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A careful inspection of the cumulative curve of confirmed COVID-19 infections in Italy and in
other hard-hit countries reveals three distinct phases: i) an initial exponential growth
(unconstrained phase), ii) an algebraic, power-law growth (containment phase), and iii) a
relatively slow decay. We propose a parsimonious compartment model based on a time-
dependent rate of depletion of the susceptible population that captures all such phases for
a plausible range of model parameters. The results suggest an intimate interplay between
the growth behavior, the timing and implementation of containment strategies, and the
subsequent saturation of the outbreak.
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1. INTRODUCTION

The coronavirus disease 2019 (COVID-19) is an infectious respiratory illness caused by the newly
discovered virus strain SARS-CoV-2 [1–3]. The on-going COVID-19 outbreak started in Wuhan
(Hubei, China) in late December 2019 and spread quickly to all Chinese provinces and to several
countries, prompting the World Health Organization (WHO) to declare a pandemic on March 11,
2020 [4]. The high human-to-human transmission rate and clinical severity of the infection have
raised enormous concern on an international scale, with governments worldwide taking drastic and
unprecedented measures to contain the disease spread. Despite the efforts, 34,804,348 people have
been infected world-wide, and 1,030,738 have died as of October 4, 2020 [5].

The global emergency has issued a massive call-to-arms for researchers from several disciplines.
Among the various fields of study, epidemic modeling is of utmost importance to inform policy
makers about the required sanitary system capacity, to guide the design of containment strategies,
and to assess their effectiveness in real time [6]. Humongous efforts are currently on-going to develop
accurate mathematical models of the disease spread, ranging from top-down (i.e., static curve fitting)
approaches [7, 8] to dynamic compartment models of various degree of complexity [9, 10]. The latter
class is especially appealing, as it allows a rather straightforward incorporation and testing of physics-
based hypotheses. Nonetheless, the modeling process is hindered by several factors, including
incomplete knowledge of the disease, as well as the challenging incorporation of containment
strategies and unreported cases [11]. Retrospective analysis of data from countries that have already
overcome a turning point in the COVID-19 epidemic is highly valuable to inspire and calibrate novel
mathematical models with predictive capabilities.

In this paper, we aimed to derive a physics-based dynamic compartment model able to adhere as
much as possible to the qualitative and quantitative nature of the observed data. To this purpose we
take Italy, one of the early hard-hit countries that has overcome a first epidemic wave, as a primary
modeling source. We start by preliminarily analyzing the epidemic data in Section 2, drawing
important qualitative observations about the scaling laws of the growth and decay of the outbreak.
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Guided by these, in Section 3 we propose a compartment model
that incorporates key epidemiological features of the disease and
is able to reproduce the observed trends. In Section 4 we report
and discuss the results of the proposed model, and compare them
to official data from Italy. Concluding remarks are given in
Section 5.

2. DATA ANALYSIS OF THE COVID-19
OUTBREAK IN ITALY

The outbreak in Italy started on February 21, 2020, when a local
cluster of COVID-19 cases was identified in Codogno (Lodi). The
Italian government immediately ordered lockdown for 11 hard-
hit Northern-Italy municipalities; however, the rapid and
seemingly uncontrolled growth of infections in the following
days led to increasingly tight regulations on the entire national
territory, including closure of schools (March 4) and, shortly
after, quarantine (March 9). The measures proved to be effective
and, following the decline of the number of confirmed cases, the
containment measures were gradually released since May 4. As of
early July, the epidemic was mostly under control, with a
reproductive number < 1 in the majority of Italian regions [12].

It is instructive to preliminarily analyze the cumulative curve
of laboratory-confirmed infections C(ti), as well as the curve of
new daily cases, ΔC(ti) � C(ti) − C(ti−1). It is worth mentioning
that confirmed infected individuals are immediately quarantined
(either home-isolated or hospitalized). All data were downloaded
from the publicly available database provided by the Johns
Hopkins University Center for Systems Science and
Engineering (JHU-CSSE) [13].

