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Abstract: Scientific and technological advances in the field of rotatory electrical machinery are leading
to an increased efficiency in those processes and systems in which they are involved. In addition, the
consideration of advanced materials, such as hybrid or ceramic bearings, are of high interest towards
high-performance rotary electromechanical actuators. Therefore, most of the diagnosis approaches
for bearing fault detection are highly dependent of the bearing technology, commonly focused on the
metallic bearings. Although the mechanical principles remain as the basis to analyze the characteristic
patterns and effects related to the fault appearance, the quantitative response of the vibration pattern
considering different bearing technology varies. In this regard, in this work a novel data-driven
diagnosis methodology is proposed based on deep feature learning applied to the diagnosis and
identification of bearing faults for different bearing technologies, such as metallic, hybrid and ceramic
bearings, in electromechanical systems. The proposed methodology consists of three main stages:
first, a deep learning-based model, supported by stacked autoencoder structures, is designed with the
ability of self-adapting to the extraction of characteristic fault-related features from different signals
that are processed in different domains. Second, in a feature fusion stage, information from different
domains is integrated to increase the posterior discrimination capabilities during the condition
assessment. Third, the bearing assessment is achieved by a simple softmax layer to compute the final
classification results. The achieved results show that the proposed diagnosis methodology based on
deep feature learning can be effectively applied to the diagnosis and identification of bearing faults
for different bearing technologies, such as metallic, hybrid and ceramic bearings, in electromechanical
systems. The proposed methodology is validated in front of two different electromechanical systems
and the obtained results validate the adaptability and performance of the proposed approach to be
considered as a part of the condition-monitoring strategies where different bearing technologies
are involved.

Keywords: fault diagnosis; bearings; deep learning; autoencoder; vibration signal; multi-domain
feature extraction

1. Introduction

Scientific and technological advances around rotatory electrical machinery are leading
to increased efficiency and performance of the processes and systems in which they take
part. In this regard, the consideration of advanced materials, such as hybrid or ceramic
bearings, are of high interest in the move towards high-performance and oil-free rotatory
electromechanical actuators. High demanding operative requirements have become the
main characteristics of modern rotating machinery as well as their continuous operation,
which also increases the risk of system failure and, specifically, the acceleration of bearing
faults as one of the most common sources of malfunction [1,2].
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Depending on the considered bearing technology, that is, metallic, hybrid, or full
ceramic, the operative characteristics such as friction coefficient, thermal rejection ratio,
or lubrication requirement among others differ. The suitability of these features to the
application is, in fact, the motivation to decide the incorporation of one or another bearing
technology. Metallic bearings are commonly used in simple and common applications of ev-
eryday life; the most complex applications for metallic bearings are probably those related
to industrial machines, whereas ceramic bearings are being used in particular applications
such as in high-speed lathes, chemical machinery and aeroengines, among others. In this
regard, in environments in which high-speed, heavy-duty, low noise, and/or high precision
are required, full ceramic bearings are being gradually incorporated [3]. However, from
the maintenance point of view, different bearing technologies imply several differences
in the degradation processes and also in the expected characteristic fault-related patterns
that are usually considered in the design process of the condition-based maintenance solu-
tions [4–7]. Thus, the differences in the fault mechanisms due to differences in brittleness
or toughness between steel and ceramic have effects on the vibration response during the
machine operation [8–12]. Specifically, overall vibration levels in full-ceramic bearings
are modified by the rotational speed and do not suffer changes in presence of axial load.
Meanwhile, under the influence of a given axial load and rotational speed, the vibratory
levels of full-ceramic bearing are reduced, and for hybrid bearings they increase [13,14]. In
this regard, although the mechanical principles from which the characteristic fault-related
effects are estimated remain, the quantitative analysis over the vibration signals is affected
in amplitude and frequency terms.

Indeed, there is no consensus related to the most convenient signal processing stage to
face different bearing technologies. On the other side, concerning the condition assessment
and fault identification in different bearing technologies, a great deal of approaches have
been proposed and focused on solving the following problems: (i) the occurrence of faults
on different parts of the bearing, where, the fault assessment in the inner race, outer race,
balls and cage, have been widely studied [3,4,15,16]; (ii) the assessment and recognition of
the bearing fault severity which has been normally analyzed over the inner race and outer
race [9,12,17]; and (iii) the analysis and prediction of the degradation in any of the bearing
elements with the aim of estimating its remaining useful life [6,18]. Despite the fact that several
condition-monitoring approaches have been successfully proposed in the field of bearing
fault identification to face the most common problems related to the assessment of faulty
conditions, most of these proposals have been designed for being applied to a specific bearing
technology, the metallic bearings. Under this premise and in order to provide solutions
in front of the emerged bearing technologies, the proposal of new condition assessment
approaches capable of self-adapting, independently of the bearing technology, such as metallic,
hybrid and ceramic bearings, is mandatory. In actuality, it is possible to find works in the
related literature of condition monitoring that consider different domains of analysis, that is,
time domain, frequency domain and/or time–frequency domain [19–21]. Thus, motivated
by the consideration that the characteristic fault-related patterns are modulated by the
electromechanical system configuration and operating conditions in which the bearing
operates, this leads to data-driven approaches as a more suitable solution for practical
solutions and applications. In recent years, proposals that have been addressed the fault
detection and identification by using artificial intelligence (AI)-based models have attracted
great attention [22,23]. Initially, considering machine learning (ML) approaches, such as the
work presented by A. Soualhi et al. in [24], based on support vector machines, or the work
presented by J. J. Saucedo et al. in [25], based on artificial neural networks (NN), or even
the work presented by J. Guo et al. in [26], based on k-nearest neighbors. However, despite
the fault detection and identification can be carried out by such classical approaches in
which depending on the bearing technology and its electromechanical context, the most
significant fault-related features have to be selected, and recently, deep learning (DL)
approaches are being considered. The use of DL has attracted attention since DL provides
an adaptive framework that allows the design of architecture that can be adapted in the
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solution of specific problems that must be faced in which the engineering features and
AI algorithms coexist. Hence, DL-based approaches have recently been established as
a powerful tool to adapt the pattern characterization of electromechanical systems [27].
Significant examples of this fact are the works presented by J. Dai et al., X. J. Gou et al. or
G. B. Huang et al. in [15,22,28], respectively.

However, dealing with the generalization of the diagnosis methodology, and specifi-
cally, considering its application to different bearing technologies, such as metallic, hybrid
and full ceramic, new DL-based procedures have to overcome a set of critical challenges
that are avoiding its practical application [29]. Mainly, these limitations are: (i) the opera-
tion with limited amounts of data, which are difficult to obtain in industrial applications
especially concerning the fault patterns, (ii) understandable interpretation of the learning
process, that is not clear for practitioners, (iii) generalization-based approaches avoiding
over-fitted solutions and (iv) the methodological hyperparameter tuning procedures to
promote ease of access and configuration.

Thereby, the contribution of this work lies in the proposal of a novel data-driven mon-
itoring methodology based on deep learning applied to the diagnosis and identification of
bearing faults for different bearing technologies, such as metallic, hybrid and ceramic bear-
ings, in electromechanical systems. Thus, the proposed diagnosis methodology promotes a
common framework which valid for different bearing technologies and electromechanical
systems. To address this issue, the proposed methodology consists of three main stages.
First, a DL-based model is designed with the ability of self-adapting to the extraction of
characteristic fault-related features from different signals including classical vibration and
stator current; also, the proposed diagnosis approach is designed for being adapted to any
other different available physical magnitude. In order to perform the proposed deep feature
learning, a distributed DL-based structure supported by a stacked au-to encoder (SAE) is
considered for extracting potential and meaningful fault-related features from the available
signals that are characterized through its analysis in three different domains (time domain,
frequency domain, and time–frequency domain). In this sense, the proposed methodology
offers a practical way to implement a DL approach independently of the electromechanical
configuration in general, but considering the bearing technology in particular. Second,
a feature fusion stage that integrates information from different domains is considered to
increase the posterior discrimination capabilities during the condition assessment. Finally,
third, a simple softmax layer is included to compute the final classification result. The
proposed methodology is validated in front of two different electromechanical systems.
First, a self-designed experimental test bench including metallic, hybrid and full ceramic
bearings, at multiple operating conditions under the same fault is considered to evaluate
the adaptation capabilities of the proposed methodology in front of the bearing technology.
Second, a standard benchmark as the Case Western Reserve University bearing data cen-
ter [30,31], is also evaluated in order to assess the performance of the proposed diagnostic
method in front of different metallic bearing failures in a reference framework. It should
be noted that the proposed approach is of significant importance in the field, even more
so when designing a fault detection and identification solution, since depending on the
bearing technology, the electromechanical system configuration, and even the range of
operating conditions, the meaning and correlation of characteristic fault-related features
will differ. However, the proposed methodology represents a common framework for
the design and implementation of feasible solutions to be applied in a wide range of
electromechanical systems where the bearings are involved in multiple configurations.

