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Task-Adaptive Robot Learning from Demonstration
with Gaussian Process Models under Replication

Miguel Arduengo1, Adrià Colomé1, Júlia Borràs1, Luis Sentis2 and Carme Torras1

Abstract—Learning from Demonstration (LfD) is a paradigm
that allows robots to learn complex manipulation tasks that
can not be easily scripted, but can be demonstrated by a
human teacher. One of the challenges of LfD is to enable robots
to acquire skills that can be adapted to different scenarios.
In this paper, we propose to achieve this by exploiting the
variations in the demonstrations to retrieve an adaptive and
robust policy, using Gaussian Process (GP) models. Adaptability
is enhanced by incorporating task parameters into the model,
which encode different specifications within the same task. With
our formulation, these parameters can be either real, integer, or
categorical. Furthermore, we propose a GP design that exploits
the structure of replications, i.e., repeated demonstrations with
identical conditions within data. Our method significantly reduces
the computational cost of model fitting in complex tasks, where
replications are essential to obtain a robust model. We illustrate
our approach through several experiments on a handwritten
letter demonstration dataset.

Index Terms—Learning from Demonstration, Probability and
Statistical Methods, Human-Centered Robotics.

I. INTRODUCTION

LEARNING from Demonstration (LfD) is the paradigm
in which robots implicitly learn task constraints from

demonstrations. This allows more intuitive skill transfer, sat-
isfying a need of opening policy development to non-robotic-
experts as robots extend to assistive domains. The choice
of LfD is particularly compelling when ideal behavior can
be neither scripted nor easily defined as a reward function
but can be demonstrated (Figure 1). One of the fundamental
questions is What to imitate? [1]. Trajectory-learning methods
are usually adopted since they allow a direct skill transfer to
robot actions, at both joint, and task space levels. Learning a
manipulation task at a trajectory level involves modeling the
set of demonstrated motions and retrieving a generalized rep-
resentation. Among the most relevant contributions in the field
over the past decade, we can highlight the approaches based
on Dynamic Movement Primitives (DMP) [2], Probabilistic
Movement Primitives (ProMP) [3], Gaussian Mixture Models
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Fig. 1. Learning from Demonstration allows transferring the robot skills that
can be intuitively demonstrated but are difficult to script, such as handwriting.
On the left, the demonstrations. On the right, the learned policy.

(GMM) [4], Kernelized Movement Primitives (KMP) [5] and
Gaussian Process models (GP) [6]. In a recent work [7], we
presented a GP-based LfD framework, which we adopt as a
basis for this paper. For a comparison with the aforementioned
approaches, the reader can refer to our work.

The focus of this paper is on the generalization performance
of the learned policy at a task level with GP models. There
are skills, in which multiple demonstrations of the same task
can look very different due to the task-specific variations. This
variability can be interpreted to be governed by the so-called
task variables, which can describe the current context or a
particular requirement. In the LfD literature, generalization
has been mainly achieved with two distinct approaches: (a)
encoding the demonstrations from the perspective of multiple
reference frames; (b) considering task variables as inputs to
the learned movement policy, enabling the generation of a
path adapted to the context. Approach (a) is motivated by
the observation that skillful movement planning often requires
the orchestration of multiple coordinate systems that can have
varying levels of importance along the task. In [4], the authors
propose Task-Parametrized GMM (TP-GMM), a direct exten-
sion of GMM. By providing a set of candidate frames that can
be potentially relevant, a local statistical analysis is conducted
to learn how to retrieve a general trajectory that is invariant to
translations and rotations. The idea presented in TP-GMM is
also applied to KMP in [8]. Using local coordinate systems,
the robot is able to learn about the superposition and transition
between the reference frames, resulting in improved extrapo-
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lation capabilities. This generalization performance comes at
the expense of limiting the task parameters to be in the form
of coordinate systems or local projection operators. On the
other hand, approach (b) has been applied to DMP, ProMP, and
GP. In [9], the authors present stylistic DMP (SDMP), which
allows a compact encoding of diverse styles in the demonstra-
tions by including a real-valued control variable in the model,
called style parameter. Regarding ProMP, in [3], the authors
propose to adapt the primitive based on an external real-valued
state variable by learning a linear mapping to the mean weight
vector. Finally, in [10], the authors model a map, from a target
in 3-D space, to the reaching trajectory, with demonstrations
using a GP model. Although (b) provides good interpolation
results, the performance far from the regions covered by the
demonstrations is limited. However, this approach is generic
since the task variables can represent arbitrary context features.

