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Abstract—I/O forwarding is a well-established and widely-
adopted technique in HPC to reduce contention in the access
to storage servers and transparently improve I/O performance.
Rather than having applications directly accessing the shared
parallel file system, the forwarding technique defines a set of
I/O nodes responsible for receiving application requests and
forwarding them to the file system, thus reshaping the flow
of requests. The typical approach is to statically assign I/O
nodes to applications depending on the number of compute
nodes they use, which is not always necessarily related to
their I/O requirements. Thus, this approach leads to inefficient
usage of these resources. This paper investigates arbitration
policies based on the applications I/O demands, represented
by their access patterns. We propose a policy based on the
Multiple-Choice Knapsack problem that seeks to maximize
global bandwidth by giving more I/O nodes to applications
that will benefit the most. Furthermore, we propose a user-
level I/O forwarding solution as an on-demand service capable
of applying different allocation policies at runtime for machines
where this layer is not present. We demonstrate our approach’s
applicability through extensive experimentation and show it
can transparently improve global I/O bandwidth by up to 85%
in a live setup compared to the default static policy.

Index Terms—I/O forwarding, allocation policy, MCKP

1. Introduction

The increasing input and output (I/O) demands of appli-
cations from distinct domains stress the existing shared stor-
age infrastructure of High-Performance Computing (HPC)
facilities. Furthermore, the increasing heterogeneity of the
workloads running in HPC installations, from the tradi-
tionally compute-bound scientific simulations to Machine
Learning applications and I/O bound Big Data workflows,
pose new challenges. As systems grow in the number of
compute nodes to accommodate larger applications and
more concurrent jobs, the shared storage powered by Parallel
File Systems (PFS) is not able to keep providing perfor-
mance due to concurrency and interference [1], [2], [3].

To mitigate this issue, the I/O forwarding technique [4]
seeks to reduce the number of nodes concurrently accessing

the PFS servers by creating an additional layer between
the compute nodes and the data servers. Thus, rather than
applications accessing the PFS directly, the I/O forwarding
technique defines a set of I/O nodes that are responsible
for receiving I/O requests from applications and forwarding
them to the PFS in a controlled manner, allowing the appli-
cation of optimization techniques such as request scheduling
and aggregation. Moreover, its presence on an HPC system
is transparent to applications and file system agnostic. Due
to these benefits, the forwarding technique is applied by Top
500 machines1 (Table 1).

The forwarding layer is traditionally physically deployed
on special nodes, and the mapping between clients and I/O
nodes is static. Consequently, a subset of compute nodes
will only forward requests to a single fixed I/O node, which
ends up forcing applications to use I/O forwarding with a
statically pre-defined number of I/O nodes, even if that deci-
sion might not be in the best interest for a given workload.
Though this setup seeks to distribute I/O nodes between
compute nodes evenly, it lacks the flexibility to adjust to
applications’ I/O demands, and it can even cause the misal-
location of forwarding resources and an I/O load imbalance,
as demonstrated by Yu et al. [8] on the Sunway TaihuLight
and Bez et al. [9] on MareNostrum 4. Moreover, the number
of I/O nodes given to an application directly impacts its
performance, and the achieved bandwidth also depends on
the workload characteristics of the application [9].

In this paper, we argue in favor of a dynamic, on-
demand allocation of I/O nodes that considers an applica-
tion’s workload characteristics. Accordingly, given a set of

1. November 2020 TOP500: https://www.top500.org/lists/2020/06/.

TABLE 1. SOME OF TOP 500 MACHINES THAT ARE KNOWN TO USE
THE I/O FORWARDING TECHNIQUE (JUNE 2020).

Rank Supercomputer Compute
Nodes

I/O
Nodes

4 Sunway TaihuLight [5] 40, 960 240
5 Tianhe-2A [1] 16, 000 256
10 Piz Daint [6] 6, 751 54
11 Trinity [7] 19, 420 576
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applications ready to run and a fixed number of forwarding
resources, solving their allocation problem would consist
in determining how many I/O nodes each of them should
receive to maximize the aggregated global bandwidth. The
allocation policy should be invoked before new applications
start to run, and when the set of running jobs has changed.

However, due to the static nature of traditional I/O for-
warding infrastructures and the inherent limitations involved
in running a production supercomputer, it is not always
possible for system administrators to explore different I/O
allocation strategies without negatively impacting user jobs.
Thus, a research/exploration solution is required that allows
both I/O researchers and system administrators to obtain
an overview of the benefits or drawbacks of different I/O
forwarding configurations under different access patterns.
For such a solution to be useful, it should be portable,
allow existing applications to run without modifications
to their source-code and, if possible, run as a user-level
service to simplify deployment. As we advocate for dynamic
allocation, such a solution should also allow changing the
number of I/O nodes assigned to an application during its
execution without disrupting it. With these goals in mind,
our contributions are thus three-folded:

• We evaluate different I/O forwarding allocation poli-
cies and demonstrate that a dynamic allocation can
improve overall global bandwidth and system usage,
while efficiently using the available I/O nodes.

• We propose a forwarding allocation policy based on
the Multiple Choice Knapsack Problem (MCKP) to
arbitrate I/O nodes between applications.

• We present an I/O forwarding service called
GekkoFWD that acts as an on-demand forwarding
layer and implements the MCKP allocation policy.
GekkoFWD builds on top of a user-level ad-hoc file
system, enriching it to allow exploring different for-
warding deployments. It does not require application
modifications and it is simple to run in production.

