
 

 

 

MASTER’S FINAL THESIS  

Master’s Degree in Chemical Engineering – Smart Chemical 

Factories  

DEVELOPMENT OF MACHINE LEARNING STRATEGIES FOR 

FAULT DIAGNOSIS IN VIRTUAL PLANTS (DIGITAL TWINS) 

 

 

 

Report and Annexes 

 

 

Author:  Kevin Martínez López 
Director:  Moisès Graells Sobré 
Co-Director:   Gerard Campanyà Gratacòs 
Call date:         June 2021  



 

  



DEVELOPMENT OF MACHINE LEARNING STRATEGIES FOR FAULT DIAGNOSIS IN VIRTUAL PLANTS (DIGITAL TWINS)  

  i 

Resumen 

En este proyecto, se ha validado la posibilidad de realizar la monitorización de datos y el diagnóstico 
de errores en línea (mientras se ejecuta la simulación) de una planta química simulada (Digital Twin en 
Inglés). La simulación se encuentra funcionando en un ordenador remoto, mientras que se accede a 
los resultados de la monitorización de datos y el diagnóstico de errores por medio del acceso, con un 
ordenador personal, a la nube, más conocida como ‘Cloud’ por su término en Inglés. 

En primer lugar, se explica la implementación, módulo a módulo, del prototipo modular propuesto y 
empleado para el intercambio de información desde el ‘Digital Twin’ hacia la nube (Cloud), lo que 
permite la monitorización de datos. Para cada módulo, se introducen los programas y herramientas de 
programación necesarios para crear y/o ejecutar el módulo. Las razones para seleccionar los 
programas y las herramientas también son expuestas. Además, se introduce la plataforma donde se 
aloja la nube empleada junto con los diferentes servicios disponibles en la nube, los cuales se han usado 
para mostrar los resultados de la monitorización de datos. 

En segundo lugar, los algoritmos de aprendizaje automático (Machine Learning en Inglés) y de análisis 
de datos (Data Analysis en Inglés), implementados para el diagnóstico de fallos, se comentan desde los 
puntos de vista teórico y de implementación. Además, se explica el desarrollo de las herramientas de 
monitorización para el diagnóstico de fallos, que consiste en la combinación de los anteriores 
algoritmos con el prototipo modular encargado del intercambio de información. 

Finalmente, se documenta una prueba de concepto del prototipo en global, que demuestra que estas 
tecnologías son factibles y fiables para la monitorización de datos y el diagnóstico de fallos. 
Adicionalmente, se incluyen unas pautas a seguir para mejorar el prototipo.  
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Resum 

En aquest projecte, s’ha validat la possibilitat de realitzar la monitorització de dades i el diagnòstic 
d’errors en línia (mentre s’executa la simulació) d’una planta química simulada (Digital Twin, en 
Anglès). La simulació es troba funcionant a un ordinador remot, mentre que s’accedeixen als resultats 
de la monitorització de dades i el diagnòstic d’errors per mitjà de l’accés, amb un ordinador personal, 
al núvol, més conegut com a ‘Cloud’ pel seu terme en Anglès. 

En primer lloc, s’explica la implementació, mòdul a mòdul, del prototipus modular proposat i emprat 
per a l’intercanvi d’informació des del ‘Digital Twin’ cap al núvol, el qual permet la monitorització de 
dades. Per a cada mòdul, s’introdueixen els programes o eines de programació necessaris per a la 
creació i/o execució. Les raons considerades alhora d’escollir aquests programes o eines de 
programació també s’exposen. A més a més, s’introdueix la plataforma on s’allotja el núvol junt amb 
els diferents servicis que ofereix el núvol, els quals han sigut utilitzats per a mostrar els resultats de la 
monitorització de dades. 

En segon lloc, els algorismes d’aprenentatge automàtic (Machine Learning en Anglès) i d’anàlisi de 
dades (Data Analysis en Anglès), que han sigut implementats pel diagnòstic d’errors en la planta 
simulada, són comentats des dels punts de vista teòric i d’implementació. També, s’explica el 
desenvolupament de les eines de monitorització per a la diagnosi d’errors, les quals són el resultat de 
combinar els algorismes anteriors amb el prototipus modular encarregat de l’intercanvi d’informació. 

Finalment, es documenta una prova de concepte del prototipus global que permet demostrar que 
aquestes tecnologies son factibles i fiables per a la realització de la monitorització de dades i el 
diagnòstic d’errors. Addicionalment, s’inclouen pautes a seguir per a millorar el prototipus.  
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Abstract 

In this project, the possibility of performing the on-line data monitoring and fault diagnosis over a 
simulated chemical plant (Digital Twin) has been validated, which is running on a remote computer, by 
accessing the Cloud with a personal computer. 

Firstly, the implementation is explained, module by module, of the modular prototype proposed and 
employed for the exchange of information from the Digital Twin to the Cloud, which enables the data 
monitoring. For each of the modules, the programs or programming tools required for its creation 
and/or execution are introduced. The reasons for its selection are also exposed when explaining each 
of the modules. Moreover, the Cloud Platform chosen is also introduced together with the different 
services associated with it that have been used for displaying the results from data monitoring. 

In the second place, the Machine Learning and Data Analysis algorithms implemented for the fault 
diagnosis are commented from the theoretical and the implementation points of view. Furthermore, 
the development of monitoring tools for fault diagnosis is also explained, which consists of the coupling 
between the algorithms and the modular prototype for the exchange of information. 

Finally, it is documented a proof of concept of the global prototype, which demonstrates the feasibility 
and reliability of these technologies for performing data monitoring and fault diagnosis. Additionally, 
guidelines for the further development of the prototype are provided. 
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Glossary 

PFD: Process Flow Diagram 

P&ID: Piping and Instruments Diagram 

SCADA: Supervisory Control and Data Acquisition software or system 

DT: Digital Twin 

PDT: Process Digital Twin 

OPC UA: Open Platform Communications Unified Architecture. It stands for a communications 

protocol. 

GUI: Graphical User Interface 

MQTT: Message Queue Telemetry Transport. It stands for a protocol for transporting messages. 

IoT: Internet of Things. It englobes all the physical objects that can exchange data with other devices 

over the internet. 

SAS Token: Shared Access Signature Token. If related to the Cloud, it is used so as to grant access to 

the person receiving the Token. 

SQL: Structured Query Language. Programming tool for the retrieval of information contained in 

databases. 

PCA: Principal Component Analysis 

MLA: Machine Learning Algorithm 
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Foreword  

1.1. Origins of the project 

In the chemical industrial sector, there is a continuous generation of data, which has been and is 

traditionally stored locally for the company to keep the information contained within the data under 

safety. Nonetheless, the latest advances in technologies from the communications and data 

management fields have opened an opportunity window for changing this aforementioned traditional 

behavior. These new technologies can be used in order to switch from just storing data to adopting 

new methodologies aimed to gain valuable knowledge from this data. 

1.2. Motivation 

This project is borne with the intention of being a proof of concept. It serves so as to demonstrate that 

the new technologies from the data communications and data management fields, which are currently 

being studied in the industry and the academia, render meaningful results. Therefore, they could be 

further explored in future projects.  

From a personal point of view, the project has been a challenge during its realization due to the fact 

that it is required to possess and to combine multidisciplinary knowledge and skills. However, this 

challenge has been seen as a continuous source for motivation. 

1.3. Previous requirements 

For the realization of this project, it has been necessary to have basic knowledge and skills regarding: 

• The use of commercial software intended for process simulation related to the chemical 

industry. 

• How to code in programming languages. In this specific case, how to code in Python language. 

• Data Analysis and Machine Learning. 
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Introduction 

1.4. State of the art 

The topic explored within this project is nurtured from the latest advances on technologies that are 

popping up in the market and from technology that was already established several years ago. On the 

one hand, the latest advances in technologies correspond to data analysis, and machine learning tools, 

and communication networks. On the other hand, the established technology is related to the digital 

twin concept in the chemical industry. 

1.5. Objectives of the project 

This project has been performed through the achievement of milestones, each of which is required to 

be completed prior to continuing with the subsequent milestone. At the same time, each milestone is 

composed of several objectives. Bearing that in mind, four milestones constitute the project as 

described below: 

• To develop a prototype for exchanging data from a digital twin of a chemical plant 

o To select a process simulation tool for implementing the digital twin  

o To develop and program the communications interface 

o To use standard communication protocols and a modular architecture  

o To publish the on-line data through the Internet 

• To develop tools for producing data-based models of the process from this data 

o To use Machine Learning and Data Analysis algorithms  

o To explore the use of Cloud computing tools  

• To develop monitoring tools for the detection of abnormal events in the simulated plant  

o To prepare simulation cases for training and testing the machine learning algorithm 

o To demonstrate and assess the use and efficiency of the remote monitoring system 

• To validate the prototype and provide guidelines for future development 

o To make a proof of concept of the remote monitoring system developed  

o To provide guidelines aimed to the future development of the remote monitoring system  

1.6. Scope of the project 

A digital twin is to be created with the use of a commercial simulator devoted to process simulation in 

the chemical industry. The aforementioned digital twin is to be connected to the Cloud, where 

technologies of data monitoring and fault detection are to be used as a proof of concept. 
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Prototype for the Exchange of information from a digital 

twin of a chemical plant  

1.7. Concept of digital twin and tools for its creation 

In the chemical industry, a digital twin can be defined as a digital copy of a process plant or an individual 

process, which serves for testing operation strategies and for the training of operators. The concept 

can be easily understood when its origins are known: flight simulators. The first digital twins were 

created for the training of airline pilots (1). 

The first technologies for simulating a digital twin of a chemical plant were developed back in the 60s 

when Fortran was being used as a programming tool. There are three alternatives available nowadays 

for creating a digital twin: 

1. Programming languages 

2. Generalist simulators 

3. Commercial simulators 

The use of programming languages for the simulation of a digital twin requires to build-up everything 

from scratch, to program everything on your own. It is possible but unfeasible for the objectives of this 

project. 

Generalist simulators can be seen as programming environments more sophisticated. Their user 

interface is high-level, which enables a user-friendly interaction. It is possible the modeling of process 

units through equation-oriented language or adding control schemes for these process units with 

building blocks. For instance, Matlab and Simulink, or Modellica are clear examples of these types of 

simulators.  

However, generalist simulators have as drawback the lack of data. They do not include a database with 

thermodynamic and component packages. Therefore, it is possible to model process units, but the 

simulation of a realistic behavior of these process units gets hard. In consequence, the modeling of 

huge and complex processes turns unaffordable. 

Commercial simulators are programming environments of very high-level, which include pre-built 

modules for process units and databases with thermodynamic and component packages. The use of 

this kind of simulation results attractive in the herein project since it makes it possible to simulate a 

chemical plant easily having associated realistic behavior.  
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There are different commercial simulators available, which can be open or closed-source. The most 

well-spread and known software are Aspen Hysys and Aspen Plus, which are two software products 

closed-source, property of the company AspenTech. Nevertheless, its costs are quite expensive. There 

are also open-source options such as DWSIM, but it is not as well-spread or trusted as the 

aforementioned options. On the other hand, other available options are CHEMCAD, ProSimPlus, 

gPROMS, Petro-SIM, AVEVA PRO/II, Schumberger’s VMG Symmetry or UniSim among others (2). 

From the different options available, UniSim has been selected due to being an economically-feasible 

option and accounting with useful tools for the simulation of errors and abnormal behaviors within the 

simulated chemical plant.  

1.8. Process simulation tool for implementing the digital twin  

1.8.1. UniSim as a tool for dynamics simulation 

UNISIM® Design Suite R480 has been employed as the process simulation tool so as to recreate a 
chemical plant. The software enables engineers to create steady-state and dynamic models for plant 
design, performance monitoring, troubleshooting and operational improvement through the use of 
different modules (3).   

In the herein project, the modules UniSim Design and UniSim Dynamic Option have been used. On the 

one hand, the former, being a steady-state flow sheeting environment, permits to create a steady-

state model by selecting the appropriate thermodynamics properties, feed compositions and 

conditions, and unit, logic and control operations. On the other hand, the latter converts the steady-

state model into a dynamic model with the use of a dynamic’s assistant. The dynamic model offers 

rigorous and high-fidelity results (4).  

1.8.2. Creation and configuration of a simulated case 

After UNISIM® Design Suite R480 is opened, the option New Case is selected from the different options 

depicted in Figure 1.   
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Figure 1. Different available options when creating a new simulation 

1.8.2.1. Simulation Basis Manager  

A new window named Simulation Basis Manager pops-up, which is an environment that permits the 

user to specify from the internal database of the commercial simulator:  

• The different components or chemical substances that will be present in the simulation  

• The fluid or thermodynamics package, which includes the physical and chemical properties of 

the components and the thermodynamics models that will be used in the simulation.  

