
UQJG: Identifying Transactions that Collaborate to Violate
an SQL Assertion

Toon Koppelaars
Oracle America, Inc.

toon.koppelaars@oracle.com

Xavier Oriol
Universitat Politècnica de Catalunya

xoriol@essi.upc.edu

Ernest Teniente
Universitat Politècnica de Catalunya

teniente@essi.upc.edu

Sergi Curto
Universitat Politècnica de Catalunya
sergi.curto@estudiantat.upc.edu

Eduard Pujol
Universitat Politècnica de Catalunya

eduard.pujol@upc.edu

ABSTRACT
An SQL assertion is a declarative statement about data that must al-
ways be satisfied in any database state. Assertions were introduced
in the SQL92 standard but no commercial DBMS has implemented
them so far. Some approaches have been proposed to incremen-
tally determine whether a transaction violates an SQL assertion,
but they assume that transactions are applied in isolation, hence
not considering the problem of concurrent transaction executions
that collaborate to violate an assertion. This is the main stopper
for its commercial implementation. To handle this problem, we
have developed a technique for efficiently serializing concurrent
transactions that might interact to violate an SQL assertion.

CCS CONCEPTS
• Information systems → Integrity checking; Data locking.

KEYWORDS
SQL assertions; integrity checking; transactions serialization

1 INTRODUCTION
Autonomous databases, recently launched by Oracle as the next
generation of DBMSs [1], use machine learning and semantic rea-
soning to automate database tuning, security, updates, and other
management tasks traditionally performed by database administra-
tors or developers. Unlike a conventional database, an autonomous
database performs all these tasks automatically without human
intervention.

A key element of an autonomous database is transaction process-
ing. One of the main open issues in transaction processing is that of
allowing an autonomous database with the ability of automatically
checking SQL assertions. Assertions were defined in the SQL92
standard [12] but still no relational DBMS incorporates them.

An assertion is a named general constraint. That is, a boolean
querywith embedded queries, probably among several tables, whose
evaluation must be true for any possible database state. Currently,
the code to check these conditions has to be implemented manually
in a host language, since no DBMS supports assertions. Having to
manually program these checks is clearly a very difficult and error
prone task, and this is the reason of aiming to include them in the
Oracle Autonomous Database.

Checking SQL assertions requires solving two different problems:
efficiently determining whether a given transaction violates an
assertion; and identifying the transactions that would not violate

Figure 1: WorksIn schema

the assertion when applied in isolation but that could do it when
executed together with other transactions.

Some incremental checking techniques for SQL assertions have
been proposed (see for instance [9, 11]), or might be adapted from
similar areas such as incremental pattern matching [4]. However,
none of them is yet able to identify whether two transactions can be
executed concurrently when they do not collaborate to violate an
SQL assertion. Therefore, they force all transactions to be serialized
to correctly detect possible SQL assertion violations. This is a clear
impediment for any commercial implementation of SQL assertions.

To illustrate the concurrency problem, consider the simple schema
in Figure 1 and an SQL assertion forcing all employees to live in
the city where their department is located:
CREATE ASSERTION ' Same c i t y as Dept ' CHECK (

NOT EXISTS (
SELECT 'A f o r e i g n employee '
FROM Employee E , Department D
WHERE E . dep=D . dep_ id AND E . c i t y <>D . c i t y ) )

The database contents from Tables 1 and 2 satisfies this assertion.

Table 1: Department
Dep_ID Dep_Name City Budget

D1 Sales Madrid 150,000
D2 Data Analysis BCN 200,000

Table 2: Employee
Emp_ID Emp_Name Salary City Dep

E1 Josh 20,000 BCN D2

Now, consider two transactions: 𝑡1 inserts a new employee 𝐸2
from Madrid working in 𝐷1, and 𝑡2 relocates 𝐷1 to BCN. In isola-
tion, they do not violate the assertion. However, if they were to be
applied simultaneously the resulting database would violate the
’Same city as Dept’ assertion since, in this case, there would be an
employee 𝐸2 living in one city (Madrid) but working in another one

The final publication is available at ACM via http://dx.doi.org/10.1145/3459637.3482210



(BCN ). Therefore, we need 𝑡1 to block 𝑡2 (or vice versa). However,
traditional lock strategies based on locking the affected tables or
the affected rows are not able to identify this situation since both
transactions affect different tables and rows.

