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Abstract

The long therm behavior of chaotic flows is investigated by means of time dependent frequency analysis. The system under test
consists of an electrically conducting fluid, confined between two differentially rotating spheres. The spherical setup is exposed
to an axial magnetic field. The classical Fourier Transform method provides a first estimation of the time dependence of the
frequencies associated to the flow, as well as its volume-averaged properties. It is however unable to detect strange attractors
close to regular solutions in the Feigenbaum as well as Newhouse-Ruelle-Takens bifurcation scenarios. It is shown that Laskar’s
frequency algorithm is sufficiently accurate to identify these strange attractors and thus is an efficient tool for classification of
chaotic flows in high dimensional dynamical systems. Our analysis of several chaotic solutions, obtained at different magnetic field
strengths, reveals a strong robustness of the main frequency of the flow. This frequency is associated to an azimuthal drift and it is
very close to the frequency of the underlying unstable rotating wave. In contrast, the main frequency of volume-averaged properties
can vary almost one order of magnitude as the magnetic forcing is decreased. We conclude that, at the moderate differential rotation
considered, unstable rotating waves provide a good description of the variation of the main time scale of any flow with respective
variations in the magnetic field.
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1. Introduction

The magnetized spherical Couette (MSC) system -a liquid
metal within two differentially rotating spheres subject to a
magnetic field- represents one of the fundamental problems
for studying three-dimensional magnetohydrodynamic (MHD)
instabilities (Hollerbach and Skinner [25], Hollerbach [24],
Gissinger et al. [17], Kaplan [28], Garcia and Stefani [13]). The
coupled effects of rotation, magnetic fields and spherical geom-
etry, are indeed common in a wide range of processes occur-
ring in celestial objects (Dormy and Soward [9], Moffatt and
Dormy [35]), including the generation of the Sun’s (Rüdiger
[41]) and the Earth’s magnetic fields (Jones [27]), or the trans-
port mechanisms in accretion disks around black holes, stars,
and protoplanetary disks (Ji and Balbus [26]). The latter have
been interpreted in terms of the magnetorotational instability
MRI (Balbus and Hawley [3]) which is nowadays considered
the best explanation.

Starting with the work by Balbus and Hawley [3] the occur-
rence of the MRI has been studied in great detail including nu-
merical and experimental work. Experimental investigations of
the MRI were conducted at the Helmholtz-Zentrum Dresden-
Rossendorf (HZDR) using the GaInSn liquid metal alloy within
two rotating cylinders (Stefani et al. [46, 47], Seilmayer et al.
[43]), and in Maryland (Sisan et al. [44]) with liquid sodium
in spherical geometry. The latter experiment by Sisan et al.
[44] motivated the recent numerical studies of Hollerbach [24]
and Gissinger et al. [17] which, however, did not interpret the

observed instabilities as MRI but as typical instabilities in mag-
netized spherical Couette (MSC) flows.

To shed light onto this controversy, the HEDGEHOG exper-
iment (Hydromagnetic Experiment with Differentially Gyrat-
ing sphEres HOlding GaInSn) has been designed, at HZDR,
to describe three-dimensional magnetohydrodynamic instabili-
ties, which are related to the hydrodynamic jet instability, the
return flow instability and the Kelvin-Helmholtz-like Shercliff
layer instability (see Kasprzyk et al. [29] and the references
therein). These instabilities have been studied in the past (e. g.
Hollerbach [24], Gissinger et al. [17], Travnikov et al. [49], Ka-
plan [28]) by means of direct numerical simulations (DNS)
of the MSC system, and their spatio-temporal symmetries and
nonlinear dynamics have been recently described in terms of
bifurcation and dynamical systems theory by Garcia and Ste-
fani [13] and Garcia et al. [15, 16]. We refer to the introductory
sections of these latter studies for a detailed summary and ref-
erences on the numerical studies in the field.

The MSC system is SO(2)×Z2-equivariant, i. e., invariant by
azimuthal rotations and reflections with respect to the equato-
rial plane, and thus a rich variety of nonlinear dynamics is ex-
pected (Crawford and Knobloch [6]) thanks to flow bifurcations
occurring as the parameters Re (the Reynolds number measur-
ing rotation rates) and Ha (the Hartmann number measuring
magnetic field strength) are varied. Bifurcations occurring in
systems with symmetry have been largely studied in the past
(e. g. Crawford and Knobloch [6], Rand [40], Golubitsky et al.
[19], Golubitsky and Stewart [18]). In the particular case of the
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MSC system at moderate Re = 103 and Ha < 80, the numeri-
cal continuation of rotating waves, the theoretical description of
modulated rotating waves and the appearance of complex waves
and chaotic flows have been recently presented in the studies of
Garcia and Stefani [13], Garcia et al. [15], and Garcia et al.
[16], respectively. The present study extends these previous
works by analyzing the long term behavior of the flows, with
special focus on the estimation of the main time scales involved
in chaotic flows. The numerical approach relies on a time de-
pendent frequency spectrum analysis of very long time series,
including global as well as local flow properties. Laskar’s al-
gorithm (Laskar [30], Laskar et al. [33], Laskar [31]), imple-
mented in the SDDSToolkit (Borland et al. [5]), provides a use-
ful tool for an accurate determination of the fundamental fre-
quencies of a time series. Moreover, the study of the time de-
pendent spectrum provides an estimation of the diffusion of the
orbit in the phase space (Laskar [32]) and thus can be used to
identify chaotic flow behaviour and to study global dynamics.
There exist other even more accurate algorithms for the deter-
mination of fundamental frequencies, for instance those based
on collocation methods described in Gómez et al. [20, 21] and
the references therein, which have been used successfully as
dynamical indicators. The idea of the analysis of the time-
frequency dependence is common (see for instance the work
by Djurović and Rubezić [8] or the very recent comparison in
Varanis et al. [50]) to assess the chaotic behavior of a nonlinear
system.