The proposed work is organized as follows: Section 2 presents the theoretical back-
ground on the stacked auto-encoder as a deep-learning approach. Section 3 presents the
proposed method presented in this study. In Section 4, the results and validation of this
proposal are discussed. Finally, the conclusions are provided in Section 5.
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2. Autoencoder-Based Deep Feature Learning

Unsupervised feature-learning techniques have been included as a fundamental part
in most of the proposed condition-monitoring and diagnosis approaches. In this regard,
the autoencoder (AE), which is well-known as an unsupervised NN, has a symmetrical
structure and one of its main design purposes is focused to perform the representation of a
high-dimensional feature space into a low-dimensional space; specifically, the AE goal is
to reconstruct the input pattern at the output of the network by means of minimizing the
reconstruction error between the input and output feature patterns [26,32]. The AE network
structure is represented by a single hidden layer and the graphic representation is shown
in Figure 1. The mathematical notation that belongs to a single AE network structure is
described below; however, it should be clarified that aiming to facilitate the description of
the mathematical basis, italic letters are used to define scalars, bold-face lower-case letters
are considered in the definition of vectors and bold-face upper-case letters are used in the
definition of matrices.
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Figure 1. Graphical representation of the structure of a single-layer autoencoder.

Since AE is an unsupervised NN, the training procedure is divided into two main
phases: encoder and decoder; thus, during the encoder procedure, an input feature dataset
vector is connected to the input encoder layer x. The encoder procedure aims to perform
the mapping of the input x into a hidden representation which is denoted by the hidden
layer or encoder vector h. Therefore, the hidden layer h contains the numerical information
and maps that lead to achieve the connection of the input layer x with the hidden layer h
through n sparse-activated neurons and non-linear transformation following Equation (1):

h = f (Wex + Be) (1)

where f is the sigmoid function used as the non-linear activation function, and We and
Be are the corresponding weights and biases matrices for the encoder phase, respectively.
Otherwise, the decoder procedure which is applied as a reverse transformation procedure
aims to perform the reconstruction of the input feature vector x from the information
contained in the hidden layer h; thus, an output decoder layer vector y is obtained during
the decoder procedure, which is achieved by following Equation (2):

y = f (Wdh + Bd) (2)

From Equation (2), the corresponding weights and bias matrices considered in the
decoder procedure are Wd and Bd, respectively; the AE output is represented by y as the
achieved reconstruction of the corresponding input x. Therefore, the aim of the AE feature
learning process lies in the optimization of the parameters θ = {Wd, Be, Wd, Bd}, where
the minimization of the reconstruction error between the input and the output feature
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vectors, x and y, respectively, is accomplished in terms of the mean squared error (MSE) by
following Equation (3):

MSE =
1
N

M

∑
k=1

(xk − yk)
2 (3)

where k = 1, 2, . . . M, xk, yk, represents each corresponding element of the input and the
out feature vectors, respectively, and M is the total number of input and output elements.

Moreover, in order to prevent overfitted responses on AE networks, it is necessary
to introduce L2 as the regularization term to the cost or fitness function. Specifically, L2
is denominated as the weight decay regularization term, which is added to avoid the
emergence of large weights in the weight matrix W, thus, such a term is formulated as
Equation (4) depicts:

Ωweights =
1
2

a

∑
i=1

b

∑
j=1

c

∑
k=1

(
Wi

jk

)2
(4)

where a is the number of weight parameters, b is the number of rows and c is the number
of columns in each weight matrix W, and Wi

jk represents each element of W.
Furthermore, a sparsity regularizer term is introduced to generate more specific AE

network models capable of learning information from the input more effectively. This
regularizer term is a function of the average output activation value of a neuron which is
described as followed by Equation (5):

ρ̂i =
1
n

n

∑
j=1

f
(

wT
i xj + bi

)
(5)

where n is the total number of training samples, xj is the jth training sample, wT
i is the ith

row of the weight matrix We and bi is the i-th entry of the bias vector, be. This purpose of
the sparsity function is to restrict the values of ρ̂i to be low, which causes the AE to generate
a mapping such that each neuron in the hidden layer is activated with a small number of
samples. In this regard, a term ΩSparsity is added to the cost function to constrain the ρ̂i
values and make the neurons sparce. For this, the KL divergence is used to measure the
distance between ρ and ρ̂i, where ρ is the wanted sparsity parameter and ρ̂i is the effective
sparsity of a corresponding hidden neuron

ΩSparsity =
n

∑
i=1

KL(ρ||ρ̂i) =
n

∑
i=1

ρ log
(

ρ

ρ̂i

)
+ (1− ρ)log

(
1− ρ

1− ρ̂i

)
(6)

Subsequently, the fitness function defined as FunCost is described as the sum of the
error term regularization penalty terms

FunCost = MSE + λ ∗Ωweights + β ∗ΩSparsity (7)

where λ is the specific parameter for the L2 regularization term that takes control over the
weight decay and β is the corresponding parameter to the sparsity regularization term.

Therefore, the parameter-tuning process can be stated as an optimization problem
where the network parameters are adjusted aiming to minimize the resulting cost func-
tion [16]. In this paper, the AE network aims to use the ability to learn and reconstruct
patterns to characterize the different conditions and operating regimes of rotating systems.
In addition, a deep neural network (DNN) can be built from stacking several AEs, as shown
in Figure 2. In this way, a DNN based on SAE has a greater capacity to automatically
extract fault features through multiple layers and non-linear transformations. The process
to efficiently construct a DNN is described by Hilton et al. [33]. The result is a multilayer
deep-autoencoder (DAE) structure with a bottleneck coding layer in the middle, which
represents the features extracted in a low dimension.
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3. Deep Feature Learning Based Methodology

As mentioned, new condition-monitoring strategies are required for those techno-
logical fields in which the demanding requirements of operation over rotatory electrome-
chanical systems are considered. This fact is of special importance dealing with bearings
of rotating machines since they are one of the most common sources of malfunctions in
related electromechanical systems. Moreover, the bearing technological variants, that is,
metallic, hybrid and ceramic, lead to an increased complexity when a common frame-
work for a feasible characterization and posterior pattern recognition is desired. In this
regard, the flowchart of the proposed deep feature learning based condition-monitoring
methodology focused on the diagnosis and identification of bearing faults for different
bearing technologies is shown in Figure 3. The diagnosis methodology has been de-
signed following a proposed step-by-step strategy that facilitates its practical application
as a condition-monitoring scheme over electromechanical systems. In this regard, the
methodology represents a common framework to face bearing condition characterization
and its posterior recognition independently of the bearing’s technology. The proposed
methodology includes a SAE-based DNN to perform an automatic characterization of
the available acquisitions processed under multiple domains, that is, time, frequency and
time–frequency. It must be noted that the general structure of the proposed methodology
is intended to serve as a guide to adapt such condition-monitoring procedures to different
industrial systems, that is, considering differences in the registering modules (i.e., type
and/or number of acquired physical magnitudes), and differences in the electromechanical
configuration and operation (i.e., speed, torque, but also the bearing’s technologies).

The consideration of DL techniques as part of the related condition-monitoring
methodologies represents a complex task that has not been properly solved by most
of the available studies in the field. The selection and configuration of the related hyperpa-
rameters as a result of wrapper or empirical approaches leads to a high risk of overfitting
during the validation of the methodology. In this regard, the proposed three-stage scheme
promotes the generalization of the resulting model by introducing the selection of the
hyperparameters as part of the methodology, thus leading to a feasible method easy to
implement and adaptable to different electromechanical configurations.

