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Abstract. In this Master Thesis we study the operation of a Zeeman slower to cool an atomic

beam. In particular, we consider a beam formed by 171Yb atoms interacting with a counter-

propagating laser beam in such a way that, by means of the Doppler effect and the Stark shift

of the atomic levels, the interaction is resonant at any point in the slower longitudinal axis.

The transition used for the cooling of the 171Yb atoms is the 6s2 1S0−6s6p 1P1 at 399 nm, with

a decay rate of γ = 182.21× 106 s−1. To perform the numerical simulations we make use of the

Monte Carlo Wave Function formalism that allows for the description of a single two-level atom

interacting with a laser beam as a coherent and continuous Rabi-type evolution interrupted, in

a random way, by spontaneous emission processes. Within this formalism we obtain that it is

possible to cool 171Yb atoms with initial velocities of about 300 cm/s down to a few cm/s in

about 12 cm.

Keywords: cold atoms, Zeeman slower, Doppler cooling, Ytterbium, Monte Carlo Wave

Function

1. Introduction

Ultracold atoms are a very useful physical platform for many areas of research, such as high-

precision measurements, quantum information processing, cold chemistry, or atomic clocks [1,

2, 3]. Therefore, the production of a sufficiently high flux of ultracold atoms by optical and/or

magnetic means is of utmost importance for their use in both fundamental and applied physics.

Nowadays, cooling technologies are able to reduce the kinetic energy of atoms so that their

associated temperatures reach the µK regime. At this point, the quantum-mechanical properties

of the atoms become dominant and determine their dynamics. To reach these temperatures, it

is necessary to combine several techniques. Typically, one starts from an oven, which contains

the atomic gas at room or higher temperature. From the oven, the atoms are extracted in the

form of a collimated atomic beam whose longitudinal temperature is determined by the oven

temperature. The atomic beam is then propagated through a Zeeman slower [4, 5] where the

atoms are pre-cooled so that they can be captured and further cooled in a Magnetic Optical

Trap (MOT) to reach the working temperature.

In the Zeeman slower the atoms absorb resonant photons from a counter-propagating

laser beam. The momentum exchange with the photons is the key element that reduces the

longitudinal velocity and temperature of the atomic beam. The main challenge is to maintain

the resonance between the two relevant levels of the atom to be cooled and the laser beam
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throughout the Zeeman slower. For this purpose, two different techniques are used. Firstly,

the Doppler effect is used in such a way that the atoms (counter-propagating with respect to

the beam) “see” a frequency higher than the nominal frequency of the laser[2]. Secondly, the

position-dependent magnetic field of the Zeeman slower produces a position-dependent Stark

shift of the atomic levels. In the Zeeman slower both techniques are combined to make the

interaction between atoms and light resonant at any point in space, regardless of the speed of

the atoms.

In this master thesis we will describe, simulate and discuss the Doppler cooling produced

by a Zeeman slower using, in particular, a Monte Carlo analysis to describe the light-matter

interaction. In Section 2, we will present the theoretical background. In §2.1 we will describe

the basics of laser cooling by radiation pressure. In §2.2 we will explain what is a Zeeman

slower and introduce its main features and most important parameters. In §2.3 we will analyze

the atomic structure of a particular atom, the 171Yb, and the requirements for cooling it [6].

We will explain, in §2.4, the Monte Carlo Wave Function formalism [7] that will allow us to

account for the interaction of an individual atom with the counter-propagating laser beam. In

Section 3, we will present numerical simulations of the Zeeman slower operation to cool 171Yb

atoms using the transition 6s2 1S0 − 6s6p 1P1. Finally, in the conclusions we will sum up the

master thesis work and discuss the results obtained with the numerical simulations comparing

them with those published in the literature.

2. Theoretical background

2.1. Laser cooling

In its simplest scheme, the cooling of an atom by a laser can be easily understood from the

momentum conservation laws in the photon absorption process [2]. This process is shown in

Figure 1. A two-level atom moving initially at velocity v1 in the positive direction of the z-axis

absorbs a photon propagating in the opposite direction. As a consequence the linear momentum

of the atom is reduced by h̄k where k is the photon wavenumber. However, the atom is now

excited. By spontaneous emission, the atom emits a photon in a random direction varying this

time its linear momentum in the z-axis by cos(θ)h̄k with θ a random angle between 0 and 2π.

After a large numberN of absorption and spontaneous emission processes, the linear momentum

of the atom will have been reduced by Nh̄k since, on average, the spontaneous emission will not

have contributed to the variation of its momentum. However, it is the spontaneous emission

that limits the minimum velocity the atom can reach and, consequently, the temperature at

which the atom can be cooled.