Figure 1A shows a logarithmic plot of confirmed COVID-19
cases in Italy in a restricted time interval (from February 22 to
April 30), while Figure 1B reports new daily cases in a linear plot
for the same time range. Three distinct phases can be inferred
from static data analysis:

(1) an initial exponential growth, which is typical of
unconstrained outbreaks, with best-fit exponent ω ≈ 0.27.
The exponential growth phase lasts approximately until
March 2, before undergoing a transition to a different
scaling behavior;

(2) a phase of algebraic growth, starting approximately onMarch
6 and ending on March 18. The power-law scaling tα is best
revealed by examining the slope in the logarithmic plane

α(ti) � ΔlogC(ti)
Δlogti

, (1)

as shown in the inset of Figure 1A. The plot shows a distinct
plateau within the mentioned time window with α ≈ 3.1,
which guided the definition of the starting/ending dates of
the algebraic phase. The starting day of the power-law phase
slightly precedes the national quarantine (ordered on March
9), presumably as a consequence of previous containment
measures, such as lockdown of Northern areas and school
closure;

(3) a relatively slow decay. The decay phase is deliberately
assumed to start from the turning point of the epidemic,
that occurred on March 23, after roughly 5 days of
“transition” from the previous algebraic phase. The slow
decay is evident from Figure 1B, which shows a markedly
asymmetric bell-shaped curve with respect to the
turning point.

Evidence of algebraic growth has been observed and described
elsewhere for other countries, including China [14] as well as
other European countries [15], with exponents generally ranging
from 2 to 4. From a fundamental perspective, this behavior has
been attributed to structural changes in the topology of the
population network that supports the epidemic spreading.
Several authors [15, 16] have resorted to the small-world
hypothesis [17] to justify the algebraic growth. More in
general, spatial networks where short links are favored over
long-range connections have been shown to produce power-
law exponents in close similarity with the observed COVID-19
dynamics [18]. Similarly, the asymmetric decay has been put into
some (empirical) connection with the simultaneous presence of a
persistent phase of algebraic growth, in contrast with other
countries where the epidemic has been characterized by a
rather symmetric rise-and-fall behavior [19]. In this regard,
graphs with a power-law degree distribution are known to
produce outbreaks characterized by a polynomial growth
followed by an exponential decay [20]. A functional form of
this type was successfully used to fit COVID-19 data from over
100 countries [21], supporting the evidence that the nature of the
underlying network is key to the infectious dynamics, and that
growth and decay of the epidemic are indeed intimately
connected. Network effects and their relationship with
COVID-19 epidemic trends are further discussed in Ref. 22.

The reported observations have important consequences on
traditional modeling approaches. From the perspective of
classical population growth models, standard logistic models
appear to be inappropriate, as they provide symmetric
S-shaped curves for the cumulative number of infections; in
contrast, the generalized Richard’s model (GRM) has been
shown to provide a rather accurate description of the epidemic
in Chinese provinces [8]. While the GRM can provide sub-
exponential growth and asymmetric decline [23], it is known
to lack clear epidemiological significance [24]. Compartment
models are richer in terms of physics and allow addition of
several degrees of freedom. The basic version of the celebrated
Susceptible–Infectious–Removed (SIR) framework [25] can be
easily transformed, under mild assumptions, into a logistic model
[26], therefore suffering from the same above-mentioned
limitations. Several refined SIR-like approaches have been
proposed, particularly aiming at quantifying undetected cases
[27] and at modeling the effect of containment policies [14, 28].
These have been modeled in most cases by means of a piecewise
constant transmission rate (or, alternatively, by changing the local
reproduction number) [29], or possibly by incorporating the
effects of individual reaction [30].

Reconciling algebraic growth with mean-field models is not
straightforward. Recently Ref. 21, observed that a general solution
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of the type I(t)∝ tα, where I is the infectious compartment, is
compatible with a SIR model provided that the corresponding
basic reproduction number decays as t−1. On the other hand,
Maier and Brockmann [14] (M&B hereinafter) have found, and
proved analytically, that a region of algebraic growth can be captured
by a slightly modified SIR-like model that includes a (constant)
depletion rate of susceptible individuals. The question arises whether
such a modeling framework is able to capture a markedly
asymmetric decay dynamics such as the one occurring in Italy.

We conjecture that the three phases reported above are
inherently coupled by endogenous epidemic processes, and
thus they can be accurately modeled into a unique framework
that relies exclusively on physics-based assumptions and policy-
driven changes of the model parameters. Inspired by M&B, we
aim to propose a compartment model that is able to: 1) capture
the power-law growth; 2) generate an asymmetric decay; 3)
incorporate unreported cases.