We recall that for a more complete description of chaos the
computation of the so called Lyapunov characteristic exponents
LCE (Oseledec [38], Benettin et al. [4], Grappin and Léorat
[22]) must be performed and that for this purpose time series
tools are available (e. g. Hegger et al. [23]). The latter are
based on phase space reconstruction using the method of de-
lays (Takens [48]) and require the adjustment of several pa-
rameters such as the embedding dimension or the time delay.
A comprehensive analysis of methods for computing LCE, in-
cluding those based on direct time integrations of the evolution
equations and those based on time series, has been recently per-
formed in Awrejcewicz et al. [1] for simple systems. In addi-
tion, the study of Awrejcewicz et al. [1] provides a description
of the dynamics in terms of Fourier spectra and Gauss wavelets.
In a subsequent study (Awrejcewicz et al. [2]) the comparison
was extended to a system with O(102) degrees of freedom illus-
trating main problems and difficulties of LCE estimation from
a time series. In comparison with those techniques, Laskar’s
analysis can be applied in a more straightforward manner and
only requires to control the accuracy of the obtained frequen-
cies.

With the present study we demonstrate the applicability of
Laskar’s algorithm, a highly accurate tool for the determination
of fundamental frequencies, for identifying chaotic motions in
a dissipative dynamical system with a large number ∼ O(105)
of degrees of freedom, due to the spatial discretization of partial
differential equations. This is demonstrated for the first time in
the context of an MHD problem in spherical geometry. In addi-
tion, the study is based on very long time evolutions (more than
one order of magnitude larger than the previous studies in the

MSC context) which is a challenging task given the dimension
of the problem. With the analysis of the time dependent spec-
trum for two different routes to chaos, the main result found is
a strong robustness of the temporal scale associated to an az-
imuthal flow drift, even for highly oscillatory chaotic flows.

The structure of the paper is as follows: In § 2 the problem
and the numerical method used to integrate the model equations
are formulated, and the data used for the spectral analysis is de-
scribed. In § 3 a study of the accuracy for the frequency deter-
mination and the set-up for the time dependent spectra is pro-
vided. The results are discussed in § 4, considering the Feigen-
baum (Feigenbaum [12]) as well as Newhouse-Ruelle-Takens
(Newhouse et al. [36]) routes to chaos, and finally in § 5 the
paper closes with a discussion on the main results obtained.

2. The model and methods

In the HEDGEHOG experiment a liquid metal (GaInSn)
fills the gap between two spheres of radius ri and ro with
χ = ri/ro = 0.5. The inner sphere is rotating with constant
velocity Ω around the vertical axis êz while the outer is at rest.
In addition, an axial magnetic field of amplitude B0 is applied to
the system, see Fig. 1, and insulating boundary conditions are
considered for the magnetic field outside the fluid region (e. g.
Hollerbach and Skinner [25]).

Ω

ri

ro

B0

GaInSn

Meridional 
ut

Figure 1: Geometrical configuration of the magnetized spherical Couette
(MSC) problem.

The mathematical formulation of the problem relies on the
inductionless approximation of the Navier-Stokes and induction
equations (Hollerbach and Skinner [25]). Considering η as the
magnetic diffusivity, ν as the kinematic viscosity, and d = ro−ri,
the inductionless approximation remains valid when the mag-
netic Reynolds number Rm = Ωrid/η is small, Rm � 1. In
case of the HEDGEHOG experiment the GaInSn eutectic al-
loy (Plevachuk et al. [39]) has very low magnetic Prandtl num-
ber Pm = ν/η ∼ O(10−6) and the values for the Reynolds
numbers are moderate Re = Ωrid/ν ∼ 103. This means that
Rm = PmRe ∼ 10−3 and thus the inductionless approximation
is valid.

By scaling the length, time, velocity and magnetic field with
d = ro − ri, d2/ν, riΩ and B0, respectively, the equations of
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motion become

∂tv + Re (v · ∇) v = −∇p + ∇2v + Ha2(∇ × b) × êz, (1)

0 = ∇ × (v × êz) + ∇2b, (2)
∇ · v = 0, ∇ · b = 0. (3)

where p is the dimensionless pressure containing all the poten-
tial forces, v is the velocity field and b is the magnetic field
perturbation of the axially applied field B = êz + Rm b. The no-
slip (vr = vθ = vϕ = 0) and constant rotation (vr = vθ = 0, vϕ =

sin θ) conditions are imposed on the boundary at r = ro and
r = ri, respectively. For the magnetic field the exterior regions
are assumed to be insulating, as it is the case for the HEDGE-
HOG experiment. The magnetic field boundary conditions are
formulated in terms of the spherical harmonics (see Hollerbach
and Skinner [25] for full details). The system is governed by 3
non-dimensional numbers:

Re =
Ωrid
ν

, Ha =
B0d
√
ρνµ0η

, and χ =
ri

ro
,

with µ0 being the magnetic permeability for free-space and ρ
being the density of the fluid. The parameters selected for the
present study, χ = 0.5, Re = 103 and Ha < 6, are in accor-
dance with the typical operating parameters of the HEDGE-
HOG experiments, in which η = 0.35, 0.5, Re ∈ [103, 104] and
Ha < 103.

The pseudo-spectral method for the numerical solution of the
governing equations is briefly described in the following. For
full details we refer to Garcia and Stefani [13] and references
therein. The divergence-free velocity field v = ∇ × (Ψr) + ∇ ×

∇ × (Φr) is expressed as a sum of the toroidal, Ψ, and poloidal,
Φ, potentials, with r = r êr being the position vector. For the ra-
dial coordinate a collocation method on a Gauss–Lobatto mesh
of Nr points is employed. For the angular coordinates the scalar
potentials are expanded in spherical harmonic series up to de-
gree Lmax and order Mmax = Lmax:

(Ψ,Φ)(t, r, θ, ϕ) =

Lmax∑
l=0

l∑
m=−l

(Ψ,Φ)m
l (r, t)Ym

l (θ, ϕ), (4)

with Ψ−m
l = (Ψm

l )∗ and Φ−m
l = (Φm

l )∗, (·)∗ meaning complex
conjugation. By choosing Ψ0

0 = Φ0
0 = 0 the two scalar po-

tentials are uniquely determined. We recall that Ym
l (θ, ϕ) =

Pm
l (cos θ)eimϕ is the spherical harmonic function with Pm

l being
the normalized associated Legendre functions of degree l and
order m. High order implicit-explicit backward differentiation
formulas IMEX–BDF (Garcia et al. [14]) are used for the time
integration. The nonlinear terms are considered explicitly to
avoid the solution of a nonlinear system at each time step. An
explicit treatment of the Lorenz force term facilitates the im-
plementation of the linear solver, but may lead to smaller time
integration steps (∆t) in comparison with an implicit treatment.
However, this is not critical as moderate Ha are considered in
the present study.

