Topological dipole Floquet solitons
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We theoretically introduce a new type of topological dipole solitons propagating in a Floquet topological insulator based on a kagome array of
helical waveguides. Such solitons bifurcate from two edge states belonging to different topological gaps and have bright envelopes of different
symmetries: fundamental for one component, and dipole for the other. The formation of dipole solitons is enabled by unique spectral features
of the kagome array which allow the simultaneous coexistence of two topological edge states from different gaps at the same boundary. Notably,
these states have equal and nearly vanishing group velocities as well as the same sign of the effective dispersion coefficients. We derive envelope
equations describing components of dipole solitons and demonstrate in full continuous simulations that such states indeed can survive over

hundreds of helix periods without any noticeable radiation into the bulk.

PhySH Subject Headings: Solitons; Topological insulators, Floquet in-
sulators.

Topological insulators represent a new phase of matter character-
ized by qualitatively different behavior of excitations in the bulk and
at the edge of these topologically nontrivial materials. The phenome-
nology of topological insulators, originally developed in solid state
physics [1,2], was extended to diverse areas of physics, where it stim-
ulated numerous experimental realizations, e.g. in mechanics [3,4],
acoustics [5,6], in atomic [7,8], optoelectronic [9-11], and various pho-
tonic [12-19] systems. The important progress made in linear topolog-
ical photonics is described in reviews [20-22], while investigation of
topological effects in nonlinear systems is still in its infancy. In such
systems evolution of the topological edge states may be considerably
affected by nonlinearity and a whole set of novel phenomena, ranging
from topologically-protected lasing to the formation of so-called top-
ological edge solitons becomes available [23-25]. Nonlinearity has
been shown to impact the modulational stability of topological edge
states [26-28], the direction of topological currents [29], the appearance
of topologically nontrivial phases [30-32], and to lead to bistability
[33]. Furthermore, nonlinearity can give rise to topological closed cur-
rents in the bulk of the photonic insulator [34,35] and induce a topo-
logical current at its edges [36]. Nonlinear hybridization of topological
and bulk states was observed in [37], and the valley Hall effect for vor-
tices in nonlinear system was predicted in [38].

Nonlinearity allows the formation of edge solitons —unique states
that exhibit topological protection and simultaneously feature a rich
variety of shapes and interactions. Edge solitons were predicted in
photonic Floquet insulators in continuous [26,34,39,40] and discrete
[41-44] models, and in polariton microcavities [28,45,46]. Their coun-
terparts in nontopological photonic graphene were observed in [47].
Floquet Bragg solitons were reported in [48]. Topological (non-Flo-
quet) systems also allow the formation of Dirac [49], Bragg [50], and
valley Hall [51] edge solitons. Even though such states may in princi-
ple be encountered in many physical systems, potentially including
Bose-Einstein condensates in time-modulated potentials [52,53], only
fundamental edge solitons with bell-shaped amplitude profiles have
been reported to date. The only exception is Floquet dark-bright states

introduced in [40], where opposite signs of the dispersion in two com-
ponents dictate the dark structure of one of them — nevertheless still
representing a fundamental state.

Unlike regular solitons that are rigorously defined, the corre-

sponding concept in nonlinear Floquet insulators refers generically to
the observation of localized states in nonlinear topological insulators.
Here, by a Floquet soliton (FS) we denote a beam localized in the
(z,y) -plane near the interface between topologically different mate-
rials, which bears the following two properties: it belongs to a nonlin-
ear family bifurcating from the respective linear Floquet-Bloch edge
state, and in the weakly-nonlinear limit its envelope represents a con-
ventional soliton solution of the averaged nonlinear equation with
constant coefficients. Due to the broken transversal (in the (z,y)-
plane) and longitudinal (along the 2 -direction) translational symme-
tries, such states are intrinsically nonstationary, undergoing small-
scale oscillations that, as we will see in our numerical simulations, ren-
der them effectively metastable, as they decay during evolution albeit
remarkably slowly. Thus, the envelopes of FSs analyzed here for a ka-
gome Floquet insulator are described by soliton-bearing coupled non-
linear Schrodinger (NLS) equations with constant coefficients and
they remain localized during exceedingly large longitudinal lattice
helical periods [26,35].

The dipole FSs introduced here are comprised of contributions
from different topological gaps with envelopes of different symme-
tries. For the existence of such solitons, the linear edge states they bi-
furcate from must have equal group velocities and at the same time
experience equal signs of the dispersions (understood here in terms of
the Floquet-Bloch spectrum). Then the system sustains FSs where
both components are bright. The dipole envelope of the weaker com-
ponent in such two-dimensional (2D) states is held in shape only by
the nonlinear coupling to the stronger fundamental component, as in
nontopological vector dipole solitons in uniform media [54-57]. Di-
pole FSs are hybrid objects that are confined to the edge due to their
topological nature, while the nonlinear self-phase modulation enables
their localization along the edge. This is in contrast to conventional
scalar 2D dipole solitons characterized by identical localization mech-
anism in two transverse dimensions [58-61].