This paper is organized as follows. Section 2 further
motivates this work. Section 3 addresses the arbitration of
I/O nodes and details our allocation policy based on the
Multiple-Choice Knapsack Problem. Section 4 presents our
I/O forwarding solution at user-level. We discuss our results
in Section 5. Related work is reviewed in Section 6. Finally,
we conclude this paper in Section 7.

2. Motivation

To demonstrate how application-perceived I/O perfor-
mance can change in response to different forwarding
configurations, we executed several experiments on the
MareNostrum 4 (MN4) supercomputer to get the perfor-
mance curves of different access patterns with varying num-
bers of I/O nodes. We adopted a simple tool implemented in
user-space named FORGE (I/O Forwarding Explorer) that
allows replaying application I/O profiles in different for-
warding configurations [9]. MareNostrum has 3, 456 Lenovo
ThinkSystem SD530 compute nodes on 48 racks. Each
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Figure 1. I/O bandwidth of distinct write access patterns with a varying
number of I/O forwarding nodes in the MareNostrum 4 supercomputer.

TABLE 2. DETAILS OF THE ACCESS PATTERNS SHOWN IN FIGURE 1.

# Nodes Processes File
Layout

Request
Spatiality

Request
(KB)

A 32 1536 File-per-process Contiguous 1024
B 32 1536 File-per-process Contiguous 128
C 32 1536 Shared Contiguous 1024
D 16 192 Shared 1D-strided 128
E 8 192 Shared 1D-strided 1024
F 16 384 Shared Contiguous 128
G 32 384 Shared 1D-strided 512
H 8 384 Shared Contiguous 4096

node has two Intel Xeon Platinum 8160 24C chips with
24 processors each at 2.1 GHz which totals to 165, 888
processes and 390 TB of main memory. A 100 Gb Intel
Omni-Path Full-Fat Tree is used for the interconnection
network and a total of 14 PB of storage capacity is offered
by IBM’s GPFS (7 data servers and 2 metadata servers).
Using FORGE, we covered 189 scenarios with:

• 8, 16, and 32 compute nodes;
• 12, 24, and 48 client processes per compute node;
• File layout: file-per-process or shared-file;
• Spatiality: contiguous or 1D-strided;
• Operation: writes with O_DIRECT enabled to ac-

count for caching effects present in the system;
• Request sizes of 32KB, 128KB, 512KB, 1MB, 4MB,

6MB, and 8MB synchronously issued until a given
total size is transferred or 1s has passed.

Figure 1 depicts the achieved bandwidth computed from
the execution time (makespan), measured at client-side,
when multiple clients issue their requests following an ac-
cess pattern and taking into account the number of available
I/O nodes (0, 1, 2, 4, and 8). Each experiment was repeated
at least 5 times, in random order, and spanning different
days and periods of the day. Table 2 describes each depicted
pattern. The complete evaluation of the 189 experiments is
available at the paper’s companion repository2.

The optimal number of I/O nodes for each of the 189
scenarios, considering the available choices of I/O nodes,
is different. For 12 (6%), 83 (44%), 15 (8%), and 17 (9%)

2. https://jeanbez.gitlab.io/forwarding-arbitration
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scenarios, the largest bandwidth is achieved by using 1, 2,
4, and 8 I/O nodes respectively. Whereas, for 62 scenarios
(33%), not using forwarding is instead the best alternative.

As expected, there does not seem to be a simple rule
regarding the number of I/O nodes to fit all applications and
system configurations, which is to be expected given the
complexity of factors that can influence I/O performance.
Furthermore, some patterns seem to benefit the most from
having access to more I/O nodes than others. Consequently,
a static mapping of I/O nodes to compute nodes without
considering an application’s workload does not always result
in the best performance [9]. Hence, the need for appropriate
allocation policies that take into account these issues to
maximize globally-perceived I/O performance.

3. On I/O Node Arbitration

Since no simple rules allow to allocate I/O forwarding
resources to best suit all applications, I/O node arbitration
needs to be considered as an optimization problem. The
I/O node allocation may informally be thought of as the
following: given a set of jobs to run and a fixed number
of I/O nodes, determine how many forwarding nodes each
of them should receive to maximize the aggregated global
bandwidth. Thus, every time the set of running applica-
tions changes, the decisions have to be reevaluated. Based
on these requirements, this section describes our proposed
solution to the allocation problem. To prove that we are
on the right track, we evaluate its pre-implementation by
measuring the achieved I/O performance through simulation,
comparing it to different baselines.

3.1. The MCKP Allocation Policy

The Multiple-Choice Knapsack Problem (MCKP) is
an optimization problem, derived from the 0-1 Knapsack,
where the items are subdivided into k classes, each having
Ni items. The binary choice of taking an item in the 0-
1 problem is replaced by selecting exactly one item from
each class. Formally, the problem is described by (1). Where
the variables xij take on value 1 if and only if item j is
chosen in class Ni. While the problem is NP-hard, the time
complexity of its Dynamic Programming solution, which is
pseudo-polynomial, is O(W

∑k
i=1 Ni).

maximize
k∑

i=1

∑
j∈Ni

pijxij

subject to
k∑

i=1

∑
j∈Ni

wijxij ≤W,∑
j∈Ni

xij = 1,∀i ∈ {1, ..., k}

xij ∈ {0, 1},∀i ∈ {1, ..., k},∀j ∈ Ni.