Two different diagnostics are considered for the analysis of
the DNS. First, the time series of the radial velocity vr picked
up at the point (r, θ, ϕ) = (ri + 0.5d, π/8, 0), which is a local

measure that reflects the time scales of the flow. Second, the
time series of the volume-averaged kinetic energy K, defined as

K =
1

2V

∫
V

v · v dv, (5)

with V being the volume of the shell and v being the veloc-
ity field, provides a global measure. Instead of considering K
for the total flow, we compute the kinetic energy Km defined by
only employing the spherical harmonic amplitudes Ψm

l and Φm
l

with order m and degree l satisfying |m| ≤ l ≤ Lmax. This pro-
vides an idea on the distribution of kinetic energy among the
different azimuthal modes m. For the flows we are analyzing
(see Garcia et al. [16]) there exists an mmax with Kmmax � Km,
1 ≤ m ≤ Lmax, and m , mmax, with the over-line representing
a time average. We note that then the flow will exhibit mmax
vortices. If in addition the flow has md-fold azimuthal sym-
metry, then it is unaffected by azimuthal rotations multiples of
2π/md and the spherical harmonic amplitudes with azimuthal
wave numbers being multiples of md are the only nonzero ones
in Eq. (4). Notice that if the azimuthal symmetry is md = 1 all
the spherical harmonics amplitudes are considered.

3. Frequency analysis

For an accurate determination of the fundamental frequen-
cies of a time series, Laskar’s method (Laskar [31]) of numer-
ical analysis of fundamental frequencies (NAFF) is employed.
This method, implemented in the SDDSToolKit (Borland et al.
[5]), involves a von-Hann-window and FFT together with a nu-
merical optimization of the difference between the signal and
exponential functions of time. Concretely, given a time se-
ries (ti, p(ti)), ti = ti−1 + ∆t, i = 1, . . . ,N of a quasiperiodic
function p, defined on a time interval [0,T ], Laskar’s algorithm
provides the decomposition of p(t) on the basis e−i f jt which is
nonorthogonal on a finite time window, computing the frequen-
cies f j, j = 1, ...,M, with an iterative algorithm. It first starts by
finding the maximum term of the FFT of the time series. The
corresponding frequency, f , is refined to obtain f1 by maximiz-
ing the power spectrum∫ T

0
p(t)e−i f tH(t)dt,

where H(t) = 1 + cos(πt/T ) is the von-Hann-window filter
(helps to reduce the coupling effect of other frequencies). Once
f1 is found, the corresponding term is removed from the time
series and the process is repeated to find f2. After finding each
f j we note that since the basis functions e−i f jt are not orthogonal
an intermediate step of orthogonalization (Gauss algorithm) is
required to compute the amplitudes. The algorithm stops when-
ever the new frequency fk satisfies | fk − f j| < 1.5 × 2π/T , for
any j < k, which corresponds to the band limitation of an FFT
with a von-Hann-window filter.

3.1. Accuracy estimation
In order to estimate the accuracy of Laskar’s algorithm for

the determination of the frequency with the largest amplitude,
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a rotating (also travelling) wave (RW) with azimuthal symme-
try m = 4 and rotating frequency ω is considered (i. e. a pe-
riodic flow whose temporal dependence can be described as
u(t, r, θ, ϕ) ≡ u(r, θ, ϕ − ωt)). The parameters of this RW are
χ = 0.5, Re = 103 and Ha = 3.7766571.

Because a RW is a periodic orbit, it can be obtained by means
of a continuation method (Garcia and Stefani [13]) and its ro-
tating frequency estimated up to a prescribed tolerance. Specif-
ically, we solve a nonlinear system which determines a single
RW defined by (u, τ, p), with τ = 2π/(mω) being the period, at
a parameter p = Ha. The system is

H(u, τ, p) =

 u − φ(τ, u, p)
g(u)

m(u, τ, p)

 = 0, (6)

where φ(τ, u, p) is a solution of Eqs. (1)-(3) at time τ and initial
condition u for fixed p. The condition g(u) = 0 is selected to fix
the undetermined phase of the RW and m(u, τ, p) is the pseudo-
arclength condition of the continuation method. This system
is solved by employing a Newton-Krylov procedure with toler-
ance 10−8. The method is matrix-free and so does not require
the explicit computation of the Jacobian D(u,τ,p)H(u, τ, p), but
only its action on a given vector (see Garcia and Stefani [13]
for full details).

Once the RW with m = 4 at Ha = 3.7766571 has been
obtained with the Newton-Krylov procedure, a direct time in-
tegration of the MSC equations is performed to obtain the
time series of the radial velocity vr picked up at the point
(r, θ, ϕ) = (ri + 0.5d, π/8, 0) for which Laskar’s algorithm is
applied subsequently. This particular location allows to mea-
sure the meridional circulation of the flow at high latitudes.
Because the radial velocity amplitude is significant on a wide
region in the bulk of the shell (see e. g. Fig. 12 in Garcia
et al. [16]) the results should not depend on the measurement
position. We have checked this by also considering the point
(r, θ, ϕ) = (ri + 0.85d, 3π/8, π/2). The step for the time inte-
gration is the same, ∆t = 5 × 10−6, as that used for the time
integration within Newton’s method. We note that this ∆t pro-
vides enough accuracy (we have used a 4th order time inte-
gration scheme) with errors less than 10−8 because otherwise
Newton’s method does not converge. The use of high order
time integration methods is recommended when a highly accu-
rate time integration is required (Garcia et al. [14]).

Newton’s method (with tolerance 10−8) givesω = 138.09097
which corresponds to the frequency f = mω/2π = 87.91144
whereas Laskar’s algorithm result is f = 87.91145 for T ≥ 0.3,
T being the time interval of the time series from which the
frequency f has been computed. The sampling time interval
is ∆tsamp = 10−4 dimensionless time units. The case yields
f = 87.91068 for T = 0.1, but f = 87.91151 for T = 0.2.
By decreasing ∆tsamp = 10−5 the same results are obtained, but
for ∆tsamp = 2× 10−4 the accuracy is degraded to f = 87.91167
even for T = 20. The accuracy provided by Laskar’s algorithm
is estimated to be O(1/T 3) (e. g. Laskar [32]) contrasting the
O(1/T ) estimation for the classical FFT. In the case of comput-
ing f with FFT, with ∆tsamp = 10−4, we obtain f = 87.9000 for

T = 20 and f = 87.91666 for T = 60, meaning that a time win-
dow T ≥ 60, which is large for a simple periodic time series,
has to be considered in the FFT to detect changes in the fre-
quency which are below 1%. As it will be evidenced latter, this
makes the FFT unpractical to detect the chaotic flows studied
here.