3.1. Multi-Domain Feature Calculation

Indeed, the proposed methodology has been designed for being adapted to different
and/or multiple available physical magnitudes. In this regard, although the analysis of
vibration signals represents the most significant source of information when the bearing
fault diagnosis is addressed and faced [1,12], the proposed scheme allows the consideration
of additional sources of information, that is, multiple vibration axis or even complementary
physical magnitudes as the stator currents. Therefore, as Figure 3 depicts, the proposed
approach may support a number of N available signals where the considered index i, for
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I = 1, 2, . . . , N, is used to identify each one of the considered physical magnitudes. Thus, re-
garding the proposed methodology, in the first stage, the available physical magnitudes are
processed aiming to perform their characterization through the estimation of a potentially
meaningful set of features. In this sense, the available signals, especially those related to
the vibration of the electromechanical system in general, and the bearings in particular, are
proposed to be processed into a D number of domains equal to three, that is, time domain
(TD), frequency domain (FD) and time–frequency domain (TFD).
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Although the proposed methodology adapts to any signal processing techniques to
be considered in each domain, a reference set of features is proposed to be calculated
from the available physical magnitudes as a trade-off between simplicity and performance.
Additionally, as a general framework, the different signals that are available are first
subjected to a segmentation procedure, where each acquired signal is individually divided
into equal parts of one second. Thus, considering that si refers to each available signal, for
i = 1, 2, . . . , N, the segmentation procedure is performed by following Equation (8)

si =
[
s1:L

i , sL+1:2L
i , . . . , s(((n/L)−1)n)+1:n

i

]
(8)

where L refers to the length of the time windows, but, specifically, is the number of
sampled points for each segment of the signal; n is the total number of sampled points
for each available signal. Through this segmentation process, each available signal is
divided in equal parts obtaining n/L segments. Dealing with periodic patterns in rotatory
electromechanical machinery, this temporal duration assures enough statistical consistency
in most of the practical applications (i.e., rotatory speeds higher than 500 rpm). However,
the acquisition time can be increased without any loss of performance for those low-speed
applications.

Thereby, each considered signal is processed by applying the TD analysis, specifi-
cally, a numerical set of T = 15 statistical time domain features is estimated from each
segmented part of the available signals; as a result, a consecutive set of numerical features
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represented into a T-dimensional space is computed; precisely, a feature matrix composed
by statistical time domain features is obtained, T ∈ RT. On the other hand, for the FD
analysis, the FFT technique is applied to each segmented part of the signals in order to
obtain its representative frequency spectrum. Subsequently, a numerical set of 14 statistical
features is calculated from each one of the obtained frequency spectrums. Additionally, six
characteristic-bearing fault-related frequency components are estimated, that is, the first
and second harmonic corresponding to the outer, inner and ball bearing faults. Therefore,
in the FD analysis, a resulting set of F = 20 features are calculated from each frequency
spectrum, and a representative F-dimensional frequency-domain feature matrix, F ∈ RF,
is calculated. Finally, for the TFD analysis, the acquired signals are, first, processed by
means of one of the most suitable signal-decomposition techniques, the empirical mode
decomposition (EMD), which allows obtaining a set of sub-signals containing the main
oscillatory modes included in the original one. Thereby, the EMD technique is applied to
each one of the segmented parts of the available signals and, following the related literature,
the two first intrinsic modes functions (IMF), are taken into account for being characterized,
since they contain the most significant information in terms of characteristic fault patterns.
Later, the FFT technique is applied to each IMF to compute their corresponding frequency
spectrum. The estimation of the same set of 14 statistical frequency-features is carried
out for each IMF’s frequency spectrum. Therefore, for the TFD analysis, a set of TF = 28
features are estimated for each acquisition. As a result, a representative TF-dimensional
time–frequency domain feature matrix, TF ∈ RTF, is calculated.

Next, Tables 1 and 2 summarize the proposed sets of statistical features estimated
during the signal processing in the TD and FD analysis, respectively. These sets of statistical
features have been included in other related works; its application has been preferred since
they offer a high-performance signal characterization due to the capability of modeling
trends and changes in the TD analysis, whereas, for the FD analysis, the estimation of these
features allow to identify abrupt changes in the amplitude of those characteristic frequency
components [34,35].

Table 1. Proposed set of statistical time domain features estimated during the signal processing in
the TD analysis, where each y(j) value belongs to each sample point of the processed signal for j = 1,
2, 3 . . . P, with a total number P samples.

Statistical Feature Mathematical Equation

Mean t1 = 1
P

P
∑

j=1

∣∣∣yj

∣∣∣ (9)

Maximum value t2 = max(x) (10)

Root mean square t3 =

√
1
P

P
∑

j=1

(
yj

)2 (11)

Square root mean t4 =

(
1
P

P
∑

j=1

√∣∣∣yj

∣∣∣)2
(12)

Standard deviation t5 =

√
1
P

P
∑

j=1

(
yj − t1

)2 (13)

Variance t6 = 1
P

P
∑

j=1

(
yj − t1

)2 (14)

RMS Shape factor t7 = t3
1
P ∑P

j=1|yj| (15)

SRM Shape factor t8 = t4
1
P ∑P

j=1|yj| (16)

Crest factor t9 = t2
t3

(17)
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Table 1. Cont.

Statistical Feature Mathematical Equation

Latitude factor t10 = t2
t4

(18)

Impulse factor t11 = t2
1
P ∑P

j=1|yj| (19)

Skewness t12 =
∑
[
(yj−t1)

3
]

t5
3

(20)

Kurtosis t13 =
∑
[
(yj−t1)

4
]

t5
4

(21)

Fifth moment t14 =
∑
[
(yj−t1)

5
]

t5
5

(22)

Sixth moment t15 =
∑
[
(yj−t1)

6
]

t5
6

(23)

Table 2. Proposed set of statistical time domain features estimated from the frequency spectra during
the signal processing in the FD analysis, where each z(i) is a spectrum for i = 1, 2, . . . ,Q, and Q is the
total number of lines for an estimated spectrum; fq(i) is the frequency value of the i-th spectrum line.

Statistical Feature Mathematical Equation

Mean f1 = 1
Q

Q
∑

i=1
z(i) (24)

Variance f2 = 1
Q−1

Q
∑

i=1
(z(i)− f1)

2 (25)

Third moment f3 = 1

Q
(√

f2

)3

Q
∑

i=1
(z(i)− f1)

3 (26)

Fourth moment f4 = 1

Q
(√

f2

)2

Q
∑

i=1
(z(i)− f1)

4 (27)

Grand mean f5 = ∑Q
i=1 fq(i) z(i)

∑Q
i=1 z(i)

(28)

Standard deviation 1 f6 =

√
∑Q

i=1( fq(i)− f5)
2
z(i)

Q
(29)

C Factor f7 =

√
∑Q

i=1 fq(i)
2 z(i)

∑Q
i=1 z(i)

(30)

D Factor f8 =

√
∑Q

i=1 fq(i)
4 z(i)

∑Q
i=1 fq(i)

2 z(i)
(31)

E Factor f9 = ∑Q
i=1 fq(i)

2 z(i)√
∑Q

i=1 z(i) ∑Q
i=1 fq(i)

4 z(i)
(32)

G Factor f10 =
f6
f5

(33)

Third moment 1 f11 =
∑Q

i=1( fq− f5)
3

z(i)
Q f 3

6

(34)

Fourth moment 1 f12 =
∑Q

i=1( fq(i)− f5)
4

z(i)
Q f 4

6

(35)

H Factor f13 =
∑Q

i=1( fq(i)− f5)
1/2

z(i)

Q
√

f6

(36)

J Factor f14 = ( f7+ f8)
f1

(37)

3.2. SAE Feature Learning

The second stage of the proposed method is focused on the self-adaptive extraction
procedure to obtain a reduced set of features as a result of the learning procedure over
the patterns described by the original feature matrices for each analyzed domain. This
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procedure is carried out by a multi-SAE structure that is applied over the feature matrices
resulting from the analysis of the N available signals through a D number of domains of
analysis, that is D = 3, Ti, Fi, and TFi, for i = 1, 2,...N. Thus, it is proposed to consider as
many SAE structures as available feature matrices to extract; for each matrix, a reduced
set of features is considered while preserving most of the characteristic information that
allows a proper reconstruction of the original signal. In this sense, it must be noted that
performing a specific domain-based feature learning procedure over the extracted patterns
leads to maximizing the characterization capabilities from each matrix. Indeed, the SAE
seeks for an optimum codification in terms of posterior reconstruction error minimization,
thus leading to the preservation of the underlying physical behavior of the signal from an
unsupervised point of view.

