
Cluster of emerging technology: evaluation of
a production HPC system based on A64FX

Fabio Banchelli∗, Kilian Peiro∗, Guillem Ramirez-Gargallo∗, Joan Vinyals∗,
David Vicente∗, Marta Garcia-Gasulla∗ and Filippo Mantovani∗

∗ Barcelona Supercomputing Center
Plaça Eusebi Güell, 1-3 08034 Barcelona (Spain)

Abstract—Clusters of emerging technologies are appearing
with more and more frequency in HPC. After years of skepticism,
data-centers are adopting them as production systems thanks to
several geopolitical and technological factors. The most honorable
example is the Fugaku supercomputer, powered by the latest
Fujitsu A64FX CPU. Which is the behavior of mature HPC codes
on such emerging technology clusters? Which performance will
obtain scientists when running their HPC applications “as is”
on these clusters? This paper presents the evaluation of CTE-
Arm, a Fugaku-like system, including both fine-tuned micro-
benchmarks and five scientific applications run without prior
fine-tuning: Alya, NEMO, Gromacs, OpenIFS, and WRF. Results
show that while micro-architectural benchmarks show perfor-
mance as expected, the performance obtained running HPC
applications not tuned for a specific architecture are between
2× and 4× slower compared with a standard Intel-based HPC
system. Therefore further effort is needed to improve tools (e.g.,
compilers) and system software (e.g., MPI libraries) to ease
applications deployment and improve their performance.

Index Terms—A64FX, Fujitsu, Arm, Benchmarks, Cluster
evaluation, HPC applications

I. INTRODUCTION AND RELATED WORK

After years of bring-up, the Arm-based systems reached the
ranking of the most powerful supercomputer in the world. The
Fugaku supercomputer powered by the Fujitsu A64FX CPU
is currently leading the lists of most powerful supercomputers
both in the LINPACK and the HPCG rankings.

Beyond the pure “muscle” performance reported with syn-
thetic benchmarks, scientists and data-centers are interested
in understanding the maturity of Arm-based systems as pro-
duction machines. This means they are interested not only in
their peak performance but also in the maturity of the system
software, the ease of deployment and maintenance, and the
performance of complex scientific codes.

This paper evaluates CTE-Arm, an emerging technology
cluster deployed as a production system at the Barcelona
Supercomputing Center. CTE-Arm is a smaller version of
the Fugaku supercomputer, composed of 192 compute nodes
powered by the Fujitsu A64FX CPU. Our basic idea is to
follow an evaluation process from simple codes evaluating
basic architectural features (floating-point, memory, and net-
work performance) up to synthetic benchmarks (LINPACK
and HPCG) to finish with real scientific applications. Con-
cerning the HPC applications, our evaluation aims to report the

experience and the results that can obtain an average HPC user
who accesses for the first time a Fugaku-like system and tries
to run complex codes without any prior tuning. We consider
this as the most relevant contribution of our paper which
nicely complements the effort of other evaluations of Arm-
based systems such as [1]–[4]. As a reference, we compare
all our results with MareNostrum 4, an Intel Skylake-based
system.

The paper is organized as follows: in Section II, we in-
troduce the basic concept of our Fugaku-like system and its
configuration; Section III and Section IV shortly reports about
the performance of micro-architectural benchmarks and syn-
thetic HPC benchmarks; in Section V we show performance
and scalability results obtained running five HPC complex
applications on a CTE-Arm and MareNostrum 4; our paper
ends with conclusions remarks in Section VI.

II. SYSTEM CONFIGURATION

CTE-Arm has the same architecture as the Fugaku super-
computer [5] and houses 192 nodes. Each node contains a
single A64FX CPU with 48 cores. This CPU is the first
commercial Armv8 CPU to implement the SVE vector exten-
sion. The cores are distributed across Core Memory Groups
(CMG) in groups of 12 cores. Each CMG connects to an HBM
module, and communication across CMGs is accomplished
through a ring bus. Compute nodes in CTE-Arm are connected
via the TofuD interconnect in a six-dimensional torus topology.
The job scheduler of the cluster is aware of the network
topology and can allocate nodes for user jobs to exploit
proximity and reduce the latency of messages.

The reference runs of this paper have been performed on
the MareNostrum 4 supercomputer. MareNostrum 4 is the
flagship supercomputer at Barcelona Supercomputing Center.
It has 3456 compute nodes based on Intel’s x86 architecture.
Each node includes two Skylake CPUs, each one with 24 cores
and six DDR4 memory channels. Compute nodes in MareNos-
trum 4 are connected via Intel’s OmniPath interconnect.