From the above example, it may look like, if any transaction
modifies the Employee table, we should always lock the Depart-
ment table. However, this policy is too restrictive. Assume now
another two transactions: 𝑡3 inserting in the original database a
new employee from BCN in department 𝐷2, and 𝑡4 updating de-
partment 𝐷1 to relocate it to BCN. In this case, both transactions
can be applied concurrently since they do not collaborate to violate
the assertion. This is true, regardless of the contents of the database,
because each transaction affects a different department.

In this paper, we propose a method we have developed and im-
plemented to identify those transactions that can be safely executed
concurrently since they do not collaborate to violate an SQL asser-
tion. Intuitively, two transactions can be executed concurrently if
the effects of the first do not compromise the integrity revalidation
of the second. This is a challenging problem because no transaction
can be aware of the effects being executed by another concurrently
executed uncommitted transaction.

Our technique builds, for each SQL assertion, its Universal Quan-
tification Join Graph (UQJG). Intuitively, the UQJG is a graph stating,
for given a transaction, the attribute values it should lock in order
to block the execution of another transaction that, in case it was ex-
ecuted concurrently, might compromise the integrity revalidation
of the assertion. The UQJG is directly built from the SQL assertion
definition, and the lock strategy depends only on the insertions
and deletions 1 of the transactions together with the structure of
the UQJG. Therefore, our technique does not need to check the
database contents nor to apply any other expensive computation.
To our knowledge, this is the first approach on general transactions
serialization for SQL assertion revalidation.

The underlying goal of this work is to provide a real implemen-
tation of SQL assertions in Oracle Autonomous Database. However,
the proposed techniques are generic and applicable to all databases.

2 PRELIMINARIES
We say that a transaction is an assertion triggering transaction if it
can cause a violation of an assertion (either alone, or in collaboration
with another one). For instance, 𝑡1 in Example 1 is an assertion
triggering transaction for the assertion ’Same city as Dept’.

Our lock strategy applies only to assertion triggering transac-
tions since the other transactions can be executed concurrently
without further analysis. Identifying assertion triggering transac-
tions is an already well-studied problem which we leave out of
the scope of this paper. In this sense, we encourage the interested
reader to take a look to the notions of table insert/delete polarity
[2] to get an idea of how it can be done.

Our locking strategy is aimed at identifying which pair of asser-
tion triggering transactions can collaborate to violate an assertion.
We say that a pair of transactions collaborate when they do not
violate the assertion in isolation, i.e. without taking into a account

1Modifications are considered to be a deletion of a tuple together with an insertion of
the same tuple with different values.

Figure 2: UQJG for ’Same city as Dept’

the database modifications of the other transaction; but they violate
the assertion when both transactions are commited.

Previous transactions 𝑡1 and 𝑡2 collaborate to violate the asser-
tion. Given the initial database, neither 𝑡1 nor 𝑡2 violates the asser-
tion by itself but, when taking into account the changes they both
make, we get into a database state where the assertion is violated.

3 THE UQJG
The Universal Quantification Join Graph (UQJG) is the data struc-
ture we implement to support our serialization technique. Loosely
speaking, given an SQL assertion, its UQJG specifies all possible se-
rialization scenarios for two transactions that concurrently update
two tables involved in the assertion.

3.1 UQJG definition
UQJG nodes represent table references and edges represent con-
currency problems that may occur when two assertion triggering
transactions update at the same time the contents of the referred
tables. Since an assertion can have multiple references to the same
table, a UQJG can have multiple nodes representing the same table.
Moreover, a UQJG can have self-edges. Self-edges specify situations
where modifying the contents of the same table through two con-
current transactions can lead to the violation of the SQL assertion.

Figure 2 provides the UQJG of the assertion ’Same city as Dept’
from our motivating example. Since the assertion only refers to
two tables, Employee and Department, we have only two nodes in
the UQJG. Furthermore, since concurrently updating both tables
might cause a constraint violation, as previously discussed, there is
an edge between the two. However, note that there is no self-edge.
This means that two transactions can update the very same table,
concurrently, without causing a constraint violation.

However, not all possible concurrent updates over Employee and
Department will necessarily cause a problem. In fact, all problematic
concurrent updates meet one condition: their department value is
the same. Therefore, in a UQJG edges can be decorated with tags. A
tag describes a condition that is always satisfied by the concurrent
updates that collaborate to violate the assertion over such edge.