(1)

We chose to model our problem after the MCKP as a
global goal (i.e., the aggregated bandwidth) needs to be
maximized based on a set of options available to choose
from (i.e., the number of I/O nodes an application could
use). We focus on optimizing how many forwarding nodes
an application should use rather than where it should run.

For the I/O node allocation policy, each class represents
an application, and the items of a class denote the number
of I/O nodes that the application could use. These items
can be different for each class, as long as the number of
compute nodes used by the application is divisible by the
number of I/O nodes. This constraint is to improve load
balancing. Furthermore, it is limited by the total number
of I/O nodes. The weight wi of each item represents the
number of I/O nodes, and the value pi the bandwidth.
We must pick one choice for each application, seeking
to maximize the global bandwidth, taking into account a
pool of available I/O forwarding nodes, represented in the
problem by the capacity W .

We assume that we have information about an applica-
tion’s I/O performance using different numbers of forward-
ing nodes. One can obtain it from exploratory executions,
though this information can also be extracted from Dar-
shan [10] traces, which are already transparently collected
at many supercomputers. These traces can be used to iden-
tify the base access patterns (e.g., file approach, spatiality,
and request sizes), the number of processes making I/O
requests, and the total transferred data volume. Combined
with performance metrics of short benchmark runs using
those base patterns with different number of I/O nodes,
they allow us to estimate the complete application’s I/O
performance. Hence profiling runs with different forwarding
setups for each application are not required. Details of such
an approach are described in [11], as here we focus on the
allocation policy. When no such application data is available,
i.e., on its first execution, MCKP is provided with the default
number of I/O nodes the application would receive for that
particular system setup, hence avoiding a negative impact
on performance, and future runs could make better decisions
based on the collected data.

In our experiments, we allow applications to not use
forwarding, which implies no need for sharing I/O nodes
as the number of available forwarding resources is always
enough. An additional option could be given to the applica-
tions when sharing is inevitable due to system deployment:
using a system-wide shared I/O node. Nevertheless, we seek
to avoid that where possible as it could bring performance
interference. When considering sharing, we could use a
naive estimation based on the bandwidth of using a single
node (for that application) divided by the total number of
running applications. There are two caveats to this approach:
(I) estimating the impact of interference is not simple and
(II) the number of applications sharing the I/O node will be
smaller than the number of running applications. Nonethe-
less, such an estimate does not present an issue as it would
be a low-bandwidth option that the policy will take only for
the least-performant applications. The remaining (N − 1)
I/O nodes could then be given to MCKP to arbitrate.



3.2. Evaluation of MCKP Applicability

From the 189 patterns executed at the MN4 machine,
as described in Section 2, we randomly sampled sets of 16
to simulate each policy considering N available I/O nodes.
For this experiment, each pattern is an application that is
ready to run. We generated 10, 000 sets, to cover multiple
combinations of those patterns running at the same time,
having up to 128 forwarding nodes to allocate among the
16 applications – eight per application, the maximum I/O
node number for which we have results. In those sets, the
median number of compute nodes used by all applications
was 256, with a minimum of 88 and a maximum of 512
nodes. Results are then obtained by Equation 2, taking the
sum of the 16 applications’ bandwidth. The W and R in
the equation represent the total transferred size by write and
read operations for each application a.

aggregate BW =

16∑
a=1

(
Wa +Ra

runtimea

)
(2)

We compare our MCKP solution to alternative policies:

• ZERO and ONE Policies: each application is as-
signed zero or one I/O nodes. These policies demon-
strate the initial impact of using I/O forwarding.

• STATIC Policy: the total number of I/O nodes
is divided between the applications based on the
number of compute nodes each one requires (Ca).
The number of I/O nodes assigned to application
a is given by ceil(Ca

R ), where R = C
F . C and F

are the total numbers of compute and I/O nodes
in the system. This is the policy used by some
supercomputers that have forwarding.

• SIZE and PROCESS Policies: the I/O nodes are
proportionally divided between the running appli-
cations based on their sizes sa (number of com-
pute nodes or processes). The number of I/O nodes
assigned to application a is round

(
F × sa∑A

i=0 si

)
,

where F is the total number of forwarding nodes,
and A the number of applications. The main differ-
ence to the STATIC policy is that even when not all
compute nodes are in use, all I/O nodes are.

• ORACLE Policy: each application is assigned the
number of I/O nodes that achieved the highest band-
width, obtained from our performance evaluation
(Figure 5). This is a fictitious policy that disregards
the limited number of I/O nodes in the system. It is
intended to provide an upper bound for the gains.

If we consider the ONE policy, where we allocate a
single non-shared I/O node to each application and compare
it to not using forwarding (ZERO), in our simulations, we
observed a median slowdown of 82.11%. As the majority of
the tested workloads benefit from using more than a single
I/O node, or not using I/O forwarding at all, this policy is not
well suited. On the other hand, if we compare the ZERO to
the ORACLE policy, it is possible to better grasp the poten-
tial improvements of using forwarding. In this comparison,
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Figure 2. Median global bandwidth observed in the 10, 000 sets of 16
randomly selected applications from the 189 scenarios collected at MN4
supercomputer, as described in Section 2.
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Figure 3. Improvements of MCKP over the STATIC arbitration policy.

we observed a minimum performance boost of 0.83% and
a maximum of 121.68%. The median improvement was of
25.63%, obtained by using forwarding correctly.