3.2. Time dependent frequency spectrum
Our analysis is based on very long time integrations up to a

final time T f = 100 (in dimensionless time units), which corre-
sponds to 2× 107 time integration steps (∆t = 5× 10−6). This is
a challenging task because of the large dimension n ∼ O(105)
of the ODE system due to the spatial discretization of the MSC
governing equations.

Given a flow initial condition u ∈ Rn, which will be detailed
in the next section, the frequency f of maximum amplitude is
computed from a time window [t, t + T ] ⊂ [0,T f ] of the time
series. According to Laskar [32] this provides the map

FT : Rn × R −−−−−−−→ R
(u, t) −−−−−−−→ f (u, t)

which can be used for the analysis of the diffusion of the or-
bit u ∈ Rn with respect to time, and thus infer the regular or
chaotic behavior of the orbit. If the flow is quasiperiodic FT is
a constant function of time whereas for chaotic flows FT varies
indicating the diffusion of the orbit in phase space.

As noticed in Laskar [32] the frequencies are computed up
to a certain accuracy, ε f , depending on the solution u and the
time window T . For the case of a rotating wave, we have
shown in the previous section that this accuracy for Laskar’s
algorithm is about ε f = 10−5, even for very small time win-
dows T = 0.3. For the analysis of quasiperiodic and chaotic
flows we may assume slightly larger discrepancies ε f . Then,
flows are considered to be regular if FT is constant within ε f

of accuracy, otherwise to be chaotic. Following Laskar [32]
we also estimate the instantaneous diffusion rate as δFT (u, t) =

|FT (u, t + T ) − FT (u, t)|. The diffusion of the orbit is nonzero,
i. e. the flow is nonregular, when δFT (u, t) > ε f . For the anal-
ysis of the flows presented in this study we evaluate FT (u, t) at
the time instants ti = 0.1(i − 1) ≤ T f − T and δFT (u, t) at the
same time instants but for ti ≤ T f − 2T .

For the analysis, either with Laskar’s or FFT algorithm, of all
the time series considered in this study the setup is the follow-
ing: A sampling time step ∆tsamp = 10−4 has been used as it pro-
vides the best accuracy from the estimation given in Sec. 3.1. In
addition, several sizes of the time window T = 1, 2.5, 5, 10, 20
and 40 have been considered to check that the results do not de-
pend on the particular choice of the time window size.

4. Results: Analysis of chaotic flows

Several flow realizations that correspond to two different
routes to chaos (Eckmann [10]) are studied in this section.
The first scenario is in accordance with the Feigenbaum route
(Feigenbaum [12]) in which chaotic flows are developed after a
sequence of period doubling bifurcations. The second scenario

4



corresponds to the Newhouse-Ruelle-Takens route (Newhouse
et al. [36]) in which strange attractors develop from a sequence
of Hopf bifurcations giving rise to quasiperiodic flows. These
two routes have been already identified and described in the re-
cent study of Garcia et al. [16] devoted to the MSC problem in
a parameter regime corresponding to the radial jet instability,
in which the magnetic effects are weak. The specific problem
parameters are χ = 0.5, Re = 103 and Ha < 4. The description
of Garcia et al. [16], based on the study of bifurcation diagrams
and Poincaré sections, evidenced both scenarios. Concretely,
for the Feigenbaum scenario, the distance between the succes-
sive period bifurcation points was used in Garcia et al. [16] to
estimate the Feigenbaum constant within 5% of accuracy. In
the case of the Newhouse-Ruelle-Takens scenario, the different
bifurcations giving rise to two and three-frequency flows, be-
fore the appearance of chaos, were identified in Garcia et al.
[16].

For the present study we are interested in the description of
long term behavior of solutions belonging to these two scenar-
ios which give rise to chaotic flows. We select three differ-
ent flows at each of the routes (Newhouse-Ruelle-Takens and
Feigenbaum) presented in Garcia et al. [16] and perform the
analysis summarized in Sec. 3.2 to estimate the diffusion of
the corresponding orbits and the time variation of the main fre-
quency f (that with maximum amplitude) either of the time se-
ries of the radial velocity or the time series of the m = 2 volume-
averaged kinetic energy (already defined in Sec.2). These time
series are obtained from direct numerical simulations as de-
scribed in Garcia et al. [16]. The spatial resolution require-
ments, Nr = 40 and Lmax = 84, for solving the MSC equations
have been already validated in Garcia and Stefani [13] and, as
commented in Sec. 3.1, high order time integration is employed
to obtain accurate time series.

4.1. Feigenbaum scenario
This section focuses on chaotic flows originating from a

period-doubling cascade of quasiperiodic flows with two fun-
damental frequencies (i. e. two-tori) and with m = 2 azimuthal
symmetry. A detailed analysis of this scenario was performed
in Garcia et al. [16]. In this latter study the Feigenbaum iter-
ates δi = (Hai+1 − Hai)/(Hai+2 − Hai+1), with Ha1 = 3.491,
Ha2 = 3.423, Ha3 = 3.4073, and Ha4 = 3.4039 being the suc-
cessive period-doubling bifurcation points, have been estimated
to be δ1 = 4.33 and δ2 = 4.62, in reasonable agreement with
the Feigenbaum constant δ = 4.6692.

For the analysis of the time dependence of frequency spec-
tra in the Feigenbaum route a quasiperiodic flow with two fun-
damental frequencies at Ha = 3.425 and two chaotic flows at
Ha = 3.4 and Ha = 0.7 are selected. Notice that for Ha = 3.425
a period-doubling bifurcation has already occurred and that the
chaotic flow at Ha = 3.4 is close to the onset of chaos (the
last period doubling found is at Ha4 = 3.4039). We have se-
lected this regular solution to compare the results with the two
other chaotic flows along the Feigenbaum route. The regular
and chaotic flows at Ha = 3.425 and Ha = 3.4 have m = 2
azimuthal symmetry whereas the azimuthal symmetry of the
chaotic flow at Ha = 0.7 is m = 1. As studied in Garcia et al.

[16], the chaotic nature of the flows remains by decreasing Ha
from Ha = 3.4. The flows close to Ha = 0 are strongly oscilla-
tory with mmax = 2.