Additionally, one should keep in mind that LfD is a super-
vised learning approach. Although extrapolation capabilities
can be enhanced, providing enough demonstrations to cover
the action space is essential. When the model is probabilistic
(ProMP, GMM, KMP and GP), repetitions are also required for
adequately inferring the statistics of the taught motion. That
is, the demonstration dataset must sample the task variable
space as densely as possible, providing as many replications
as feasible. Thus, for modeling complex manipulation tasks
the amount of required data might increase considerably.
Commonly, LfD methods are applied with a dataset of a
few demonstrations, since they do not scale very well. On
the one hand, ProMP and GMM involve an Expectation-
Maximization algorithm. On the other hand, KMP and GP
require a matrix inversion, whose dimension increases with the
number of data points. In this paper, we focus on movement
policies learned by demonstration using GP. The approaches
for improving the scalability of GP while retaining favorable
prediction quality can be divided into two groups: sparse
(or global) approximations [11], where the training dataset is
approximated by a smaller set of so called support points; and
local approximations [12], where the dataset is divided into
subsets, using only points near the desired input location for
making the prediction. The main drawback of these solutions
is their approximate nature.

The main contributions of the paper are two-fold: (1) a GP
design for including task variables in the model, which can
be either real, integer or categorical; (2) the exploitation of
the structure of replications, for alleviating the computational
complexity of GP while retrieving an exact model. Our aim
is to extend our previous work on LfD with GP by enhancing
its generalization to variant task conditions and its capability
for scaling with a large demonstration dataset. The structure
of the paper is organized as follows: in Section II we formally
state the considered LfD problem; in Section III we outline
the main theoretical aspects of GP-based LfD; then in Section
IV we present our approach for including task variables and
exploiting replications; next, in Section V, we illustrate the
main concepts and analyze the performance of the proposed
solution by learning the writing task from a handwritten
letter dataset; finally, in Section VI we summarize the main
conclusions.

II. LFD PROBLEM STATEMENT

We formally construct the LfD problem as follows. The
robot is presented with a demonstration dataset:

D =
{

xxxi j, yyyi j
}N, Mi

i, j=1 (1)

where xxxi j ∈ X denotes the task variables and yyyi j ∈ RO the
variables describing the demonstrated motion. Here, the super-
indexes N, Mi and O, correspond respectively to the number
of demonstrations, training samples per demonstration (which
can vary) and the output dimension. Assuming that one of
the input components is time t, X = R×∏

I
i=2Xi, being

I the input dimension and Xi the subspace where the i-th
component lies. The LfD problem is solved by learning a task
movement policy π : X −→ RO from D, which is capable of
inferring the required path to successfully perform the desired
manipulation given a new set of task variables. The policy
must generalize over multiple demonstrations, and also, in
order to be reproduced by the robot, the generated paths have
to be continuous and smooth.

III. GAUSSIAN-PROCESS-BASED LFD

Gaussian Process are a probabilistic representation that
allow to encode the underlying trajectory distribution from
multiple demonstrations of a manipulation task. For simplicity,
in this section we propose to use D =

{
ti j, yyyi j

}N, Mi
i, j=1 i.e. the

only input component is time. A high-level description of
the GP-based LfD framework is summarized in Figure 2. We
first perform a preprocessing step for temporally aligning and
scaling the demonstrated trajectories. For the training phase,
we provide a series of GP design guidelines for modeling robot
manipulation tasks from D. Finally, we briefly discuss how the
learned policy can be modulated through via-points during the
movement execution phase.