Figure 2 compares the median aggregated bandwidth,
computed by Equation 2, of the 10, 000 experiments for
each number of I/O forwarding nodes using the arbitration
policies. The MCKP policy achieves the same aggregated
bandwidth as the ORACLE policy (which is not limited
by the number of available I/O nodes) when 56 forward-
ing nodes are allocated between the 16 random running
applications. These results also demonstrate that allocating
I/O nodes solely based on application size (i.e., number
of required compute nodes or processes) is not the best
solution. Compared to the STATIC policy, when the optimal
number of 56 I/O nodes is available, the MCKP policy
achieved a minimum performance boost of 4.08% and a
maximum of 739.22%. The median was 211.38%. Figure 2
also highlights the importance of considering the applica-
tions’ I/O demands when fewer than the optimal number of
I/O nodes are available to be arbitrated.

Figure 3 complements the results by depicting the dis-
tribution — minimum, median, and maximum — of the
improvements in aggregate bandwidth shown by MCKP
when compared to the STATIC alternative used by many
supercomputers today. The highest median improvement of
5.11× is attained when 24 I/O nodes are available, which
gives a ratio of I/O nodes per compute nodes of 1:20,
considering the median number of compute nodes the sets
of applications have. With this pool size, the MCKP policy
improved bandwidth between 1.03× and 15.06× over the
STATIC policy. When fewer I/O nodes are available to arbi-



trate among the running applications, the allocation decision
has more impact on global bandwidth. As we are consider-
ing sets of 16 random applications (drawn from 189), the
difference between MCKP over STATIC can be highlighted
(red line in Figure 3), depending on the characteristics and
number of compute nodes of each application.

Most interestingly, MCKP never impacts bandwidth neg-
atively when compared to the STATIC policy. Furthermore,
MCKP provides, on average, 2.6× the aggregated band-
width of the existing solution and reaches up to 23.75× the
aggregated bandwidth of the STATIC policy. The difference
between these two policies tends to reduce as more I/O
nodes are available, but MCKP still outperforms STATIC
by 1.6× to 2.7×, for 64 I/O nodes (1:8) up to 128 (1:4)
I/O nodes available in the system.

4. GekkoFWD: On-Demand I/O Forwarding

Although FORGE allows replaying I/O profiles from
applications to rapidly explore different I/O forwarding de-
ployments, it lacks the support to actually run applications
themselves. Besides, once an I/O node mapping is selected,
it is impossible to dynamically change the number of allo-
cated I/O nodes at runtime. Therefore, we propose a full-
fledged user-level I/O forwarding solution that is adequate
and easy to run in production machines. To achieve this
goal, we enriched an existing ad-hoc file system called
GekkoFS [12], [13] with a forwarding mode. GekkoFS
creates a temporary file system on compute nodes using
their local storage capacity as a burst-buffer to alleviate I/O
peaks. It ranked 4th in the overall 10-node challenge of
IO5003 in November 2019, as well 2nd concerning metadata
performance in the same challenge.

GekkoFS uses the local storage available on compute
nodes to provide a global namespace accessible to all par-
ticipating nodes. The GekkoFWD extension mode modifies
it to use the shared PFS (e.g., Lustre, GPFS) for storage
instead. Moreover, data operations in GekkoFS are typically
distributed across all nodes using the Mercury HPC RPC
framework. Once an I/O operation is intercepted, the client
forwards that request to the responsible server, determined
by hashing the file’s path. To achieve a balanced data
distribution, each file is split into equally sized chunks by
the client and distributed among the servers. Conversely,
GekkoFWD enables GekkoFS servers to act as intermediate
I/O nodes between the compute nodes and the PFS data
servers. To achieve this, we leverage the system call inter-
ception infrastructure in each GekkoFS client to transpar-
ently capture all application I/O requests in each compute
node. Then GekkoFWD forwards those requests to a single
server, which will now act as an I/O node as determined by
a pre-defined allocation policy. To conform to such a policy,
we included a thread in the GekkoFS client that checks for
mapping updates and responds to any modification.

Since forwarding layers are transparent to applications,
they usually are a perfect target to implement I/O optimiza-

3. https://www.vi4io.org/io500/list/19-11/10node
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tions such as file-level request scheduling [14], [15], [16].
For that reason, we integrated the AGIOS [17] scheduling li-
brary into GekkoFWD. AGIOS provides several schedulers,
giving GekkoFWD the flexibility to prototype new schedul-
ing solutions. Once a request is received by a GekkoFWD
I/O node, it is fed to AGIOS to determine when it should
be processed. Once scheduled, it is then dispatched to the
PFS and executed following the normal flow of requests in
GekkoFS. Figure 4 depicts a deployment of GekkoFWD,
where some applications use forwarding and others do not,
depending on the pre-selected policy. GekkoFWD is open
source and is available in the official GekkoFS repository4.