 
Figure 2. Simulation Basis Manager 

According to Figure 2, it is possible to access the component lists when clicking on the tab Components 

(1). The Fluid Package menu can be accessed when clicking on the tab Fluid Pkgs (2). Once in 1 or 2, if 

the tab View (3) is clicked, the user accesses to the Component List View or the Fluid Packages View 

respectively. 
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From the windows Component List View and Fluid Packages View the different components and the 

fluid package are selected. After those have been established, it is possible to enter in the Simulation 

Environment in which the user can start to design the Process Plant in steady-state mode. To do so, 

the tab Return to Simulation Environment (4) (if the user has already entered in this environment) or 

Enter to Simulation Environment (if the user is configuring the Simulation Basis Manager for the first 

time). After having designed the Process Plant, the mode can be changed to dynamic.  

 
Figure 3. Component List View for the simulated case of the project 

As it is seen in Figure 3, the components or chemical substances that are to be present in the Process 

Plant are water and air, the latter being simplified as oxygen and nitrogen. 

 
Figure 4. Fluid Package menu 

As Figure 4 shows, the Fluid Package selected for the simulation corresponds to Peng-Robinson, which 

permits to obtain good predictions for the chemical substances previously selected. The Fluid Package 

can be personalized as different options are available, which can be selected by the check the box 

system. However, the Fluid Package has been used as per default.  
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1.8.2.2. Simulation Environment 

After having configured the basis of the simulation, that is the chemical substances involved and the 

thermodynamics packages that permit it to accurately predict its behavior during the simulation, the 

simulation environment consists of the PFD (Process Flow Diagram) window as observed in Figure 5.  

A process flow diagram can be defined as a graphical representation of a chemical process, where the 

unit operations and the material streams are represented. Additionally, UniSim shows the control 

schemes involved in the process, which are usually represented together with the unit operations and 

material streams in other type of diagrams known as P&IDs or Piping and Instruments Diagrams.  

 
Figure 5. Simulation environment 

In Figure 5, there are different elements delimited by black rectangles that must be highlighted for 

further explanation as follows: 

• PFD window. The PFD is located inside a window at the center of the image. It permits to 

visualize and interact with the PFD of the Process Plant.  

• Construction Palette. At the right side of the image, there is a Construction Palette, which 

permits to drag and drop different elements into the PFD such as unit operations, control 

schemes or material and energy streams for building-up the plant. 

• Simulation Tab. If clicked, it is possible to select from a list the Integrator object, which is to be 

explained in more detail in a sub-section devoted to it. 
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• Tools tab. If clicked, it is possible to select from a list the DataBook object, which is to be 

explained in more detail in a sub-section devoted to it. 

• Icons marked as (1). Interactive buttons to switch from steady-state to dynamics mode. The 

left one corresponds to steady-state, while one on the right corresponds to dynamics mode, 

which is the one selected in Figure 5. 

• Green and Red Traffic Lights (2). They are interactive buttons and indicators for the present 

state of the simulation in a dynamic state. If the Red Traffic Light is active, as it is the case of 

the figure above, the simulation is stopped and it can be considered to be at steady-state. 

Oppositely, if the Green Traffic Light is active, the simulation is running in dynamics mode. 
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1.8.2.2.1 Integrator 

  

Figure 6.  Integrator's General Tab Figure 7. Integrator's Execution Tab 

 

 

Figure 8. Integrator's Object Tab  

UniSim is a simulator based on the use of Ordinary Differential Equations (ODEs) for the calculations.  

Thus, it uses only derivatives of one variable with respect to time. The calculations are based on 

integrating the derivatives over time steps defined by the user. The tinier the time steps, the more 

accurate the results are, but the computation demands are increased.      

The Integrator object permits to configure the aforementioned integration time steps among other 

settings. There are three different tabs for doing so named General, Execution and Options, which are 

depicted in Figures 6, 7 and 8 respectively. 
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• General. It is possible to establish if the simulation runs in real time and if so, if an acceleration 

is applied to the simulation (Desired Real Time Factor). In the case of the project, the Desired 

Real Time Factor is set to 1, no acceleration is intended. As seen in the image, the integrator 

has a certain imprecision, but the Real Time Factor is maintained as close to the Desired Real 

Time Factor as possible.  

Moreover, the step sizes of the integration time steps can be adjusted for getting the desired 

balance between the computational power demands and the precision on the calculations. 

Finally, the Continue button allows the dynamic simulation to start. 

• Execution. It is possible to establish every how many steps the calculations on Pressure-Flow 

equations, Control and Logical Operations, Energy, Compositions, among others are to be 

performed.  

Variables that have major disturbances over time such as Flows require to be calculated more 

often than composition which does not change that tend to be constant over larger periods of 

time. Therefore, the Pressure-Flow Solver is recalculated every time step, while Composition 

Calculations are done after ten steps. No changes have been made on this tab, relying on the 

configuration per default of UniSim.  

• Options. In this tab several options can be enabled for getting realistic results when jumping 

into dynamics mode. An important option that must be enabled, which is not activated per 

default, relates to the static head contributions. This is to account for the pressure contributed 

by a column of liquid below it. For example, when filling-up a water tank the increasing level 

of liquid exercises a pressure at any point below it. An easily understood example relates to 

the increase in pressure at sea when diving. It is not the same to be at the surface at 

atmospheric pressure than to be at ten meters depth, where there is an increase in one 

atmosphere and an individual is consequently submitted to two atmospheres of pressure. 

1.8.2.2.2 DataBook 

The DataBook serves as a data manager for interacting with all the data being generated during the 

simulation. It is required to use the different tabs located at the bottom of the DataBook window. 

Three tabs are to be commented due to its relevance in the project.  

1. Variables Tab. In this tab, it is possible to open a Multi Variable Navigator that allows access to 

any variable from the process and select it. 

2. Process Data Tables Tab. In this tab, it is possible to include in the Process Data Tables any of 

the variables previously selected by checking the Include box.  

In Figure 9, all the variables seen in the image are included in a Table named ProcData1.  

In Figure 10, the Process Data Table can be seen. Each of the variables has a tag associated for 

its identification, which in this case is based on numbers, and an Access Mode, which is set to 
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Read/Write for all the variables. This Access Mode is vital for establishing communications with 

third-party software as it will be commented along section 1.9.2.2. Moreover, each variable 

has also an Object associated with it, which is the element from the simulation, whose state 

can be described by the corresponding variable. In this project, the objects are either material 

streams or controllers. 

As it is possible to see in Figure 10, the complete process variables set is composed of thirty-

four variables in total, including pressures, mass flows, temperatures and the controllers’ 

variables, which are SP (Set-Point Value), PV (Process Variable) and OP (Output Signal). For the 

main boundary material streams, which are the ones entering or exiting the process, its mass 

flow has been studied.   

 
Figure 9. DataBook menu’s Process Data Tables Tab 

 
Figure 10. Process Data Table "ProcData1" 
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3. Strip Charts Tab. In this tab, the user can configure the Dataloggers that permit storing data 

related to variables over time. The user can specify which variables to track, how many data 

points can be stored (Logger Size) and the frequency at which data is being collected (Sample 

Interval). These Dataloggers can be visualized either in tabular form (Historical) that can be 

saved in CSV format, or as Strip Charts.  

 
Figure 11. Databook menu for the simulated case, which includes five dataloggers. 

In Figure 11, it can be seen demarcated in red some of the different options available in the Databook 

menu. That is to say, to view a Strip Chart or the Historical, which are also depicted in the image for 

Datalogger3. Additionally, the options Setup and Setup All are also highlighted in red, which permit to 

either configure a Datalogger or all of them from the same sub-menu. All the Dataloggers configured 

have the same characteristics: a Logger Size of ten thousand samples and a Sample Interval of one 

second.  

In the herein project, five dataloggers have been configured so as to study the evolution of the key 

variables that form part of the process variables set. In next Figures, examples for each Datalogger are 

depicted together with its legend for dynamic situations that can be simulated in UniSim. 
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Figure 12. Datalogger1 evolution after applying a negative 

temperature ramp on HX heating inlet. 

Figure 13. Datalogger2 evolution where it is observable the 

noise associated with the Feed Temperature introduced in 

the simulation as explained in Section 1.8.2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Datalogger 3 evolution after the application of a 

negative temperature ramp on HX heating inlet and the 

reduction on valve opening for VLV-103 from 50 to 20%. 

Figure 15. Datalogger 4 evolution after the change in 

pressure from 390 kPa to 420 kPa on the Feed. 
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Figure 16. Datalogger 5 evolution after the change in 

pressure from 390 kPa to 420 kPa on the Feed. 
 

 

1.8.3. Description of the simulated case 

The simulated case consists of a basic design, which aims to recreate a real chemical plant but 

simplified, that is, without considering the high level of complexity that could be found in real chemical 

plants. The reason for selecting a basic design is aligned with the objectives stated in the project, which 

only require the simulation to be rigorous, reliable and able to represent a real scenario with high 

fidelity. The high level of complexity found in real chemical plants could be incorporated in further 

designs just by adding additional details such as more streams, unit operations or feed compositions 

so as to accomplish new objectives imposed in future projects, without invalidating the results 

obtained in this project.  

The actual design incorporates a feed system, with a heat exchanger intended for the regulation of the 

fluid temperature, that connects to a water tank open to the atmosphere, and with an output 

downstream.  

 
Figure 17. Process Flow Diagram (PFD) of the simulated case 
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The water tank has a level controller connected to the valve of the output downstream for regulating 

the output flow with the objective of maintaining the level at a given set point in the case of 

disturbances. 

 
Figure 18.Water tank open to the atmosphere including a level controller in feedback configuration 

The heat exchanger has a temperature controller connected to the valve in the outlet of the hot stream 

for regulating the amount of heating liquid required for heating up the Feed that goes to the water 

tank. 

 
Figure 19.Heat exchanger including a temperature controller in feedback configuration 

The inlet stream to the heat exchanger incorporates a Transfer Function, which permits to simulate an 

increase/decrease on its temperature with a ramp of (X)ºC/min, if activated. In other words, it is 

possible to specify an increase or decrease of X Celsius degrees on the temperature per each minute 

that passes after the activation of the aforementioned Transfer Function.  
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Figure 20.Transfer function connected to HX heating inlet stream 

The Feed Flow incorporates a fictitious valve regulated by a Flow Controller for emulating aleatory 

disturbances in the Flow, which follow a normal distribution centered on the on-line value read from 

the simulation. The introduction of the aleatory disturbances is further explained in Section 1.9.2.2. 

 
Figure 21. Fictitious valve regulated by a flow controller in feedback configuration 

1.9. Communications interface programming and developing 

This section covers how the communications interface for interacting with the commercial simulator 

UniSim has been programmed and developed.  

Firstly, the programming tool employed during the project is briefly introduced and the reasons for 

using it are exposed. Secondly, it is delved into how the code has been developed. In the third place, 

the graphical user interface created for interacting with the simulation is explained. In another sub-

section, it is justified why part of the code written can be interpreted as a SCADA or Supervisory Control 

and Data Acquisition system, which stands for a software that permits the retrieval of all the 

information generated in a productive process. 

In a final subsection, a sequence diagram in UML or Modelling Unified Language is presented for the 

reader to see the role the communications interface programmed has inside the big picture 

represented by the modular communications architecture, which is to be explained in further details 

in the next section 1.10. 
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1.9.1. Python as programming language 

Python has been selected as the programming language in which to develop and program the 

communications interface. It could be defined as a stable programming language with a fast-growing 

ecosystem, being ranked among the most popular programming languages in recent years. 

Furthermore, its culture values open-source software, community involvement at local, national and 

international level, and teaching to new programmers (5) are suitable for any student interested in 

programming.  

These values facilitate the access to the tool, contribute to the high availability of learning materials, 

forums (where users discuss problems in code implementation and potential solutions) and facilitate 

the learning curve required for acquiring the minimum skills so as to develop programming projects. 

1.9.2. Python code functions for communications and monitoring  

The functions that are to be commented along this section have been written in Python with the final 

purpose of establishing communications with UniSim, extract data from the simulated case and send 

it via a communications architecture for its monitoring in dynamic graphics and tables as it is to be 

shown in next sections: 1.10 and 1.11. 

In order to understand how these functions work from a conceptual point of view without entering in 

the description of the code developed, two subsections are devoted to cover the main aspects behind 

them. In the first sub-section, it is explained how these functions have been built-up so as to interact 

with the simulation. In the second sub-section, it is stated the mission or objectives that each function 

must achieve.  