A. Preprocessing: Temporal Alignment and Scaling

In general, it is difficult to provide all the demonstrations
with the same speed. Time shifts might lead to poor perfor-
mance when inferring the variability. For aligning temporally
the demonstrated trajectories Dynamic Time Warping (DTW)
[13] can be used. It is a method that calculates an optimal
match, usually nonlinear, with respect to a reference trajectory
based on a similarity measure. We use the Task Completion
Index (TCI) [7], that is a measure of the portion of the
trajectory covered for task completion. For demonstration i,
it can be computed as

ζi,k =
∑

k
j=1‖yyyi, j− yyyi, j−1‖

∑
Mi
j=1‖yyyi, j− yyyi, j−1‖

∀k = 1, . . . ,Mi (2)

Adjusting the execution speed of the robot is sometimes
desirable. As for DMP and ProMP, we can consider a normal-
ized phase variable to decouple the path from the time signal.
This is equivalent to scale the time component. Let tR be the
time length of the reference trajectory. To adapt the trajectory
to a desired duration tD, we can define a monotonic increasing
function s : [0, tR] −→ [0, tD]. Note that this step can also be
carried out during the execution.
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Fig. 2. Learning from demonstration with Gaussian Processes. (a) Several demonstrations of the manipulation task. The trajectories present spatial variability
as well as different time lengths. (b) They are temporally aligned with the DTW algorithm using the TCI as similarity measure. Also, the time component
is scaled, so the trajectory is adapted to the desired time law. (c) The movement policy is encoded with a Heteroscedastic GP model. This probabilistic
representation effectively encodes the variability (blue shaded area) of the demonstrations (black dashed line) and retrieves a generalized form of the task
motion (red solid line). (d) The learned policy can be modulated through via-points (green dots) by conditioning the policy on the new points.

B. Robot Task Representation with GP

The task policy must encode the variability as well as gener-
alize over multiple demonstrations of the learned manipulation
task. This requires an adequate GP design.

1) Gaussian Process Models: Intuitively, a GP defines a
prior over functions, which can be converted into a posterior
given a set of input-output pairs [14]. Considering scalar
outputs y, it is defined by the scalar mean m(t) and covariance
k (t, t ′) (i.e. kernel) functions, which encode the assumptions
on the policy being learned

y(t)∼ GP
(
m(t) , k

(
t, t ′
))

(3)

2) Heteroscedastic GP: The task policy i.e. the path yyy∗

that performs the taught manipulation given a new set of task
variables ttt∗ and D, is modeled with GP as a multivariate
Gaussian distribution p(yyy∗|ttt∗,D) ∼N (µµµ∗,ΣΣΣ∗). The constant
noise level considered in the standard GP formulation can
be an important limitation for capturing the variability in the
demonstrations, as there will be parts in the task where it
might vary. The uniform noise assumption can be relaxed
by considering a normally distributed noise ε ∼ N (0,r (t)),
where the variance is input-dependent and modelled by the
latent function r(). The joint distribution of the training yyy,
and predicted yyy∗ outputs according to the prior is then[

yyy
yyy∗

]
∼N

([
mmm
mmm∗

]
,

[
KKK +RRR KKK∗

KKK∗T KKK∗∗+RRR∗

])
(4)

being mmm and mmm∗ arrays whose elements are function m()
evaluated at ttt and ttt∗ respectively; analogously for diagonal
matrices RRR and RRR∗ with function r(); KKK∗ is the Gram matrix of
the kernel function k(,) evaluated at all pairs (t, t∗); similarly,
KKK and KKK∗∗. The predictive distribution is then obtained by
marginalizing on the demonstrations, resulting the following
predictive mean µµµ∗ and variance ΣΣΣ

∗

µµµ
∗ = mmm∗+KKK∗T (KKK +RRR)−1 (yyy−mmm) (5)

ΣΣΣ
∗ = KKK∗∗+RRR∗−KKK∗T (KKK +RRR)−1 KKK∗ (6)

The latent noise function r() is usually not known a-priori.
As proposed in [15], first an standard GP can be fit to the
demonstrations. Its predictions can be then used to estimate

the input-dependent noise empirically. Then, a second GP can
be used to model z(t) = log [r (t)]. Let Z = {zzz,zzz∗} be the set
of noise data. The posterior predictive distribution can be then
approximated by

p(yyy∗|ttt∗,D)' p(yyy∗|ttt∗,D,Z) (7)

where Z = argmaxz,z∗ p(zzz,zzz∗|ttt∗,D) is the most likely noise
level, which can be determined with Monte Carlo or
Expectation-Maximization algorithms.

3) Multi-Output GP (MOGP): The previous concepts can
be extended to multiple-output GP (MOGP) by taking a matrix
covariance function kkk (t, t ′). This can be expressed around the
Linear Model of Coregionalization (LMC) [16]

BBB⊗ kkk
(
t, t ′
)
=


B11k11 (t, t ′) . . . B1dk1d (t, t ′)

...
. . .