However, as each matrix describes a different statistical distribution in its high-
dimensional space, each SAE requires a specific hyperparameter tuning to reach a proper
performance. Classically, in the related condition-monitoring literature, this procedure
is faced empirically by means of a wrapper approach to maximize the final diagnosis
performances. However, this approach leads to a high risk of overfitting, that is, the
SAE is forced to prioritize those patterns providing higher diagnosis performances over
those patterns that better characterize the original signal in terms of the reconstruction’s
MSE. On the other hand, in most of the cases, several hyperparameter-tuning strategies
have been classically proposed in order to optimize the hyperparameters regarding to a
single model criterion, in which, the misclassification error is considered to obtain a model
with a high performance. In this sense, this proposal faces the challenge of achieving the
hyperparameter-tuning procedure by taking into account the trade-off between model ac-
curacy (proper reconstruction of the original signals) and preservation of the characteristic
information (underlying physical behavior of the signal). Therefore, the hyperparameter
tuning for each considered SAE structure is faced through a heuristic search algorithm, the
genetic algorithm (GA), where the fitness function of the GA is focused on the minimization
of the MSE value during the reconstruction. In fact, the use of heuristic search algorithms,
such as GA, has been widely used and preferred since the reached solutions are based
on a stochastic optimization method. Moreover, one of the main benefits of using GA is
that optimal or near-optimal solutions of a large-scale problem may be obtained under a
reasonable computational time.

Therefore, in this proposal the hyperparameter optimization process is individually
carried out by a GA for each considered SAE structure; the SAE hyperparameters that
are optimized are (i) the coefficient for the L2 regularization term, (ii) the coefficient for
the sparsity regularization term and (iii) the parameter for sparsity proportion. Thus,
the optimization of the three mentioned hyperparameters is performed by following the
next steps:

• Step 1: Initialization of the population: the chromosomes of the GA are initially de-
fined with a logical vector containing three elements, where each element represents
each one of the hyperparameters. Subsequently, a random initialization of the popu-
lation is performed by assigning a specific value to each particular hyperparameter;
in fact, the values assigned to each hyperparameter are within a predefined range of
values. Once the initialization of the population is achieved, the procedure continues
in step 2.

• Step 2: Evaluation of the population: in this step the fitness function is evaluated
based on the minimization of the reconstruction error between the input and the
output features. Specifically, the minimization of the reconstruction error is evaluated
in terms of the MSE value following Equation (3), as mentioned in Section 2. Thereby,
the optimization problem to be solved by the GA involves the search of those specific
hyperparameter values that leads a high-performance feature mapping. Then, once
the whole population is evaluated under a wide range of values, the condition of best
hyperparameter values is analyzed and the procedure continues in step 4.
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• Step 3: Mutation operation: the mutation of the GA produces a new population by
means of the roulette wheel selection; the newly generated population takes into
account the choice of the best fitness value achieved by the previously evaluated
population. Moreover, a mutation operation that is based on the Gaussian distribution
is applied during the generation of the new population. Subsequently, the procedure
continues in step 2.

• Step 4: Stop criteria: there are two stop criteria for the GA: (i) the obtention of a
reconstruction MSE value lower than a predefined threshold, 5%, and/or, (ii) reaching
the maximum number of iterations, 1000. In the case of the first stop criterion, (i), the
procedure is repeated iteratively until those optimal hyperparameter values are found
until the GA evolves, then the procedure continues in step 3.

On the other hand, regarding the number of neurons for the hidden layers, multiple
works reported in the related literature suggest a first hidden layer for expanding the
number of neurons, and then the expansion is followed later with reduction in neurons
in posterior layers [32]. In this regard, and following such good practices that have been
validated in previous works, the SAEs are proposed to be constituted by a first hidden
layer to expand neurons in a ratio from 5 to 10 times approximately, and three additional
hidden layers reducing neurons in 1/3, 1/3 and 1/2 ratios approximately, thus resulting
in a final hidden layer with a number of neurons equal to the number of considered
classes, C. By means of this approach, each considered SAE structure provides the most
representative C features that preserves the characteristic features of the signal for each
considered domain as much as possible, that is, the most representative underlying physical
behaviors seen from each domain that will be considered for posterior recognition. Thus,
the SAE structures for TD, FD and TFD analysis are SAET

i, SAEF
i, SAETF

i, respectively,
SAET

i, SAEF
i, SAETF

i ∈ RC.

3.3. Data Fusion and Fault Diagnosis

Finally, a concatenated vector of D × N number of SAE structures, resulting from the
consideration of N available signals that are processed into N domains per C considered
classes (D × N × C), is considered as a feature fusion approach for classification purposes.
Taking into consideration that all the posterior stages are focused on the learning of the
most significant features from each available signal in all three domains, in this stage,
the most significant patterns for their recognition are extracted. It should be noted that
the proposed methodology allows a simple configuration for the classification task, since
the input vector represents a processed set of features highlighting the representative
characteristics of the signals.

In this regard, a simple softmax layer is proposed for diagnosis purposes. Thus,
carrying out a one-neuron layer training based on a supervised approach. The proposed
softmax layer provides the corresponding probability as part of the activation function
values, resulting in a vector of λ1(z), λ2(z), λC(z), where the λj(z) represents the probability
of j-th class. The calculation of λj(z) is defined following:

λj(z) = exp
(
zj
)
/ ∑ exp

(
zj
)
, j = 1, 2, . . . , C (38)

zj = WjM + bj (39)

4. Experimental Validation
4.1. Pulley-Belt Electromechanical System

The electromechanical system used to experiment with different bearing technolo-
gies is a self-designed laboratory test bench based on a pulley-belt system, as shown in
Figure 4. The electromechanical system comprises a 971-W three-phase induction motor
(IM), which model is WEG00136APE48T; the IM has one pair of poles and supports 220 VAC
as a power supply. A variable frequency driver (VFD), model WEGCFW08, is used to feed
the motor allowing the control of its rotational speed. Moreover, the motor is coupled by
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means of a pulley-belt system to an ordinary alternator. That produces a nominal load in
the IM between 25% and 35%. The automotive alternator is used as a mechanical load and
it produces a nominal load with variations within 25% to 35% in the IM. Such percentages
of nominal loads are in terms of the stator current consumption in the IM and these values
are estimated through experimental tests and by doing comparisons with the nominal
current of the IM at its full load. On the other hand, although the alternator may be used
as a power generation source to feed an arrangement of resistive loads, the performed
experiments were carried out without considering the additional connection of resistive
loads to the alternator. Thereby, the aforementioned percentages of load conditions are
produced just by the rotational inertia of the alternator.
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Regarding the acquisition of the data, two vibration axes and one stator current are
measured and acquired with a proprietary data acquisition system (DAS) that is a low-cost
design based on FPGA (field-programmable gate array). The designed DAS has a 12-bit
4-channel serial-output sampling analog-to-digital converter from Texas Instruments (i.e.,
model ADS7841). For the experimentation, different frequency values are set in the VFD
to produce different rotational speeds in the IM and, for each operating frequency, the
continuous measurement of the vibration signals and stator current is performed. Thus,
the mechanical vibrations produced by the electromechanical system are acquired with an
accelerometer model LIS3L02AS4 that is placed on the top of the IM, as Figure 4 illustrates;
the acquired vibrations signals belong to the perpendicular plane of the rotating axis of the
motor shaft. On the other hand, the stator current of one of the three phases of the IM is
measured through a hall-effect sensor from Tamura Corporation model L08P050D15, such
sensor has high linearity (i.e., 1%) and allows to perform measurements of 50 Amp; thus,
the sensor is placed between the power supply lines, as shown in Figure 4. Furthermore, the
used sensors are mounted individually on a PCB with its corresponding signal conditioning
and anti-alias filtering. The sampling frequency to acquire the vibration signals and the
stator current was set to 3000Hz and, for each performed experiment, 300 s of continuous
operation are acquired and stored in a personal computer for posterior processing.