Figure 2 displays the time series of the radial velocity vr and
the volume averaged kinetic energy K2 of the m = 2 compo-
nent of the flow (see Sec. 2) for the regular and chaotic flows
at Ha = 3.425 and Ha = 0.7, respectively, in case of the
Feigenbaum scenario. For the 2-frequency solution (panels (a)
and (b)), the time series of vr exhibits a quasiperiodic behav-
ior whereas the time series of K2 remains periodic, showing
the period-doublings. This is because the solution is a modu-
lated rotating wave (Rand [40], Garcia et al. [15]) and one of
the frequencies is associated with the rigid rotation (azimuthal
drift) of the flow patterns. By azimuthally averaging the flow,
only the frequency of modulation is observed. The time series
of the chaotic flow at Ha = 0.7 (panels (c) and (d)) exhibit a
clear chaotic behavior, but the small temporal scale (associated
to the azimuthal drift shown in panel (a)) of the radial velocity
still prevails.

Figure 3(a,b) illustrates the analysis of the radial velocity
time series of the regular solution at Ha = 3.425, correspond-
ing to a quasiperiodic flow with two fundamental frequencies
(a modulated rotating wave, see Garcia et al. [15]) and with az-
imuthal symmetry m = 2. Figure 3(a) provides f (t) computed
using a time window of T = 5, 10, 20, 40 (the higher the am-
plitude of the oscillations the smaller the time window) for the
regular wave. As f is computed from the time series of vr it
corresponds to the frequency of the azimuthal drift of the wave.
A very weak time dependence is observed which damps out by
increasing T . For T ≥ 10 the relative oscillations of f are less
than 10−5 and the time difference δ f (t) = | f (t+T )− f (t)| . 10−4

(see Fig. 3(b)). We assume this values to be valid for classify-
ing this flow as regular, considering an accuracy ε f = 10−4 for
the frequency determination. We note that although a value of
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Figure 2: (a,c) The time series of the radial velocity picked up at the point
(r, θ, ϕ) = (ri + 0.5d, π/8, 0). (b,d) The time series of the volume averaged
kinetic energy of the m = 2 component of the flow. (a,b) are for a regular flow
with two fundamental frequencies at Ha = 3.425, and (c,d) are for a chaotic
flow at Ha = 0.7.
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Figure 3: Time dependent frequency spectrum based on Laskar algorithm
(SDDSToolKit). The time series correspond to the radial velocity picked up
at the point (r, θ, ϕ) = (ri + 0.5d, π/8, 0). (a,c) Frequency with maximum am-
plitude versus time. (b,d) Time difference δ f (t) = | f (t + T ) − f (t)| versus time
(logscale). Different colors denote different lengths of the time series (blue
T = 5, green T = 10, red T = 20 and black T = 40). Panels (a,b) are for a reg-
ular solution at Ha = 3.425, panels (c,d) are for a chaotic solution at Ha = 3.4,
and panels (e,f) for a chaotic solution at Ha = 0.7.

ε f = 10−5 was achieved in Sec. 3.1 in the case of a rotating wave
(i. e. a periodic orbit), the regular solution now has 2 fundamen-
tal frequencies which may increase the uncertainty in frequency
determination. We notice, however, that for T ≥ 20 the value
of f is constant within ε f = 10−7.

Because the flow at Ha = 3.4 is close to the origin of period-
doubling chaos, the range of variation of f and δ f is small but
relevant, providing a chaotic signature (see Fig. 3(c,d)). For the
largest time window considered, T = 40, the difference value
is δt ≤ 10−5, clearly larger than ε f = 10−7. The values for f
and δ f for the chaotic flow at Ha = 0.7 (shown in Fig. 3(e,f))
are more pronounced but still remain small. For instance, f
oscillates around its mean value with less than 1% for all con-
sidered time windows T , which indicates the robust character
of the frequency associated to the azimuthal drift, even for this
highly oscillatory flow.

The analysis for the volume averaged kinetic energy of the
m = 2 component of the flow, summarized in Fig. 4, provides
a better measure of chaotic behavior as the value of δ f and the
interval of variation of f increase by one order of magnitude
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Figure 4: Time dependent frequency spectrum based on Laskar algorithm
(SDDSToolKit). The time series corresponds to the volume averaged kinetic
energy of the m = 2 component of the flow. (a,c) Frequency with maximum
amplitude versus time. (b,d) Time difference δ f (t) = | f (t + T ) − f (t)| versus
time (logscale). Different colors denote different lengths of the time series (blue
T = 5, green T = 10, red T = 20 and black T = 40). Panels (a,b) are for a reg-
ular solution at Ha = 3.425, panels (c,d) are for a chaotic solution at Ha = 3.4,
and panels (e,f) for a chaotic solution at Ha = 0.7.

with respect to the analysis of the radial velocity. As a conse-
quence different diffusion rates of the orbit emerge within the
phase space so that volume-averaging provides a better descrip-
tion of these chaotic flows. We note that for the regular solution
a slightly noticeable transient can be identified on Fig. 4(a,b),
because of the regular solution at Ha = 3.425 being close to the
second period doubling bifurcation at Ha2 = 3.423, so that long
transients can be expected. Nevertheless values of δ f < 10−5,
for T ≥ 20, are obtained, which supports our assumption of
ε f = 10−5 for the largest time windows. The value of δ f is
clearly larger than this threshold (for T ≥ 20) when analyzing
the chaotic solution at Ha = 3.4 (see Fig. 4(d)).

In contrast to the previous chaotic flows, the description for
the highly oscillatory flow at Ha = 0.7 is substantially different
(see Fig. 4(e,f)). In this case, the frequency f spans around two
orders of magnitude and the values of δ f raise up to O(10),
accounting for a wide range of temporal scales in volume-
averaged quantities. We recall that this was not the case for the
main frequency of the radial velocity displayed in Fig. 3(e,f).
To highlight the differences between the main time scales of
the flow and those of volume-averaged quantities the time de-
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Figure 5: Time dependent frequency spectrum based on FFT on a time window
T = 10 for the chaotic flow at Ha = 0.7. The time series correspond to (a) the
radial velocity picked up at the point (r, θ, ϕ) = (ri + 0.5d, π/8, 0) and (b) the
volume averaged kinetic energy of the m = 2 component of the flow. For the
volume-averaged kinetic energy, the frequency with maximum amplitude varies
on a broad range f ∈ (0.1, 100). In contrast, for the time series corresponding to
the local measurement (radial velocity) the frequency with maximum amplitude
remains constant ( f = 42.3) in the whole time range.

pendent spectrum based on FFT is provided in Fig. 5. With the
FFT analysis and a time window of T = 10 the frequency of
maximum amplitude of the flow remains constant at f = 42.3
whereas a broad band of main frequencies is obtained in case
of the volume-averaged kinetic energy of the m = 2 component
of the flow.