Table I summarizes the characteristics of the system. We
refer to the official Microarchitecture Manual written by
Fujitsu 1 to fill in the architectural specifications of CTE-Arm.

1https://raw.githubusercontent.com/fujitsu/A64FX/master/doc/A64FX_
Microarchitecture_Manual_en_1.0.pdf

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. DOI 10.1109/Cluster48925.2021.00110

https://raw.githubusercontent.com/fujitsu/A64FX/master/doc/A64FX_Microarchitecture_Manual_en_1.0.pdf
https://raw.githubusercontent.com/fujitsu/A64FX/master/doc/A64FX_Microarchitecture_Manual_en_1.0.pdf


For better clarity, measurements of CTE-Arm and MareNos-
trum 4 are depicted in red and blue, respectively, throughout
this document.

TABLE I
HARDWARE CONFIGURATION OF CTE-ARM AND MARENOSTRUM 4

CTE-Arm MareNostrum 4

System integrator Fujitsu Lenovo
Core architecture Armv8 Intel x86
SIMD extensions NEON, SVE AVX512
CPU name A64FX Intel Xeon Platinum 8160
Frequency [GHz] 2.20 2.10
Turbo Boost Disabled Disabled
Simultaneous Multi-Threading Disabled Disabled
Sockets / node 1 2
Core / node 48 48

DP Peak / core [GFlop/s] 70.40 67.20
DP Peak / node [GFlop/s] 3379.20 3225.60

L1 cache size / core 64 kB 32 kB
L2 cache size / core 32 MB 1 MB
L3 cache size / core - 33 MB
Memory / node [GB] 32 96
Memory tech. HBM DDR4-2666
Memory channels 4 6 per socket
Peak memory bandwidth [GB/s] 1024 GB/s 256 GB/s

Num. of nodes 192 3456
Interconnection TofuD Intel OmniPath
Peak network bandwidth [GB/s] 6.80 12.00

III. MICRO-BENCHMARKS

A. Floating point throughput

We designed a micro-kernel, called FPU_µKernel, to mea-
sure the peak floating-point throughput of the machine. It
contains exclusively fused-multiply-accumulate assembly in-
structions with no data dependencies between them. The kernel
has six versions given by combining two types of instructions
(scalar/vector) and three datatype precisions (half/single/dou-
ble).

The theoretical peak performance of the vector unit Pv can
be computed as Pv = s · i · f · o, where s is the number
of elements processed in parallel by the vector unit (e.g.,
four single-precision elements in NEON), i is the number of
instructions issued per cycle; f is the frequency of the core,
and o is the number of floating-point operations made by the
instruction (e.g., fused-multiply-accumulate does two floating-
point operations).

Figure 1 shows the results of the FPU_µKernel on one core
of each machine. The x-axis represents different floating-point
datatypes, and the y-axis represents performance. Each bar has
a number representing the percentage of the theoretical peak
performance achieved by the FPU_µKernel. We observe that
the measurements shown in Figure 1 match almost perfectly
with the theoretical values of both machines.

We verified there is no variability of the performance within
a node running a multi-threaded version of the FPU_µKernel.
Finally, we verified that there is no variability across the
nodes.

Fig. 1. Sustained performance in one core of the six versions of the
FPU_µKernel in CTE-Arm and MareNostrum 4 nodes

B. Memory performance

Here we evaluate the memory bandwidth using
STREAM [6], a simple synthetic benchmark to measure
sustainable memory bandwidth. Our study analyses an
A64FX node from the CTE-Arm cluster, compared side by
side with a Skylake node from MareNostrum 4 using the
C-version2 and the Fortran-version3 of STREAM. STREAM
kernels iterate through data arrays of double-precision
floating-point elements (8 bytes) with a size fixed at compile
time. The number of elements of each array E must be
greater than the maximum between ten million elements and
four times the size of the sum of all the last-level caches.
E ≥ max

{
107 ; 4 · S/8

}
, where E is the number of

elements of each array, and S is the size of the last level
cache in bytes.

We run the benchmark by fixing the problem size and
increasing the number of OpenMP threads. Table II shows the
compiler version and flags for each machine. For the Fortran
version of STREAM, we added -CcI4I8 to index large
arrays. We executed using E = 610 · 106 and E = 400 · 106
elements for CTE-Arm and MareNostrum 4, respectively.