For instance, in Figure 2, the tag dep = dep_id states that any
two assertion triggering transactions, when updating Employee and
Department, satisfy that the value dep used to update Employee is
equal to the value dep_id used in Department.

Tags can be composed of one equality, or a conjunction of them.
In any case, tags are a key point for maximizing transaction con-
currency since they allow reducing the potentially collaborating
cases that require serialization.

It is worth noting that the tags only speak of values that can
be obtained directly from the assertion triggering transactions. In
fact, our serialization policy cannot access database values. Indeed,
if the serialization policy accessed the database values, the serial-
ization policy itself might require serializing transactions (e.g. to



ProfessionalReviewer

ID

nameCensoredReview
reviewer
book
date

Review
reviewer
book
date

TopSellerBook

ID

name

1

*

1

1

1

* *

*

Figure 3: BookReviews schema

prevent not reading values that are concurrently updated by other
transactions). This approach would simply not scale.

3.2 UQJG construction and rationale
Generating a basic UQJG is almost direct for any SQL assertion. I.e.,
for any assertion, we can create a non-optimized UQJG by adding
a node for any table reference from the assertion, and place an
edge, with an empty tag, between every pair of nodes (including a
self-edge for every node). This is a conservative sound UQJG that
would block any two transactions affecting two tables of the same
assertion. Hence, the true question relies on optimizing such basic
UQJG. That is, prune (self) edges, and/or add tags to edges.

In our proposal, we are able to add tags for those parts of the
SQL assertion corresponding to relational algebra (i.e., first-order
logics [3]) and also for some SQL aggregates (namely, Min(), Max(),
Sum(), and Count(*)). This includes basic arithmetic/logic operators
as well as exists clauses with nested sub-queries. For the sake of
safeness, we currently do not admit nullable attributes in the tags.

Tags depend on the universal variables of the assertion. Seman-
tically speaking, an SQL assertion can be seen as a logic constraint
where some of its variables are universally quantified. For instance,
in the ‘Same city as Dept’ assertion, its department variable is uni-
versally quantified. This means that this assertion applies to any
possible value of department. That is, all employees working in the
D1 department should have a city equal to the city where the D1
department is located, for all the possible values of the dep_id.

Hence, given an SQL assertion, each possible value for any of
its universal variables is like posing a different assertion. Clearly,
two transactions triggering the violation of two different assertions
do not collaborate to cause a violation of one of them. Therefore,
conversely, if two transactions collaborate to cause a constraint vio-
lation, then it is sure that they agree with the value of the universal
variable. Naturally, the same explanation is generalized to sets of
universal variables, in case the assertion has many.

Consider now the reviews schema from Figure 3. Professional
reviewers review top selling books, where some of these reviews
may have been censored. Assume that, in this domain, all reviewers
must have written at least one non-censored review for every top
selling book. This constraint can be specified as follows:

CREATE ASSERTION ' TopSe l l ingBooksRev iews '
CHECK (NOT EXISTS (

SELECT 'A non rev iewed book '
FROM P r o f e s s i o n a l R e v i ewe r PR , TopSe l l e rBook B
WHERE NOT EXISTS (

SELECT 'A rev iew f o r the book '

Figure 4: ’Top Selling Books Reviews’ UQJG

FROM Review R
WHERE R . r ev i ewe r = PR . i d AND R . book = B . i d AND

NOT EXISTS (
SELECT ' Censor sh ip f o r the review '
FROM Censored C
WHERE C . r ev i ewe r = R . r ev i ewe r AND

C . book = R . book AND C . da t e = R . d a t e ) ) ) )

In this case, the universal variables are the pairs Professional-
Reviewers ids and Book ids. Indeed, semantically, the UQJG estab-
lishes an assertion for each possible value of both SQL columns (e.g.
“Mary" and “LOTR", “John" and “Harry Potter", etc).

The UQJG we generate for this assertion is shown in Figure 4.
It states, for instance, that two assertion triggering transactions
modifying the tables ProfessionalReviewer (PR) and TopSellerBook
(B) can always collaborate to violate the assertion (non-tagged
edge between nodes B and PR). Moreover, the table reference 𝐶
(𝑅) contain a self-edge with a tag. This means that two assertion
triggering transactions concurrently modifying the contents of 𝐶
(𝑅) can collaborate if they agree on the attribute values specified in
the tag, that is, the universal variables. Similar conflicts exists for
the other table references connected with an edge.