On the other hand, to maximize the photon absorption rate, the interaction must be

resonant. Assume that the frequency of the atomic transition is ω0 and that the frequency

of the counter-propagating laser is ωL. If we define the nominal detuning ∆0 = ωL − ω0, the

detuning for an atom moving at a velocity v in the z-axis will be: ∆(v) = ∆0 + kv where the

product kv is the Doppler shift. As a consequence, taking into account the Doppler effect we

can design the interaction with the laser so that it becomes resonant for a particular atomic

velocity but as this velocity decreases the absorption will no longer be resonant. The trick to

keep the interaction resonant for any velocity is to use a Zeeman slower as explained in the

next subsection.
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Figure 1: (a) Laser cooling of a two-level atom interacting with a resonant laser field in terms

of linear momentum exchange. The absorption process (b) reduces the linear momentum of

the atom and (c) the spontaneous emission produces an additional, random variation of its

momentum, which is reduced to zero when integrated for many interactions.

2.2. Standard Zeeman slower

The Zeeman apparatus is basically composed of a cylinder that produces a space-dependent

magnetic field inside it through the use of a solenoid coil. As can be seen in Figure 2a, the

atomic beam coming from the oven propagates along the Zeeman slower interacting with the

Doppler cooling laser beam. The magnetic field of the Zeeman slower, see Figure 2b, is designed

so that the Doppler effect and the Stark shift in the atomic levels produced by the magnetic

fields makes the interaction resonant throughout the Zeeman slower.

Now, we will review the basics of the standard Zeeman slower model. We will base the

discussion on Figure 3 [4]. Along the Zeeman slower there are two frequency shifts: the Zeeman-

shifted transition frequency ω0 + µeffB(z)/h̄, with µeff the effective magnetic moment, and the

Doppler shift laser frequency ωL + kv(z). These both frequencies shifts define the effective

detuning as:

∆(z, v) = [ωL + kv(z)]− [ω0 + µeffB(z)/h̄] = ∆0 + kv(z)− µeffB(z)/h̄. (1)

An ideal Zeeman slower achieves a resonance condition ∆(z, v) = 0, regardless of atom’s

velocity. To this aim the magnetic field in terms of the atom’s velocity should be:

B(z) =
h̄

µeff

(
∆0 + kv(z)

)
. (2)

(a) (b)

Figure 2: (a) Sketch of a Zeeman slower. Atoms reduce their velocity along the Zeeman slower

due to the exchange of momentum with the counter-propagating laser beam. The role of the

solenoid in the Zeeman slower is to create a spatial-dependent magnetic field that allows the

atomic transition frequency to be on resonance with the Doppler-shifted laser beam frequency

at any position in the slower, regardless of the atom’s velocity. (b) Example of the magnetic

field B(G) (blue solid line) along the axis of a Zeeman slower. For details see [5].
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Figure 3: Basic model of the operation of a standard Zeeman slower [4]. A two-level atom of

mass m propagates along the Zeeman magnetic field region, having initial velocity ~v(z) = uẑ.

Its atomic transition is ω0 plus the Zeeman shift to compensate for the decreasing of the Doppler

shift as the atom absorbs photons and reduces its velocity. The counter-propagating laser with

angular frequency ωL and wavevector ~k = −kẑ decelerates the atom by momentum exchange.

As discussed in text books [2], laser-cooling by radiation pressure for a two-level atom gives

the following atom’s deceleration due to the absorption of photons of the laser beam:

a =
dv

dt
= − 1

m

s

1 + s+ 4∆2/γ2

h̄kγ

2
, (3)

where γ is the transition decay rate by spontaneous emission and s = I/Isat = 2Ω2/γ2 represents

the laser intensity in units of the saturation intensity of the transition. Ω = ~µ0 · ~E0/h̄ is the

so-called Rabi frequency with µ0 the electric dipole moment and E0 the electric amplitude

of the laser field. In Figure 4, we plot the deceleration computed from expression (3) for the

6s2 1S0−6s6p 1P1 transition at 399 nm of a 171Yb atom whose decay rate is γ = 182.21×106 s−1.

In Figure 4a, we can easily observe that for ∆ = 0 and Ω larger than ∼ 1000 × 106 rad/s

saturation occurs. In Figure 4b we have fixed the Rabi frequency at Ω = 183.49 × 106 rad/s

and explore how the deceleration decays as the detuning increases.

