influenced by the aircraft model but also that 

similar models (similar MTOWs) will lead to similar decisions. 

Other characteristics of the aircraft, such as age or engines, could 

affect the decision process as well. Nevertheless, this 

information is not easily accessible, so it has not been included 

in the model. 

F. Model training

The machine learning algorithm used is a decision tree 

classifier. Although Decision Trees usually have a lower 

predictive power than more sophisticated algorithms, such as 

Random Forest or Neural Networks, they provide 

interpretability of results, which allows evaluating the effects of 

different conditions (weather, charges, etc.) on the final route 

choice decision. Cross-validation is used for hyperparameter 

tuning over the following hyperparameters: 

 max_depth: the maximum depth of the tree.

 criterion: the function to measure the quality of a split,

to be selected between the Gini index and entropy.

 min_samples_leaf: the minimum number of samples

required to split an internal node.
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III. RESULTS AND DISCUSSION

The proposed methodology has been applied to the KLM 

flights. The reason to select KLM is that it has a significant 

number of flights with heterogeneous characteristics (length, 

zones, schedules, etc.). This allows exploring a wider range of 

casuistic.  

All short and medium range flights of the airline with origin 

and destination inside the ECAC area have been considered. 

AIRAC 1813 has been chosen as a validation dataset and 

AIRACS 1802-1812 have been used to train the model. 

A. Results of the KLM Probability Model

This experiment is intended to provide an overview of the 

model results. The model has been trained for all the available 

KLM observations and several temporal scopes have been 

considered depending on the AIRAC cycles used for the training 

dataset. Results are presented in Table 1, which shows that 

accuracy does not increase consistently with the number of 

AIRAC cycles used for the training. The explanation to this 

behaviour seems to be related with the airline´s winter/summer 
seasonal strategies. Our hypothesis is that airline behaviour is 

slightly different in each season, so the performance is better 

when training only with AIRAC data from the same season as 

the testing dataset. This hypothesis would explain why Model 7, 

which is trained including several weeks from September in 

AIRAC 1810, shows worse performance than those Models that 

do not include AIRAC 1810 (5, 6 and 8). 

B. Model performance benchmark

In order to evaluate the performance of the proposed model, 

the accuracy has been measured and compared against that of 

PREDICT, the tool currently used by the European Network 

Manager. The PREDICT tool has been emulated following the 

information available from the Network Manager 

documentation [1] and the indications from EUROCONTROL 

experts. For each flight, the following workflow is applied:  

1. select the FPL of the previous flights with the same call

sign on the same day of the week. If this is not possible,
the FPL of the flight operated by the same company at

the closest time of the day is selected;

2. if no previous flight for the company is available, the

same operation is repeated regardless of the company;

3. if no flight meets the previous requirements, the most

recent FPL for the same OD pair is selected.

Additionally, the results are benchmarked against the 

machine learning model developed in [2] extended to the whole 

ECAC area, which we have called “Enhanced” model. The 

model presented in this paper, that will be called “Probability 

model”. The main differences between both models are: 

 The Enhanced model considers every OD pair as an

independent decision problem (i.e., a different model is

trained for each pair) in contrast with the current models

which includes all airline decisions in the same model.

 For each OD pair the Enhanced model consider flight

information and weather variables, route characteristics

such as length or charges are not included in these

models since they present no variation within the same

OD pair.

The analyzed results are not the binary classification results 

but the trajectory prediction (i.e., the most probable trajectory), 

which is the final outcome of the system. The goodness of these 
predictions will be assessed using only an accuracy metric per 

flight, which considers that a prediction is correct only if the 

route prediction matches the observed route. 

Model 8 from Table 1 has been selected for the Probability 

model benchmark as it is the best performing model. To ensure 

the comparability, the validation analysis has been performed 

over the same flights taken from AIRAC 1813. Comparative 

results are shown in Table 2. The accuracy, as already explained, 

represents the number of correct predictions divided by the total 

number of predictions for each model. As for the comparisons 

against PREDICT, the increment reflects the relative increase of 

correct predictions against PREDICT’s correct predictions, 
while the Error reduction is the relative decrease of wrong 

predictions against PREDICT’s wrong predictions 

Table 2 shows a significant improvement of the prediction in 

comparison with both the Enhanced model and PREDICT. The 

TABLE 2 – BENCHMARKING RESULTS 

Model Accuracy 

Increment 

(vs. 