...
Bd1kd1 (t, t ′) . . . Bddkdd (t, t ′)

 (8)

where d is the output dimension and BBB is the coregionalization
matrix. The off-diagonal elements encode output relatedness.
In the general case, for learning robot task motions, we cannot
make any a-priori assumptions in this regard. Therefore, we
can set Bi j = 0 for i 6= j, being the MOGP equivalent to d
independent GP.

4) Kernel: In order to be a valid kernel function, the
corresponding Gram matrix KKK, with elements Ki j = k (ti, t j)
must be positive semidefinite. Furthermore, the chosen kernel
must generate continuous and smooth paths for the robot
to be able to execute the motion. Note also that the time
parametrization of trajectories is invariant to translations in
the time domain. Thus, it should be a function of τ = ‖t− t ′‖.
A popular choice is the squared exponential (SE) kernel

k (τ) = σ
2
f exp

(
− τ2

2l2

)
(9)

where σ f and l are the hyperparameters. The GP with this
covariance function has mean square derivatives of all orders,
and is thus very smooth. For slightly relaxing the smoothness
prior assumption, the Matérn kernel can also be used

k (τ) = σ
2
f

(
1+

√
5τ

l
+

5τ2

3l2

)
exp

(
−
√

5τ

l

)
(10)
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For selecting the kernel hyperparameters ΘΘΘ, the following
log marginal likelihood is usually maximized

log p(yyy|ttt,ΘΘΘ) =−1
2

yyyT (KKK +RRR)−1 yyy− 1
2

log |KKK +RRR| (11)

This optimization problem might suffer from multiple local
optima. Gradient-based or stochastic optimization methods can
be used for computing the solution.

C. Policy Modulation with GP

We can modulate the task policy by adapting the learned
path to pass trough new via-points V = {ti,yyyv

i }
Mv
i=1. Modulation

can be achieved by conditioning the policy on both, D and V .
Assuming that the predictive distribution of each set can be
computed independently

p(yyy∗|ttt∗,D,V) ∝ p(yyy∗|ttt∗,D) p(yyy∗|ttt∗,V) (12)

Then, if p(yyy∗|ttt∗,D) ∼ N
(

µµµd ,ΣΣΣd
)

and p(yyy∗|ttt∗,V) ∼
N (µµµv,ΣΣΣv), it holds p(yyy∗|ttt∗,D,V)∼N (µµµ∗∗,ΣΣΣ∗∗) with

µµµ
∗∗ = ΣΣΣ

v
(

ΣΣΣ
d +ΣΣΣ

v
)−1

µµµ
d +ΣΣΣ

d
(

ΣΣΣ
d +ΣΣΣ

v
)−1

µµµ
v (13)

ΣΣΣ
∗∗ = ΣΣΣ

d
(

ΣΣΣ
d +ΣΣΣ

v
)−1

ΣΣΣ
v (14)

The resulting policy ponders the demonstrations and the
via-points weighted inversely by their variances. Modelling
p(yyy∗|ttt∗,V) with an heteroscedastic GP, the strength of the
via-point constraints can be easily specified by means of r().
Note that modulation can be performed during the execution
of the motion, since p(yyy∗|ttt∗,D) can be pre-computed.

IV. TASK-ADAPTIVE GP UNDER REPLICATION

Our novel GP-based framework takes advantage of the
versatility and expressiveness of GP to encompass the main
features required for a state-of-the-art LfD approach [7].
Generalization of the learned policy can be enhanced by
incorporating task variables that describe the context under
which demonstrations are performed. We propose a new GP
design inspired by [17], which allows these variables to be
either real, integer or categorical, and exploits the possible
correlations. Also, for complex tasks, the number of required
demonstrations for sampling the action space might increase
considerably. This poses a challenge for GP, which suffer from
cubic complexity to data size. Motivated by [18], we propose
a formulation that exploits the structure of replications, which
arise naturally in the LfD context, for achieving significant
computational savings.

A. Generalization with Task Variables

Encoding the policy with GP, we can consider task variables
as inputs. In this way, relying on D, the model can learn
the constraints and requirements of the manipulation task
from a wider perspective, being capable of retrieving an
adaptive motion for a previously unseen context, described
by a new set of task variables. However, the standard GP
problem considers only continuous input variables, limiting

the applicability of the method in tasks with discrete integer
or categorical variables (e.g. object class, house room).