We note that the FFT analysis for the chaotic solution at
Ha = 3.4 provides constant frequencies f = 42 and f = 4.6
for vr and K2, respectively. We recall that, as for Laskar’s anal-
ysis, the time windows T = 5, 10, 20, and 40, and sampling
time step ∆tsamp = 10−4 are considered. Then, FFT analysis is
unable to detect the chaotic nature for solutions with Ha being
close to the onset of chaos. This is because for these flows δ f
(see either Fig. 3(c,d) or Fig. 4(c,d)) is smaller than the accuracy
O(1/T ) > 0.02 achieved with the FFT. This will be further ev-
idenced on the next section dedicated to the Newhouse-Ruelle-
Takens scenario.

4.2. Newhouse-Ruelle-Takens scenario
One quasiperiodic flow with three fundamental frequencies

at Ha = 0.7, and two chaotic flows at Ha = 0.67 and Ha = 0.63

are considered for the Newhouse-Ruelle-Takens scenario. They
belong to the same branch as described in Garcia et al. [16]
with m = 1 azimuthal symmetry and mmax = 2. Bifurcation
diagrams of two and three frequency solutions and eventually
chaotic flows, characteristic of the Newhouse-Ruelle-Takens
scenario, were analyzed in Garcia et al. [16] for Ha < 1 in
terms of Poincaré sections. We show in this section that the
appearance of chaos can be also evidenced by investigating the
time dependence of the main frequency obtained with Laskar’s
procedure.

Figure 6(a) displays f (t) for the regular wave with 3 fun-
damental frequencies at Ha = 0.7. In comparison with the
regular solution of the Feigenbaum scenario, the variation of
the frequency with maximum amplitude f and the value of δ f
is clearly larger for a fixed time window T . The regular so-
lution for the Feigenbaum scenario has two fundamental fre-
quencies whereas that of the Newhouse-Ruelle-Takens scenario
has three. This may be the reason for the smaller value of ε f

achieved for the regular solution in case of the Feigenbaum
route.

For the chaotic flows at Ha = 0.67 (Figs. 6(c,d)) and Ha =
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Figure 6: Time dependent frequency spectrum based on Laskar’s algorithm
(SDDSToolKit). The time series correspond to the radial velocity picked up
at the point (r, θ, ϕ) = (ri + 0.5d, π/8, 0). (a,c,e) Frequency with maximum
amplitude versus time. (b,d,f) Time difference δ f (t) = | f (t + T ) − f (t)| versus
time (logscale). Different colors denote different length of the time series (blue
T = 5, green T = 10, red T = 20 and black T = 40). Panels (a,b) are for a
regular solution at Ha = 0.7, panels (c,d) are for a chaotic solution at Ha = 0.67,
and panels (e,f) are for a chaotic solution at Ha = 0.63.
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Figure 7: Time dependent frequency spectrum based on Laskar’s algorithm
(SDDSToolKit). The time series correspond to the volume averaged kinetic
energy of the m = 2 component of the flow. (a,c,e) Frequency f with maximum
amplitude versus time. (b,d,f) Time difference δ f (t) = | f (t + T ) − f (t)| versus
time (logscale). Different colors denote different length of the time series (blue
T = 5, green T = 10, red T = 20 and black T = 40). Panels (a,b) are for a
regular solution at Ha = 0.7, panels (c,d) are for a chaotic solution at Ha = 0.67,
and panels (e,f) are for a chaotic solution at Ha = 0.63.

0.63 (Figs. 6(e,f)) the variation of f and the value of δ f is sig-
nificant and the amplitude of their oscillations is growing with
time. For the chaotic flows the value of δ f is at least one or-
der of magnitude larger than for the regular flow, although it
is still small, indicating slow diffusion of the orbit in the phase
space. Indeed, as for chaotic flows in the Feigenbaum scenario,
the range of variation of f is narrow which indicates a nearly
uniform azimuthal drift for these chaotic flows.

As in the Feigenbaum case, the frequency description con-
sidering the m = 2 volume-averaged kinetic energy, which is
summarized in Fig. 7, is even more clear than that correspond-
ing to the radial velocity. For the chaotic flows at Ha = 0.67 and
Ha = 0.63 the maximum value of δ f is larger than 10−2, but the
corresponding maximum value is smaller than 10−5 for the reg-
ular solution at Ha = 0.7. In addition, and in agreement with
the Feigenbaum scenario, for the chaotic flows at Ha = 0.67
and Ha = 0.63 the value of δ f is significantly larger when con-
sidering a volume-averaged measure than when considering a
measure of the flow itself. As discussed in the previous section
this indicates two very different diffusion rates of the orbit in
the phase space.

Figure 8: Time dependent frequency spectrum based on FFT on a time window
T = 10. The time series correspond to the volume averaged kinetic energy of
the m = 2 component of the flow. (a) Three frequency quasiperiodic flow at
Ha = 0.74 and (b) Chaotic flow at Ha = 0.63. The frequency with maximum
amplitude remains constant in the whole time range and is f = 8.9, for both
Ha = 0.74 and Ha = 0.63, and thus it does neither reveal the chaotic behavior
for Ha = 0.63 nor it reflects the dependence of f on Ha.

To highlight the superiority of Laskar’s algorithm with re-
spect to the common FFT the moving FFT frequency spectrum
of the volume-averaged kinetic energy of the m = 2 component
of the flow is presented in Fig. 8(a,b). The top plot corresponds
to a regular flow at Ha = 0.74, i. e. at a Hartmann number
larger than the regular flow at Ha = 0.7 presented in this sec-
tion, whereas the bottom plot corresponds to the chaotic flow at
Ha = 0.63 with larger variation of f in Fig. 7. Although for the
chaotic flow the moving spectra exhibit some irregular bands
around secondary frequencies, the frequency of largest ampli-
tude remains constant to f = 8.9 at Ha = 0.63 (also Ha = 0.67),
which is the same value obtained for the regular flow, at signif-
icantly different Ha = 0.74. For the figure a time window of
T = 10 is used, however, for the other values of T = 5, 20, and
40, the results remain basically unchanged. This confirms the
results presented in the previous section, i. e., for chaotic flows
with Ha near the onset of chaos a highly accurate determination
of the frequency of maximum amplitude is required to detect
the chaotic nature of these flows because the time fluctuations
of this frequency can be very small.