5. Experimental Evaluation

Since we needed fine control on allocation decisions,
our evaluation was conducted on the Grid 5000 (G5K)
platform, a large-scale testbed for experiment-driven re-
search. Our experiments used two clusters from the Nancy
site: Grimoire (8 nodes) and Gros (124 nodes). Grimoire
nodes are powered by an Intel Xeon E5-2630 v3 processor
(Haswell, 2.40 GHz, 2 CPUs per node, 8 cores per CPU) and
128 GB of memory. The Lustre parallel file system servers
deployed on Grimoire nodes use a 600 GB HDD SCSI Sea-
gate ST600MM0088. Gros nodes are powered by an Intel
Xeon Gold 5220 processor (Cascade Lake-SP, 2.20 GHz,
1 CPU/node, 18 cores/CPU) and 96 GB of memory. Each
node of Gros is connected to two switches with 2×10Gbps
Ethernet links. The two switches are connected to another
one with 2× 40Gbps links each. The latter is connected to
Grimoire’s nodes with 4× 10Gbps Ethernet to each node.

5.1. Applications

To demonstrate the applicability of MCKP under mixed
I/O workloads, we ran five different application kernels and
the IOR5 micro-benchmark on top of GekkoFWD.

• The S3D I/O Kernel [18] performs N checkpoints
(five in our case) at regular intervals, where it writes
three and four-dimensional arrays of doubles into

4. https://storage.bsc.es/gitlab/hpc/gekkofs/-/releases
5. https://github.com/hpc/ior
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TABLE 3. SETUP AND I/O CHARACTERISTICS OF THE APPLICATIONS.

Label Application Operation File Approach Write (GB) Read (GB) Total (GB) Nodes Processes

BT-C NAS BT-IO (Class C) write / read Single shared file 6.3 6.3 12.6 32 128
BT-D NAS BT-IO (Class D) write / read Single shared file 126.5 126.5 253.0 64 512
HACC HACC-IO write File-per-process 1.8 0 1.8 8 64
IOR-MPI IOR (MPI-IO) write / read Single shared file 16.0 16.0 32.0 16 128
POSIX-S IOR (POSIX) write / read Single shared file 16.0 16.0 32.0 16 128
POSIX-L IOR (POSIX) write / read File-per-process 32.0 32.0 64.0 64 512
MAD MADBench2 write / read Single shared file 16.2 16.2 32.4 32 64
SIM S3DSIM write Single shared file 19.6 0 19.6 16 16
S3D S3D-IO write Multiple shared files 33.7 0 33.7 64 512
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0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8
0

50
100
150
200
250

0
100
200
300

0
100
200
300

0

1000

2000

0
2000
4000
6000

0

2000

4000

0

2000

4000

0
200
400
600

0
100
200
300
400

I/O Forwarding nodes

Ba
nd

w
id

th
 (M

B/
s)

Figure 5. I/O bandwidth, measured at client-side, of five repetitions of each application described in Table 3. The x-axis represents the number of I/O
forwarding nodes exclusively used by the job. The y-axis is not the same for each plot.

a newly created file. All three-dimensional arrays
are partitioned among the MPI processes, whereas
the fourth dimension (the most significant one) is
not partitioned. We configured it to use PnetCDF
nonblocking APIs, where each checkpoint has four
nonblocking write calls, a wait, and a flush [19].

• MADBench2 [20] has three I/O component func-
tions, each with different access patterns, named S,
W, and C. The S component consists of writes by
a subset of the processes. In W, that data is read
back, and a smaller subset writes new data. Finally,
in component C, that data is read back. MADBench2
uses the MPI-IO interface to issue its I/O operations
synchronously to a single shared file.

• HACC-IO6 is an I/O kernel of the HACC applica-
tion used to simulate collision-less fluids in space
using N-Body. In our tests, we used N = 100K
particles. Each process writes N × 38 bytes and a
24 MB header to its own file through POSIX.

• S3aSim [21] uses a parallel programming model
with database segmentation, which mimics the mpi-
BLAST access pattern. Given input query sequences,
it divides up the database sequences into fragments.
Workers request a query and fragment information
from the master and search the query against the
database fragment assigned. The results are sent
to the master to be sorted and then written to a
single shared file. We configured S3aSim to issue
100 queries varying from 1 to 10 to a database
sequence of sizes ranging from 6 to 45, 088, 768,
both using a simple uniform random distribution
and 128 fragments. Each query writes from ≈ 4MB
to 328MB of data, ≈ 100MB on average. This
application uses individual I/O operations, without

6. https://github.com/glennklockwood/hacc-io/

synchronizing after writing every query.
• NAS BT-IO7 is based on the Block-Tridiagonal

(BT) problem of the NAS Parallel Benchmarks
(NPB). After every five time steps, the entire solu-
tion, consisting of five double-precision words per
mesh point, must be written to file. In the end,
all data belonging to a single time step must be
stored in the same file and must be sorted by vector
component, x, y, and z-coordinate. We used the
BT-IO MPI version with collective buffering, where
data scattered among the processors is collected on
a subset of the participating processors and rear-
ranged before written to file in order of increasing
granularity. The C class with 128 processes issues
MPI-IO requests of 1.34MB and POSIX requests
of 5.23MB, according to Darshan logs. The D class
with 512 processes issues larger requests of 5.35MB
and 12.31MB, for MPI-IO and POSIX, respectively.

Table 3 labels each application based on its configura-
tion. We detail the parameters used to run each one of them
in our companion repository. We compute the bandwidth for
each application by measuring the application’s execution
time at the client-side (i.e., the makespan). Figure 5 confirms
FORGE’s results in Figure 1, where in neither case there is
a single allocation solution that best fits all applications.