3. PROPOSED COMPARTMENT MODEL

We propose a compact compartment model of SEIQR-type
(Susceptible–Exposed–Infectious–Quarantined–Removed),
whose schematic is shown in Figure 2. Although many more
compartments can be added to increase the level of detail and
supposedly the realism of the model, we rather opted for a
parsimonious framework, while focusing primarily on the
reproduction of the observed scaling laws. We note explicitly
that the inclusion of the Q-compartment is highly warranted for
countries characterized by strong government interventions,
since identified infectious individuals are typically quarantined
and therefore they are no longer able to spread the disease. On the
contrary, the necessity of taking the incubation period into
account via the E-class is currently debated, mainly due to
incomplete understanding of the relationship between
incubation and latency periods for SARS-CoV-2 infection.

However, a certain time lag between infection and
infectiousness (in either clinical or subclinical cases) has often
been observed [2, 31]; therefore, we chose to include the exposed
class with an average incubation period c−1.

Additional key features of the model include:

• a time-dependent rate of depletion of the susceptible
population, μ(t). Following M&B, we conjecture that
starting (roughly) from the implementation of lockdown
measures, and due to increased perception of the disease, a
fraction of the S-class becomes unsusceptible due to self-
protection, isolation, and adoption of preventive measures
(e.g., wearing masks, hand-washing, etc.). However, and

FIGURE 1 | (A)Cumulative number of laboratory-confirmed COVID-19 infections in Italy. A moving average with a time window of 7 days was applied to the data to
filter weekly fluctuations in case reporting. After an initial exponential growth, on March 6 the increase starts to follow a scaling law tα with average α ≈ 3.1. (B) Number of
new daily cases of laboratory-confirmed COVID-19 infections in Italy. The turning point is highlighted. Gray circles represent official data, highlighting fluctuations in data
reporting, while black circles were obtained with a 7-days moving average.

FIGURE 2 | Schematic of the model and of its parameters (see text for
details). The “quarantined” variable Q(t) coincides, by construction, with the
time-series of official laboratory-confirmed infections C(ti), when evaluated at
the same sample points; Q(t) is thus the only known variable in the
context of a data-driven calibration of the model.
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importantly, preliminary tests showed that a constant rate of
depletion leads to strong under-prediction of the number of
infections during the decay phase. Here we propose a time-
dependent, decaying rate of depletion of susceptible
individuals,

μ(t) � { 0, t < t*,
μ0e

−(t− t*)τ , t ≥ t*, (2)

where μ0 is the initial rate of the depletion, t
p is the start of

the containment measures and τ is a timescale parameter.
Such a modeling paradigm allows for a non-zero asymptotic
residual of susceptible individuals, and is an essential
component for capturing the strongly asymmetric
behavior observed for the curve of new daily cases;

• an explicit distinction between reported and unreported
cases. The infectious class has been split into reported (Ir)
and unreported (Iu) individuals, modulated by a reporting
rate ϕr . Since the policy in Italy consists into testing only
symptomatic individuals, it is reasonable to assume that
reported and unreported cases roughly coincide with
asymptomatic (i.e., subclinical) and symptomatic
(i.e., seeking medical attention) cases. Therefore,
individuals belonging to the Ir class are infectious as long
as they are tested and quarantined at a rate ct , and thus
transferred to the Q-class. By construction, the variableQ(t)
coincides with the time-series of laboratory-confirmed
infections C(ti). On the other hand, for individuals
belonging to the Iu class, the disease goes unrecognized
and they continue mixing with the susceptible population,
before spontaneously recovering at a rate ch. We assume a
bilinear transmission rate for reported and unreported
cases: θβ for symptomatic individuals, and β for
subclinical ones, with θ ∈ [0, 1]. Although counter-
intuitive, this choice was driven by the fact that people
with symptoms that are severe enough to require medical
attention are likely to reduce social contacts, therefore
diminishing their transmission rate with respect to
asymptomatic individuals (despite having, supposedly, a
higher viral load and thus contagious potential).

Note that, for the sake of simplicity, we do not explicitly model
the subsequent recovery/death of quarantined individuals, nor we
distinguish between hospitalized and home-isolated patients;
however, information in this regard can be inferred a-posterior
once the temporal dynamics of Q(t) and I(t) is known. It is also
worth to underline that the removed (R) class contains both
recovered (from the unreported compartment) and protected
individuals. Possible re-infection is not modeled as it is currently
considered to be unlikely [32].