Figure 2 shows the achieved bandwidth on CTE-Arm (red
lines) and MareNostrum 4 (blue lines) executing the C-version
(darker colors) and the Fortran version (lighter colors) of all
STREAM kernels. The x − axis represents the number of
OpenMP threads, growing up to the number of cores in each
node, and the y − axis indicates the maximum bandwidth.
The figure also includes two horizontal lines representing the
peak bandwidth achieved on each processor. We repeated each
test several times, and we verified that the variability across
different executions is negligible.

Figure 2 shows that A64FX reaches its highest bandwidth
(292.0 GB/s corresponding to 29% of the peak) when running
with 24 OpenMP threads while MareNostrum 4 obtains its
best result (201.2 GB/s 66% of the peak) with 48 OpenMP
threads. On CTE-Arm, it is essential to note that the OpenMP-
only code reaches a very low percentage of the peak (29%) and

2http://www.cs.virginia.edu/stream/FTP/Code/stream.c
3http://www.cs.virginia.edu/stream/FTP/Code/Versions/stream_mpi.f

http://www.cs.virginia.edu/stream/FTP/Code/stream.c
http://www.cs.virginia.edu/stream/FTP/Code/Versions/stream_mpi.f


TABLE II
BUILD CONFIGURATIONS FOR STREAM

Build Compiler Compiler Flags

CTE-Arm OpenMP Fujitsu/1.2.26b -Kfast,parallel -KA64FX -KSVE -KARMV8_3_A -Kopenmp
-Kzfill=100 -Kprefetch_sequential=soft -Kprefetch_iteration=8
-Kprefetch_iteration_L2=16 -Knounroll -mcmodel=large

CTE-Arm MPI+OpenMP Fujitsu/1.2.26b -Kfast,parallel -KA64FX -KSVE -KARMV8_3_A -Kopenmp
-Kzfill=100 -Kprefetch_sequential=soft -Kprefetch_iteration=8
-Kprefetch_iteration_L2=16 -Knounroll

MareNostrum 4 OpenMP Intel/19.1.1.217 -O3 -xHost -qopenmp-link=static -qopenmp
MareNostrum 4 MPI+OpenMP Intel/19.1.1.217 -O3 -xHost -qopenmp-link=static -qopenmp

that different languages deliver slightly different performance,
with C running ∼ 10% faster than Fortran.

Fig. 2. STREAM Triad bandwidth with OpenMP in CTE-Arm and MareNos-
trum 4 nodes (thread binding: spread)

Since the OpenMP version of STREAM delivers such a
poor performance, we decided to test the hybrid version of
the same TRIAD kernel coded using MPI+OpenMP. Figure 3
presents the bandwidth measured when running the STREAM
Triad version leveraging the shared memory parallelization
(OpenMP) combined with MPI. We pinned at most one
process per NUMA node in each cluster (CMG in CTE-Arm
and Socket in MareNostrum 4). The combination of MPI ranks
and OpenMP threads are shown in the plot on top of each
point in the form of MPI-rank × OMP-thread. The Fortran
version of the STREAM Triad benchmark reaches the highest
bandwidth on CTE-Arm, 862.6 GB/s, corresponding to 84 %
of the theoretical peak. Interestingly, the C version of the same
benchmark reaches only 421.1 GB/s, but we do not have an
explanation for this.

C. Network performance

In this section, we present our evaluation of the commu-
nication network using a custom micro-benchmark based on
the OSU Benchmarks 4 (version 5.6.3), a collection of small
synthetic codes to measure different network performance
aspects. We refer to [7], where it is stated that the peak
bandwidth of the TofuD interconnect is 6.8 GB/s. In CTE-
Arm we used the MPI implementation provided by Fujitsu
version 1.1.18.

4http://mvapich.cse.ohio-state.edu/benchmarks/

Fig. 3. STREAM Triad bandwidth with MPI+OpenMP in CTE-Arm and
MareNostrum 4 nodes

The program measures the network bandwidth on a point-
to-point communication between two processes. The program
iterates a loop N times given a fixed message size of s Bytes.
For each iteration, there is one MPI_Sendrecv call. We
measure the time it took to complete N iterations by placing
two timestamps (ts and te) at the beginning and the end of the
loop. Thus, the bandwidth reported by the test is computed as

B =
s ·N
te − ts

.