1.9.2.1. Access to UniSim object’s methods and properties 

The Python functions coded have been developed for the direct interaction with the simulation 

software UniSim. This direct interaction is intended for different purposes: 

1. To open or close the simulation case 

2. To start or pause the dynamic simulation of the simulation case 

3. To read the evolution of process variables or to impose new values to certain process variables 

along the time 

For achieving the direct interaction with the simulation software, it has been required to access with 

the Python code to a type library from UniSim named UniSimDesign.tlb (6). This type library gathers 

information in binary format that can be used so as to access all the object’s properties and methods 

exposed by UniSim at runtime (7).  
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On the one hand, the object’s properties can be interpreted as attributes of an object or aspects of its 

behavior that define the object. On the other hand, the object’s methods are actions that can be 

performed by an object (8).   

The object’s methods and properties exposed by UniSim have been explored with the use of Excel’s 

Developer Environment. Concretely, the Object Browser tool has been employed to seek into the type 

library named UniSimDesign. With the aid of this tool, the user can access all the methods and 

properties of the different objects and see its routes. The routes refer to the group of nested instances 

that must be declared within the code so as to access the properties or the methods when using a 

programming tool such as Python. 

 
Figure 22. Search Results for the Solver object using the Object Browser tool 

A search result for the Solver object from UniSim is shown in Figure 22. The Solver object includes the 

Integrator object, which is the tool that serves among other things for initiating or stopping the 

dynamic simulation of a case in UniSim. For further explanation related to the Integrator refer to 

Section 1.8.2.2.1. 

From the image, it is concluded that the Solver object contains the Integrator object. However, it must 

be pointed out that all the objects are contained by the simulation case. Therefore, the route for 

accessing to the integrator would be: 

Simulation Case -> Solver -> Integrator 
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If it is desired to access the properties or methods of the integrator, the route for a given method or 

function would be: 

Simulation Case -> Solver -> Integrator -> Continue (Method to order the Integrator to initiate again 

the dynamics mode) 

Simulation Case -> Solver -> Integrator -> GetTime (Method to get the time the simulation case has 

been running)  

The routes that have been explained, until this point, are conceptual. When coding, these routes are 

constructed by the use of CLSIDs. These are unique keys that permit the Python code to identify the 

aforementioned objects. It could be seen as telling the code where it must search for in a language that 

it is capable of interpreting. 

The combination of read data and gather data functions permits to have a functional Digital Twin of 

minor complexity when compared to the simulated case, but which permits to store the data of 

interest to be monitored. 

1.9.2.2. Description of the functions developed 

The different functions are to be described according to their mission, the objective that must be 

accomplished. Therefore, it is possible that for a given objective or mission, several functions are to be 

described as a group. 

Open Case. A function that permits loading the simulated case of interest, as indicated by the user in 

the code, is executed.  

Close case. A function that closes the simulated case is triggered.  

Run Integrator. The function that calls the object’s method responsible for initiating the Integrator is 

triggered.   

Stop Integrator. It executes a function that bears a script (a sequence of instructions that indicate to 

stop the Integrator), which UniSim receives and the Integrator is stopped.  

Read Data. A function, which accesses the information contained in the Process Data Table from 

UniSim indicated by the user, is initialized. In this project, the Process Data Table selected by the user 

is ProcData1, which is depicted in Figure 10. The information related to the numerical values, tags and 

units is copied in internal variables from the Python Code as long as the Access Mode is set to R (Read) 

or R/W (Read or Write).  
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Store Data. Function that performs the following actions:  

1. To read data 

2. Provoke noise on the data from the plant 

3. Create an OPC UA Client, which can be defined as an application that can be used so as to 

establish communication with another software, an OPC UA Server. Once both are connected, 

it is possible for bidirectional communications between both so as to transfer data from the 

Client to the Server, or from the Server to the Client.  

4. Establish communications with an OPC UA Server using this OPC UA Client and upload each of 

the numerical values contained in the internal variables from Python to the different tags 

exposed by the OPC UA Server. 

1. The Store Data function calls the Read Data function. Then, the data from the Process Data Tables is 

copied in internal variables from the Python code. 

2. The Store Data Function calls a function that introduces noise in the variables corresponding to the 

Temperature and the Flow of the Feed that enters in the Chemical Plant. This is done for recreating 

more realistic conditions, similar to the ones that can be encountered in real Chemical Plant. The noise 

is generated and introduced as follows: 

The noise is generated as a normal distribution of 999 data points centered on 0 with a given standard 

deviation: for the Temperature, it has a value of 0.05ºC; while for the Flow, it corresponds to 50 kg/h.  

From each distribution, one value is randomly selected and summed to the value that had been read 

from the simulation for the temperature and the flow respectively. The resulting values are slightly 

different from the original values. Therefore, noise is introduced in these two variables. The slightly 

different values are used to overwrite the current values of Temperature or Flow in the simulation. For 

overwriting the values of a given variable, the variable must have the Access Mode set as W (Write) or 

R/W (Read or Write).  

In the case of the Feed Temperature, the noise is directly introduced in the Temperature variable. 

Concerning the Flow, the noise is introduced into the Set Point of the controller FIC-1OO connected to 

the valve VLV-100, which ultimately permits to simulate disturbances in the Flow.  

3,4. Afterwards, the rest of code from The Store Data function permits uploading the data to the OPC 

UA Server. Once the data is sent to the Server, it will be sent via messages from the Server through the 

rest of the modular communications architecture, whose modules are to be described in detail in the 

next Section 1.10. 
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The execution of the Store Data function occurs in a loop that is repeated automatically. The function 

stops when the User pushes the “Stop Integrator” button that will be introduced and briefly described 

in Section 1.9.3. When the button is pressed, the Integrator stops and the uploading of data to the OPC 

UA Server is ended. 

1.9.3. Built-in interface (GUI library Tk) 

A graphical user interface can be defined as a form of user interface that allows users to interact with 

electronic devices through graphical icons, instead of text-based user interfaces, typed command 

labels or text navigation (9).  

The nature of the code developed, which is intended for the continuous interaction with the 

simulation, demands the execution of individual functions at specific timing. For this reason, it has been 

decided to develop a GUI in Python for the user to be able to execute the functions developed in the 

order chosen by them at will and at specific timing.  

A graphical user interface (GUI) has been developed with the standard GUI library for Python named 

Tkinter or commonly abbreviated as Tk. The library permits you to create a GUI application fast and 

easily. A GUI application consists of a main window, which can incorporate widgets such as buttons, 

labels and text boxes among others. It is refreshed constantly according to a main event loop (10).   

The buttons are interactable objects that when pushed, they trigger the execution of the function/s 

they are associated with. For the GUI developed, each of the buttons is labelled according to the global 

mission achieved by the functions that are triggered when the button is executed.  

In figure 23, it is possible to see the buttons corresponding to functions developed for communications 

and monitoring, which are Open Case, Close case, Run Integrator, Stop Integrator and Store Data.  
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Figure 23.Graphical User Interface for Monitoring and Communications 

1.9.4. Role of the corresponding code as SCADA 

The button named Store Data from the GUI previously described, triggers several functions of the code, 

which read data from the simulation and gather it in internal variables. The data read and stored could 

be seen as the data recorded by the different sensors installed in the Chemical Plant such as 

temperature and pressure probes, flowmeters, etc. Afterwards, the values stored are sent via a 

standard communications protocol for feeding a modular communications architecture.  

As commented at the beginning of Section 1.9, the actual definition for SCADA stands for a software 

that permits the retrieval of all the information generated in a productive process. When pushing the 

button known as Store Data, a piece of code, which can be seen as a software, gathers the information 

related to the different plant sensors and shows them for its subsequent routing via standard 

communications protocol. As a result, it recreates the behavior of any industrial SCADA as per the 

previous definition.  
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1.9.5. Sequence Diagram for communications and monitoring in UML standard

Figure 24. Sequence Diagram for communications and monitoring in UML 
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1.10. Modular communications architecture  

1.10.1. Modular architecture 

The communications systems that have designed consist of a modular architecture in the stage of 

prototype as it is to be justified afterwards. The modules employed are: 

1. Process Plant in the form of a simulation case that represents a chemical plant, that is a Digital 

Twin. 

2. A SCADA that uses OPC UA Communications consisting of an OPC UA Client, an OPC UA Server, 

which have already been introduced, and an IoT Broker. The Broker is a software that permits 

the exchange of data from a data source such as an OPC UA Server to a destination source 

such as a Cloud Platform. 

3. Cloud Platform that includes many services for data monitoring, analysis and treatment, 

among others.  

  
Figure 25. Block Diagram depicting the Modular communications architecture, where each module contains a list of its 
constituents 

On the one hand, the architecture is modular since each of the modules that conform it can be 

substituted for an equivalent module depending on the user’s situation, interests or possibilities. For 

instance, if the user wishes to make use of another communications protocol for the Server or the 

same protocol but with a Server from another company, the modular architecture proposed would still 

be functional. As long as the logics and algorithms that constitute the architecture are maintained, 

other equivalent modules could be:  

• The substitution of the process simulation tool by a real process plant 

• The use of another Cloud Platform  

Process 
Plant/Digital Twin

SCADA

(OPC UA 
Communications)

Cloud Platform

•Azure IoT Explorer

•Power BI

•Data Analysis and 
Machine Learning 
Services

•Download to 
computer and further 
data processing
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On the other hand, the architecture is in prototype stage since it consists of the minimum modules 

with the minimum capabilities required to accomplish the objectives of the project. It is a DEMO for 

showing the viability associated with the ideas that have been explored and the potential associated 

with future ideas linked to this research field. 

1.10.1.1. Process Plant 

The first module corresponds to the Process Plant, which has been built-up in the form of a simulation 

case developed with UNISIM® Design Suite R480, conforming what is known as a Digital Twin, which 

has been previously described in section 1.8.3. 

1.10.1.2. SCADA (OPC UA Communications) 

A SCADA has been implemented in Python as it is described in sections 1.9.2 and 1.9.4. The SCADA 

transmits information to the modular communications architecture with the use of OPC UA 

Communications. 

OPC UA stands for OPC Unified Architecture. It is an extensible, platform-independent standard that 
enables the secure exchange of information in industrial systems. It was released by the Open Platform 
Communications (OPC) Foundation in 2008.  

OPC UA is compatible with Windows, macOS, Android, and Linux. It can also be used in embedded 
systems and bare-metal systems, which do not use an operating system. OPC UA works on PCs, Cloud-
based infrastructures, PLCs, micro-controllers, and cyber physical systems (CPS). 

The goal of OPC UA is to enhance interoperability between hardware devices, and enterprise planning 
and automation software by providing a framework for industrial companies to converge disparate 
technologies. 

Related to the security of the transmissions, OPC UA enables data encryption at the data source, 
ensuring secure transmission without relying on network firewalls at the system’s core. This means 
security is ensured from the start of the data’s transmission (11). 

This communications protocol has been selected due to its widespread use in industry and its high 

compatibility with all the existing platforms.  

The first aspect permits to perform a project in the same conditions as those encountered in the 

industry, which would facilitate the adoption, at industrial scale, of the modular communications 

architecture developed.  

 

 

https://blog.paessler.com/monitoring-converged-industrial-it-infrastructure
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The second aspect permits to increase the quantity of modules that can be assembled in the 

communications structure, which permits to exploit the property of modularity the architecture 

possesses. For instance, if company A desires to work on Windows, while company B wants to work on 

macOS, the same architecture works in both scenarios. Another example is related to the final 

destination of the data. The architecture proposed is intended for sending data to the Cloud. However, 

if a company prefers to send the data to other computers, maintaining the data at local level, the 

architecture also works. 

The OPC UA Communications developed in this project are used by three different sub-units: an OPC 

UA Server (an independent software), an OPC UA Client (an application programmed in the Python 

code) and an IoT Broker (an independent software). 

1.10.1.2.1 OPC UA Server  

All the information related to the installation of the software, the configuration of the server and the 

CSV simulation files is based on the information provided in the Quick User’s Guide for the 

configuration of the OPC UA Server from the company Integration Objects, which is available at (12), 

requiring a prior free of charge registration. 

Installation of the software 

The software installed is a DEMO that can run during 48 hours without interruption, after which it must 

be initiated again for additional periods of 48 hours. Therefore, the DEMO serves for testing the 

communications architecture proposed in this project, which does not need to be functional for 48 

hours in a row. Notwithstanding, if future projects, requiring more time of execution for the 

communications architecture, are to be developed, other alternatives should be assessed such as 

searching for other kinds of DEMOs or paying a license for a software that could run without 

restrictions. 

Configuration of the server 

The server can be configured from the settings tab which include menus for Security Policies and 

Configuration respectively. 