In summary, the temporal dynamics of the compartments is
governed by the following system of ordinary differential
equations:

_S(t) � −βs(θIr + Iu) − μ(t)S, (3a)

_E(t) � βs(θIr + Iu) − σE, (3b)

_Iu(t) � σ(1 − ϕr)E − chIu, (3c)

_Ir(t) � σϕrE − ctIr , (3d)

_Q(t) � ctIr , (3e)

_R(t) � chIu + μ(t)S. (3f)

where s � S/N and N is the total (constant) population. The time
dependency of the main variables has been omitted at the right-
hand sides for the sake of clarity. All the parameters appearing in
the model are constant and positive real numbers, with
θ, ϕr ∈ [0, 1], except for μ(t) that has explicit dependence on
time. The basic reproduction number R0 of this model can be
inferred by a next-generation matrix approach; following [33];
the matrices F and V can be defined as

F � ⎡⎢⎢⎢⎢⎢⎣ 0 β βθ
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦,
V � ⎡⎢⎢⎢⎢⎢⎣ σ 0 0

σ(ϕr − 1) ch 0
−σϕr 0 ct

⎤⎥⎥⎥⎥⎥⎦,
and R0 is the spectral radius of FV−1, yielding

R0 � βθϕr

ct
+ β(1 − ϕr)

ch
. (4)

The model defined by Eq. 3 has eight free parameters; some of
them can be set a-priori based on epidemiological, clinical or
policy-related evidence. The incubation time σ−1 has been found
by different clinical groups to be around 5 days [2, 31], thereby
yielding σ � 1/5, a value also used in similar modeling studies [34,
35]. The rate of testing ct is country-specific; in Italy, the “Istituto
Superiore di Sanità” (ISS) has reported an average time from
symptoms onset to diagnosis (via pharyngeal swab) of 5 days,
within the time range considered in this work. The infection
duration in subclinical cases without medical treatment has been
estimated to be in the range of 5–10 days [36]; after preliminary
sensitivity tests, we set ch � 1/5. The starting time of the
susceptible population removal t* is expected to coincide
roughly with the starting time of national lockdown; we left,
however, t* as a free parameter for manual calibration.

4. RESULTS AND DISCUSSION

Numerical simulations of the outbreak in Italy were obtained
upon integration of Eq. 3 for the time range from February 24 to
June 30, 2020. Table 1 summarizes the values of the entire set of
model parameters, including those assigned a-priori and the ones
inferred from the data. After several preliminary tests aimed to
circumvent overfitting issues, we chose to optimize the parameter
space containing {β, θ, μ0, τ, E(0)}, while ϕr and t* were left free to
be manually varied in a parametric way until an optimal fit was
found. The optimization procedure was carried out using an
interior-point method implemented in MATLAB (Mathworks,
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Natick, United States); the optimization target was based on a
blend of the cumulative number of confirmed cases and the daily
number of new cases, that were weighted 10 and 90%,
respectively. The infectious compartments were initialized as
follows: Ir(0) � ϕrE(0), Iu(0) � (1 − ϕr)E(0), while the other
initial conditions are either known from data or can be found
by subtraction, with N � 60 × 106.

Main results are shown in Figure 3. Figure 3A reports the
temporal evolution of Q(t), as compared with the time-series of
laboratory-confirmed infections C(ti). The agreement is very
good for all the phases of the outbreak. Interestingly, the best-
fit value for t* was March 9, i.e., the start of the national
quarantine, which indirectly proves the robustness of the
proposed framework in reproducing the underlying epidemic
mechanisms at play. The inset of Figure 3A reports the power-
law slope provided by the model, which is in very good agreement
with the observed one, proving that the model is capable of
reproducing the peculiar algebraic growth phase of the COVID-
19 pandemic reported in several countries.

Of note, the model was able to capture the decay phase of the
epidemic correctly without any further change of the parameters.
This circumstance suggests a strong link between the decay
dynamics and the timing and implementation of the
containment strategies. It is conjectured that an incomplete
depletion of the susceptible population during the lockdown
(provided by the exponential decay of μ(t)) naturally sets the
observed slow decay. It can be further hypothesized in light of the
results that the behavioral changes established during the
containment phase persist throughout the subsequent phases
of the epidemic. Since lower values of the timescale τ over
which the susceptible removal occurs yield a faster decay, this
parameter be re-interpreted as an “effectiveness index” of the
implementation of containment policies.