In regard to the assessed conditions, different bearing technologies are experimentally
evaluated in the electrical motor to assess its corresponding condition. Hence, a metallic
bearing, a hybrid bearing and a full ceramic bearing are experimentally tested. The
bearing model is the 6203, and it is the end drive bearing of the IM. Two different bearing
conditions are evaluated for each one of the considered technologies, that is, the healthy
or normal condition (HC), and the outer race bearing defect or bearing damaged (BF) are
tested. To produce the bearing defects, a metallic, a hybrid and a ceramic bearing were
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artificially damaged by drilling a hole with a tungsten drill bit of 1/16 of diameter; the
drilled hole completely passed the bearing outer race of the three bearings. Thus, the
drilled bearings are shown in Figure 5a–c for each corresponding technology: metallic,
hybrid and full ceramic, respectively. Thus, for each considered bearing technology, both
bearing conditions (HC and OD) are iteratively tested in the IM under different supply
frequencies that are set in the VFD, that is, 5 Hz, 15 Hz, 50 Hz and 60 Hz. Thus, the
condition assessment in different bearing technologies may represent a complex task, even
more, whether a specific pattern is not shown. Theoretically, it is well-known that for
bearings with defects in the inner race and/or outer race, the bearing system is under the
influence of induced impacts when the balls get in contact with the defect area during the
rotational working operation of the bearing. Although these impacts usually appear at
intervals of time that are influenced by the size and shape of the defect, its appearance
may not occur depending on the severity of the damage. In this sense, aiming to show the
complexity of the addressed problem, from Figure 6a–c the vibration patterns acquired
when the different bearing technologies are tested under the faulty condition, metallic,
hybrid and full ceramic, are shown, respectively. As it can be appreciated, for any of
the cases, a specific pattern does not exist that depicts the occurrence of the outer race
faulty condition over the vibration patterns; specifically, the vibration patterns do not
show periodic impacts that may be associated with the bearing defect. On the other hand,
even though the appearing of periodic impacts on the vibration patterns may be induced
by the influence of the outer race bearing fault in all considered bearing technologies,
metallic, hybrid and full ceramic, respectively; the condition assessment and fault detection
may be complicated due to the bearings under analysis have similar geometric properties.
Additionally, aiming to provide a better understanding of the addressed problem, the
corresponding frequency spectra for each raw vibration signal of Figure 6 are estimated by
means of the fast Fourier transform. Thus, in Figure 7 is possible to observe the vibration
spectra for all bearing technologies, metallic, hybrid and ceramic; as it can be appreciated,
the theoretical fault-related frequency component of the outer race bearing defect is around
150 Hz when the bearings are operated at 50 Hz in the IM. Additionally, it should be
highlighted that a clear difference between all estimated frequency spectra does not exist,
that is, all the frequency spectra show similar amplitude values; therefore, additional signal
processing techniques have to be implemented to improve the condition assessment.
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4.2. Rolling Bearing CWRU Dataset

In order to verify the effectiveness of the proposed methodology, the public exper-
imental dataset provided by the Case Western Reserve University Bearing Data Center
(CWRU) has been also considered for being analyzed under the proposed DL-based fault
diagnosis approach. Such database is considered as a standard database and it has been
used widely used by many researchers to prove the effectiveness and applicability of their
condition-monitoring approaches [30,36]; several condition-monitoring and fault diagnosis
strategies have been specifically based on the analysis the CWRU data [15–17,30,31].

The test bench consists of a 1.49 kW reliance electric motor, a torque transducer,
a dynamometer and an electronic controller; the database contains vibration data that
have been collected from the experimental test rig when different damaged bearings
are iteratively tested under four different loads conditions: 0, 0.74, 1.49 and 2.23 kW.
Regarding the bearing conditions, besides the healthy condition or normal condition (HC),
three different faulty conditions are introduced separately in the drive-end of the reliance
electric motor, i.e., inner race fault (IF), outer race fault (OF) and ball fault (BF). The vibration
signals were acquired through an accelerometer that was attached with a magnetic base at
the drive-end of the reliance electric motor; the vibration data was collected with 12 kHz as
a sampling frequency. Thereby, in order to validate the proposed diagnosis methodology
in front of multiple bearing faults, the vibration signals corresponding to the HC, IF, OF
and BF conditions with artificial single point faults of 0.014 in diameter are considered.

5. Results and Validation
5.1. Evaluation of the Diagnostic Model in the Pulley-Belt Electromechanical System

In a first validation stage, the proposed method is applied over the available signals
acquired from the pulley-belt-based electromechanical system, that is, two vibration signals
and one stator current. As aforementioned and for posterior notations, the considered
indexes to identify these physical magnitudes are i = 1 and i = 2 for vibration and stator
current, respectively. Thus, as described previously, the available signals were acquired
during 300 s of the continuous operation of the IM and, according to the proposed method,
each one of the acquired signals is segmented in equal parts of 1 s to generate a consecu-
tive set of samples. As a result, three hundred individual segments were obtained from
each considered signal by following Equation (8). Afterward, the multi-domain analysis
was performed over each one of the segmented parts of the signals to achieve the signal
characterization in the three mentioned domains, that is, DT, DF and DTF. In this regard,
for the analysis carried out in TD, a set of 15 statistical features was computed from each
segment of each available signal; therefore, for both vibration signals a feature matrix T1
that contains 30 statistical features represented with 300 samples was achieved; meanwhile,
the feature matrix achieved from the stator current T2 consists of 15 statistical features with
300 samples. Subsequently, when the FD analysis is performed, from each segmented part
of each available signal, the corresponding frequency spectrum is estimated by means of
applying the FFT technique and then, from each resulting spectrum, the proposed set of
14 statistical features is calculated to characterize each spectrum into a set of representative
numerical values. As a result, a characteristic feature matrix F1 with 28 statistical features
and 300 samples is carried out from both vibrations signals, while the characteristic ma-
trix F2 estimated from the stator current contains 14 statistical features with 300 samples.
Additionally, for each available signal, six fault-related frequency features are taken into ac-
count; these additional features are the two first harmonic frequencies associated with three
possible sources of fault in the bearing (i.e., outer, inner and ball bearing faults); thereby,
these fault-related frequency features are represented by its corresponding amplitude
resulting from each frequency spectrum. Accordingly, for the FD analysis, the resulting
feature matrix F1 of both vibration signals has a total of 40 features with 300 samples, and
the feature matrix F2 for the stator current has a total of 20 features with 300 samples.
Then, during the TFD analysis, each segmented part is evaluated by the EMD technique in
order to obtain the intrinsic modes associated with nonlinearities of the signals; thus, from
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each segmented part of the available signals, the two first intrinsic mode functions (i.e.,
IMF1 and IMF2) are considered as the two main intrinsic modes. Consecutively, the FFT
technique is applied over each intrinsic mode and the resulting frequency spectra are then
individually characterized by the estimation of the proposed set of 14 statistical features.
Therefore, a feature matrix TF1 with 56 statistical features and 300 samples is achieved for
both vibration signals, whereas, for the stator current a feature matrix TF2 with 28 features
and 300 samples is obtained.

Thus, six representative feature matrices are estimated for each of the three exper-
iments considering different bearing technologies. In summary, the feature matrices
resulting from the analysis of the vibration signals in TD, FD and TFD are T1, F1 and TF1,
respectively; whereas, T2, F2, TF2 are the resulting feature matrices from the analysis of the
stator current in the TD, FD and TFD, respectively. Additionally, it should be clarified that
these representative feature matrices are also estimated for each one of the supply frequen-
cies considered (i.e., 5 Hz, 15 Hz, 50 Hz and 60 Hz). Following the proposed method, for
each one of the bearing technologies and for each one of the available signals, the whole
resulting feature matrices, considering all supply frequencies and taking into account the
assessed bearing conditions, are grouped according to the domain of analysis. For example,
in Table 3 the grouping of the feature matrices that are estimated from the vibrations signals
is summarized; the feature matrices are grouped according to the domain of analysis, as
it can be appreciated, and each corresponding grouping considers the bearing conditions
(i.e., HC and BD conditions). These grouped matrices are represented by T1 group, F1 group,
TF1 group, where Equation (40) gives the detail of a specific set of grouped matrices for
T1 group. Thus, the same grouping is applied to feature matrices that are estimated from
analyzing the stator current in the TD, FD and TFD for each one of the supply frequencies
tested in the VFD and the obtained grouped matrices are T2 group, F2 group and TF2 group.