The propagation of light along the z -axis of a helical kagome ar-
ray with focusing cubic nonlinearity is governed by the nonlinear

©2021 American Physical Society



Schrodinger (NLS) equation for the dimensionless field amplitude 1
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Here r =iz + jy is the radius-vector in the transverse plane, z,y are
the normalized transverse coordinates, A, = 82/ 022 +0%/0y*; 2
is the normalized propagation distance and the refractive index pro-
file is described by the function R(r,z)=R(r,z+T1)=R(r + Lj, z).
The array is comprised of identical waveguides of width o placed in
thenodes r,,, of the kagome grid R(r,z) = pz It —s()F /7
,where p is the array depth, and s(z) = TO(SIH(LUZ) cos(wz) —1) de-
scribes helical trajectory of each waveguide with the Floquet period

T =27 /w and radius r, [Fig. 1(a)]. The y -period of such array is
L =2d,where d is the separation between waveguides. To obtain
edge states, we truncate the array in the 2 -plane to form zigzag
boundaries [Fig. 1(d)]. Typical parameters of such structures are
d~1.9 (19 pm spacing), 1~ 0.0—1.0 (helixradiusupto 10 pm ),
p~12 (refractive index én~9x107%), 6 ~04 (4 ym wide
waveguides), T~ 0—10 (helix periods up to 12 mm ). We assume
excitation at A = 800 nm . Arrays with such parameters can be read-
ily created by femtosecond laser inscription [17]. Notice that topolog-
ical protection of linear and nonlinear scalar modes in Floquet insula-
tors with helical channels and similar array parameters have already
been demonstrated in Refs. [26,40], so we expect the same degree of
protection also for dipole vector states analyzed below.

0.28

0.0 U )

k/K

0.0 05

k/K

Fig. 1. (a) Schematics of a kagome array of helical waveguides. (b) Dependencies b(k) showing three upper bands from the Bloch spectrum for

a finite array [see array profile in Fig. 1(d)] with straight waveguides (r, = 0) .

() Quasi-propagation-constants b(k) defined modulo w for a

finite kagome array with helical channels at 7, = 0.6, T' = 8 . Red dots indicate edge states from different gaps with equal velocities 9, 5 / Ok
. (d) Three periods of finite kagome array (top) and linear Floquet eigenmodes ), 5 from the left edge (middle and bottom) at 2 =0,
k =0.472K corresponding to the red dots in (c). Here and below p =12, d=1.9, 0 =0.4 .

Linear eigenmodes of the helical array are Floquet-Bloch waves
T/J(I'a Z):¢uk:(r7 Z)eib”kz ’ where ¢uk(r7 Z) = ui/k(r7 z)eiky and the func-
tion w,;.(r,2) = u,(r,2 +T) = u,(r + Lj, z) is periodic along both
z and y axes.Here k denotes the Bloch momentum in the first Bril-
louin zone k €[-K/2,+K/2), where K=27 /L, v is the mode
index, while b, €[-w/2,+w/2) is a quasi-propagation-constant
defined modulo w and describing the phase b,, 7" accumulated by
the Floquet-Bloch wave over one z -period. A representative spec-
trum of a truncated kagome array with straight waveguides (in this
case, at i) = 0, b is a standard propagation constant) is presented in
Fig. 1(b) (for brevity, we omit subscripts in b,; in the figures). We
show three upper bands, the lowest of which is nearly flat. Two pairs
of degenerate edge states are clearly visible in the spectrum. For any
non-zero helix radius 7= 0, the system becomes topologically non-
trivial as time-reversal symmetry is broken [62-64]. As a result, topo-
logical states occur on the left edge (we assign indices v = a, § to the
“top” and “bottom” states) as marked by magenta and green lines in
Fig. 1(c). Representative profiles of Floquet-Bloch waves from differ-
ent gaps are shown in Fig. 1(d) (at z =0).

A remarkable property of the kagome topological insulator is that
the derivatives b, = 9b,, / 0k, defining the group velocities
v, = —b;, of two topological states coexisting at a given edge (see [65]
for details) may coincide for certain values of the Bloch momentum
k [see, e.g. the red dots in Fig. 2(a)]. Importantly, the sign of the dis-
persion coefficients b, = 0%, / Ok? for the momentum correspond-
ing to the red dots is likewise identical [Fig. 2(b)]. Coexistence of top-
ological edge states with coinciding group velocities v, = v; and
equal signs of the effective diffraction in the underlying linear system
is necessary for the formation of multipole FSs as it allows for persis-
tent nonlinearity-mediated coupling. For our parameters, the group
velocities coincide at £ = 0.472K (see Fig. 2).
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Fig. 2. Derivatives b;, (a)and b, (b) for the edge state branches.