In the menu Security Policies, it is possible to establish the kind of security mode to be associated with 

the OPC UA Server Simulator. Once an OPC UA client tries to access the Server, it should use one of the 

secure channels available. It is possible to impose the obligation to Sign with a Username and a 

Password or to access with no credentials. Moreover, data to be transferred from the Client to the 

Server or from the Server to other reception points can be encrypted and also protected by the TLS 

protocol. Finally, it is possible to specify the endpoint to be TCP, HTTPS or both. 
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In the menu Configuration, it is possible to configure the port numbers and the server names for TCP 

and HTTPS connections, which compose the endpoint that allows to identify the Server. Additionally, 

it is possible to set the update rate in milliseconds, which is the frequency at which the data that is 

simulated by the server gets refreshed. 

CSV Simulation Files 

The OPC UA Server Simulator uses 2 CSV simulation files that can be found inside a folder named DATA 

located at the installation folder. Both of them can be modified so as to personalize the Server 

according to the needs of the user: 

• “AddressSpace.csv” used to build the address space of the OPC UA Server.  

It is composed of columns named Tag Name, Data Type, AccessRights, Simulated. 
Additional tags can be added just by filling a new row in CSV format and specifying the 
aforementioned columns:  

Tag Name: The name of the new tag. A tag can be defined as a container in which 
it is possible to store a piece of information temporally. 

Data Type: The type of data supported (Int16, Int32, Double, String, Boolean among 
others) by the tag 

AccessRights: The Access Rights the OPC UA Client has, which can be RW: Read and 
Write, R: Read, W: Write 

Simulated: True if the data is being simulated by the software or False if data is 
being introduced by an OPC UA Client. 

 
Figure 26. Example of AdressSpace.csv 

• “ValueSpace.csv” used to simulate the data values of the OPC UA items. The data values 
are simulated in cycles. For instance, if it is specified the simulation of 10 values for a given 
tag, once the 10 values have been simulated the cycle ends. Then, a new cycle begins. 
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The csv file contains two different kinds of columns for each tag. The first kind contains the 
values that the tag being simulated will have and its column heading is the Tag Name; the 
second kind has no column heading but serves to indicate the connection status.  

1.10.1.2.2 OPC UA Client 

The values associated with the different variables are extracted from UniSim and stored in internal 

variables of the Python code. Then, the SCADA sends the variables’ values via OPC UA communications 

with an OPC UA Client programmed in Python. The Client sends all the values in the form of a telemetry 

message to an OPC UA Server. The Server has been personalized so it contains a tag for each internal 

variable from the Python code. Each tag has been configured with AccessRights of Read/Write, the 

Data Type of Integer and the Simulated option as False. This process is repeated in a loop until the user 

clicks on the “Stop Integrator” button that stops the simulation and the transference of data.  

In the Python code, it is programmed for each internal variable to point out towards a unique tag so 

that each tag is associated with a unique variable in the telemetry messages. As well, the OPA UA Client 

is also programmed with the characteristic endpoint that identifies the OPC UA Server at which it sends 

the telemetry messages. Since the Server configured permits access with no credentials, the OPC UA 

Client programmed in Python access to it anonymously.  

It is important to differentiate two types of variables when sending them through OPC UA 

communications. There are variables that are constant, while others vary over time. OPC UA 

communications refresh tags when the information received in the telemetry messages vary over time.  

Therefore, the tags with variables that are constant only receive the first telemetry message and are 

no longer refreshed. If not corrected, the given tag’s information is not refreshed and is not sent to the 

Cloud. 

For a tag to be refreshed when associated with a constant variable, it has been decided to introduce in 

the Python code some lines of code that do the following when reading constant variables:  

• For odd readings, constant value+0.000000001 

• For even readings, constant value-0.000000001 

Therefore, the value received is constantly changing and the value sent via OPC UA Communications 

does not suffer significant modifications with respect to the constant value, since the summations and 

subtractions are negligible.  
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1.10.1.2.3 IoT Broker  

All the information related to the installation of the software and the configuration of the program  

DataFEED OPC Suite is based on the information provided in the DataFEED Quick User’s Guide from 

the company Softing, which is available at (13), requiring a prior free of charge registration. 

Installation of the software 

The software DataFEED OPC Suite installed is a DEMO that runs for 72 hours in a limited demonstration 

mode. During this period all the features are completely enabled, but after it the program stops all 

functionalities. Restarting the software will start a new 72-hours demonstration period. 

Configuration of the IoT Broker 

The software DataFEED OPC Suite includes many services, among which are included the options to 

connect to OPC UA Servers, to configure a MQTT Broker and to exchange information between the 

OPC UA Server and the MQTT Broker. The services are grouped according to its functionality with 

regards to data, hence services can be for Data Source, Data Processing or Data Destination. 

OPC UA Server  

The Service OPC UA Server can be found inside the group Data Source. Once in the OPC UA Server 

menu, the option Add a new data source is clicked. A menu for configuring an OPC UA Server pops us. 

The important information to provide in the menu can be summarized as follows: 

• Connection Settings: Connection name. The name by which Softing DataFEED OPC Suite will 

recognize the Server once the connection to it is created.  

• Endpoint Settings: OPC UA Server Endpoint. The endpoint URL is provided. In the case of this 

project, the endpoint corresponding to the OPC UA Server from Integrations Objects is 

provided. 

• Security Settings: The way of requesting connection to the Server is indicated. That is to 

indicate if the request should be made with or without credentials, to trust Servers Certificates. 

In the case of this project, the connection is performed without credentials and the option 

Accept all Servers Certificates automatically is enabled. 

MQTT Broker 

A MQTT Broker transforms all the tags from the OPC UA Server, which represent the Digital Twin status, 

into an IoT Device. Subsequently, the information contained in this IoT Device is sent in the form of 

telemetry messages towards Azure IoT Hub.  
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Azure IoT Hub is a service from the Cloud Platform of Microsoft Azure that serves as a message center 

for the bidirectional communications between an IoT Device and a device hosted in the Hub (14). 

Therefore, it is possible to send the data of the Digital Twin to a device hosted in the hub so as to have 

the data introduced in the Cloud. In section 1.11, it is explained what to do with the data that is 

introduced in the Cloud. 

The Service MQTT Broker can be found inside the group Data Destination. Once in the MQTT Broker 

menu, the option Add a new data source is clicked. A menu for configuring a MQTT Broker pops us. 

The important information to provide in the menu can be summarized as follows: 

• Connection Settings: Connection Name. The name by which Softing DataFEED OPC Suite will 

recognize the MQTT Broker once it is created. 

• Connection Settings: Client ID. The name of the device hosted at the Azure IoT Hub to which 

Softing DataFEED OPC Suite will connect. 

• Communication Settings: MQTT Broker URI. The URI has the following structure:  

o ssl:// Name of the Azure IoT Hub.azure-devices.net: Port number  

• Communication Settings: Authentication Settings. It must be provided the following: 

o User Identity. Username and password option is selected. 

o User Name. It has the structure:  

Name of the Azure IoT Hub.azure-devices.net/Client ID 

o Password. It corresponds to the SAS token connection string for the given Client ID to 

which it is desired to establish connection. This password is obtained with an auxiliary 

program, which is explained in detail at Section 1.10.1.3.1.  

Once the Communication Settings have been filled, a Connection Test should be performed so as to 

assess if the connection is successful or not. 

 
Figure 27.Example of a configured Communication Settings 
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• MQTT Topic definition. On this wizard page the address space for the current connection can 

be defined. It consists of a nested structure that contains the device from the Azure IoT Hub 

for which the connection has been configured. The device receives messages in the form of 

events. It is possible to add new items in the form of events that the device will receive. It will 

be added as many items as tags from the OPC UA Server are intended to be sent to the Cloud.  

 

 
Figure 28.Example of nested structure for a connection to an Azure IoT Hub 

Once an item is added, it must be configured as follows: 

o Topic Class. Tag is selected in the herein project 

o Name. The name to identify the given Tag for when configuring the exchange of 

information between the OPC UA Server and MQTT Broker. 

o Publish Format. Several formats such as JSON among others are available. However, 

the option User defined format is selected so as to personalize the tags sent to 

Microsoft Azure for its future processing in the Cloud Platform. Specifically, the 

defined format consists of a JSON format incorporating the timestamp, the value, the 

quality and the name for each tag. 

 
Figure 29.Configuration of an item according to the User defined format 
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Exchange of information between OPC UA Server and MQTT Broker 

The exchange of information service can be found inside the group Data Processing labelled as 

Exchange. It permits to select a resource acting as data source (OPC UA Server) and a resource acting 

as data destination (MQTT Broker). In order to exchange information between the resources, it is 

necessary to: 

1. From each of the resources, unfold its nested data structure. On the one hand, the Server 

contains several tags. On the other hand, the MQTT Broker was configured to send data 

towards a device, which received that data in events. The aforementioned events is nested 

and composed of different tags. 

2. Having the nested structures unfolded, it is possible to select the desired tag of the Server to 

be sent (source) and the tag of the MQTT Broker, which acts as the receiving point 

(destination).  

3. After both source and destination are selected, the option Use the selected items as a new 

Exchange action is clicked.  

4. At the Exchange Data List, the source and destination items selected are displayed. It is 

important to remark that additional information is displayed such as the Update Rate. The 

latter must be configured according to the speed at which the OPC UA Server gets refreshed 

with new data.   

 
Figure 30. Configuration for the Exchange Information between the OPC UA Server and the MQTT Broke. The Update Rate has 
been imposed as of 12 seconds in this project for the synchronization with the OPC UA Server.  
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Why is it important to configure the Update Rate? 

The Update Rate is the time in milliseconds, after which the IoT Broker connects to the OPC 

UA Server and requests data. This request of information must be synchronized with the Data 

Writing performed by the OPC UA Client. That is to say, it is necessary to establish an Update 

Rate high enough for the UPC UA Client to have refreshed the data on the OPC UA Server. 

For instance, if the OPC UA Client requires 10 seconds to refresh data on the OPC UA Server, 

an Update Rate of 12000 milliseconds can be established. 

Having configured the Exchange of information between the Server and the IoT Broker, it is possible to 

initiate the transfer of information from the OPC UA Server to the Cloud by Starting the software 

DataFEED OPC Suite from the tab Local Application -> Start. 

1.10.1.3. Cloud Platform 

1.10.1.3.1 Azure IoT Explorer 

Azure IoT Explorer is a graphical tool for interacting with devices connected to a given Azure IoT Hub: 

to monitor and manage them. However, it is used as an auxiliary program in this project as it has been 

stated in Section 1.10.1.2.3. It is employed for granting access to the Azure IoT Hub of interest for a 

given amount of time. The software belongs to Microsoft and it is installed as a free of charge software 

(15).  

Configuration of the software 

In the menu Home, it must be entered inside the sub-menu IoT hubs. In the sub-menu, a new 

connection corresponding to a given Azure IoT Hub is added. It is necessary to introduce the 

Connection String of the Hub. After that, the connection is created and it is possible to access the Hub 

from Azure IoT Explorer. 

Then it is possible to interact with the devices from the Hub clicking on View devices in this hub. Once 

inside the device menu, there are different options that can be explored related to monitoring and 

management of the device. Focus will be given to the Device identity menu. There is a drop-down 

option named Connection string with SAS token. If unfolded, it is possible to generate a SAS token 

connection string based on the Primary key and valid for the quantity of time (minutes) specified by 

the user. 
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Figure 31.Sub-menu IoT hubs from which it is possible to add new connections and to access devices of already configured hubs. 

 

Figure 32.Device identity menu for a given device. The drop-down option named Connection string with SAS token delimited by 
a red square appears unfolded and already configured. 
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1.11. Publication of on-line data through the internet 

1.11.1. Modular architecture 

The communications architecture proposed to be used in the Cloud consists of services that can be 

connected for enhancing their individual capabilities. Therefore, each of these services can be 

considered as a module, the sum of which comprises a modular communications architecture Cloud-

hosted. The architecture assessed in the project can be divided in three modules or services: ingest, 

analyze and deliver data respectively as it is depicted in Figure 33.  

Firstly, the IoT Device created by the IoT Broker sends the Data to a device hosted in the service Azure 

IoT Hub. The data is received by the device in the form of telemetry messages. This stage could be seen 

as Ingesting the Data.  

In second place, the telemetry messages received by the device are directed to the service Stream 

Analytics, which sends them to Power BI. While being handled by Stream Analytics, the telemetry 

messages are pre-processed with a piece of code written in SQL language. This pre-processing consists 

of gathering in a table the information contained in the different telemetry messages as a function of 

the variable they carry information about, where cells correspond to all the variables received for a 

given reception time and columns correspond to the respective variables and the reception time. After 

the pre-processing, the data arranged in tabular form is sent to Power BI. This stage could be seen as 

Analyzing the Data. 

Finally, the data received in Power BI can be displayed in dynamic tables and graphics. It is also possible 

to establish an alarm for a variable of interest when it surpasses or drops down a threshold. On the 

other hand, data from Power BI can be downloaded to a personal computer such as in the form of csv 

or excel files. This stage could be seen as Delivering the Data. 