To show the feasibility of our approach we have implemented
a prototype tool that performs this UQJG generation and we have
tested it for tens of SQL assertions including (combinations of) ex-
pressions such as: joins, cross joins, left/right outer joins, (not) ex-
ists, (not) in, group by (having), min/max/count(*), union-all/minus,
and/or, is (not) null, =, <, <=, <>, >=, >.

4 LOCKING
For efficiency reasons, we develop our own fine grained lock system.
Indeed, table locks, as already discussed, might serialize too much
and would not permit exploiting the tags; other techniques, such
as index-locks, might not be available unless we build an index for
the columns appearing in the tags.

We apply locks on what we call Assertion-Lock Memory-Objects
(ALMOs). An ALMO does not represent a particular row, but a
value (or set of values) that a transactions locks, for some table and



column(s), to avoid other transactions using it. E.g., the ALMOs
of ’Same city as Dept’ are the department values. The UQJG tags
specify the ALMOs each transaction must acquire according to
its updates. For instance, consider the ’Top Selling Books Reviews’
assertion and assume the following assertion triggering transaction:
𝑡 : DELETE FROM Review

WHERE book ="LOTR" AND rev i ewe r ="Mary "
From the UQJG in Figure 4, we can determine that, until this

transaction has not been committed, we shall not allow any other
assertion triggering transaction that:

• Modifies, inserts or deletes rows of Censored with values
Book = “LOTR" and Reviewer = “Mary" (edge between R
and C). Hence, we lock the ALMO “LOTR"+“Mary" over
Censored.

• Modifies, inserts or deletes rows of Review with values Book
= “LOTR" and Reviewer = “Mary" (self-edge on R). Hence,
we lock the ALMO “LOTR"+“Mary" over Review.

• Modifies, inserts or deletes rows of ProfessionalReviewer
with values ID = “Mary" (edge between R and PR). Hence,
we lock the ALMO “Mary" over ProfessionalReviewer.

• Modifies, inserts or deletes rows of TopSellerBook with val-
ues ID = “LOTR" (edge between R and B). Hence, we lock
the ALMO “LOTR" over TopSellerBook.

Such ALMO locking can be easily implemented through hash
values provided that their length is large enough to ensure that no
accidental hash collision occurs. Moreover, they are only meant to
control the serialization of transactions with regards to checking
the assertions, and not for the traditional read/write problems that
transactions may experience. That is, ALMO locking is a comple-
ment, but not substitute, to the current locking policies.

Moreover, it is possible to optimize the UQJG taking into account
the already underlying locks of the databases. In particular, it is
possible to remove some self-edges by taking into account primary
keys. For instance, assume that the primary key of review is (Book,
Reviewer). In this case, we can remove the self-edge since, in essence,
the locks generated by this self-edge coincide with the already taken
locks of the database that ensure primary key consistency.

Our approach is also sound when generalized to sets of transac-
tions. That is, we correctly block a transaction𝑇𝑥1 if it might cause
a violation in collaboration with a set of transactions 𝑇𝑥2, ...,𝑇𝑥𝑛
(rather than just with a single one𝑇𝑥2). This is so because our tech-
nique detects those pairs of atomic updates 𝑢1, 𝑢2 (from different
transactions) that may cause a violation if applied concurrently
with other unknown atomic updates 𝑈 , where these updates 𝑈
can come from any transaction (𝑇𝑥1, 𝑇𝑥2, or even another set of
transactions 𝑇𝑥𝑖 , ...𝑇𝑥𝑙 ).

5 RELATEDWORK
While integrity checking has been a major research trend over sev-
eral years, only a few proposals have focused on how to incremen-
tally revalidate assertions with concurrently executing transactions.
To our knowledge, the only approach which addresses our same
problem is the one proposed in [10]. However, this approach as-
sumed: 1) that the transactions were already predefined at compile
time under the form of preprogrammed operations, which makes
the approach clearly not applicable in scenarios with transactions

defined at runtime; and 2) did not exploit the attribute values to
achieve a more accurate serialization. Some notions of transaction
management are provided in [7], but this proposal does not show
how to apply them in practice with SQL assertions.