We also tested a variant of the model that more closely
resembles the original M&B approach, with a constant
depletion rate of the susceptible population μ � μ0. Upon re-
running the optimization procedure with τ � 0, we obtained
similar values as those reported in Table 1, but it was not
possible to match the decay phase correctly. This variant of
the model provides a reasonable agreement only up to the
turning point of the epidemic (with the peak value of new
daily cases highly over-estimated), while strongly under-
estimating the number of infections during the decay phase, as
clearly seen in Figure 3B. An additional steep change of the
model parameters would be necessary, although this would be
hardly justifiable in terms of physical assumptions or
containment policies.

In light of the above mentioned results and observations, it is
instructive to directly quantify the effects of μ(t) on the epidemic
dynamics. To this aim, it is worth to preliminarily observe that,
under a disease-free linearization (i.e., assuming that
containment dominates over infection) the normalized
number of susceptible for t≫ tp is not null (as in the case
τ � 0) but converges to

slimit � S0
N
e−μ0/τ, (5)

showing that τ is explicitly responsible for the incomplete
removal. Although it is possible, in principle, to derive a
closed-form expression for Q(t) under some mild simplifying
hypotheses, the analytic treatment becomes very involved
and it is cumbersome to extract immediate information. The
reader is referred to Ref. 14 for an analytic demonstration of
how the depletion of susceptible is responsible for the power-
law growth, while the effects of μ0 and τ on the decay are best
revealed through parametric analysis. Figure 4 shows the
effects of the containment-related parameters on ΔQ, with the
other modeling parameters being held equal to the optimal
solution reported in Table 1. Figure 4A shows that lower
values of μ0 (i.e., weaker depletion) tend to shift the curve
toward higher values of ΔQ and delay the turning point, while
the overall shape is roughly preserved. On the other hand,
Figure 4B demonstrates that values of τ > 0 contribute to
asymmetrize the curve of new daily cases, effectively slowing
the decay while preserving the growth dynamics. Since τ is
directly related to the residual number of susceptible
individuals during the course of the epidemic, see Eq. 6,
these findings reinforce our claim that the observed
asymmetry is directly related to a (spatially-averaged)
incomplete depletion of the susceptible population during
the containment phase.

With regards to the functional form of the time-varying
depletion rate μ(t), the exponential decay was chosen as the
most natural one with a clear and intuitive biological significance.
However, we also explored whether alternative expressions for
μ(t) are able to reproduce the essential characteristics of the
COVID-19 epidemic. To this end, we consider a simplified
version of the proposed compartment model, wherein the
E-class is removed and ϕr � θ � 1, i.e., all infected individuals
are identified and quarantined:

_S(t) � −βsI − μ(t)S,
_I(t) � βsI − cI,
_Q(t) � cI.

(7)

In such case, assuming that in a certain time interval Q(t) ≈ tα,
and that containment dominates over infection, simple analytic
manipulations yield

TABLE 1 |Optimal values of the estimated model parameters for the simulation of
the outbreak in Italy.

Parameter Description Value

β Transmission rate 0.95
θ Transmission factor for reported (symptomatic) cases 0.58
t* Starting time of depletion of susceptible 9-Mar
μ0 Initial rate of depletion of susceptible 0.16
τ Timescale factor for the rate of depletion of susceptible 0.1
ϕr Fraction of reported (symptomatic) individuals 0.6
σ Rate at which exposed individuals become infectious 0.2
ct Rate of testing for symptomatic individuals 0.2
ch Rate of recovery for unreported (subclinical) individuals 0.2
E(0) Initial number of exposed individuals 2,000
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μ(t) ≈ c1
t + c2t2

, (8)

where c1 and c2 are constants.We tested the behavior of the complete
model by plugging Eq. 8 into Eq. 3; we were able to generate
outbreaks (not shown here) in good agreement with the official
data and for similar values of the model parameters as those reported
in Table 1. While this circumstance promotes the correctness of the
underlying modeling hypotheses, additional tests and analyses are
required to determine which functional form ismost suitable for μ(t),
and whether other decay laws (e.g., Gaussian) can be instead ruled out
to describe the containment process.

The role of subclinical infected with regards to the spread of
the disease is one of the most debated epidemiological and
biomedical issues in the context of the COVID-19 outbreak

[37]. Accurate studies in small-scale, “laboratory-like” contexts
with blanket testing showed that a substantial fraction of SARS-
CoV-2-positive individuals can display very mild symptoms or
even remain completely asymptomatic throughout the course of
the infection, while having a viral load comparable to that of
symptomatic patients [38–40]. Here we found a very good fit for
values of the reporting rate in the range ϕr ∈ [0.55, 0.65], yielding
a fraction of unreported (subclinical) cases (1 − ϕr) in line with
previous modeling and experimental estimates [27, 38].