Solid (dashed) lines correspond to the states from left (right) edges.

Red dots indicate states from the left edge with equal group velocities

bo 5 =—0.00033 and negative dispersion b =—0.67331,

by = —0.16827 from which FSs bifurcate (see below). The color cod-
ing for different branches is the same as in Fig. 1(c).

To construct multipole FSs we focus on their bifurcation from the

linear Floquet-Bloch states Yo and g, . To this end we look for the
solution inthe form o ~ A, (Y, 2)d e + Ag(Y, 2)pge”* , where
A, s are the slowly-varying envelopes and Y = y — v, gz is the co-
ordinate in the frame moving with velocity v, 5 = b}, 5 , identical
for both components. We adopt a multiscale expansion that shows
that the envelopes 4, 5 are governed by the coupled focusing NLS
equations [65]: '
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where Xv = <(‘ ¢uk ‘2 7‘ ¢Vk ‘Z»T and Xx = <(‘ ¢ak ‘Z 7‘ ¢dk ‘Z)>T are the
effective self- and cross-modulation cogfficients, averaging over one
2 -period is defined as (g); =T~ | g(r,z)dz, and calculation of
the inner product (f,¢)= [ f*(r,2 g?(m z)dr is performed over the
entire transverse array area 3. Floquet-Bloch states ¢,,, are orthogo-
nal and normalized at the same instant z [65]: (¢,, ¢, ) = 6,7 - Note
that the considerable difference between quasi-propagation-constant
mismatch 6b;, = b,;, — by, =~ 0.15 and frequency of periodic modu-
lation (w=20.78) ensures that coupling between the modes is en-
tirely non-resonant and therefore exclusively mediated by nonlinear-
ity. Efficient nonlinear coupling between waves with different mo-
menta & can only occur for special ratio of propagation constants of
involved topological states that is not met in our system.
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Fig. 3. (a) Domain of dipole soliton existence on the (bfl‘l,b}}l) plane.
Dipole soliton envelopes at 5'=0.0015 (b)and b2 = 0.0027 (c) for
b3 = 0.0022 . (d) Maximal real part of perturbation growth rate ver-
sus b at bfl =0.001 (curvel), 0.0022 (curve?2),and 0.004 (curve
3). The parameters in the envelope equation at k= 0.472K are
b, =bj =—0.00033, by =-0.67331, b =—0.16827,
Yo = 0.31048, x5 = 0.36011, x, = 0.31973 .

We are interested in bright dipole soliton solutions of Eqs. (2) that
exist at bY,bs <0 [see Fig. 2(b)]. In such states the bell-shaped «
component prevents (by creating an effective potential well via cross-
phase modulation) out-of-phase poles of the dipole 3 component
from splitting, leading to the formation of stationary states. They can
be found by the Newton method in the form A4, ;= 111,,,‘(,‘6”"'-“‘Z ,
where the nonlinearity-induced phase shifts 5:'; should be suffi-
ciently small (much smaller than the quasi-propagation constants, the
topological-gap width, and longitudinal Brillouin zone w ) to ensure
that the profiles w,, 5 are broad and satisfy the assumption of slow

variation of the soliton profile. The properties of dipole solitons for
nonlinear and dispersion coefficients corresponding to the edge states
at k= 0.472K are described in Fig. 3. For a fixed b} dipole solitons
exist for b < b2 < bPP . The existence domain expands with '
[Fig. 3(a)]. Close to its lower border b the dipole 3 component
vanishes and only fundamental o component remains, while at the
upper border b;*P the soliton splits into two states gradually separat-
ing as the amplitude of the o component vanishes. Representative
profiles are shown in Fig. 3(b) and 3(c). By substituting the perturbed
envelope  solitons A, = (w, + e +nie’” )eib;}lz ,  where
y,,1, < w, , into Eq. (2) one arrives at a linear eigenvalue problem
[65], whose solution yields the growth rate §,, = Reé for the most
unstable perturbation depicted in Fig. 3(d) as a function of b . The
growth rate 6,, vanishes when bR — oW pIPP and for the broad
states considered here it remains well below 10~* implying that the
characteristicscale 1/ 6, of the instability development exceeds hun-
dreds of helix periods 7' .