With regards to the particular granularity of the locks, we ob-
serve that the ALMO locks we propose are to some extent similar
to the predicate-locks [8] and, more specifically, to key-value locks
[5]. We show the main differences in the following.

Predicate-locks were originally proposed to deal with the phan-
toms concurrency problem [8]. They were based on stating a range
of rows that a transaction is locking, where this range is specified
by means of some predicates (e.g., the lock applies to employee
rows with a salary greater than 1000 and whose dept is ’Sales’).
The tags decorating the edges of a UQJG can be seen as predicate-
locks containing only conjunctions of equalities. In fact, this is
not a limitation but a feature. Indeed, detecting when two general
predicate-locks overlap, and hence, raising a concurrency problem,
is NP-hard [6]. However, our ALMOs proposal can be implemented
using hash tables, which ensures good performance in practice.

This kind of limited predicate-locks are already known in index-
locks and, in particular, key-value/range locks [5]. An index-lock is
a lock directly applied over an index, like a B-tree, instead of the
underlying rows. Taking advantage of the inherent order of the
index, it is possible to lock a given value or even a gap between
values (i.e., non existing tuples). Although our proposal could easily
fit with this kind of locks, it does not require creating indexes.
E.g., in the ’Top Selling Books Reviews’ assertion, we need to create
locks with the values for books and for reviewers. Hence, to apply
index-locks we would require two indexes on this assertion. Taking
into account that there can be other assertions creating more tags
with different columns, it is clear that the use of index-locks may
encompass the creation and maintenance of too many indexes.

6 CONCLUSIONS
We have proposed a method to identify transactions that can be
safely executed concurrently since they will not collaborate to
violate an assertion. Our technique is based on the Universal Quan-
tification Join Graph (UQJG), which is automatically obtained from
the SQL assertion. A UQJG provides all the information required to
identify possible conflicts at run time. We have shown how to use
the UQJG to serialize transactions through Assertion-LockMemory-
Objects (ALMOs). Locking ALMOs is a better policy than locking
rows or tables, and it is more practical to implement than predicate-
locks or index-locks. Hence, the overall result allows us to maintain
a low overhead for ensuring a correct database assertion revali-
dation. As further work, we plan to generate tags with nullable
attributes and optimize more aggregate functions.

REFERENCES
[1] www.oracle.com/autonomous-database. Last access 20-02-2021.
[2] S. Ceri and J. Widom. Deriving incremental production rules for deductive data.

Inf. Syst., 19(6):467–490, 1994.
[3] E. F. Codd et al. Relational completeness of data base sublanguages. Citeseer, 1972.
[4] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern

match problem. In Readings in Artificial Intelligence and Databases, pages 547–559.
Elsevier, 1989.

[5] G. Graefe. A survey of b-tree locking techniques. ACM Transactions on Database
Systems (TODS), 35(3):1–26, 2010.



[6] H. B. Hunt and D. J. Rosenkrantz. The complexity of testing predicate locks. In
Proceedings of the 1979 ACM SIGMOD international conference on Management of
data, pages 127–133, 1979.

[7] D. Martinenghi and H. Christiansen. Transaction management with integrity
checking. In Database and Expert Systems Applications (DEXA) 2005, volume
3588 of LNCS, pages 606–615. Springer, 2005.

[8] H. Morgan, K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions
of Consistency and Predicate Locks in a Database System - Eswaran, Gray, Lorie,
Traiger. 19(11), 1976.

[9] X. Oriol and E. Teniente. Incremental Checking of OCL Constraints with Aggre-
gates Through SQL. In Conceptual Modeling, pages 199–213. Springer Interna-
tional Publishing, 2015.

[10] X. Oriol and E. Teniente. Adapting Integrity Checking Techniques for Concurrent
Operation Executions. In System Analysis and Modeling. Languages, Methods, and
Tools for Industry 4.0, pages 235–248. Springer International Publishing, 2019.

[11] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and
integrity constraint checking: Trading space for time. In 1996 ACM SIGMOD
international conference on Management of data, pages 447–458, 1996.

[12] A. Standard. The sql 92 standard, 1992.


	Abstract
	1 Introduction
	2 Preliminaries
	3 The UQJG
	3.1 UQJG definition
	3.2 UQJG construction and rationale

	4 Locking
	5 Related Work
	6 Conclusions
	References