PREDICT) 

Error 

reduction 

(vs. 

PREDICT) 

PREDICT 0.815 - - 

Enhanced 0.825 1.23% 5.41% 

Probability 

model 
0.860 5.52% 24.30% 

TABLE 1 – NETWORK MODEL RESULTS 

Model ID Training AIRACS 
Validation 

AIRACS 
Accuracy 

1 1812 1813 0.814 

2 1810-1812 1813 0.831 

3 1807-1812 1813 0.834 

4 1802-1812 1813 0.852 

5 1802,1811,1812 1813 0.849 

6 
1802,1803, 

1811,1812 
1813 0.854 

7 

1802,1803, 

1804,1810, 1811, 

1812 

1813 0.844 

8 
1802,1803, 

1804,1811,1812 
1813 0.860 
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reduction in the error is quite relevant as this model will avoid 

almost 1 out of 4 PREDICT’s erroneous predictions. 

C. Ad-hoc analysis, non-observed routes

One of the key improvements brought by the proposed 

modelling approach is that the model is capable of predicting 

new routes not previously observed in the training set. Since it 

is not necessary to include such routes in the training, the model 

is perfectly capable of calculating the probability of flying any 

new route just by deriving its features. 

To exemplify this feature, we have chosen the OD pair 

connecting Kristiansand (Norway) and Amsterdam 
(ENCN-EHAM). This OD pair shows a new route in AIRAC 

1813 that has not been flown previously in the training dataset. 

This new route is Route 3 (in purple) in Figure 2, which is used 

twice during AIRAC 1813. 

The predictions of the model for this OD pair are shown in 

Table 3. Results detail the number of times each route (ID) was 

predicted by each model, specifying how many of these 

predictions were correct and how many were wrong (e.g., the 

Enhanced model predicted route 2 on 16 occasions; from those 

16 times, 6 were correct predictions and for the rest, the model 

predicted route 2 but another route was actually selected). 

As it can be seen in Table 3, not only the two assignments to 

the route with ID 3* were correctly predicted by the model 

(while PREDICT does not forecast it correctly and the Enhanced 

model cannot even consider this prediction outcome), but also 

the general results outperform those from the two other models. 

The accuracy for all the predicted flights for the ENCN-EHAM 

OD pair shows an outstanding performance (75.9%) in 

comparison with the Enhanced model (63.0%) and PREDICT 

(51.9%). 

IV. CONCLUSIONS

In this paper we have proposed a route prediction solution 

based on using machine learning to extract airline preferences. 
The forecasts correspond to pre-tactical ATFCM operations, 

where the route shall be estimated before the AUs send their 

flight plans. The most relevant conclusions of the study are 

summarized below: 

 The proposed approach tested on the KLM airline,

which account for the 3% of flights in the ECAC area,

shows an 86% prediction accuracy, outperforming
current operational approach (PREDICT) by 5.52% and

reducing the prediction error by 24.3%.

 The model has been able to forecast non-observed

routes in the training set.

 The model accuracy is significantly affected by the

dataset used for training. Preliminary analyses suggest

the importance of using data from the same season.

Figure 2. ENCN-EHAM OD pair routes for AIRAC 1813. In brackets the 

number of times the rote has been used in this AIRAC. 

TABLE 3 – ENCN-EHAM PREDICTION

ID 
Route 

observations 

PREDICT Enhanced Prob. model 

Correct 

assignments 

Wrong 

assignments 

Correct 

assignments 

Wrong 

assignments 

Correct 

assignments 

Wrong 

assignments 

0 36 23 12 27 10 27 2 

1 5 1 4 1 0 3 1 

2 10 4 8 6 10 9 10 

3* 2 0 0 0 0 2 0 

4 1 0 0 0 0 0 0 

Noise 0 0 2 0 0 0 0 

Total 54 28 26 34 20 41 14 

Perc. - 51.9% 48.1% 63.0% 37.0% 75.9% 24.1% 
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Additionally, the proposed approach may still be improved. 

Some of the planned future steps include: 

 Extend the evaluation of the proposed methodology to

the main airlines operating in the ECAC area.

 Explore other segmentations (e.g., group of airports,

airline business model, aircraft type).

 Explore other machine learning algorithms: the decision

tree algorithm has been implemented as it fitted

conceptually with the airline decision process and it is

computationally efficient; nevertheless, other

algorithms such as neural networks might improve

prediction performance.
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