To confirm the accuracy of the model (2) and to confirm that top-
ological dipole solitons are observable experimentally, we propa-
gated Floquet-Bloch modes with exact dipole soliton envelopes, ob-
tained from Eq. (2) for various b:'; values, in the helical kagome ar-
ray. Such evolution is governed by the full 2D model (1), which we
solved with a split-step FFT method. The input for Eq. (1) was con-
structed as v = w, (Y)¢n;+ws(Y)dg; . In the right column of Fig.
4(a)~(c) we show (with dots) the modulus of the projections of the field
1 on the linear Floquet-Bloch modes: ¢, = f e (r,2)(x, 2)dr
(m € Z defines the y -period on which pro]eg’r[ﬁﬂ is calculated), and
the input envelopes w, 3 (solid lines). The projections ¢, explicitly
show that dipole soliton at all distances shown contains contributions
from two Floquet-Bloch states, whose amplitudes remain practically
unchanged and whose envelopes remain mutually localized.

Propagation governed by (1) confirms the metastability of the di-
pole solitons, which survive over hundreds of helix periods even
when small-scale noise (up to 5% in amplitude) is added into the in-
put field distributions. The rotation of the waveguides induces fast z
-oscillations of the soliton peak amplitude (a signature of its Floquet
nature) and causes very weak radiation, which nevertheless does not
destroy the dipole solitons at the considered distances. The weak ra-
diation becomes noticeable only at propagation distances exceeding
the ones shown here at least by one order of magnitude. Metastability
[associated with very small, but nonzero growth rates 6,, for pertur-
bations in the envelope Eq. (2)] results also in an extremely-slowly
growth of the oscillations of the two poles (peaks) of the dipole com-
ponent (small input noise only slightly affects phase of these oscilla-
tions), which nevertheless do not cause splitting of the dipole state at
leastupto z <1 03T . Splitting may occur, but at larger distances. The
right column of Fig. 4(a)-(c) illustrates the corresponding evolution of
the total field 9 . Since the group velocities of the two components are
close to zero, the soliton remains virtually locked in place for the pa-
rameters chosen above, although for other helix parameters we ob-
tained slowly moving states. If nonlinearity is switched off, wave-
packets experience strong diffraction along the array edge at similar
propagation distances [Fig. 4(d)], an observation that further confirms
that the state from Fig. 4(a)-(c) is sustained by nonlinearity.
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Fig. 5. Propagation of dipole topological quasi-soliton in equivalent vector Eq. (3) in nonlinear medium (a)-(c) and its diffraction in linear regime
(d). Left column shows |, |, while right column shows |1 | . Parameters are the same as in Fig. 4.

When the combination (i.e. total field of the form ) ~ v, +1)3)
of two modes ¢, and %3 with different propagation constants is
substituted into (1), one can formally reduce it to two purely nonlin-
early coupled 2D NLS equations by collectmg terms ~ e ¢/
and dropping oscillating terms ~ ¢'"+"#)* (i.e. accounting only for
self- and cross-phase modulation interactions and skipping four-
wave mixing terms), without averaging over helix period T :
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The advantage of such a reduction is that (3) allows to follow the evo-
lution of each component. This reduction is partially justified due to
rapid variation of phase difference (b,;; —bg;.)z between modes, but
it has to be tested numerically because the scale (b, —bg,) ™" > T is
not the smallest one in the Floquet system. The model (3) can be also
directly derived for two waves with different polarizations/wave-
lengths. The propagation of the dipole FS in the vector model (3) with
a helical kagome array is illustrated in Fig. 5(a)-(c). Indeed, it shows
metastable propagation of the dipole soliton, qualitatively similar to
the dynamics encountered in the scalar model (Fig. 4). Also, the afore-



mentioned oscillations of the dipole component at the equivalent dis-
tances closely match the oscillations of the corresponding projections
in Fig. 4 (notice the different direction of the y-axis in panels with
projections). As in the scalar model, switching-off nonlinearity causes
strong diffraction (see [65] for the evolution of the peak amplitudes in
the linear and nonlinear cases). The remarkable similarity between
the dynamics in the scalar model (1) and in the vector model (3)
shows that the periodic modulation of the array does not introduce
any linear coupling of the involved modes.

In conclusion, we uncovered a new type of topological dipole FS,
which is constructed using envelopes featuring the different symme-
tries imposed on two edge states from different topological gaps ex-
hibiting equal group velocities. The solitonic nature of the wavepack-
ets is consistent with their bifurcation from the linear Floquet-Bloch
eigenstates at small amplitudes and by the preservation of their
shape over extremely long propagation distances. Our prediction has
broad implications, as dipole solitons can be observed for other types
of Floquet insulators featuring at least two topological gaps, such as,
e.g., Floquet Lieb insulators. It is plausible that more complex multi-
component solitons of non-fundamental nature may be also found.
Finally, we anticipate that the reported results may be relevant for
polaritonic and atomic nonlinear systems, where topological edge
solitons can be sustained by different physical mechanisms.
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