As a first approach, we could fit distinct GP models for each
possible combination of the discrete variables. However, this
method ignores possible correlations and becomes infeasible
as the quantity of discrete sets grows, since the number of
models increases exponentially. Another possibility is one-hot
encoding i.e. adding as many extra input variables as different
values the discrete variable can take. Although it might be
appealing for its simplicity, the input dimension can increase
dramatically.

Without loss of generality, we consider a three-dimensional
input variable xxx = (t, s, u), being t continuous, s integer and
u categorical variables. Thus, we study GP models defined
on a finite subspace of X = R× Z×K. By focusing the
modeling effort on the covariance structure, kernels on X can
be obtained by combining kernels on R, Z and K. Standard
valid combinations are the (1) product, (2) sum or (3) ANOVA.
If kX denotes a kernel for variables that lie in domain X,
examples of valid kernels are

1) k (xxx,xxx′) = kR (t, t ′)kZ (s,s′)kK (u,u′)
2) k (xxx,xxx′) = kR (t, t ′)+ kZ (s,s′)+ kK (u,u′)
3) k (xxx,xxx′) = [1+ kR (t, t ′)] [1+ kZ (s,s′)] [1+ kK (u,u′)]

For kR, kernels such as the the squared exponential (Eq.
9) or Matérn (Eq. 10) can be used. The question then comes
down to constructing a valid kernel on a finite subset of Z or
K, with a corresponding positive semidefinite Gram matrix.

1) Kernels for integer variables: An integer variable is a
discrete variable with ordered levels. Thus, Z can be seen
as a discretization of R. We can define a non-decreasing
transformation T : Z −→ R (i.e. warping) such that the or-
der is preserved, which projects the discrete variable into a
continuous space. Consequently, the kernel function can be
written as

kZ
(
s,s′
)
= kR

(
T (s) , T

(
s′
))

(15)

In the general case, T is piecewise-linear. However, common
warping functions are based on the cumulative distribution of a
uniform, normal or lognormal random variable T :Z−→ [0, 1].
Note that when kR depends on the distance ‖t− t ′‖, then kZ
depends on the distance between s, s′ distorted by T . Selecting
an appropriate T may require subject-matter knowledge.

In order to allow negative correlations, alternatively to
standard SE or Matérn kernels, one may choose, for instance,
the cosine correlation kernel on [0, β ), being β ∈ (0, π] a fixed
parameter tuning the minimal correlation value

kZ
(
s, s′
)
= cos

(
T (s)−T

(
s′
))

(16)

2) Kernels for categorical variables: For categorical vari-
ables there is no notion of order. However, what does exist
is a notion of equality (=) or inequality ( 6=). Among the
parsimonious kernel parametrizations, up to additional as-
sumptions, which generate a positive-definite Gram matrix is
the compound symmetry (CS) covariance structure

kK
(
u,u′

)
=

{
v if u = u′

c if u 6= u′
(17)
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where v is the variance and c the covariance. This structure
is a generalization of the SE kernel using the Gower distance.
All pairs of categories are treated equally, being the similarity
maximum for two equal input points, and minimum for differ-
ent ones. A more flexible parametrization can be obtained by
considering groups of categories. Let the discrete categorical
set be partitioned into G groups, and g(u) the group number
corresponding to value u

kK
(
u,u′

)
=

{
v if u = u′

cg(u),g(u′) if u 6= u′
(18)

where for all i, j ∈ {1, . . . ,G}, the terms ci,i/v are within-group
correlations, and ci, j/v (i 6= j) are between-group correlations.
Note that additional constraints on v and ci, j are required to
ensure that kK is a valid kernel function. The corresponding
Gram matrix KKK, written in block form is

KKK
(
uuu,uuu′

)
=


WWW 1 . . . BBB1,G

...
. . .