 
Figure 33. Different services available at Microsoft Azure grouped by Ingest, Analyze or Deliver data extracted from (16). 
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In figure 33, it is possible to see the different stages that have been described previously: ingest, 

analyze and deliver the Data. The services offered by Microsoft Azure Cloud are quite extensive as it is 

appreciable in the image.  

In this project, the services employed are those, which allow to constitute a modular architecture in 

the stage of prototype for the same reasons as those exposed when describing the communications 

structure used for sending information to the Cloud. Specifically, the services used are IoT Hub that 

reads from an IoT Device in the stage of Ingest, Stream Analytics in the stage of Analyzed and Power BI 

in the stage of Deliver as it is indicated with red boxes in Figure 33. 

In the next subsections, it is intended to briefly describe each of the services used at the Cloud Platform. 

That is to give a brief grasp on the theory behind each of the services, how they have been configured 

and the results that are obtained after their use. Besides, a sub-section is devoted to how to connect 

them. In other words, how it is possible to establish a message route for sending messages from an IoT 

Device to Power BI, using as intermediates IoT Hub and Stream Analytics. Finally, there is a sub-section 

where the advantages and disadvantages related to the use of the Cloud are summarized. 

1.11.2. Azure IoT Hub 

Azure IoT Hub is a Cloud-hosted service that permits the bidirectional communication between IoT 

devices and Azure. It is based on the use of device-to-Cloud telemetry data. 

On the one hand, it is possible to understand the state of the devices connected, reliably send 

commands and notifications to the connected devices, and track message delivery with 

acknowledgement receipts. On the other hand, the messages received by the devices can be routed to 

other Azure services by defining message routes (17).  

In this project, the service has been deployed in its free tier version, which is intended for testing and 

evaluation. It allows 500 devices to be connected to the hub and up to 8,000 messages per day. The 

service has been used for routing the messages, received by a device hosted in Azure IoT Hub, to 

Stream Analytics which is an additional Azure service. 

The service has been deployed by following the instructions available at (18), which also explain, among 

other topics, how to create a device. Regarding how to send messages, the message route has been 

configured according to the guidelines provided at (19). 
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1.11.3. Stream Analytics 

Stream Analytics is a Cloud-hosted service with which it is possible to build streaming data pipelines 

using SQL. It is easily extensible with custom code and built-in machine learning capabilities for more 

advanced scenarios (20).  

A streaming data pipeline enables the smooth, automated flow of information from one point to 

another. It prevents many of the common problems that an enterprise can experience such as 

information corruption, bottlenecks, conflict between data sources, and the generation of duplicate 

entries. 

Streaming data pipelines, by extension, are data pipeline architectures that handle millions of events 

at scale, in real time. As a result, it is possible to collect, analyze, and store large amounts of 

information. That capability allows for applications, analytics, and reporting in real time (21).   

 
Figure 34. Data Streaming Pipeline Architecture extracted from (22)  

In the project, the focus on the use of this service has been made on the reporting capabilities offered. 

Therefore, the service has been deployed as it is instructed at (19), and a query (a set of orders) has 

been coded in SQL for routing the messages from Azure IoT Hub to Power BI. Prior to its reporting, the 

data has been pre-processed with SQL for its display in tabular form. 

The telemetry data received at Stream Analytics consists of numerical values identified by tags among 

other properties such as the timestamp or the status of the message. As it is possible to see in Figure 

35, if this data was to be sent to a Power BI table directly with no pre-processing applied, it would be 

sent in tabular form to Power BI having as columns: timestamp, value, name, etc. Therefore, numerical 

values would be all grouped together with no distinction depending on the tag, which does not allow 

to display a given tag as a function of time in a graphic. 
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Figure 35. Telemetry Data as input to Stream Analytics without pre-processing applied 

One of the possible manners in which it is possible to process the telemetry data, for it to be displayed 

in graphics depending on its tags, corresponds to the use of User-Defined Aggregates (UDAs) in Stream 

Analytics. UDAs can be seen as functions defined by the user with the intention of interacting with the 

telemetry data and transforming it in a specific way. In the case of this project the function has been 

designed for the data to be transformed, which permits to display it in tables and graphics.  

 
Figure 36. Example of an UDA Function 

User-Defined Aggregates (UDAs) written in JavaScript have been used so as to pre-process each of the 

tags received in the telemetry data. In the example from Figure 36, for a given numerical value, if its 

tag identification matches with ‘Feed-Pressure’, the numerical value is returned by the Aggregate. 

However, the use of UDAs has associated a drawback. A 0 is returned if no numerical value related to 

the tag is read at the timestamp of the execution of the UDA. 

 
Figure 37. Partial screenshot of the query executed in Stream Analytics 
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In the query written in SQL, it is possible to see 4 key words (SELECT, INTO, FROM and GROUP BY). 

Those key words are known as statements, which are to be described briefly below: 

1. SELECT. It allows to select specific columns from the telemetry data or to specify the building-

up of new columns based on the data read. In this case, timestamp is selected as a column, 

while a new column is built-up for each different tag received in the telemetry data. Each of 

these new columns has as heading one of the tags and contains the numerical values 

associated with this tag. 

2. INTO. It is specified the output into which Stream Analytics sends the data. In this case a Table 

contained in a Dataset from Power BI. 

3. FROM. It is specified the input from which Stream Analytics reads the data. In this case a 

consumer group from Azure IoT Hub. 

4. GROUP BY. The criterion under which group the data is indicated. Aggregate functions require 

to specify this criterion and require a refreshing period, which is of 20 seconds in this case. This 

refreshing period implies that data is to be read, pre-processed and sent into Power BI each 

twenty seconds, which permits the synchronization with the rest of modules conforming the 

communications architecture. 

Both the code related to the UDAs and the query executed in Stream Analytics is based on the solutions 

described at (23). 

 
Figure 38. Partial screenshot of the Telemetry Data as input to Power BI after pre-processing is applied 

1.11.4. Power BI 

Power BI can be described as a solution for entrepreneurial analysis. It permits unifying data from many 

sources to create interactive, immersive dashboards and reports, in real time, that provide actionable 

insights and drive business results (24).  

The reports and dashboards can be shared among different users belonging to the same organization, 

which allows them to dispose of the information in real time. The information can be accessed from 

the computer, the web or the phone since Power BI is available as desktop application, online service 

(SaaS) and mobile app (25).    
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In the herein project, a report is created for the display of data from the simulation in the form of 

graphics and tables. Both of them can be found on the Monitoring Palettes from the report.   

The reports and dashboards can be created from a Dataset, which are stored in the My workspace area 

as it is shown in Figure 39. 

 
Figure 39. Example of My workspace area containing Datasets and Reports 

 
Figure 40. Example of a Table named Data containing different process variables and its corresponding timestamp. Process 
variables, being numerical, are preceded by a capital sigma, while the timestamp is stored as text. 
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Prior to having created a report, data is gathered in Power BI in a Dataset. When manipulating a 

Dataset, there is the option of saving it in the form of a report, which is editable in the future if more 

data is expected to be received. 

1.11.4.1. Monitoring Palettes 

A report named Monitoring + Fault Detection has been created. The report is composed of different 

palettes, which are analogous to the sheets from an Excel File. In this section, the monitoring palettes 

are to be described.  

The process variables received from the simulated chemical plant can be monitored in real time with 

the use of these palettes, which are named Monitoring Table and Monitoring Graphics respectively.  

In the Monitoring Table palette that can be seen in Figure 41, all the process variables from the 

simulation are displayed in a table as a function of the timestamp at which they were received.  

 
Figure 41. Data received from the simulation displayed in tabular form available in the palette Monitoring Table 

In the Monitoring Graphics shown in Figure 42, the different process variables are displayed in graphics 

attending to groups. That is to say, temperatures are displayed in the same graph. The same applies 

for pressures, mass flows or the data from controllers. However, if some variables’ values are too 

different inside the same group, the variables are displayed separately. The latter applies, for instance, 

if there are flows ranging from tens to hundreds, while another one is composed of data points with 

lower values. 
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Figure 42.Data received from the simulation displayed in graphics available in the palette Monitoring Graphics 

1.11.5. Configuration of the message route 

 
Figure 43.Block Diagram where it is depicted the message route for sending telemetry data from an IoT device to Power BI 

extracted from (19) 

The message route from Figure 43 consists of five blocks: sensors, device, Azure IoT Hub, Stream 

Analytics, Power BI. The route can be divided in two subunits for its subsequent analysis: 

• First subunit. From the sensors to Azure IoT Hub 

• Second subunit. From Azure IoT Hub to Power BI 

The first sub-unit has already been explained in previous sections of the project. Its blocks are those 

corresponding to the simulation, the virtual Scada and the IoT device created by the MQTT Broker. The 

communications employed for routing the messages between the blocks are the ones based on OPC 

UA and the MQTT Broker. It is possible to state that this subunit can be executed locally, such as from 

a personal computer. 
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The second sub-unit is Cloud-hosted as all its constituent blocks are Cloud-based. In this case, the 

message routing has been configured according to the guidelines provided at (19). 

The aforementioned guidelines can be abridged as: 

1. To add a Consumer Group to Azure IoT Hub. A Consumer Group can be seen as an end-point 

where the messages are sent after being received by the device. 

2. Add an input to the Stream Analytics Job. To click on Add stream input and select IoT Hub from 

the drop-down list.  

The input feeds from the Consumer Group from Azure IoT Hub. Then, both the Stream 

Analytics Job and the Azure IoT Hub must have the same consumer group. 

3. Add an output to the Stream Analytics Job. To click on Add and select Power BI.  

It is necessary to indicate the Dataset Name and the Table Name of the Dataset and Table to 

which data is sent.  

Once configured the output, it is required to authorize its creation by signing-in the desired 

Power BI account.   

1.11.6. Advantages and disadvantages of the Cloud 

The incorporation of the Cloud in a communications architecture offers new possibilities that can be 

translated into advantages. However, as for anything new, advantages and disadvantages come 

together. In the case of the Cloud, the aforementioned could be summarized as follows: 

Advantages: 

• Accessibility to the data anywhere and at any time 

• Easiness in sharing data  

• Infrastructure and electricity costs reduced 

Inconveniencies: 

• Possible failure or unavailability of the Cloud Services  

• Dependence on connection to Internet 

• Possible exposure to cyberattacks 
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Development of Machine Learning and Data Analysis 

algorithms 

Algorithms centered on the use of Machine Learning and Data Analysis are to be implemented. On the 

one hand, the role of the Data Analysis algorithm consists of extracting the main features able to 

explain the process data generated by the simulated case. On the other hand, the Machine Learning 

Algorithm is designed so as to feed from these main features in order to generate an indicator, which 

could be used as a red flag for knowing the status of the chemical plant being simulated. In other words, 

it is intended to have an indicator, which could detect whether there are faults or abnormalities 

occurring in the chemical plant.  

Both algorithms are to be executed on-line together with the communications algorithm and the 

modular communications architecture in order to upload this indicator to the Cloud Platform for its 

display together with the process variables from the simulated case, which are to be monitored on-

line. 

1.12. Theoretical background 

1.12.1. Normalization of the data and pretreatment steps 

1.12.1.1. Normalization of the data 

It is intended to perform a Principal Component Analysis (PCA) over the obtained dataset. This method 

is based on the identification of those directions in which the variance of the data is the greatest. The 

variance from a variable is measured in its scale squared. If prior to performing the method, the 

variables are not standardized for them to have a mean of 0 and a standard deviation equal to 1, those 

variables with greater scale will dominate over the rest. In consequence, the standardization of the 

dataset is required prior to performing a PCA (26).   

1.12.1.2. Pretreatment steps 

Depending on the nature of the dataset, namely, how it is generated or how data is transferred upon 

receival, it is possible the dataset to be contaminated. For instance, the dataset can contain: 

• Nan values. This could be related to datasets where certain variables could not always be 

measured. For example, a dataset containing variables describing information relative to 

people. In this case, people are not forced to provide all the information required, which could 
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be the cause for certain variables to be unknown.  Another simpler explanation could be that 

certain variables cannot always be measured. Nan values could be substituted for the 

variable’s mean or mode, or just be eliminated if the dataset is larger enough. 

• Abnormal values that deviate from the mean value. An assessment relative to how treat these 

values should be performed. An option could be to eliminate those abnormal values in a 

filtering stage. 

• No presence of values for a given variable. For example, a dataset obtained from the Cloud or 

OPC UA Communications could contain 0s symbolizing that, for a given timestamp and 

variable, no data was received. An option could be a filtering stage consisting of the 

substitution of the 0. It could be substituted by the directly previous value adopted by the 

variable affected by the communications gaps.  

1.12.2. PCA Method 

All the information relative to the PCA method is based on the explanations available at (26).  