As we executed all applications using C compute nodes
and P processes, where both C and P are a power of two,
we also considered the number of available I/O nodes each
application can use as powers of two. For our evaluation, the
policies can choose between 0, 1, 2, 4, and 8 I/O nodes for
each application. In practice, these options would comprise
numbers divisible by the number of compute nodes used by
each application to improve load balancing.

7. https://www.nas.nasa.gov/publications/npb.html

https://github.com/glennklockwood/hacc-io/
https://www.nas.nasa.gov/publications/npb.html


5.2. Allocation Decisions

In this section, we investigate the allocation of I/O nodes
with a subset of the applications described in Section 5.1.
The aggregated bandwidth is computed as the sum of the
bandwidth achieved by each application when using the
number of I/O nodes allocated to it by the arbitration policy.
We focus on a set of jobs composed of BT-C, BT-D,
IOR-MPI, POSIX-L, MAD, and S3D. In total, these appli-
cations require 72 compute nodes. A complete experiment
with all applications, dynamically changing the allocated I/O
nodes, is presented in Section 5.3.

Figure 6 details the results. The x-axis represents the
number of available I/O nodes to arbitrate, and each box
groups a policy. The first group represents direct access to
Lustre, whereas the second is the ONE policy. The last box
represents the ORACLE policy, as detailed in Section 3. As
demonstrated by the results with FORGE at MN4, the ONE
policy represents a global slowdown (39.17%) compared
to directly accessing the PFS servers, even though some
applications such as S3D would benefit from this choice.
The STATIC, SIZE, and PROCESS (the latter not depicted)
cannot achieve the same aggregated bandwidth as the MCKP
policy that is 4.59×, 4.59×, and 4.1× better than the
alternatives. MCKP achieves the same performance of the
ORACLE (the upper bound) when 36 nodes are available to
be arbitrated among the 6 running applications (Figure 6).

Regarding the number of allocated I/O nodes, the
STATIC and SIZE policies distribute the I/O nodes in a non-
optimal way. Under the constraint of 12 available I/O nodes,
for instance, applications BT-C, MAD, and S3D should not
use forwarding, as detailed by Table 4. Instead, IOR-MPI
should receive more I/O nodes as it can achieve a bandwidth
that is 18.96× higher when using eight forwarders instead
of one. The MCKP policy does not give any I/O nodes for
S3D as the direct access to the PFS is the best option.

We analyzed the penalty to the performance of individual
applications caused by our MCKP policy, which aims at
maximizing the global bandwidth, in Figure 7. For each
total number of available I/O nodes (the boxes), we show the
performance of each application (x-axis) with the assigned
number of I/O nodes, compared to the best possible result
for that application running alone under the same number of
I/O nodes. With four I/O nodes, applications IOR-MPI and
S3D manage to achieve the same performance they would

TABLE 4. ALLOCATED FORWARDERS AND ACHIEVED BANDWIDTH
USING THE STATIC, SIZE, AND MCKP POLICIES AND 12 I/O NODES.

STATIC SIZE MCKP
I/O

Nodes
BW

(MB/s)
I/O

Nodes
BW

(MB/s)
I/O

Nodes
BW

(MB/s)

BT-C 1 77.6 1 77.6 0 195.7
BT-D 2 594.2 2 594.2 1 597.2
IOR-MPI 1 268.4 1 268.4 8 5089.9
POSIX-L 2 411.9 2 411.9 2 411.9
MAD 1 77.8 1 77.8 0 255.9
S3D 2 48.1 2 48.1 0 241.3

attain when running alone under this constraint. For both,
choosing between 1, 2, or 4 I/O nodes, the latter is always
the best choice. However, for the remaining applications,
such as BT-C or BT-D, where 4 is also the best choice,
they reach only 50% and 33% of the bandwidth they could
achieve if running alone under that constraint. When running
with other applications, especially IOR-MPI and S3D, they
are not prioritized by the policy because they do not gain
performance as the first two when using more I/O nodes.

In Figure 8, we depict the bandwidth differences be-
tween the STATIC and MCKP policies for each application.
Positive values mean that the MCKP was able to yield
improvements, whereas negatives indicate that the STATIC
policy was a better alternative for that particular application.
Improving global bandwidth might often come from impair-
ing specific applications. For instance, the MCKP policy
sacrifices BT-D by giving fewer I/O nodes than what the
STATIC policy would allocate to it. The reason is that BT-D
has a lower bandwidth, and the increase in performance for
the remaining applications is higher than what is lost by
BT-D, if observed individually.

5.3. Dynamic Allocation Policy

In this section, we use GekkoFWD with MCKP to
dynamically arbitrate the I/O nodes between the changing
set of running applications in the G5K platform. We split the
Gros cluster nodes into two groups: 96 compute nodes and
12 I/O nodes. We deployed Lustre in the Grimoire cluster
with one MGS/MDS node and two OSS with one OST of
500GB each. Lustre was configured with a stripe size of
1MB and striping over the available OSTs. We do not con-
sider directly accessing the PFS, i.e., not using forwarding
for this test to mimic platforms with this restriction.

In this experiment, we have a predefined queue of jobs
to be executed following a strict FIFO order. Once one
or more applications are scheduled, MCKP is invoked to
choose the number of I/O nodes each should use contained
to the number of these resources in the system. The decision
considers all running jobs and may change the number of
I/O nodes used by some of them. The policy is also invoked
when jobs finish, but new ones cannot be scheduled as there
are not enough compute nodes yet. The only exception is
the STATIC policy, which is invoked but will not reallocate
resources for already running applications. Notice that we
do not need to consider all jobs in the queue, just those
already scheduled as ready to execute, as the forwarding
resources will only be arbitrated among the running jobs.