...
BBBG,1 . . . WWW G

 (19)

where diagonal blocks WWW g and off-diagonal blocks BBBg,g′

encode within-group and between-group covariances respec-
tively. The necessary and sufficient conditions for KKK to be
positive semidefinite are:

• WWW g is positive semidefinite ∀ g = 1, . . . ,G
• WWW g−W gJJJg is positive semidefinite ∀ g = 1, . . . ,G

where JJJg is a matrix of ones with the size of WWW g and W g the
average of its elements. Thus, for the kernel function defined
in Equation (17), considering a discrete set with L different
categories, we can derive the following condition

− (L−1)−1 v < c < v (20)

3) Example: Consider a manipulation task modeled by the
following deterministic function of xxx = (t,s,u)

y(xxx) =


− 1

20 t · s if u = lin
3
10 sin

(
π
[
5t− 1

4

]
− s/5

)
if u = sin

1
4 sin

(
π
[
3t− 1

2

])
e−0.8t·s + 1

10 if u = dsin

(21)

with t ∈ [0,1], s ∈ {1, . . . ,5} and u ∈ {lin,sin,dsin}. As de-
picted in Figure 3, the required path depends greatly on u,
while small variations are explained by s.

Fig. 3. Projection on the y-t plane of the task model y(xxx) (Eq. 21)

Kernel RRR222

product 0.52
sum 0.37

ANOVA 0.97

Fig. 4. Matrix KKK constructed with ANOVA composition and maximum
likelihood over a train set formed by a regular 8×3×3 on (t,s,u) domain.
Also, R2 coefficient of the inferred y(xxx) using different compositions.

We aim at reconstructing the task policy from demon-
strations. As training data, we take samples on a regu-
lar 8 × 3 × 3 grid in the task variable domain [0,1] ×
{1, . . . ,5} ,×{lin,sin,dsin}. We consider three models using
sum, product and ANOVA kernel combinations. For kR, kZ
and kK we use the SE (Eq. 9), cosine (Eq. 16) and CS (Eq.
17) kernels respectively. Hyperparameters are estimated by
maximum likelihood. Model accuracy is measured in terms of
the R2 criterion over a test set formed by a finer 100×5×3
grid in order to illustrate the generalization capabilities. In
Figure 4 we show the resulting matrix KKK with ANOVA
composition, for which we achieve the best score. We can
observe three distinct groups almost uncorrelated for different
values of u, each one divided into three subgroups, one for
each training s, with high relatedness, as it can be intuited from
Figure 3. Thus, we can conclude that the proposed GP design
retrives an effective policy by including continous, integer
and categorical variables; inferring an accurate covariance
structure.

B. Inference and Prediction under Replication

In the LfD context, replications, which can be intuitively
defined as repeated demonstrations for identical task variables,
play a key role on the estimation of the variability. This
constitutes a challenge, since the computational complexity
of the GP-based policy learning algorithm increases cubically
with the number of training samples. We exploit the structure
of replications in GP design for achieving computational
savings during inference and prediction by using two well-
known formulas, together comprising the Woodbury identity

(DDD+UUUBBBVVV )−1 = DDD−1−DDD−1UUU
(
BBB−1 +VVV DDD−1UUU

)−1
VVV (22)

|DDD+UUUBBBVVV |=
∣∣BBB−1 +VVV DDD−1UUU

∣∣ · |BBB| · |DDD| (23)

Let N and n� N be the number of training samples and
unique input locations (points with identical task variables)
respectively; y( j)

i be the jth out of ai ≥ 1 replicates observed
at each unique input, where ∑

n
i=1 ai = N; and yyy be the array

with concatenated terms yi = a−1
i ∑

ai
j=1 y( j)

i . We now develop
a map from full KKKN , RRRN matrices (Eq. 4) to their unique-n
counterparts KKKn, RRRn. Without loss of generality, assume that
data is ordered such that replicates are stacked together. Then

KKKN =UUUKKKnUUUT UUUT RRRNUUU = AAAnRRRn (24)
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with UUU = diag(111a1,1 . . . ,111an,1) a N×n block matrix, where 111k,l
is a k× l matrix of ones, and AAAn = diag(a1, . . . ,an). Developing
equations 5, 6 and 11, taking DDD≡ RRRN , BBB≡ KKKn and VVV =UUUT ,
yields the following predictive equations

µµµ
∗ = mmm∗+KKK∗Tn

(
KKKn +AAA−1

n RRRn
)−1

(yyy−mmm) (25)

ΣΣΣ
∗ = KKK∗∗+RRR∗−KKK∗Tn

(
KKKn +AAA−1

n RRRn
)−1

KKK∗n (26)