T1 group =



T1@5Hz@HC
T1@15Hz@HC
T1@50Hz@HC
T1@60Hz@HC
T1@5Hz@BD

T1@15Hz@BD
T1@50Hz@BD
T1@60Hz@BD


(40)

Table 3. Representation of the grouping of the feature matrices computed by means of analyzing the
vibration signals in TD, FD and TFD for each supply frequency for the considered bearing conditions;
where the notations HC and BD represent the healthy condition and the bearing damaged condition.

Feature Domain

Time Frequency Time–Frequency

Related
condition

Normal

T1 @5Hz@HC F1 @5Hz@HC TF1 @5Hz@HC
T1 @15Hz@HC F1 @15Hz@HC TF1 @15Hz@HC
T1 @50Hz@HC F1 @50Hz@HC TF1 @50Hz@HC
T1 @60Hz@HC F1 @60Hz@HC TF1 @60Hz@HC

Damaged

T1 @5Hz@BD F1 @5Hz@BD TF1 @5Hz@BD
T1 @15Hz@BD F1 @15Hz@BD TF1 @15Hz@BD
T1 @50Hz@BD F1 @50Hz@BD TF1 @50Hz@BD
T1 @60Hz@BD F1 @60Hz@BD TF1 @60Hz@BD

Grouped matrices T1 group F1 group TF1 group

Afterward, for each bearing technology that is tested under different supply frequen-
cies, the corresponding feature matrices achieved from the multi-domain analysis of the
available vibrations and stator current are grouped according to the domain of analysis
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(i.e., TD, FD and TFD), and then such matrices are individually used as the input space
in several SAE structures. Indeed, a particular SAE structure for each one of the grouped
sets of feature matrices for each considered bearing technology and available signal is
defined. Thus, i.e., for the metallic bearing, the considered SAE structures for the grouped
matrices of the vibration signal analyzed in TD, FD and TFD are SAET1

M , SAEF1
M, SAETF1

M ,
respectively. Subsequently, as aforementioned, each SAE structure in conjunction with
the GA is implemented over each corresponding feature space to be evaluated aiming to
extract the most representative features that are related to the condition of the IM (i.e.,
the bearing condition). Moreover, as previously described, during the feature extraction
procedure, the hyperparameters of the SAE network are automatically tuned by solving an
optimization problem that uses the minimization of the reconstruction error as the fitness
function. In this sense, in Tables 4 and 5 the hyperparameters that are tuned by the GA
for each SAE structure that is considered for each domain of analysis for the available
signals, vibrations and stator current, are summarized, respectively. Additionally, Tables 4
and 5 summarize the tuned hyperparameter for each of the bearing technologies tested.
From the optimized hyperparameters for each feature space that are shown in Tables 4
and 5, it should be noted that each hyperparameter shows variations between a specific
range of values. That is, it can be assumed for the three feature domains and for the three
bearing technologies, that all the SAE structures show a high-performance characterization
of the input feature space by considering values in the L2 Regularization parameter about
(2 ± 1) × 10−5, by considering values about (5 ± 3) × 10−5 in the Sparsity Regularization
parameter and by considering the Sparsity Proportion with values about (0.5 ± 0.2).

Table 4. Parameters tuned by the GA for each SAE structure that is considered for each domain of
analysis for the vibration signals used in the stacked AE; all technology materials.

Material Feature Domain
Hyperparameters

L2
Regularization

Sparsity
Regularizatio

Sparsity
Proportion

Metallic
Time (T1 group) 1.31 × 10−5 7.384 × 10−5 0.664

Frequency (F1 group) 1.616 × 10−5 5.761 × 10−5 0.655
Time–Frequency (TF1 group) 3.250 × 10−5 7.164 × 10−5 0.779

Ceramic
Time (T1 group) 2.090 × 10−5 8.037 × 10−5 0.132

Frequency (F1 group) 2.879 × 10−5 1.407 × 10−5 0.479
Time–Frequency (TF1 group) 2.213 × 10−5 5.277 × 10−5 0.854

Hybrid
Time (T1 group) 2.212 × 10−5 7.785 × 10−5 0.176

Frequency (F1 group) 1.276 × 10−5 2.406 × 10−5 0.560
Time–Frequency (TF1 group) 1.064 × 10−5 4.435 × 10−5 0.240

On the other hand, Table 6 summarizes the corresponding MSE values that are carried
out during the same optimization process are summarized. Indeed, such MSE values
are considered as the metric to numerically compare the similarity between the original
input features and the mapped and reconstructed features. As it can be noticed, all the
MSE values summarized in Table 6 show small values which are desired to perform a
high-performance characterization in the feature learning for the proposed SAE struc-
tures. Thus, to show the effectiveness of the SAE-based feature learning approach, from
Figure 8a–c the original and reconstructed characteristic patterns that represent the HC
in three different domains are shown, that is, TD, FD and TFD, respectively. These pat-
terns belong to the metallic bearing tested with 5 Hz in the VFD, and as it is qualitatively
appreciated, the reconstructed patterns match properly with the original ones.
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Table 5. Parameters tuned by the GA for each SAE structure that is considered for each domain of
analysis for the stator current signature used in the stacked AE; all technology materials.

Material Feature Domain
Hyperparameters

L2
Regularization

Sparsity
Regularizatio

Sparsity
Proportion

Metallic
Time (T2 group) 2.277 × 10−5 7.108 × 10−5 0.3228

Frequency (F2 group) 1.077 × 10−5 8.433 × 10−5 0.2026
Time–Frequency (TF2 group) 2.277 × 10−5 7.108 × 10−5 0.3228

Ceramic
Time (T2 group) 1.675 × 10−5 6.944 × 10−5 0.4743

Frequency (F2 group) 1.320 × 10−5 4.897 × 10−5 0.546
Time–Frequency (TF2 group) 1.821 × 10−5 4.950 × 10−5 0.678

Hybrid
Time (T2 group) 2.228 × 10−5 2.824 × 10−5 0.332

Frequency (F2 group) 1.625 × 10−5 4.365 × 10−5 0.391
Time–Frequency (TF2 group) 3.384 × 10−5 7.621 × 10−5 0.4227

Table 6. MSE error achieved by the GA during the tunning and optimization of hyperparameters of
the considered SAE structures for each domain of analysis, all technology materials.

Material Feature Domain
MSE Error

Vibrations (i = 1) Current (i = 2)

Metallic
Time (Ti group) 1.071 × 10−4 3.689 × 10−4

Frequency (Fi group) 3.113 × 10−4 4.451 × 10−4

Time–Frequency (TFi group) 4.348 × 10−4 1.137 × 10−4

Ceramic
Time (Ti group) 7.8202 × 10−5 1.990 × 10−4

Frequency (Fi group) 1.894 × 10−4 2.786 × 10−4

Time–Frequency (TFi group) 1.794 × 10−4 1.464 × 10−4

Hybrid
Time (Ti group) 6.550 × 10−5 1.995 × 10−4

Frequency (Fi group) 3.543 × 10−4 2.778 × 10−4

Time–Frequency (TFi group) 1.230 × 10−4 4.882 × 10−4
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Aiming to highlight the contribution of the proposed multi-domain analysis in front 
of the characterization of physical magnitudes (i.e., vibrations and stator currents) for fault 
diagnosis applied to different bearing technologies, different visual representations of 
some of the feature spaces mapped by their corresponding SAE structure are shown next. 
Specifically, from Figure 9a–d the resulting feature spaces mapped by their corresponding 
SAE are projected into a 2D space through the T-SNE technique. Such representation al-
lows interpretation of the data distribution of the considered bearing conditions that are 
tested at different operating frequencies. Thus, the 2D projections of Figure 9a,b represent 
both conditions, HC and BD, of the metallic bearing when the vibration signals and stator 
current are analyzed in the FD, respectively, while Figure 9c,d represent both conditions 
of the metallic bearing when the acquired signals are processed in the TFD, the vibrations 
and stator current, respectively. As it can be seen from Figure 9a–d, regardless of the con-
sidered domain of analysis, there exists an overlapping between the NC and the BD con-
ditions for all the tested supply frequencies. Additionally, independently of the bearing 
technology, the consideration of a unique domain of analysis applied over a specific phys-
ical magnitude, i.e., the stator current, may not provide enough information that leads to 
a clear discrimination between bearing conditions. In this regard, from Figure 10a–c the 
visual representations of the data distribution are shown for the different bearing technol-
ogies, metallic, hybrid and ceramic, respectively. The achieved projections of Figure 10a–
c represent both bearing conditions (HC and BD) when the stator current signature is an-
alyzed in the TD, and as it is observed, an overlap appears between the considered bearing 
conditions. 