It is worth to remark, in general, that we were able to generate
outbreaks in good agreement with official data for a certain range
and combination of the model parameters. While we did not
quantify sensitivity, nor we carried out specifical statistical
analyses of the confidence interval of such parameters, we
chose the set of values that yielded the best accordance with

FIGURE 4 | Effects of containment on the number of new daily cases predicted by the SEIQR compartment model. The results are obtained with the parameters
provided in Table 1, and by varying the parameters μ0 and τ. The red curve corresponds to the optimal solution. Moving-averaged official data are also reported. (A)
Effect of μ0 for values in the set [0.14, 0.16, 0.18, 0.22]. (B) Effect of τ for values in the set [0.0, 0.1, 0.12, 0.13].

FIGURE 3 | Case numbers in Italy compared to model predictions. (A) Cumulative number of laboratory-confirmed infections. The model predictions are shown
both with the full model and with a variant obtained by setting τ � 0 (constant depletion rate of the susceptible population). The inset reports the local power-law slope for
the moving-averaged official data and the full-model prediction. (B) Number of new daily cases.
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the observed scaling laws (exponential growth rate, peak power-
law slope, decay dynamics) and a reasonable value for the basic
reproduction number. For the best-fit reported in Table 1, we get
R0 � 3.53, very much in line with previous literature results [41].

5. CONCLUDING REMARKS

In this study, we started from the preliminary observation that in
countries such as Italy, the cumulative number of infections
displays an initial exponential amplification, followed by a
power-law growth and a markedly asymmetric saturation
behavior. We conjecture that these three phases are intimately
connected and can be described by the interplay between the
contagion process and the behavioral changes/containment
policies acting on the population over comparable time scales.

Based on this hypothesis, and inspired by previous work by
Ref. 14, we proposed a SEIQR-type compartment model with the
following salient features: i) a compartment for unreported
(asymptomatic) infected, that are supposed to play a major
role in the spread of the disease; ii) a time-dependent rate of
depletion of the susceptible population, which allows for a non-
zero asymptotic residual of susceptible individuals.

The model was able to accurately reproduce the entire
epidemic course in Italy, including quantitative agreement
with exponential growth and power-law slope, for a plausible
range of the model free parameters, with only one steep change of
the parameters driven by the introduction of strict containment
strategies. This circumstance suggests that the timing and
implementation of containment policies (as quantified by
model parameters t*, μ0 and τ) may effectively establish the
decay characteristics of the epidemic. In particular we
conjecture that the slow decay of the Italian epidemic can be
attributed to an incomplete depletion of susceptible individuals
during the containment phase.

The proposed modeling framework could be profitably used to
gain insights and predictions on the so-called “second wave” of
the epidemic, which (as of early October 2020) appears to be
hitting Italy and other countries. To this purpose, themodel could
be modified by 1) introducing a release rate of protected
individuals (from compartment R to S), that reflects the
relaxation of containment measures as well as the gradually
diminished perception of the pandemic; 2) accounting for a
different testing policy: while only symptomatic individuals
were tested during the first wave of the epidemic, the

introduction of contact tracing and screening procedures has
certainly contributed to increase the reporting rate ϕr , whereas
the simultaneous improvements in testing efficiency and
COVID-related infrastructures has led to a decrease in the
testing time ϕt .

This study presents a number of simplifications and
limitations that, however, do not affect the main conclusions.
Among others, the number of confirmed infections is influenced
by the number of tests performed each day, an aspect that was
only weakly incorporated into the model via the (constant)
fraction of reported cases ϕr . Even though many countries
experienced initial difficulties with the testing capacity, the
robustness and universality of the observed epidemic trends
[19] strongly suggest that the scaling laws at play are primarily
driven by the described containment-related mechanisms, with
the scale of testing playing a minor role in the process [22].
Furthermore, the COVID-19 pandemic has been shown to have a
strong geographical character with localized outbreaks, due to so-
called superspreaders or family clusters [42]. In the context of a
well-mixed framework, such as the one proposed in this paper,
this phenomenon could be modeled by considering a specific
infectious compartment with a much higher transmission rate,
similarly as in Ref. 43. This aspect was not accounted for here and
is left for future work.
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