If we are able to adjust the magnetic field following Eq. (2), then ∆(z, v) = 0, and Eq. (3)

(a) (b)

Figure 4: (a) Deceleration as a function of the Rabi frequency according to expression (3) for

∆ = 0. (b) Deceleration as a function of the detuning for Ω = 183.49× 106 rad/s. The rest of

parameter values are m = 2.84× 10−25 kg and γ = 182.21× 106 s−1 corresponding to the mass

of the 171Yb atom and the decay rate of its transition 6s2 1S0 − 6s6p 1P1.
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simplifies to:

dv

dt
= −η h̄kγ

2m
= −ηamax, (4)

where η = s/(1 + s) and amax = h̄kγ/2m, which is obtain when I →∞ and can be understood

as the maximum possible magnitude of the deceleration for a fully saturated transition. The

velocity profile is obtained from Eq. (4) multiplying by dz
dz

and integrating:

dz

dt

dv

dz
= v

dv

dz
= −ηamax,

∫ v

v0=u
v · dv = −ηamax

∫ z=L

z0=0
dz. (5)

Finally:

v(z) =
√
u2 − 2ηamaxz. (6)

If v(z) = 0, the atoms stop at L = u2/(2ηamax). By introducing this expression into (6), we

rewrite v(z) as:

v(z) = u

√
1− z

L
. (7)

Introducing this last expression in (2) we obtain a much clear expression for the magnetic field

of the Zeeman slower:

B(z) = BL

√
1− z

L
+B0, (8)

where BL = h̄ku/µeff and B0 = h̄∆0/µeff . The first term in the r.h.s. of (8) takes into account

the spatial dependence of B(z), while the second one is a constant proportional to the nominal

laser detuning ∆0. Clearly, the magnetic field of the Zeeman slower is designed to slow-down

atoms with a particular initial velocity u and a with particular nominal detuning ∆0.

2.3. Considerations for 171Yb

171Yb is a stable isotope of ytterbium and is a strong candidate for many applications ranging

from quantum computation to high-precision measurements such as for optical lattice clocks

[8, 9, 6]. This is due to the fact that it has experimentally accessible optical transitions,

which not only allow 171Yb to be laser-cooled and trapped, but also to reach Bose-Einstein

condensation [9]. The atomic level structure of 171Yb is shown in Figure 5a [8]. Two possible

transitions one at 399 nm and another at 556 nm can be used for Doppler laser cooling.

However, being the decay rate of the 6s2 1S0− 6s6p 1P1 at 399 nm much larger than that of the

6s2 1S0−6s6p 3P1 at 566 nm, the first is much more appropriate for laser cooling in the Zeeman

slower. The decay rate of this transition is γ = 182.21×106 s−1. Regarding the Doppler cooling

procedure, the standard protocol is to use a frequency-doubled Titanium:Sapphire laser locked

to the atomic resonance at 399 nm.
171Yb is solid at room temperature so it needs to be heated in a oven at high temperatures

to coexist with a significant vapor fraction. Typically, the temperature is raised in the range

of 400 to 600 degrees Celsius. The higher the oven temperature, the higher the density of

Ytterbium vapor will be generated, but the higher the average velocity of the atoms. Once

the 171Yb atoms are extracted from the oven in the form of an atomic beam, the Maxwell–

Boltzmann velocity distribution is given by:

f(v, T ) = 4πv2
(

m

2πkBT

)3/2

e
− mv2

2kBT , (9)

where f(v, T )dv gives the probability for an atom to have a velocity between v and v + dv at

a temperature T , m is the mass of the atom and kB is Boltzmann’s constant. Figure 5b shows

the velocity distribution for an atomic beam of 171Yb atoms at T = 706 K.
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(a) (b)

Figure 5: (a) Energy diagram of 171Yb atomic levels. We will use 6s2 1S0 − 6s6p 1P1 as the

transition for Doppler cooling in the Zeeman slower. (b) Maxwell–Boltzmann atomic velocity

distribution for an atomic beam of 171Yb atoms at T = 706 K. Note that the distribution is

not symmetric. It has a peak at 257 m/s but one needs to integrate between 0 and 285 m/s to

select the 50% of the atoms of the atomic beam.

2.4. Monte Carlo Wave Function formalism

In the Monte Carlo Wave Function (MCWF) formalism [7], the dynamics of a two-level atom,

with ground state |g〉 and excited state |e〉, interacting with a continuous wave laser field with

Rabi frequency Ω and detuning ∆ is governed by the following Hamiltonian:

H = −h̄(∆ + iγ)S+S− + h̄
(

Ω

2

)
(S+S− + S−S+), (10)

where S+ and S− are raising and lowering operators defined as S+ = |e〉 〈g|, and S− = |g〉 〈e|,
respectively. γ is the spontaneous emission decay rate from |e〉 to |g〉.