Figure 8. Qualitative representation of the original and reconstructed set of features for healthy metallic bearing at 5 Hz.
(a) TD feature vibrations, (b) FD feature vibrations, (c) TFD feature vibrations.

Aiming to highlight the contribution of the proposed multi-domain analysis in front
of the characterization of physical magnitudes (i.e., vibrations and stator currents) for
fault diagnosis applied to different bearing technologies, different visual representations of
some of the feature spaces mapped by their corresponding SAE structure are shown next.
Specifically, from Figure 9a–d the resulting feature spaces mapped by their corresponding
SAE are projected into a 2D space through the T-SNE technique. Such representation
allows interpretation of the data distribution of the considered bearing conditions that
are tested at different operating frequencies. Thus, the 2D projections of Figure 9a,b
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represent both conditions, HC and BD, of the metallic bearing when the vibration signals
and stator current are analyzed in the FD, respectively, while Figure 9c,d represent both
conditions of the metallic bearing when the acquired signals are processed in the TFD, the
vibrations and stator current, respectively. As it can be seen from Figure 9a–d, regardless
of the considered domain of analysis, there exists an overlapping between the NC and
the BD conditions for all the tested supply frequencies. Additionally, independently of
the bearing technology, the consideration of a unique domain of analysis applied over a
specific physical magnitude, i.e., the stator current, may not provide enough information
that leads to a clear discrimination between bearing conditions. In this regard, from
Figure 10a–c the visual representations of the data distribution are shown for the different
bearing technologies, metallic, hybrid and ceramic, respectively. The achieved projections
of Figure 10a–c represent both bearing conditions (HC and BD) when the stator current
signature is analyzed in the TD, and as it is observed, an overlap appears between the
considered bearing conditions.
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in FD, (b) stator current signature in FD, (c) vibrations signals in TFD and (d) stator current signature in TFD.
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Figure 10. Achieved T-SNE representation of the data distribution into a 2D space of the resulting feature spaces mapped
by their corresponding SAE when analyzing the stator current signature in the TD for each different bearing technology:
(a) metallic, (b) hybrid and (c) full ceramic.

Lastly, from Figure 10a–c the visual representations of the data distributions when
all feature spaces domains are considered are shown, and as it can be noticed, regardless
of the bearing technology and the considered supply frequency, the data fusion in multi-
ple domains leads to a high-performance characterization of different bearing conditions.
From Figure 11a–c, it can be observed that a clear separation is performed between the
corresponding HC and BD conditions for the considered bearing technologies: metallic,
hybrid and ceramic, respectively. Thus, condition-monitoring schemes based on data
fusion through DL techniques represent a practical solution to achieve reliable condition
assessments in multiple applications. Finally, aiming to provide the automatic fault diag-
nosis, the feature spaces mapped by their corresponding SAE structure are concatenated
as a feature fusion approach, and then the concatenated vector is evaluated through a
simple softmax layer that is proposed for diagnosis purposes. Thereby, in Table 7 the
achieved percentages of classification accuracy for each considered bearing technology
are summarized; additionally, in Table 7 the classification accuracies corresponding to
the particular evaluation of each feature domain, TD, FD and TFD, and the proposed
fusion scheme TD+FD+TFD, are included. As the obtained results depict, the proposed
condition-monitoring scheme based on the multi-domain feature calculation and SAE
feature learning leads to obtaining a high-performance classification accuracy.
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Table 7. Achieved classification ratios through the SoftMax layer for the particular evaluation of each feature domain and
the proposed fusion scheme.

Material Feature Domain
Proposed Method PCA + NN LDA + NN

Training Test Training Test Training Test

Metallic

Time (T1,2 group) 99.1% 99.3% 60.5% 62.1% 73.3% 73.5%
Frequency (F1,2 group) 96.5% 95.8% 68.6% 70.7% 78.3% 79.9%

Time–Frequency (TF1,2 group) 95.3% 96% 78.9% 80.8% 71.5% 65.8%
Fusion scheme (T1,2 group + F1,2 group + TF1,2 group) 100% 100% 81.2% 83.1% 62.5% 62.7%

Ceramic

Time (T1,2 group) 97% 96.5% 69.5% 70.8% 69.0% 71.9%
Frequency (F1,2 group) 100% 100% 72.8% 73.9% 86.9% 88.6%

Time–Frequency (TF1,2 group) 98.8% 98.8% 84.7% 88.8% 87.5% 87.9%
Fusion scheme (T1,2 group + F1,2 group + TF1,2 group) 100% 100% 73.0% 73.2% 75.0% 75.0%

Hybrid

Time (T1,2 group) 99.8% 99.3% 81.0% 81.9% 87.4% 87.5%
Frequency (F1,2 group) 100% 100% 84.2% 84.4% 87.9% 88.0%

Time–Frequency (TF1,2 group) 99.9 99.8% 81.1% 86.7% 82.8% 84.0%
Fusion scheme (T1,2 group + F1,2 group + TF1,2 group) 100% 100% 75.2% 75.3% 70.3% 71.4%

Finally, aiming to highlight the effectiveness of the proposed method in front of
classical condition-monitoring approaches that are based on machine learning, the feature
matrices obtained by analyzing the available signals in TD, FD and TFD are subjected
to a dimensionality reduction procedure by means of two well-known techniques, the
PCA and the LDA. Afterward, the extracted features represented in a 2-dimensional space
are evaluated through a classical NN-based classifier to achieve the condition assessment
and fault diagnosis. Thus, two classical condition-monitoring structures are considered,
PCA+NN and LDA+NN, to evaluate the different studied conditions for the considered
bearing technologies. Both classical structures are individually applied to each particular
feature domain, TD, FD and TFD, and are also applied under the fusion scheme TD + FD
+ TFD. The achieved classification ratios are summarized in Table 7. As it can be noticed,
the classification ratios achieved by the proposed approach (SAE + Softmax) increase the
classification performance up to 38.6% in the most critical case (TF features of the metallic
bearing). Thus, the consideration of classical approaches, such as PCA + NN and LDA
+ NN, leads to obtaining low-performance classification ratios due to the fact that an
additional technique to select those representative and meaningful features is required;
meanwhile, the proposed approach results in high-performance classification ratios due to
the ability of self-adapting to the extraction of the characteristic fault-related features from
different signals that are processed in different domains.

Lastly, in order to highlight the advantages and effectiveness of the proposed SAE
feature learning approach in front of classical approaches, a quantitative analysis of the
performance metrics, accuracy, precision, recall and F1 score is performed. Thus, these
performance metrics are estimated from the resulting classification matrices achieved by
means of the simple softmax layer. Subsequently, in Table 8 the accuracy, precision, recall,
and F1 score corresponding to each particular evaluation of each feature domain, TD,
FD and TFD, and the proposed fusion scheme TD + FD + TFD, in the softmax layer are
summarized. As it can be appreciated, all the performance metrics show values greater
than 0.91 in the most critical cases, whereas the values of the performance metrics are
greater than 0.97 in most cases. The averaged values of the performance metrics related
to the confusion matrices achieved by classical approaches are 0.59, 0.74, 0.72 and 0.74
for the accuracy, precision, recall and F1 score, respectively, and 0.73, 0.83, 0.86 and 0.84
for the accuracy, precision, recall and F1, respectively, when the classical approaches
PCA + NN and LDA + NN are evaluated, respectively. Therefore, the achieved results
show that the proposed diagnosis methodology based on deep feature learning can be
effectively applied to the diagnosis and identification of bearing faults for different bearing
technologies, such as metallic, hybrid and ceramic bearings, in electromechanical systems.
Additionally, the obtained results make the proposed approach feasible to be implemented
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as a part of the condition-based maintenance programs in industrial applications that
involve rotating machinery.

Table 8. Performance metrics of the proposed method based on SAE and SoftMax layer for the particular evaluation of each
feature domain and the proposed fusion scheme.