Note they are almost identical to the original ones built by
overlooking the structure of replication. We also have the next
expression for the log likelihood logL

logL=−1
2

(
yyyT RRR−1

N yyy− yyyT AAAnRRR−1
n yyy+ yyyT (KKKn +AAA−1

n RRRn
)−1

yyy
)

− 1
2
(
log
∣∣KKKn +AAA−1

n RRRn
∣∣+ log |RRRN |− log

∣∣AAA−1
n RRRn

∣∣) (27)

This implies that only O
(
n3
)

matrix decompositions are
required, which could represent huge savings compared to
O
(
N3
)

if the degree of replication is high.
For illustrating the potential of exploiting the structure of

replications in the design, consider a manipulation task with
the following observational model

y(t) = sin(π [4t−0.25])e−3t
(

1+ e−5x
)−1

+ ε (28)

where ε ∼N (0,λ = 0.05). For the model, we assume an SE
kernel with hyperparameters l and σ f , and constant noise level
with variance λ , which we also consider a hyperparameter.
Samples are taken at n = 50 unique input locations, each
having a replicates. In Figure 5c, we can observe that for the
standard formulation, the computational time for retrieving the
policy with respect to a = 1 increases dramatically with the
number of replicates, whereas it remains constant with the
proposed one. For the case a = 9, where the time differs by
a factor of 60, we can observe in figures 5a and 5b that the
learned policy is identical. Also, the inferred hyperparameters
(Figure 5d) since the method is exact.

Fig. 5. (a) Learned policy with the standard GP formulation. The red solid
line, blue shaded area and green dots refer respectively to the mean, the 95%
confidence interval and the training samples. (b) Same with the replication-
based design. (c) Computational time for retrieving the policy with respect
to a = 1 for different a. (d) Inferred hyperparameters of the SE kernel, l and
σ f , and noise variance λ .

V. ILLUSTRATIVE EXAMPLE: LEARNING TO WRITE

In this section, we illustrate and evaluate the main aspects
of the presented GP-based LfD framework through the robot
writing task. This skill suits perfectly the LfD context since
it is difficult to script but can be intuitively demonstrated.
The task has been explored for engaging robots in teaching
activities. Building up on the learning by teaching paradigm,
letting a child demonstrate the robot, not only does the child
practice handwriting but, also positively reinforce their moti-
vation [19]. First, we present the robot an experimental hand-
written dataset, which includes trajectories for several letters
indexed by real, integer and categorical task variables. Then,
we consider the problem of learning a movement policy from
the demonstrations, comparing the performance of different
GP designs. Next, we assess the adaptability of the resulting
policy by evaluating the modulation through via-points, and
the interpolation and extrapolation capabilities. Finally, we
study, in terms of computational time, the implications of
considering the structure of replications in the formulation.

A. Handwritten Letter Dataset

The demonstration dataset has been generated experimen-
tally by handwriting different letters on a tablet using a stan-
dard note app (Figure 6). We extracted the data by first screen
recording while writing, and then, processing the resulting
videos with computer vision techniques. As output variables
we take the x and y coordinates of the path that describes the
handwriting motion. As input (or task) variables we take time
t; the size of the letter s, which we consider defined by the
height, measured as an integer height = s×8mm; and finally,
the letter corresponding to the motion u, e.g. ’A’, ’B’ ,’C’,
etc. The variables and the domain sampled in the dataset are
summarized in Table I.

Variable Symbol Type Domain
Time t Input [0, 1]
Size s Input {2,3,4,5,6}

Letter u Input {A,B,C,D}
Horizontal coordinate x Output R

Vertical coordinate y Output R
Table I. Handwritten letter dataset variables.

The size of the dataset was guided by the discrete task
variables, such that each of the 5× 4 = 20 possible discrete
input locations has 5 replicates. That is a total of N = 100
different demonstrations. The dataset, after temporal alignment
and scaling of trajectories, is shown in Figure 7.

Fig. 6. Demonstrations for the writing task are performed using a tablet.
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Fig. 7. Handwritten letter dataset. Trajectories are indexed by time t, size s and letter u. 5 replicates are provided for each possible combination of the discrete
variables s and u, represented in the same color. To the right of each letter x-y path, the corresponding x(t) and y(t) are shown.