1.12.2.1. Objective of the method 

Principal Component Analysis, commonly abbreviated as PCA, is a statistical method that allows to 

simplify a complex sample space accounting for a great number of dimensions, by reducing its 

dimensions, while keeping the information it contains. 

If having a sample of n records, each one of them being explained by p variables (X1, X2, …, Xp). In 

other words, the sample space has p dimensions. The use of PCA permits finding a number of subjacent 

factors (z < p), which explain the same as the original p variables approximately. That is to say, after 

applying the PCA to a sample space, each record can now be explained by z variables, instead of p 

variables. Each one of these z variables is known as principal a component. 

1.12.2.2. Calculation of each principal component 

Each principal component (Zi) is obtained through the linear combination of the original p variables (X1, 

X2, …, Xp). For instance, the first principal component (Z1) could be mathematically expressed as the 

normalized linear combination of the p variables: 
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𝑍1 = 𝜙11𝑋1 + 𝜙21𝑋2+. . . +𝜙𝑃1𝑋𝑃 

𝜙𝑗1: loading for j variable 

𝑋𝑗: variable j from the set of p variables 

𝑍1: first principal component  

 

(1) 

Since the linear combination is normalized, it is fulfilled that:  

 

∑𝜙𝑗1
2

𝑝

𝑗=1

= 1 

 

 

(2) 

𝜙𝑗1: loading for j variable 

 

The different loadings (𝜙11, … , 𝜙𝑝1) can be interpreted as the weight or importance that each original 

variable has for each component. This weight is related to the kind of information picked up for the 

component. The values of these weights are optimized for maximizing the variance expressed by the 

principal component. The amount of variance expressed by a principal component is linked to the 

importance of that component. The greater the variance, the more important the component is. The 

components are ordered as a function of the variance they express, hence, 𝑍1 accounts for the 

maximum variance, 𝑍2 expresses minor variance than 𝑍1, …, up to 𝑍𝑛 that expresses the littlest 

variance.  

Once the first principal component (𝑍1), expressing maximum variance, is calculated, 𝑍2 is determined 

by adjusting its corresponding weights. However, the condition of no correlation with 𝑍1 and the linear 

combination associated with 𝑍2 is imposed. That is equivalent to impose 𝑍1 and 𝑍2 to be 

perpendicular. Each subsequent component is calculated afterwards by imposing perpendicularity 

between the given component and the rest of components.     

1.12.2.3. Number of principal components to calculate 

Given a dataset composed of n data points and p components, the number of principal components 

up to which it is possible to reduce the dataset dimensions are n-1 or p, whichever is the limiting factor. 

However, the objective of the method is related to reducing the dimensions of the dataset. Thence, 

the number of principal components is usually associated with the minimum number of p variables 

that allows to retain the optimal amount of information relative to the original dataset.  

For determining that minimum number of p variables, the number of components to retain is usually 

established according to the amount of variance that it is desired for the new sample space to express. 
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It is usually wanted to obtain a sample space that minimizes the loss of information, but which also 

permits to work with a minor dimensional space than the original dataset. For determining the amount 

of variance associated with each principal component, the variance proportion and the explained 

accumulated variance proportion are the values that are usually studied.  

For a given dataset, all the principal components are determined. The new dataset obtained is a 

transformation based on the linear combination of the original dataset. However, all the information, 

although transformed, is being preserved without loss of information. The summation of the explained 

accumulated variance proportion associated with this transformed dataset, with principal components 

equal to the number of variables from the original dataset, is equal to 1. There is no loss of information. 

Each principal component has a variance proportion associated, the sum of which corresponds to 1.  

Therefore, the number of principal components to retain corresponds to the number by which there 

is not a substantial increase on the explained accumulated variance proportion. For instance, the graph 

below shows the explained accumulated variance proportion as a function of the number of principal 

components picked up. 

 
Figure 44. Explained accumulated variance proportion – Principal Component Graph 

From the graph, it is possible to conclude that the first principal components preserve important 

amounts of variance, but subsequent principal components tend to pick up less and less variance. If 

picked up 4 principal components, more than 95% of the variance from the original dataset is 

preserved. If it is possible to lose 5% of the variance, which corresponds to minimum loss of 

information, then 4 will be the number of principal components so as to calculate. 
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1.12.3. Mahalanobis distance 

The Mahalanobis distance (MD) is the distance between two points in multivariate space. In a regular 

Euclidean space, variables (e.g., x, y, z) are represented by axes drawn at right angles to each other. 

The distance between any two points can be measured with a ruler. For uncorrelated variables, the 

Euclidean distance equals the MD. Nevertheless, if two or more variables are correlated, they cannot 

be represented in axes at right angles or be measured by hand. Moreover, if the number of dimensions 

is superior to three, the data cannot be plotted in an understandable manner.  

The Mahalanobis distance permits to measure distances between points, which can be correlated and 

of a great number of dimensions. It is based on the measurement of the distance relative to the 

centroid, which can be interpreted as an overall mean for multivariate data. The centroid is a point in 

multivariate space where all means from all variables intersect. The larger the MD, the further away 

from the centroid the datapoint is (27).   

This distance permits to identify if a datapoint is abnormal since it can be detected as being further 

away from the centroid. That is to say, the datapoint has associated atypical values with respect to the 

mean values, accordingly being considered an outlier. Thereby, MD can be applied for the identification 

of outliers present in a dataset. 

 

Figure 45. Mahalanobis Distance for its application on the detection of outliers extracted from (28) 

For example, if the multivariate space is depicted in a two-dimensional Euclidean space and accounting 

with non-correlated variables as it is seen in Figure 45, the centroid corresponds to the blue dot 

delimited by the red square. On the one hand, the Mahalanobis Distance of the group of data points 

in green is considered to be normal and the data points are labelled as “Intact”. On the other hand, the 

Mahalanobis Distance of the group of data points in red is abnormally high and this group is labelled 

as outliers or “Damage”. 
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1.13. Python code functions for communications combined with 

machine learning and data analysis  

1.13.1. Implementation of machine learning and data analysis functions  

The functions that are to be commented along this section are based on the explanations and code 

available at (29) and (30) respectively. The functions are intended for getting an algorithm able to:  

• Perform tasks of data analysis with the data extracted from the simulated case in UniSim. 

• Generate predictions by means of machine learning using the data obtained through data 

analysis. 

• To send on-line predictions to the Cloud Platform for its display in graphical form in Power BI. 

That is to send predictions at the same time the simulated case is running. For that, the same 

communications interface developed for monitoring is to be used. In fact, both the predictions 

and the data to be monitored are to be sent simultaneously.  

The same methodology to explain, as the one used for Python functions employed for communications 

and monitoring, is to be followed. Thus, the functions are to be explained conceptually according to 

the missions and objectives that must achieved. It is possible that for a given objective or mission, 

several functions are to be described as a group. 

Dataset. It consists of a function that permits to store the data from the process variables listed in the 

Process Data Table ProcData1. The data is saved in a spreadsheet of an Excel file, following the format 

of assigning the numerical values from each variable to a specific column from the spreadsheet. The 

dataset used in this project consists of 5700 data points approximately. 

The execution of the Dataset function occurs in a loop that is repeated automatically as in the same 

way as with the Store Data function. The function stops when the User pushes the “Stop Integrator” 

button. 

PCA Method. This function permits to perform data analysis tasks both for the dataset and for the data 

read on-line. Regarding the dataset, it loads the data saved in the Excel file, normalizes it and performs 

the PCA method over it. Regarding the data read on-line, the steps are the same but the data is 

processed in groups of sixteen data points. It is necessary to remember that the number of data points 

to which the method is to be applied must be always greater than the number of principal components, 

a condition that is accomplished for both the dataset and the data read-online. In consequence, the 

amount of on-line data points permits the use of the PCA method and to perform quick data readings 

for on-line processing.  
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Relative to how the PCA method has been implemented, an aspect must be commented on. 

Specifically, the one related to the variance captured by the principal components to which the original 

dataset dimensions are reduced. 

Considering the reduction of the dataset dimensions to three principal components, it has been studied 

the variance captured by the principal components analysis when data is read on-line. Depending if 

abnormalities are provoked to occur in the simulation case or not, the variance captured by the 

principal components analysis changes. 

 
Figure 46. In descending order of weight and normalized to 1, variances captured by each of the three principal components 
to which the dataset has been reduced before abnormalities are provoked. Results obtained in Python. 

 
Figure 47. In descending order of weight and normalized to 1, variances captured by each of the three principal components 
to which the dataset has been reduced after applying a temperature ramp of -4ºC/minute on the stream HX_heating_inlet. 
Results obtained in Python. 

It is possible to infer that prior to the presence of abnormalities, the principal components are able to 

capture more than the 98% of the variance within the original dataset. However, this variance captured 

by the components gets inconsiderable after abnormalities are provoked.  

Since the use of five principal components permits capturing more than 98% when the chemical plant 

is being simulated at nominal conditions, it has been established to use five principal components in 

the PCA method. What is more, how the variance captured changes as a function of the presence or 

not of abnormalities could be used as a complementary indicator together with the Mahalanobis 

distance. Nonetheless, the stability of the code has been proved not to be always good when this 

variance captured is calculated together with the data reading and the determination of the 

Mahalanobis distance. Thus, the Mahalanobis distance is selected as the preferred indicator as its 

stability is major. 

When data is read on-line, it is generated graphics displaying the data points as a function of the 

different principal components. The graphics can be seen in the Plots Pane from Spyder and also can 

be saved in the computer. In the graphics, it is possible to appreciate changes relative to the position 

of the data points relative to the principal components, but those have been used as an extra aid not 

as the main indicator for the presence of faults.  
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Figure 48. Graphics depicting the data points as a function of 

the principal components when the plant is at nominal 

conditions. 

Figure 49. Graphics depicting the data points as a function 

of the principal components after abnormalities are 

provoked. 

 

 

Figure 50. Graphics depicting the data points as a function of 
the principal components for the dataset  

After visualizing Figures 48 and 49, it is concluded that there is an increase in the values for the first 

principal component identified in both images as 0 in the axis of the graphics. At nominal conditions, 

the values range from -0.05 to 0.15, while after faults are introduced in the simulated case, the values 

range from -10 to 10. Other changes on the ranges can also be appreciated on the rest of principal 

components. 
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Dist. Mahalanobis. It permits to calculate the Mahalanobis distance for all the data points from the 

dataset saved in the Excel file and establish a threshold value for the Mahalanobis distance above 

which a datapoint can be considered as an outlier.  

After the calculation of the threshold value, the algorithm is iterated so as to perform filtering stages 

aimed at eliminating the values considered as outliers. After each iteration, a new threshold value is 

determined up to an iteration at which no more outliers are detected. At this given iteration, the 

threshold value is known as threshold without outliers, while the first threshold value prior to any 

filtering stage is known as threshold with outliers.  

 
Figure 51. Threshold values for the Mahalanobis Distance. Results obtained in Python. 

In consequence, the algorithm works as a machine learning algorithm able to give predictions over if a 

datapoint can be considered normal or outlier.  The data with reduced dimensions, obtained after 

applying the PCA methodology, is used as the input data for the algorithm.  

Apart from using the function so as to extract data from the dataset, it can also be used so as to 

calculate the Mahalanobis distance for data read on-line while the simulated case is running. In this 

case, the data does not suffer filtering stages since it is desired to preserve all the original values either 

to save them or to send them to the Cloud Platform. Then, the threshold value, which is valid for online-

data, corresponds to the threshold with outliers.  

Store Data. This set of functions was previously explained in the sections devoted to communications 

and monitoring, but it was explained only from that point of view. The part linked to Data Analysis and 

Machine Learning was not taken under consideration in those sections since the required concepts for 

proper understanding had not been introduced at that point. 

However, the set of functions does include the functions related to Data Analysis and Machine 

Learning, while it also consists of the functions associated with communications and data monitoring. 

The set works as follows: 

• Reading of sixteen data points on-line. 

• The data points are normalized and the PCA method is performed. For normalizing the online-

data, the scaler employed is the same as the one that normalizes the dataset. It is important 

to have the online-data normalized in the same way as the dataset, for the threshold obtained 

with the machine algorithm to be valid over the online-data.  
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• The calculation of the Mahalanobis distance for each of the sixteen data points. 

• Obtention of the top and the mean values of the Mahalanobis distance from the sixteen values 

of the Mahalanobis distance, and its sending to the Cloud Platform with the use of the OPC UA 

Client and the rest of the modular communications architecture. 

Apart from being sent to the Cloud, the sixteen Mahalanobis distances calculated are also 

saved in an Excel file, where each batch of data points is saved in a column from the 

spreadsheet. 

 

1.13.2. Built-in interface (GUI library Tk) 

After having introduced and explained the functions related to Data Analysis and Machine Learning, 

the complete Built-in interface with all the buttons can be observed in Figure 52. 