At an initial time t, the system can be represented as |ψ(t)〉 = |φ(t)〉 ⊗ |0〉 where |φ(t)〉
accounts for the atomic state, |0〉 represents the ground state containing zero photons of the

electromagnetic field in the spontaneous emission modes, and |ψ(t)〉 corresponds to the state

of the total system. At time t + dt there are two possible situations, depending on whether

a spontaneous emission has taken place or not. We define dp = γpe(t)dt, with pe the excited

state population, as the probability for a spontaneous emission in a time interval dt. At time

t+ dt we generate a random number ε ∈ (0, 1) and two possibilities can take place

If dp < ε < 1 −→ |ψ(t+ dt)〉 = µ(a′g |g〉+ a′e |e〉)⊗ |0〉 ,
If 0 < ε < dp −→ |ψ(t+ dt)〉 = |g〉 ⊗ |1〉 → |g〉 ⊗ |0〉 , (11)

where a′g and a′e are the probability amplitudes for the atom to be in states |g〉 and |e〉 at time

t+dt, respectively, given by the integration of the Schrödinger equation with Hamiltonian (10).

µ = 1/
√

1− dp is the normalisation factor. In (11) we assume that once the atom emits a

photon this is automatically removed from the spontaneous emission modes since it is absorbed

by a detector. It is important to highlight that it has been demonstrated that averaging

over many realizations of the MCWF approach exactly reproduces the results that would be

obtained from the density matrix formalism [7]. Finally, each time that a spontaneous emission

occurs it means that the atom has absorbed a photon from the laser and emitted another one

by spontaneous emission. In the absorption of a laser photon the momentum of the atom

along the Zeeman slower axis is reduced by h̄k where k is the laser wave number. However, as



Laser cooling of Ytterbium-171 in a Zeeman Slower: Monte Carlo Analysis 7

the spontaneously emitted photon is emitted in a random direction the momentum exchange

between the atom and the spontaneously emitted photon will be cos(πε′)h̄k where ε′ is another

random number between 0 and 1.

3. Numerical results

In this section we will present the numerical results obtained from the simulation of the

operation of the Zeeman slower. As explain before, we consider the 6s2 1S0−6s6p 1P1 transition

of 171Yb at 399 nm with a decay rate of γ = 182.21 × 106 s−1. We choose a Rabi frequency of

Ω = 183.49×106 rad/s such that, assuming on-resonance interaction, the predicted deceleration

becomes a = 0.354µm/µs2, see Figure 4b. Note that with a larger Rabi frequency we could

further increase the deceleration rate up to about a = 0.528µm/µs2, see Figure 4a. To start

with, we take a single 171Yb atom with initial velocity u = 285 m/s.

3.1. Cooling of a single atom without the Zeeman slower

We will first check the effect of Doppler cooling when there is no Zeeman Slower and, therefore,

there is no Zeeman shift of the atomic levels. In this scenario, we take the nominal detuning

of the laser such that the effective detuning that takes into account atom’s initial velocity u is

zero. Therefore, the interaction is on resonance at the beginning but becomes out of resonance

as soon as the atom reduces its speed. This is perfectly clear in Figure 6a, where full Rabi

oscillations (a signature of on-resonance interaction) are present at the beginning but very

quickly become incomplete as the atom reduces its velocity and becomes out of resonance.

As a consequence, see Figure 6b, the atom initially reduces its velocity but, afterwards, this

reduction in velocity becomes very small.

(a) (b)

Figure 6: (a) Time evolution of the population (normalized to 1) of the excited state 6s6p 1P1 of
171Yb. (b) Atom’s velocity as a function of the position. Parameter values: γ = 182.21×106 s−1,

Ω = 183.49× 106 rad/s, and u = 285 m/s.

3.2. Cooling of a single atom with the Zeeman slower

Now we assume that the Zeeman slower creates the position-dependent magnetic field given

by Equation (9). In this case, we expect that the interaction will be resonant all along the

Zeeman slower. In Figure 7a we observe almost full Rabi oscillations between states 6s2 1S0 and

6s6p 1P1 during ∼ 800µs. At this particular time, the 171Yb atom is stopped. The fluctuations
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(a) (b)

Figure 7: (a) Time evolution of the population (normalized to 1) of the excited state

6s6p 1P1 of 171Yb. (b) Atom’s detuning as a function of the position. Parameter values:

γ = 182.21× 106 s−1, Ω = 183.49× 106 rad/s, and u = 285 m/s.

in the maximum population of the Rabi oscillations are due to the stochastic nature of the

interactions, as seen in Figure 7b. In fact, the detuning is noisy due to the random direction of

the spontaneously emitted photons. However, the detuning is close to zero till time ∼ 800µs

corresponding to a propagated distance of ∼ 11.5 cm.