Material
Accuracy Precision Recall F1 Score

Training Test Training Test Training Test Training Test

Metallic

Time 0.98 0.97 0.99 0.98 0.99 0.97 0.99 0.97
Frequency 0.93 0.91 0.98 0.98 0.94 0.92 0.95 0.94

Time–Frequency 0.95 0.96 0.97 0.98 0.97 0.97 0.97 0.97
Fusion scheme 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Ceramic

Time 0.96 0.96 0.98 0.98 0.98 0.97 0.98 0.97
Frequency 1 1 1 1 1 1 1 1

Time–Frequency 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.98
Fusion scheme 1 1 1 1 1 1 1 1

Hybrid

Time 0.99 0.99 0.99 0.99 0.99 1 0.99 0.99
Frequency 1 1 1 1 1 1 1 1

Time–Frequency 0.99 0.99 0.99 1 0.99 0.99 0.99 0.99
Fusion scheme 1 1 1 1 1 1 1 1

5.2. Evaluation of the Diagnostic Model in the CWRU Database

In this section, the vibration signals of the CWRU bearing dataset are analyzed, aiming
to evaluate the performance of the proposed DL-based diagnostic method in a reference
framework, particularly in front of different metallic bearing failures. Thereby, the bearing
conditions to be evaluated are the healthy or normal condition (HC), inner (IF), outer
(OF) and ball (BF) faults with single-point faults of 0.014 in of diameter; such bearing
conditions are also tested in combination with four different loads conditions: 0, 0.74, 1.49
and 2.23 kW. Subsequently, the vibration signals of the CWRU dataset are processed by
following the practical application of the proposed DL-based diagnostic method and the
collected vibration signals are first segmented in equal parts, resulting in a consecutive set
of 150 samples, for each assessed bearing condition. Each sample of the consecutive sets
of samples consists of 3000 data points, then, over each estimated sample the proposed
multi-domain feature calculation is applied, that is, the processing of the vibration signals
in TD, FD and TFD. The three resulting feature matrices are T1, F1 and TF1, where each
feature matrix comprises of 15, 20 and 28 features with 150 samples. Accordingly, for each
one of the three resulting feature matrices, the total number of 150 samples corresponding
to each tested condition is divided for training and testing purposes; in this sense, a random
number of 100 samples are adopted for training and the remaining 50 samples for testing.

Afterward and similarly as in the previous experimental stage, the SAE feature learn-
ing is performed by a multi-SAE structure to be applied over the feature matrices resulting
from the analysis of the unique available signal (N = 1) through the different three domains,
that is, Ti, Fi, and TFi, for i = 1,...N. Thus, the SAE structures for TD, FD and TFD analysis
are SAET

i, SAEF
i and SAETF

i, respectively. In this regard, the automatic optimization of the
hyperparameters of the SAE network is carried out through the GA, aiming to minimize
the MSE reconstruction value. Thereby, in Table 9 the achieved hyperparameters obtained
through the application of the proposed tuning strategy are summarized; the average MSE
value obtained during the optimization procedure shows values about (2 ± 1) × 10−4

that depict a high-performance characterization in the feature learning by the means of
the SAE structure. Aiming to prove the effectiveness of the SAE-based feature learning
approach, from Figure 12a–d the original and reconstructed feature patterns that represent
assessed bearing conditions, NC, IF, OF and BF in different domains are shown, respec-
tively. As it can be appreciated, the reconstructed patterns match properly with the original
ones. Figure 12a shows the patterns corresponding to the HC represented in TD and
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their corresponding reconstruction obtained by the characterization of the SAE. As can be
seen qualitatively, the representing feature patterns are correctly characterized, presenting
an error of only about 5.07%. On the other hand, Figure 12b–d show the characteristic
feature patterns of the vibration signals related to the IF, OF and BF bearing conditions
represented in TFD, TD and FD, respectively. The reconstruction error achieved during the
feature learning of the considered bearing fault conditions are: 1.99%, 6.08% and 2.43%,
correspondingly.

Table 9. Hyperparameter used in a deep SAE-based model for vibration signals in CWRU database.

Feature Domain
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Subsequently, the data distribution of the considered healthy states is projected into a
2D space by means of applying the T-SNE technique over the feature spaces mapped by
their corresponding SAE structure. From Figure 13a, the representations of the considered
bearing conditions, HC, IF, OF and BF are shown when the vibration signals of the CWRU
dataset are analyzed in the TD, FD and TFD, respectively; Figure 13d shows the data distri-
bution of the considered conditions when all feature space domains are taken into account,
which is the proposed fusion approach (TD+FD+TFD). From these resulting projections, it
should be mentioned that several samples appear overlapped when vibration signals are
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analyzed in TD (Figure 13a), whereas a better performance is achieved through the analysis
in FD, TFD and the proposed fusion scheme (Figure 13b–d, respectively). As expected,
the proposed DL-based diagnostic method exhibits the ability to learn and self-adapt the
extraction of significant fault-related features from the available physical magnitudes for
the characterization of electromechanical systems. Finally, the automatic fault diagnosis is
performed through the proposed simple softmax layer, thus, the feature spaces mapped by
its corresponding SAE structure are concatenated as a feature fusion approach. In Table 10,
the achieved percentages of classification accuracy for each considered bearing condition
of the CWRU dataset are summarized. Furthermore, in Table 10 the classification ratios
corresponding to each particular feature domain, TD, FD and TFD, and the proposed fusion
scheme, TD + FD + TDF, are appended. As the obtained results depict, the proposed fusion
approach is superior to any of the individual domains due to capability of deep feature
learning, which is supported by SAEs, for adapting and extracting the best fault-related
characteristic patters of the electromechanical systems under evaluation.
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Table 10. Resulting classification ratios through the SoftMax layer for the particular evaluation of
each feature domain and the proposed fusion scheme.

Feature Domain
Average Accuracy

Training Test

Time 96.2% 94.5%
Frequency 99.8% 98.5%

Time–Frequency 98.4% 96.8%
Fusion Scheme 100.0% 99.8%
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6. Conclusions

In this work is proposed a novel data-driven condition-monitoring methodology
based on deep feature learning applied to fault diagnosis and identification in different
bearings technology, that is, metallic, hybrid and full ceramic, in electromechanical systems.
Advantageous results have been obtained through this proposed approach; indeed, there
are three important aspects of this proposal that must be emphasized. The first one is
that the use of a stacked autoencoder-neural network-based structure allows to perform a
high-effective feature characterization during the assessment of bearing faults for different
bearing technologies. Certainly, the important characteristic of the proposed SAE structure
is its capability of learning and self-adapting to those meaningful features that are estimated
from the available signal. The deep feature learning is supported by a proposed feature
domain fusion approach that considers the signal processing in time, frequency and time–
frequency domains through two processing techniques such as the FFT and the EMD. The
second important aspect is the proposal and integration of the process that facilitates the
tuning of the auto-encoder hyperparameters as part of the proposed approach; specifically,
the use of a genetic algorithm in the tunning process leads to overcome the current limita-
tions for practical application by industrial maintenance practitioners and leads to propose
generalized-based approaches avoiding over-fitted solutions. Finally, the third aspect is
related to the high-performance results obtained during the validation of the diagnosis
method based on the deep feature learning approach in front of two different experimental
scenarios, considering different bearing technologies and faults, different operating condi-
tions, different electromechanical structures and even different acquisition systems. This
fact proves the robustness and adaptability of the proposed method demonstrating that
this proposal overcomes the challenge of noise immunity which represents a critical issue
due to noise generation is inherent to the operation of rotating systems under industrial
environments. Additionally, adaptability means other physical magnitudes and numerical
features different from the considered in the proposal could be added since the method
shows good feature learning capabilities during the characterization stage. Regarding the
limitations of the method, the use and implementation of the genetic algorithm as a tool to
search the optimal hyperparameter values may represent a challenge for industrial mainte-
nance practitioners since prior knowledge is needed. The proposed DL diagnosis method
is designed for the analysis of bearing faults, independently of the bearing technology;
thus, this approach involves the validation of a common framework for the detection and
classification of bearing faults that allows the consideration of multiple patterns. In this
sense, future works consider the evolution towards evolving learning systems supported
by the integration of novelty detection, incremental learning and transfer learning remain
to be addressed, and that may allow the application of the deep feature learning method
to identify the occurrence of faults in other elements such as gears, shafts, rotors and
couplings, among others.
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