8



Table 1: Mean frequency f with maximum amplitude, and its absolute difference ε f = fmax − fmin. The time dependent frequency of maximum amplitude f is
computed on a time window T from the time series of the radial velocity picked up at the point (r, θ, ϕ) = (ri + 0.5d, π/8, 0). This frequency is associated to the
drifting behaviour of the waves. The superscript ∗ indicates a regular solution, otherwise the solution is chaotic.

Newhouse-Ruelle-Takens Feigenbaum
T Ha 0.7∗ 0.67 0.63 3.425∗ 3.4 0.7
1 f 42.13 42.13 42.13 42.01 42.01 40
1 ε f 3 × 10−2 4 × 10−2 6 × 10−2 4 × 10−2 5 × 10−2 20
2.5 f 42.131 42.13 42.13 42.014 42.013 42
2.5 ε f 4 × 10−3 10−2 2 × 10−2 4 × 10−3 6 × 10−3 17
5 f 42.1303 42.132 42.134 42.0144 42.0131 42.29
5 ε f 2 × 10−4 4 × 10−3 9 × 10−3 2 × 10−4 5 × 10−4 8 × 10−2

10 f 42.1304 42.132 42.134 42.01448 42.01337 42.29
10 ε f 10−4 2 × 10−3 5 × 10−3 2 × 10−5 6 × 10−5 6 × 10−2

20 f 42.13057 42.1316 42.134 42.014481 42.01337 42.29
20 ε f 9 × 10−5 6 × 10−4 4 × 10−3 0 2 × 10−5 3 × 10−2

40 f 42.13082 42.1313 42.134 42.014481 42.01336 42.295
40 ε f 3 × 10−5 3 × 10−4 2 × 10−3 0 10−5 2 × 10−2

Table 2: Mean frequency f with maximum amplitude, and its absolute difference ε f = fmax − fmin. The time dependent frequency of maximum amplitude f is
computed on a time window T from the time series of the volume averaged kinetic energy of the m = 2 component of the flow. This frequency is associated to the
modulation behaviour of the waves. The superscript ∗ indicates a regular solution, otherwise the solution is chaotic.

Newhouse-Ruelle-Takens Feigenbaum
T Ha 0.7∗ 0.67 0.63 3.425∗ 3.4 0.7
1 f 8.92 8.9 8.9 4.5 4.5 4
1 ε f 7 × 10−2 2 × 10−1 2 × 10−1 100 100 25
2.5 f 8.92 8.93 8.9 4.59 4.59 25
2.5 ε f 3 × 10−2 8 × 10−2 10−1 5 × 10−2 8 × 10−2 3
5 f 8.916 8.93 8.94 4.589 4.59 25
5 ε f 10−3 3 × 10−2 9 × 10−2 2 × 10−3 10−2 3
10 f 8.91589 8.93 8.93 4.58856 4.589 6
10 ε f 9 × 10−5 2 × 10−2 4 × 10−2 9 × 10−5 4 × 10−3 3
20 f 8.915878 8.93 8.93 4.58852 4.589 25
20 ε f 2 × 10−6 10−2 2 × 10−2 2 × 10−5 10−3 3
40 f 8.9158783 8.926 8.93 4.588518 4.5893 25
40 ε f 0 6 × 10−3 10−2 2 × 10−6 6 × 10−4 4

5. Summary and conclusions

The present study is based on very long high order time in-
tegrations of the MSC equations, with a discretized system of
O(105) degrees of freedom. Specifically the DNS, on a spher-
ical shell with an aspect ratio χ = 0.5, cover 100 viscous time
units at a Reynolds number Re = 103. This represents around
1.6× 104 inner sphere rotation periods, which is a value two or-
ders of magnitude larger than the achieved by previous studies
in the field (e. g. Hollerbach [24], Kaplan [28]).

The time series of local (the radial velocity at a point in-
side the shell) and global (a volume-averaged kinetic energy)
measures have been analyzed using Laskar’s algorithm for the
determination of fundamental frequencies (Laskar [31]). The
accuracy of the method (down to 10−7 in relative values) is es-
timated using a periodic flow (a rotating wave) from which the
frequency can be obtained using a Newton-Krylov procedure
(Garcia and Stefani [13]).

Several regular and chaotic flows are selected for the analy-
sis. At first one regular and two chaotic flows from the Feigen-
baum scenario (Feigenbaum [12]) are investigated. Similarly,
one regular and two chaotic flows representing the Newhouse-
Ruelle-Takens scenario (Newhouse et al. [36]) are selected as
well. These two routes to chaos were confirmed in Garcia
et al. [16] by computing the corresponding solution branches
and performing a Poincaré section analysis. In this paper we
extend the previous study of Garcia et al. [16] by investigat-
ing time dependent frequency spectra. Following the work of
Laskar [32], the frequency of maximum amplitude f is com-
puted on several time windows to study the time dependence of
f (t) and δ f (t) = |F(t + T ) − f (t)|. This helps to confirm the
existence of chaos and to estimate the diffusion of the orbit in
the phase space.

The results are summarized in Tables 1 and 2 and in figure 9.
From the tables as well as from the figure it can be concluded
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Figure 9: Relative difference max(δ f (t))/ f , 0 ≤ t ≤ 100, with δ f (t) = | f (t +

T ) − f (t)|, versus the time window T for the Newhouse-Ruelle-Takens (R.-T.,
full squares), Feigenbaum (P.d., full circles and triangle) chaos (ch.) scenarios.
Regular (reg.) flows for the R.-T. and P.d. scenarios are considered as well.
The time series correspond to (a) the volume averaged kinetic energy of the
m = 2 component of the flow and (b) the radial velocity picked up at the point
(r, θ, ϕ) = (ri + 0.5d, π/8, 0).

that a minimum time window of T = 5 viscous time units
should be used to obtain reliable results that allow an iden-
tification of chaos. This is because for small time windows,
T ≤ 5, the fluctuations of f (t) (either measured by ε f , or by
max(δ f (t))/ f , 0 ≤ t ≤ 100,) observed for the regular solutions
are of the same order of magnitude than those observed for the
chaotic flows.