B. Task Model Design

We aim to learn a movement policy from the demonstrations
that is capable of generating the motion required to write
a given letter with a specified size. In the presented GP
approach the modeling effort is focused on the covariance
structure. The multi-dimensional kernel function is built as
a composition, which can be either sum, product or ANOVA,
of one-dimensional ones. For kR we can use the SE or the
Matérn; for kZ we propose the cosine kernel and, due to the
nature of the size variable, a linear transformation T () (Eq.
15); finally, for kK we take the CS structure. To select the
best model, we split the dataset in 50% for learning the task
policy and the remaining 50% for assessing its performance.
The results obtained for different covariance structures in
terms of the R2 coefficient are shown in Table II. Although
very accurate predictions are obtained either with the product
or ANOVA composition, the best score is achieved by the
ANOVA+Matérn model. In Figure 8a we can see that this
policy effectively retrieves the motion required for writing a
letter ’A’ of size 4, also encoding the variability.

kR

Composition Product Sum ANOVA

SE 0.87 0.32 0.93
Matérn 0.89 0.35 0.94

Table II. R2 coefficient for different covariance structures.

C. Adaptability of the Task Policy

Here we illustrate the generalization capabilities of the
learned task policy. Adaptability can be achieved either
through the specification of via-points, or relying on the GP
model to generate the required motion given a new set of
task parameters, for which demonstrations are not provided.
We study different possibilities through the example shown
in Figure 8. As depicted in Figure 8b, the motion in Figure
8a can be easily modulated to fulfill new specifications by
conditioning the learned distribution to pass through new

initial, final and/or intermediate via-points. Now consider that
during the execution of the task, the robot encounters a new
context, not sampled in the demonstration set. We consider two
different cases, in Figure 8c we only use data of letters with
sizes 3 and 5, whereas in Figure 8d we only consider sizes
5 and 6. Thus, for writing a letter ’A’ of size 4 interpolation
is required in the former case, and extrapolation in the latter.
Since the new task variables are close to the demonstration
region in both cases, we can see that the policies are capable
of adapting effectively to the previously unseen scenarios.

D. Computational Advantage of Replication

Now we evaluate the potential benefit of exploiting the
structure of replication during inference and prediction of the
GP-based policy. From each of the 100 demonstrations we
take 25 uniformly distributed timestamps for training. Thus,
we have a total of N = 2500 points with n = 500 unique input
locations (a = 5). In Figure 9 we show a comparison of the
computational time per evaluation of the inference function
(inference), and for generating the task motion (prediction).
We are able to perform the calculations 100 times faster
without any approximation, achieving identical results.

Fig. 9. Computational advantage of replication for evaluating the hyperpa-
rameter inference function, and calculating the predictive distribution.
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Fig. 8. (a) Motion retrieved by the task policy learned from the demonstrations for writing an ’A’ of size 4. The solid blue line denotes the mean, the blue
shaded area, the 95% confidence interval, and the green dots, the training data. (b) Policy adaptation through via-points (red circles). For comparison, the
mean of the previous case is represented as a black dashed line. (c) The model is built only with demonstrations of sizes 3 and 5, thus interpolation is required
to generate the required motion. (d) In this case, only demonstrations of sizes 5 and 6 are used, thus extrapolation is performed.

VI. CONCLUSION

Learning from Demonstration (LfD) is arising as a promis-
ing paradigm that allows intuitively transferring manipulation
skills to robots. A central problem is to design a movement
policy such that the retrieved motion can automatically adapt
to new situations encountered by the robot. Also, currently,
as the complexity of the taught manipulation tasks increases,
there is a growing need for learning algorithms capable of
handling large demonstrations datasets.

In this paper, we present a Gaussian-Process-based LfD
framework that allows an expressive and versatile encoding
of the policy. We focus on generalization performance and
computational efficiency. Adaptability is enhanced by incor-
porating task variables into the model, which can be either
real, integer or categorical. On the other hand, the scalability
of the learning algorithm is boosted by exploiting the structure
of replications, which arise naturally in the LfD context.
The proposed approach is illustrated and tested by teaching
the robot how to write, achieving satisfactory performance
in terms of policy design, adaptability and computational
savings. An important future challenge will be to extend the
framework towards learning more complex tasks such as cloth
manipulation.
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