 
Figure 52. Graphical User Interface for Monitoring, Data Analysis and Machine Learning, and Communications 
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1.14. Sequence Diagram for communications, machine learning and data analysis in UML standard  

 

 

 

 

 

 

 

 

 

 

 

Figure 53. Sequence Diagram for communications, machine learning and data analysis in UML 

 



  Report 

58   

1.15. Other potential applications of Cloud computing tools 

1.15.1. Current potential related to the use of the Cloud 

As it is possible to conclude from section 1.11 the use of the Cloud broadens the possibilities 

related to the communication, storage and display of Data. Moreover, it also permits new ways 

in which to treat and study the data. For instance, some interesting services offered by the 

Microsoft Azure Cloud are: 

• Microsoft Azure Machine Learning Studio. It enables the use of a Machine Learning 

Algorithm (MLA) stored in the Cloud. 

Through the use of this service, it is also possible to interact with the MLA hosted in the 

Cloud with Python or other programming tools. It is possible to ask for the retrieval of 

results calculated by the MLA given an input of data sent to it via the communications 

protocols offered by Microsoft and compatible with Python and other programming 

tools. 

• Azure Time Series Insight. It permits to analyze temporal series of data 

On the one hand, other services available at the Cloud are those related to the storage of data. 

These services also permit the option of reading the data contained in storage services by using, 

for example, Python. On the other hand, there are also services to post the data in webs for its 

display to third-parties. 
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Development of monitoring tools for the detection of 

abnormal events in a simulated plant 

On the one hand, this section is devoted to discuss how data analysis and machine learning algorithms 

should read the data of the simulated case. On the other hand, once the algorithms read data, it is 

described the optimization process followed so as to improve the consistency of the results obtained 

and get functional algorithms. Once the algorithms are optimized, they are combined with the modular 

prototype for the exchange of information in order to obtain monitoring tools for the detection of 

abnormal events. 

1.16. Reading of data by the data analysis and machine learning 

algorithms 

As it has been explained in section 1.13.1, the code developed makes possible to generate a dataset, 

extract information from it, and read data on-line, which is to be compared with the dataset for 

detecting the presence or not of differences between the dataset and the data on-line. Once the 

capabilities of the code are known, it is necessary to establish what kind of data can be read as the 

dataset and which kind can be read as on-line data, with the purpose of getting a functional machine 

learning algorithm. 

The first point to clarify is related to how many kinds of data are generated during the activity of a 

chemical plant and how to differentiate them. 

In Figure 54, it is possible to see the lecture of one of the variables of the simulation. In this case, the 

variable corresponds to a temperature. For the different variables that are simulated, similar trends 

could be observed. The key idea to bear in mind is that for the activity of the plant along the year or 

any temporal period that it is chosen for analysis, it is possible to see what it is shown in the graph 

below. Concretely, three different populations of Data can be distinguished: A, B and C. If analyzed, on 

the one hand, A and C correspond to populations of data at nominal conditions but at different set-

points. On the other hand, population B corresponds to data associated with a transition between set-

points A and C. In conclusion, there are two main kinds of data, which are possible to distinguish 

depending if they are generated during nominal conditions, or during transitional regime. 
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Figure 54. Different data populations during the evolution of temperature as a function of time 

It is decided that the dataset will be generated with data obtained when the plant simulated is at 

nominal conditions. That is when it is at set-points A or C of Figure 54. Accordingly, the machine 

learning algorithm will learn from data at nominal conditions and will establish a threshold value for 

the Mahalanobis distance above which the plant is considered not to be at nominal conditions. On the 

other hand, the on-line data read could be related to nominal conditions of the plant or to a transitional 

regime experimented by the plant.  

Assuming that the plant stays at nominal conditions and no change on the set-points is ordered, the 

presence of transitional regimes should be associated with abnormalities or faults occurring at the 

plant. In consequence, depending if the on-line data corresponds to nominal conditions or to 

transitional regimes experimented by the plant, the Mahalanobis distance calculated is suspected to 

vary. The Mahalanobis distance will be monitored and if it surpasses the threshold value indicated by 

the machine learning algorithm, it will be indicative for the plant being in a transitional regime as a 

consequence of the presence of abnormalities or faults in the plant. 

1.17. Preparation of simulation cases for training and testing the 

machine learning algorithm 

In this subsection, it is explained how the simulation cases have been prepared depending if the 

machine learning algorithm is to be trained or tested. 

1.17.1. Simulation case for training the machine learning algorithm 

The simulation case prepared for the training of the machine learning algorithm consists of letting the 

simulated case run without provoking any fault within the plant. Some of the process variables suffer 

the noising effect described in section 1.9.2.2 in order to record realistic process data, which could 
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resemble the one that could be recorded in an industrial facility. The process data is stored in an Excel 

file for its subsequent use as a dataset for the training of the machine learning algorithm. 

1.17.2. Simulation case for testing the machine learning algorithm 

The simulation case prepared for the testing of the machine learning algorithm consists of submitting 

the simulated case to a particular fault while running. The fault is introduced in the simulated case in 

the form of a temperature ramp generated by the Transfer Function shown in Figure 55. A temperature 

ramp can be defined as the variation experimented by a temperature during a given period of time.  

Additionally, the simulated case is also affected by the noising effect. 

 
Figure 55.Transfer function used so as to introduce faults in the simulated case 

The data recorded is processed by the trained machine learning algorithm and the predictions 

produced by the algorithm are sent both to the Cloud and to an Excel file. 

1.18. Optimization of the Data Analysis and the Machine Learning 

Algorithms  

It has been verified with the Python code that depending on the number of principal components for 

the PCA method, the volatility associated with the variable Mahalanobis distance (candidate to 

indicator) varies. Thus, it has been adjusted the number of principal components so as to minimize the 

loss of information from the dataset and also to reduce the volatility associated with the Mahalanobis 

distance.  

For testing and assessing the impact of the number of principal components on the evolution of the 

Mahalanobis distance, the on-line readings have been saved in an Excel file. An Excel file has been 

generated for each number of principal components, denoted as N, from now on. In this project, it has 

been studied the cases N=3 (Figure 56), N=5 (Figure 57). 
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In each case, several on-line readings have been recorded for the plant at nominal conditions so as to 

evaluate the volatility of the indicator prior to the introduction of a fault in the simulated plant. In both 

studies, a fault in the form of a negative temperature ramp (-6ºC/min) on the stream named 

HX_HEATING_INLET has been introduced at the thirteen reading or iteration.  

The Excel files are filled by columns. That is to say, each reading of sixteen data points is saved in a 

column from the spreadsheet. After the readings are recorded, the Average and Top Value of each 

batch of readings are calculated manually and it is specified the nominal conditions and the fault 

periods through a legend of colors (green = nominal conditions, orange=presence of fault). 

 
Figure 56. Study for the Mahalanobis distance evolution when N=3 

 
Figure 57. Study for the Mahalanobis distance evolution when N=5 

For a better visual understanding of the results, the Average and Top Value have been plotted as a 

function of the reading or iteration in each case respectively. For an adequate presentation of the 

results and due to the magnitude change in the indicator after the fault, two plots have been generated 

in each study. In the first graphic, it is shown the period at which the plant is at normal conditions prior 

to the fault. In the second one, it is shown the entire evolution of the indicator. 
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Case N = 3 

 
Graph 1. Mahalanobis Distance evolution with PCA of 3 principal components: normal conditions. The average value of the 
indicator remains at low values similar to the threshold with outliers’ value, obtained by the Machine Learning Algorithm after 
the inspection of the dataset. This permits the use of the threshold value. Additionally, the sensitivity of the top value is greater 
than the sensitivity of the average value.  

 
Graph 2. Mahalanobis Distance evolution with PCA of 3 principal components. After the introduction of the fault, the indicator’s 
value evolves exponentially reading after reading. However, the indicator’s value decreases to values prior to the fault after the 
transient period is finished, in other words, after the Temperature ramp stops acting over the stream HX_HEATING_INLET. 
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Case N = 5 

 
Graph 3. Mahalanobis Distance evolution with PCA of 5 principal components: nominal conditions. The average value of the 
indicator oscillates from low values to high values due to the high volatility experimented by the indicator. This behavior is 
detrimental since it is not possible to use the threshold with outliers’ value, obtained by the Machine Learning Algorithm after 
the inspection of the dataset, as a threshold. 

 
Graph 4. Mahalanobis Distance evolution with PCA of 5 principal components. After the introduction of the fault, the indicator’s 
value evolves exponentially reading after reading. However, the indicator’s value decreases to values prior to the fault after the 
transient period is finished, in other words, after the Temperature ramp stops acting over the stream HX_HEATING_INLET. 
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After the inspection of the graphics for each case, two main conclusions are extracted. 

In the first place, it is proved that with the use of a machine learning algorithm, it is possible to identify 

the presence of a fault within the plant independently of the volatility associated with the indicator. 

However, the indicator stops working after the transient regime, associated with the introduction of a 

fault, ends. This is a drawback of the actual algorithm since it identifies a fault in the plant while there 

is a transient regime. The idea of linking the presence of a transient regime to the presence of a fault 

is not always valid. For instance,  

• A transient regime can occur in the plant due to a change on a set-point by the operators. If a 

set-point related to a process variable is changed, there is no fault in the plant, but an 

intentional change over the plant by the operators. 

• The presence of a fault in a plant is not always linked to the existence of a transient regime. 

The transient regime lasts in the plant from the generation of the fault up to the stabilization 

of the plant. All the same, the fault still exists within the plant after the transient regime ends 

and the plant arrives at a new steady-state. 

The two previous facts imply that linking the presence of a transient regime to the presence of a fault 

can serve, and serves for the identification of faults. Nonetheless, this identification is subject to 

limitations. It is only valid when there are no changes on the set-points by the operators, and only 

serves to identify the generation of the fault, during the transient regime. The indicator deactivates 

after the plant stabilizes to a new steady-state. Bearing in mind these constrictions, and acting in 

consequence, the use of the algorithm is valid for fault diagnosis.  

In the second place, it is concluded that for N=3, the volatility associated with the indicator is far less 

than the one linked to the indicator when N=5. Moreover, the high volatility for N=5 is detrimental 

since the use of the threshold value renders useless being that the indicator keeps oscillating along the 

time around the threshold value.  

To sum up, the best candidate for further development is the algorithm with N=3, with which the 

threshold value could be used in the form of an alarm in more advanced setups of the monitoring tools 

in future projects. 

An additional conclusion can be figured out. The sensitivity of the top value is greater than the 

sensitivity of the average value. Thus, the monitoring of the top value can be complementary to the 

monitoring of the mean value due to it makes it possible to identify with major sensitivity the presence 

of faults. 
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1.19. Fault Detection Palette 

The Machine Learning and the Data Analysis algorithms are combined with the modular prototype for 

the exchange of information in order to obtain monitoring tools for the detection of abnormal events. 

Then, the variables of the mean and top values related to the Mahalanobis distance calculated for each 

batch of sixteen data points are sent via the modular communications architecture to the Cloud 

Platform together with the process variables of the simulated case. 

These two variables are graphed in the Fault detection Palette, available at Power BI, together with the 

evolution of the HX heating inlet’s temperature. The latter is the variable to which abnormalities are 

provoked in the form of a negative temperature ramp.  

 
Figure 58. Data received from the simulation displayed in graphics available in the palette Fault Detection 

In this palette it is possible to visualize the evolution of the Mahalanobis distance, which acts as an 

indicator. Once a predefined threshold value for the indicator is surpassed, it is feasible to state that 

the simulated plant is suffering abnormalities.  
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Validation of the prototype and guidelines for future 

development 

1.20. Validation of the prototype 

1.20.1. Proof of concept 

The proof of concept consists of the execution of the simulated case and the on-line monitorization of 

the indicator known as the Mahalanobis distance, both in the form of its mean and top values, together 

with the process variable to which the fault has been introduced.  

The monitorization is performed both from the Fault Detection Palette available at Power BI and from 

the Datalogger in UniSim, where several temperatures are displayed. Looking at the figure below, it is 

proved that while the simulation is running, the data is being received in Power BI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59. On the left side, it is shown Datalogger 1, where the temperature of HX heating inlet is graphed over time while 
UniSim is running together with the Python code and the modular communications architecture. The left side corresponds to 
all the programs that are being run in a remote computer located at the University, to which is accessed with a remote 
connection. On the right side, it is shown the Fault Detection Palette, allocated in the Cloud, which is being accessed from the 
personal computer of the student at home.  
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1.20.2. Analysis of the results obtained during the proof of concept 

In this subsection, it is intended to compare the evolution of the variable HX heating inlet-temperature 

that can be followed with both the use of the Datalogger tool available at UniSim and the use of the 

Fault Detection Palette available at the Cloud.  