Figures 8a and 8b show atom’s velocity as a function of time and position, respectively.

It is clear from Figure 8a the constant deceleration of atom’s trajectory. In fact the slope

of this curve gives a deceleration of 0.35µm/µs2, which almost matches the expected one of

0.354µm/µs2. Figure 8b shows atom’s velocity as a function of the position. Clearly, the

atom stops at ∼ 11.5 cm and even takes negative velocities later on since still absorbs counter-

propagating photons.

(a) (b)

Figure 8: Atom’s velocity as a function of (a) time and (b) position. Parameter values as in

Figure 7.
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3.3. Cooling of an atomic beam with a Zeeman slower designed for u = 300 m/s

In the two previous subsections we have considered an atom with a specific input velocity.

In this subsection we will consider an atomic beam of 171Yb that possesses a temperature-

dependent velocity distribution, see Figure 5b. We assume that the Zeeman slower is designed

to cool atoms propagating at an input velocity of u = 300 m/s and we are going to see what

happens to atoms that are sent at input velocities lower or higher than this reference velocity.

Figure 9a shows, for different input velocities, atom’s velocity as a function of the position

in the Zeeman slower. As the Zeeman slower is designed for u = 300 m/s, atoms with this input

velocity are resonant with the laser photons all along the Zeeman slower so the deceleration

is constant till these atoms are stopped. Atoms with input velocities larger than 300 m/s are

far out of resonance with the laser as a consequence of the Doppler effect. In these cases, the

Zeeman effect is not able to compensate the Doppler effect at any time and there is practically

no photon absorption. As a consequence, the velocity of these atoms does not vary in the

Zeeman slower. The situation is completely different for atoms with initial velocities of less

than 300 m/s, see, for instance, the case of u = 175 m/s of Figures 9a and 9b. In this case, the

interaction is non-resonant at the beginning of the Zeeman slower but at a particular point of

the Zeeman slower the compensation of the Zeeman effect and the Doppler effect is perfect such

that the interaction becomes resonant. From this point on, the interaction is always resonant

until the atom stops. This is the explanation why all the curves with initial velocities less than

300 m/s end up fitting each other.

As the integrated probability distribution between 0 and 300 m/s of the 171Yb atomic beam

gives slightly more than half of the total beam population at T = 706K, the results shown in

Figure 9a indicate that a Zeeman slower with about 12 cm is able to cool about 50% of the

atoms of the 171Yb beam such that they reach output velocities of a few cm/s.

(a) (b)

Figure 9: (a) Atom’s velocity as a function of the position. The Zeeman slower is designed for

an atom’s input velocity of u = 300 m/s but it perfectly works for all atoms moving with input

velocities smaller than the 300 m/s. In (b) we show the time evolution of the population of the

excited state 6s6p 1P1 of 171Yb for an input velocity of u = 175 m/s.
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4. Conclusions

A major part of modern technologies are based on microelectronics and classical

communications and computing. The next big technological step will be to expand the use

of photonics and incorporate quantum communications and computing. In particular, the

advancement of quantum technologies will depend on the ability to precisely control and

manipulate quantum physical systems. Among the possible physical platforms for implementing

quantum technologies are ultracold atoms captured and manipulated with laser light. In this

context, laser cooling is a fundamental tool.

In this master work we have discussed the cooling of 171Yb atoms in a Zeeman slower. We

have studied how the combination of the Doppler effect and the Stark effect in the Zeeman

slower allows to maintain on-resonance absorption along the slower and, consequently, to cool
171Yb atoms by means of the linear momentum exchange between the atoms and the light.

To describe the interaction between light and matter we have used the Monte Carlo Wave

Function formalism, which has allowed us to associate a momentum exchange to the absorption

and spontaneous emission processes and, consequently, to study the individual trajectory of a

single atom in the Zeeman slower.

In particular, we have considered the 6s2 1S0 − 6s6p 1P1 transition of 171Yb at 399 nm for

Doppler cooling and assumed a magnetic field in the Zeeman slower capable of maintaining

the on-resonance condition with the laser for any atom velocity. By Monte Carlo simulations

we have determined that it is possible to cool 171Yb atoms with initial velocities equal to or

less than 300 m/s at distances of the order of 12 cm. Note that in other published works with
171Yb [4], a Zeeman slower of about 70 cm was used to cool atoms with initial velocities similar

to those of our work, while in the case of 87Rb, Zeeman slowers of about 1 m in length are

commonly used to cool atoms with input velocities of ∼ 400 m/s [5].
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