We generated random queues of jobs using the applica-
tions described in Section 5.1. We selected one queue whose
metrics indicate a high number of concurrently running jobs
to observe the arbitration of forwarding resources and the
decisions’ impact. The source code of the queue generator
is available at doi.org/10.5281/zenodo.3875176.

The selected queue has at least one job of each ap-
plication, in the following order: HACC, IOR-MPI, SIM,
IOR-MPI, IOR-MPI, POSIX-S, POSIX-L, BT-C, MAD,
MAD, S3D, HACC, HACC, and BT-D. Figure 9 illustrates

doi.org/10.5281/zenodo.3875176
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Figure 7. Bandwidth achieved by individual applications using the assigned
number of I/O nodes by our MCKP policy, compared to each application
running alone under the same I/O node number constraint.

the bandwidth achieved by each application (and the ag-
gregated bandwidth given by Equation 2) under the ONE,
STATIC, SIZE, and MCKP policies.

The first job of the HACC application is given 1 I/O
node by the STATIC policy due to its size. In contrast,
MCKP initially allocates 8 I/O nodes and then reduces to
4 as new jobs from IOR-MPI and SIM applications begin
to execute. From the application’s perspective, increasing
the number of I/O nodes here translates into a bandwidth
that is 3.9× higher than on the STATIC allocation (from
987.3MB/s to 3850.7MB/s). For POSIX-L, the STATIC
policy allocated 8 I/O nodes reaching 1963.9MB/s, whereas
MCKP only allows the application to use 8 I/O nodes
during 9.7% of the time, and 2 I/O nodes for 90.3% of
the time, which limits the bandwidth to 391.7MB/s. For the
POSIX-L application, using 4 I/O nodes (MCKP) instead of
2 (SIZE), bandwidth is improved by 5.8×, from 180.5MB/s
to 1049.9MB/s with MCKP. It is possible to see that the
latter prioritizes applications that can reach high bandwidth
by giving them more I/O nodes. Moreover, if we compare
the STATIC solution to our dynamic MCKP arbitration

policy, the latter improves global performance by 1.9× in
this scenario — from 8.41GB/s to 16.02GB/s.

The dynamic remapping of I/O nodes to the compute
nodes does not require any synchronization between the
nodes of the forwarding layer, which could impact perfor-
mance. The policy solver runs on a separate node, possibly
the same used by a job manager (e.g., SLURM). Once the
set of running jobs change, the policy should be reapplied
to arbitrate all the I/O nodes in this new scenario. In the
experiment presented in this section, the time to compute
the solution was 399 µs. The time will vary based on the
number of running jobs and the number of I/O nodes in
the system. For system a with 512 concurrently running
jobs and 256 I/O nodes, that would take 2.7 s. The trade-off
in performance gains compensates for this overhead. The
policy solver generates a new mapping file with allocation
decisions. GekkoFWD clients check whether the mapping
changed periodically (every 10 s by default). Thus, there
might be a brief period where I/O nodes are shared by more
than one application, especially if compute node clocks are
not synchronized. We believe this should not pose an issue
as jobs run in higher orders of magnitude.

6. Related Work

The I/O forwarding layer has been the focus of multiple
research efforts to improve its performance and transparently
benefit applications. Vishwanath et al. [14] improved the
I/O performance of an IBM Blue Gene/P supercomputer by
up to 38% by including asynchronous operations in the I/O
nodes and a simple request scheduler to coordinate accesses
from the multiple threads. Ohta et al. [15] implemented
a FIFO, and the quantum-based HBRR request schedulers
for the IOFSL framework. The latter aims at reordering
and aggregating requests. TWINS [16], a novel scheduler
proposed for the forwarding layer, aims at coordinating
accesses to the data servers to avoid contention.

Yu et al. [8] address the load imbalance problem of the
I/O forwarding layer. They argue that the bursty I/O traffic
of HPC applications and the commonly rank 0 I/O pattern
make the I/O nodes highly unbalanced. As some I/O nodes
become hot spots, they hinder performance. Thus, they
propose to recruit idle I/O nodes to alleviate this problem
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Figure 8. Bandwidth difference between applications running under STATIC and MCKP. Positive means MCKP was faster than STATIC. The y-axis is
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Figure 9. Dynamic allocation of I/O nodes for the running applications on the G5K platform using GekkoFWD. The x-axis displays the bandwidth achieved
by each application under a given allocation policy. Colors identify the applications.

by giving additional nodes to the applications. The mapping
of additional I/O nodes and primary I/O nodes are exclu-
sive for an application, which adds some flexibility to the
default static solution. However, the I/O nodes temporarily
allocated to aid others might be required by their subset of
compute nodes. In that case, global performance would be
impacted. Furthermore, once the mapping is done for an
application, it cannot be changed to accommodate new jobs
that would benefit from additional nodes. Differently, we
propose a dynamic approach to the problem, reviewing I/O
node allocations as new jobs start or end their executions.