On the other hand, it is pretended to make an analysis of the evolution experimented by the 

temperature of the stream HX heating inlet, and the mean and top values of the Mahalanobis distance 

in order to validate the use of the modular communications architecture together with the Data 

Analysis and Machine Learning Algorithms for fault diagnosis. 

1.20.2.1. Evolution HX heating inlet-temperature followed with the Datalogger 

 

 

 

 

 

 

 

 

 

1.20.2.2. Evolution of the HX heating inlet-temperature and of the Mahalanobis distance followed 

from the Fault Detection Palette 

The analysis of the evolution experienced by the temperature of the stream HX heating inlet, and the 

mean and top values of the Mahalanobis distance is to be performed from the use of several snapshots. 

These snapshots were taken to each of the graphics from the Fault Detection Palette, where the 

evolution of these variables was recorded, while the simulated case was running.  

It is important to keep in mind the threshold value with outliers for the Mahalanobis distance 

calculated by the machine learning algorithm. This value corresponds to 44 as it is seen in Figure 51.  

Figure 60. Datalogger 1, where the evolution of the variable HX heating inlet-temperature can be studied. It is possible to see 
that the variable starts at 65ºC and ends up at 35ºC in an interval of 5 minutes, which corresponds to the application of a 
negative temperature ramp of -6ºC/min. The thickness corresponding to the curve of the variable has been increased for its 
better visualization. 
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Figure 61. Graphic for the temperature of the stream HX 
heating inlet. It is appreciated that the temperature ramp 
started a few seconds ago. 

Figure 62. Graphic for the temperature of the stream HX 
heating inlet. It is appreciated that the temperature ramp 
has finished. 

  

Figure 63. Graphic for the mean value of the Mahalanobis 

distance. It is possible to appreciate that the mean value 

shown was recorded by the time the temperature ramp was 

starting. The value is above the threshold value.  

Figure 64. Graphic for the mean value of the Mahalanobis 

distance. By the time of the record, the temperature ramp 

had started a few seconds ago. The mean value for the 

indicator has greatly surpassed the threshold value. The fault 

is detected before it provokes significant changes on the 

status of the plant. 

 

 

Figure 65. Graphic for the mean value of the Mahalanobis 

distance. By the time of the record, the temperature ramp 

had finished three minutes ago. The mean value of the 

indicator is below the threshold value, but the fault is still 

present. The temperature is still thirty degrees below its 

original value. 
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Figure 66. Graphic for the top value of the Mahalanobis 

distance. The value was recorded by the time the 

temperature ramp was starting 

Figure 67. Graphic for the top value of the Mahalanobis 

distance. By the time of the record, the temperature ramp 

had started a few seconds ago. It is observed that the top 

value is more sensitive than the mean value.  

 

 

Figure 68. Graphic for the top value of the Mahalanobis 

distance. By the time of the record, the temperature ramp 

had finished three minutes ago. The top value is above the 

threshold value, but it is always necessary to establish 

decisions according to the mean value. The evaluation of the 

top value is limited to the situations in which the mean value 

has also surpassed the threshold. 

 

After the analysis performed, it is possible to state that the monitoring tools for the detection of 

abnormal events in a simulated plant work and are valid as long as it is remembered the limitations 

these tools have: 

• Any change on a set-point is to be interpreted as a fault as it was concluded in Section 1.18. 

The changes on set-points usually are ordered in chemical plants as a way to respond to the 

needs of the process. However, the tools developed in the project are not able to distinguish 

between an intentional change on a set-point and faults within the plant that provoke 

unintentional changes on the set-points.  

Therefore, the use of these tools should be avoided while a set-point, ordered intentionally by 

the user, is taking place. 

• These tools can detect the fault during its starting and while it is happening, when the plant is 

at transient regime, but they stop working after the plant stabilizes independently of the 

disappearance or not of the fault. The aforementioned statement is appreciable in Figure 64. 
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Another point to bear in mind is that these tools have been proved to identify the presence of a fault 

before the status of the plant is changed significatively. This permits the user to react with more time, 

anticipate the change and take the corrective measures required for reverting the change on the status 

of the plant, if possible. 

1.21. Guidelines for future development 

In this section, some guidelines are to be provided so as to continue working around the ideas 

concluded at the end of this project. The purpose of these guidelines is to provide new ideas for 

another person to further develop the current capacities of the prototype explained in this project. 

The current monitoring tools for the detection of faults, although being functional, have limitations 

related to its use. Furthermore, the addition of new functionalities to the tools or the improvement of 

current functionalities could be explored.  

Aiming to improving the monitoring tools, add new functionalities to the monitoring tools or improve 

existing ones, the following ideas are proposed: 

To post the data sent to the Cloud in web services for its display to third-parties. 

To use the threshold value calculated by the Machine Learning Algorithm as an alarm in more advanced 

setups of the monitoring tools in future projects. 

The use of Azure Time Series Insight service available at the Cloud. This service can read on-line data 

from the process and get information from the temporal series of data (31).   

To explore the possibility of uploading the Machine Learning and the Data Analysis Algorithms to the 

Cloud with the use of Microsoft Azure Machine Learning Studio, which is a service that permits to 

develop the aforementioned algorithms directly or to store them in the Cloud (32).  

Related to the performance of the Machine Learning Algorithm developed in this project, some ideas 

could be explored for further developing and improving its performance and capabilities: 

To explore the sensitivity of the indicator towards different intensities on the fault generated. That is 

to say, to figure out if the indicator shows different results as a function of the magnitude associated 

with the faults produced: huge or minor faults. 
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To explore the sensitivity of the indicator towards different faults’ nature. That is to say, is it possible 

to classify the different kinds of faults with this indicator? Are required additional indicators such as 

the variances related to the principal components, or others? Is it required to train the algorithm 

differently? 

To try to develop and perform a more sophisticated training of the algorithm based on the use of a 

dataset of temporal series of data aimed at the classification of faults based on its nature.  

In this project, the algorithm is trained with a unique temporal series (dataset), while its performance 

is tested with a new temporal series (online-data). 

To try to construct a dataset composed of data points, where the data points are a whole temporal 

series of data. Each datapoint would be assigned a tag named after the nature of the fault or the 

absence of faults present during the record of the temporal series of data. Once the dataset is obtained, 

to train a classifier with this dataset. 
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Conclusions 

A modular communications architecture has been successfully developed and its performance relative 

to data monitoring and data displaying has been validated.  

A functional prototype that employs data analysis and machine learning algorithms together with the 

aforementioned communications architecture for on-line fault diagnosis in simulated plants has been 

built-up. However, the prototype developed has its limitations, which implies that the detection of 

faults is restricted to certain hypotheses. Concretely, it is required for the chemical plant not to suffer 

intentional changes on the set-points, or if suffered, the results of the model are not to be considered 

until the simulated plant is at steady-state conditions again.  

The validation of both the modular communications architecture and the data analysis and machine 

learning algorithms proves the potential associated with these new technologies when they are 

combined and the consequent gain of knowledge, relative to the status of a chemical plant, that can 

be obtained.  It has been validated not only the capacity to detect the presence of a fault, but it has 

been proved that the prototype detects the presence of the fault before it provokes significant changes 

on the status of the plant. In other words, the use of these tools allows the prediction of significant 

changes on the status of the plant, permitting the user to anticipate these significant changes and try 

to minimize harmful consequences to the plant. 

After the validation documented in this project, it can be concluded that companies will be gradually 

more receptive to a change in the paradigm on how to manage the data they generate as similar or 

better results from future investigations are published. Instead of storing the data locally, companies 

will gradually be more open-minded to use the new technologies for getting insights from the data 

they generate, for ultimately improving their operations and activities. This prediction is not only 

limited to the chemical industry, but to any industrial sector, which generates or operates with Big 

Data. 
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Economic Analysis 

This section is devoted to perform the economic analysis of the project, which is to be broken down as 

a function of the different kinds of costs incurred.  

1.22. Electricity costs 

It is considered the electricity consumed by the desktop computers used during the project. On the 

one hand, the use of personal computer has been required for all the tasks. On the other hand, it has 

been required the use of a remote computer in the stage related to the implementation of the 

prototype. 

On the one hand, the price for the electricity costs is based on the average price of 0.0943 per kWh 

from 2020 in Spain, considering that the user has a regulated tariff, which is reported at (33). On the 

other hand, the average power consumption by the computers has been considered as the summation 

of the power consumed by the computer (190 W) and the one consumed by the monitor (220 W) 

according to (34). 

The cost associated with each activity developed with the personal computer is indicated in Table 1. 

Table 1. Electricity costs incurred by the use of the personal computer 

 

Concept of payment Quantity 

(hours) 

Consumption 

(kWh) 

Price 

(€/kWh) 

Cost (€) 

Bibliographic research 40 16,4 0,0943 1,5 

Implementation  

of the prototype 

270 110,7 0,0943 10,4 

Report writing 90 36,9 0,0943 3,5 

Report review 35 14,35 0,0943 1,4 

Weekly meetings 15 6,15 0,0943 0,6 

Total cost 17,4 
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The remote computer is considered to have the monitor disconnected since it has been used from 

home. Therefore, the power consumption only accounts for the computer (190 W). 

The cost relative to the use of the remote computer is shown in Table 2. 

 

Table 2. Electricity costs incurred by the use of the remote computer 

1.23. Cloud Platform costs 

The Cloud Platform employed (Microsoft Azure) offers different metered services, the use of which 

follows the pay-per-use policy. In other words, the user is billed as per the intensity on the utilization 

of the services. Three services from the Microsoft Azure Cloud have been used:  

1. Azure IoT Hub. This service has been used in its free tier version, which is limited to the number 

of devices connected (500 devices) and the number of messages that can be received (8000 

messages/day). 

2. Azure Stream Analytics. This service is metered according to:  

a. its scalability (number of devices using the service and number of streaming units) 

b. the intensity of use (number of hours of use associated with each streaming unit) 

3. Power BI. This service has been used in its free version available to students.  

The information relative to the prices of each service offered by the Azure Cloud Platform can be found 

at (35).  

Since Azure Stream Analytics is the only service that costs money, the costs incurred due to its 

utilization are shown as a function of the intensity of use in Table 3 and as a function of the scalability 

imposed to the service in Table 4. 

 

 

Concept of payment Quantity (hours) Consumption (kWh) Price (€/kWh) Cost (€) 

Implementation  

of the prototype 

270 51,3 0,0943 4,8 

Total cost (€) 4,8 
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Table 3. Costs relative to the intensity of use of the Azure Stream Analytics service 

Concept of payment Streaming 

units 

Quantity 

(hours) 

Price (€/h·streaming 

units) 

Cost 

(€) 

Azure Stream Analytics Intensity of use 3 12 0,090 3,25 

Total cost (€) 3,25 

 

Table 4. Costs relative to the scalability of the Azure Stream Analytics service 

Concept of payment Devices Quantity 

(months) 

Price 

(€/device·month) 

Cost 

(€) 

Azure Stream Analytics Scalability 1 3 1 2,46 

Total cost (€) 2,46 

 

1.24. Personnel costs 

The personnel costs are related to the need for hiring a person able to perform the project. This person 

has been considered a graduate of the second university cycle according to the Collective agreement 

for the engineering company sector and technical studies offices for the year 2020 available at (36). 

Additionally, the report has been reviewed by two graduates of the third university cycle according to 

the same Collective agreement. Furthermore, weekly meets of forty minutes on average have been 

performed between the three individuals so as to review the state of the project and plan how to 

proceed on the realization of the project. 

For both a graduate of the second university cycle and a graduated third university cycle, the annual 

salary is the same, being 23973.88 €/year, according to. Considering that a year comprises fifty-two 

weeks, the price per hour to pay to a graduate is 11.52 €/year. Bearing this in mind, the costs relative 

to hiring personnel are displayed in Table 5. 
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Table 5. Costs relative to the personnel hiring 

Concept of payment Quantity 

(hours) 

Personnel Price (€/h) Cost (€) 

Bibliographic research 40 1 11,52 460,8 

Implementation  

of the prototype 

270 1 11,52 3110,4 

Report writing 90 1 11,52 1036,8 

Report review 35 3 11,52 1209,6 

Weekly meetings 15 3 11,52 518,4 

Total cost (€) 6336 

 

1.25. Total costs 

All the costs classified by its nature are summarized in Table 6, which also shows the total cost related 

to the realization of the project.  

Table 6. Total cost of the project  

Concept of payment Cost (€) 

Personal computer (Electricity costs) 17,4 

Remote computer (Electricity costs) 4,8 

Cloud Platform costs (intensity of use) 3,25 

Cloud Platform costs (scalability) 2,46 

Personnel costs 6336 

TOTAL (€) 6363,9 
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