The range of variation of the frequency, ε f = fmax − fmin,
for the local measure (radial velocity; table 1) is significantly
smaller than that for the global one (volume-averaged kinetic
energy; table 2). This is also true when considering the relative
difference max(δ f (t))/ f , 0 ≤ t ≤ 100, displayed in Fig. 9. The
latter evidences different diffusion rates in the phase space as
the measured frequencies are obtained from different compo-
nents (total or volume-averaged) of the flow.

The classical Fourier transform is not accurate enough to de-
tect small frequency changes over time |δ f | < 2/T = 10−2 for
the considered observation windows. This motivates the use
of an optimization method like Laskar’s, which finds the most
probable frequency due to a Newton method and (successive)
single mode elimination. The result is a more precise estimate
of the dominant frequency; we have shown that for the Feigen-

baum and Newhouse-Ruelle-Takens scenarios this is key for
identifying the onset of those chaotic flows, which exhibit small
variations of f .

We stress that a rigorous confirmation of a strange attractor
would require the computation of the leading Lyapunov charac-
teristic exponent (LCE) (e. g. Eckmann and Ruelle [11]). This
is beyond of the scope of this study as it would require long
time runs of the MSC system coupled with its first variationals
(see Benettin et al. [4] for details), which is a challenging com-
putational task. We note that the validity for applying time de-
pendent frequency analysis in chaotic systems has been already
tested by Laskar et al. [33] and Gómez et al. [20] against the
computation of LCE. The latter studies already noted that fre-
quency analysis seems to require a shorter time evolution than
the computation of LCE to detect a strange attractor, which is a
key issue for large dimensional systems.

As commented in the introductory section there exist tools
which are able to estimate LCE from a time series (see Heg-
ger et al. [23] and references therein) but these tools require to
tune several input parameters (e. g. Awrejcewicz et al. [2]) and
thus are more sophisticated than Laskar’s method, which only
depends on the precision of the frequency computation. This
is also true for other time series methods such as those based
on wavelet transforms (Daubechies [7], Meyer [34]) which de-
compose the signal into a set of orthogonal basis functions, lo-
calized in the time-frequency domain. Wavelet methods have
been successfully used for the analysis of chaotic solutions by
Staszewski, W. J. and Worden, K. [45] (also by Sarma et al. [42]
for a magnetized plasma experiment) but they require to select
the wavelet type, filter and length, which are key parameters to
be tuned to obtain an accurate analysis (see Zhang et al. [51] in
the case of neuron activity signals).

A remarkable result is that for all types of flows, the fre-
quency corresponding to the mean azimuthal drift (inferred
from the radial velocity) remains nearly constant and only os-
cillates less than 0.2% with respect to its mean value giving rise
to very small (< 10−2) diffusion rates. This is especially surpris-
ing in the case of the highly oscillatory chaotic flow from the
Feigenbaum scenario at Ha = 0.7, as the frequency correspond-
ing to the main time scale of a volume-averaged quantity can
vary more than one order of magnitude. We have tested other
chaotic flows in the same branch as well as all other classes of
chaotic flows found by Garcia et al. [16] and the results are sim-
ilar. The main conclusion is that the azimuthal drift behaviour
of flows at moderate Reynolds number Re = 103 is strongly
robust, even for highly oscillatory chaotic flows.

As found in Garcia et al. [16], for each class of flows with az-
imuthal mode mmax, mostly contributing to the kinetic energy,
the frequency associated with the azimuthal drift was very close
to that of the unstable rotating wave with azimuthal symmetry
mmax, at the same Hartmann number. With the present anal-
ysis we have demonstrated that this frequency is indeed quite
robust even when considering long time integrations. Thus, un-
stable rotating waves provide a good description of the main
time scale of the MSC flow at moderate Re = 103 and Ha < 6.

The present study sheds light on the analysis of future
HEDGEHOG experiments at Re = 103 and Ha < 4, which
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corresponds to the radial jet instability regime. The experi-
ment is designed to effectively work for low Ha (see Kasprzyk
et al. [29]) assuming an error of about 1% in the selection of
the parameters (see also Ogbonna et al. [37]). The analysis
of the DNS points to the difficulty of distinguishing regular
and chaotic flows in the experiment using time dependent spec-
tral analysis since highly accurate computation of the main fre-
quency (provided by Laskar’s algorithm) is required.

The key issue is that chaotic DNS exhibit small time fluctua-
tions of the main frequency of the flow velocity, which require
large enough observation windows of T ≥ 5, to be distinguish-
able from the intrinsic numerical fluctuations associated to the
approximation of the frequency, which are also present in the
case of regular solutions. With a kinematic viscosity of the eu-
tectic alloy GaInSn of ν = 3.4 × 10−3cm2s−1 (Plevachuk et al.
[39]) the time scale in seconds is t∗ = td2/ν = 5.96 × 103t, t
being the dimensionless time and the gap width d = ro − ri =

9 cm− 4.5 cm = 4.5 cm. Thus T ≥ 5 represents around 8 hours
of the HEDGEHOG experiment, which is almost the limit of a
typical experimental run (up to 10 hours) because of the degra-
dation of the signal quality (Ogbonna et al. [37]). This means
that observational time windows of maximum size T ∼ 2 can be
considered in the experiment which are impractical for detect-
ing chaotic flows if the analysis of the main frequency obtained
from a velocity measurement is performed.

By analyzing the volume-averaged kinetic energy, and not
directly the flow velocity, we have shown that the main fre-
quency can vary several orders of magnitude (even for small
time windows of T = 1) in the case of a chaotic flow belong-
ing to the Feigenbaum scenario at Ha = 0.7 (see Table 2).
These chaotic flows could be detected in the experiment pro-
vided that the time-dependent spectral analysis is performed
to a secondary frequency of the flow reflecting the modulation
of volume-averaged properties. This can be done within the
HEDGEHOG measurement setup as the frequency spectrum
can be computed independently for the m = 0, 1, 2, 3, 4 and 5
azimuthal wave number components of the flow (see Ogbonna
et al. [37] for details). The analysis of the volume-averaged
kinetic energy does not work for detecting the onset of chaotic
flows if time windows of T < 5 are used, neither for the Feigen-
baum nor the Newhouse-Ruelle-Takens scenarios.
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