The Tianhe-2 (Milkyway-2) supercomputer has a hybrid
hierarchy storage system named H2FS, that merges the local
storage of I/O nodes and the disks in the object storage
servers [1]. This supercomputer can be configured with as
few as one I/O per 64 compute nodes, or as many as one I/O
node per eight compute nodes. The H2FS has an I/O path
manager that maps compute nodes to a group of I/O nodes.
Two mapping modes are supported. The first is determined
by network topology (system deployment) when the system
is initialized, or the applications specify it. The latter selects
the I/O path based on the real-time overhead of the DPUs,
seeking to reduce congestion, allocating DPUs for every file
dynamically. Conversely, our approach does not focus on
such a small granularity, i.e., file level, but rather on the
whole application behavior. Moreover, our policy is not fixed
for a given application, but instead, it takes into account
concurrent jobs, adapting based on the workload.

Ji et al. [22] propose a dynamic forwarding resource
allocation (DRFA), which estimates the number of forward-
ing nodes needed by a certain job based on its I/O his-
tory records. Their approach leverages automatic and online
I/O subsystem monitoring and performance data analysis
to make such decisions. DFRA works by remapping a
group of compute nodes to other than their default I/O
node assignments. They either grant more forwarding nodes

(for capacity) or unused forwarding nodes (for isolation).
Nonetheless, their allocation remains fixed once the job
starts and do not adapt or allow a remapping when new
applications start or finish to run. Conversely, we argue for
a dynamic policy that can evaluate the set of running jobs to
arbitrating I/O nodes. Moreover, their strategy relies on an
over-provisioning of I/O nodes, and on the assumption that
there are idle resources to satisfy all allocation upgrades.

In a previous work [9], we proposed FORGE, a simple
forwarding layer implemented in user-space capable of re-
playing application’s I/O profiles to rapidly explore a large
number of different I/O forwarding deployments. However,
FORGE is not a full-fledged solution. Furthermore, it is
impossible to dynamically change the number of I/O nodes
while executing an application’s I/O profile.

In light of recent trends in storage system design using
node local storage, we believe our approach is complemen-
tary. Local storage is often temporary and eventually needs
to be flushed to the PFS, flowing through the forwarding
layer (if present). If used solely as a cache for reads or writes
(burst buffer), it would still need to eventually reach the PFS,
once more flowing through the forwarding layer. In those
scenarios where an application does not issue I/O requests
directly to the PFS, MCKP would not allocate nodes for it.

7. Conclusion

In this paper, we argued in favor of a dynamic on-
demand allocation of I/O nodes considering the applica-
tion’s I/O characteristics. We demonstrate that the forward-
ing layer’s global deployment combined with the existing
static allocation policy based solely on application size
is not suitable to accommodate the increasingly heteroge-
neous workloads entering HPC installations. Instead, an
application’s I/O characteristics should also be considered



when arbitrating forwarding resources among concurrently
running applications to improve global performance.

We presented a user-level I/O forwarding solution named
GekkoFWD that does not require application modifications
and allows a dynamic remapping of forwarding resources to
compute nodes. GekkoFWD is simple to run in production
machines, where this layer is not present, targeting applica-
tions that would benefit from it. We proposed a novel I/O
forwarding allocation policy based on the Multiple-Choice
Knapsack Problem. We demonstrated our dynamic MCKP
allocation policy’s applicability to arbitrate on the available
I/O forwarding resources through extensive evaluation and
experimentation. We showed it can transparently improve
global I/O bandwidth by up to 23× compared to the existing
static policy, though improving global bandwidth might
often come from impairing specific applications. Further-
more, we observed improvements of up to 85% in a live
experiment using GekkoFWD and a queue of nine different
applications.

As future work, we plan to test our approach in a larger
production machine and expand the technique to supercom-
puters where forwarding is not yet deployed, recruiting idle
compute nodes to act as temporary I/O nodes.

All data, source-code, technical implementation details,
and analysis scripts used in this research are available at
jeanbez.gitlab.io/forwarding-arbitration.

Acknowledgments
This study was financed by the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. It has
also received support from the Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico (CNPq), Brazil. It is also partially supported by
the Spanish Ministry of Economy and Competitiveness (MINECO) under
grants PID2019-107255GB; and the Generalitat de Catalunya under con-
tract 2014–SGR–1051. The authors thankfully acknowledge the computer
resources, technical expertise and assistance provided by the Barcelona
Supercomputing Center. Experiments presented in this paper were carried
out using the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several Universities
as well as other organizations (see https://www.grid5000.fr).

References
[1] W. Xu, Y. Lu, Q. Li, E. Zhou, Z. Song, Y. Dong, W. Zhang, D. Wei,

X. Zhang, H. Chen, J. Xing, and Y. Yuan, “Hybrid hierarchy stor-
age system in MilkyWay-2 supercomputer,” Frontiers of Computer
Science, vol. 8, no. 3, pp. 367–377, 2014.

[2] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the
Root Causes of Cross-Application I/O Interference in HPC Storage
Systems,” in 2016 IEEE Int. Parallel and Distributed Processing
Symposium (IPDPS). Chicago, IL, USA: IEEE, 2016, pp. 750–759.

[3] J. Yu, G. Liu, X. Li, W. Dong, and Q. Li, “Cross-layer coordination
in the I/O software stack of extreme-scale systems,” Concurrency and
Computation: Practice and Experience, vol. 30, no. 10, 2018.

[4] G. Almási, R. Bellofatto, J. Brunheroto, C. Caşcaval, J. G. Castanos,
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