We repeated the tests for multiple pairs of nodes to de-
termine if there were systematic weak links on CTE-Arm.
Figure 4 shows a map where the axes represent the pair of
nodes, and each cell is color-coded to indicate the bandwidth.
We present the measurements for message sizes of 256 B as
representative of medium message sizes of a hypothetical HPC
application. We observe recurring patterns along the diagonals
where pairs of nodes have higher bandwidth. This fact is due to
the network topology, as a point-to-point message exchange on
a torus network such as TofuD requires a different number of
hops depending on the node’s position on the torus topology.
The color pattern also highlights a node arms0b1-11c that
achieves very low bandwidth when operates as a Receiver.
Interestingly enough, the same node does not seem to have
bandwidth limitations when it operates as Sender.

While the color code of Figure 4 is helpful to identify
patterns visually, it has limitations when we want to quantify
the network bandwidth across different pairs of nodes and
with different sizes of exchanged data. For this reason, in

http://mvapich.cse.ohio-state.edu/benchmarks/


Fig. 4. Bandwidth of all node-pairs of CTE-Arm (msg. size: 256 B)

Figure 5, we analyze the results of all tests with all pairs of
nodes plotting in a color scale the density of nodes achieving
a given bandwidth. On the x-axis, of Figure 5 we represent a
range of bandwidths. On the y-axis, we represent the message
size exchanged by each pair of nodes in the CTE-Arm cluster.
The color scale represents a histogram of how the bandwidth
results are distributed, with green light meaning a small
number of occurrences, while dark blue represents a high
number of occurrences.

Fig. 5. Distribution of the bandwidth on all pair of nodes in the CTE-Arm
network with different message sizes

It is interesting to note the high variability with message
sizes above 220 (1 MB) and the bimodal characterization of
the bandwidth distribution with message sizes between 210

and 218 (1 kB to 256 kB). We currently have no explanation
for this behavior.

IV. HPC BENCHMARKS

A. Linpack

We run all our tests using a vendor-provided binary
which is specifically optimized for the target architecture.

We present our scalability study for both clusters, CTE-Arm
and MareNostrum 4, where we fill whole nodes up to 192
nodes. The Linpack binary supports hybrid parallelization with
MPI+OpenMP. In CTE-Arm, we mapped 4 MPI ranks per
node, allocated to different CMGs. In MareNostrum 4, we
mapped 1 MPI rank per node, Intel’s recommended config-
uration, and maximizes performance. For each run, the N
parameter has been chosen so that the problem size is ≥ 80%
of the total available memory across all nodes. The P and
Q parameters have been chosen so that, for n MPI ranks,
P ×Q = n.

Figure 6 shows the scalability of Linpack in CTE-Arm and
MareNostrum 4. The x-axis represents the number of nodes,
and the y-axis represents the performance in GFlop/s. Each
point is the performance reported by the benchmark in a single
run. The colored horizontal dashed lines indicate the maximum
performance achieved in each cluster. The black horizontal
dashed lines indicate the theoretical peak performance of each
cluster.

Fig. 6. Linpack scalability in CTE-Arm and MareNostrum 4

We observe that 192 A64FX nodes perform closer to the
theoretical peak compared to 192 nodes of MareNostrum 4.
CTE-Arm achieves 85% of the peak compared to 63% of
MareNostrum 4. In the HPL Top500 list of November 20205,
Fugaku recorded 82% of the theoretical peak, which is 3%
below our results in CTE-Arm.

B. HPCG

We run two versions of HPCG: i) the Vanilla version
compiled as-is from the official repository 6, and ii) the
Optimized version provided as a binary specifically tuned for
each machine by the vendor.

To compile de Vanilla version in CTE-Arm, we
modified the default Makefile adding the compilation flags
-HPCG_NO_OPENMP -DHPCG_CONTIGUOUS_ARRAYS
-Kfast -Krestp=all. We used the Fujitsu compiler
1.1.18. In MareNostrum 4, we used the default
ICPC_MPI Makefile, which includes the optimization

5https://www.top500.org/lists/top500/2020/11/
6https://github.com/hpcg-benchmark/hpcg/releases/tag/

HPCG-release-3-1-0

https://www.top500.org/lists/top500/2020/11/
https://github.com/hpcg-benchmark/hpcg/releases/tag/HPCG-release-3-1-0
https://github.com/hpcg-benchmark/hpcg/releases/tag/HPCG-release-3-1-0


flags $(HPCG_DEFS) -O3 -mavx. We tried other
combinations of flags such as -O3 -mtune=skylake
-xCORE-AVX512 but performance did not improve. We
used the Intel compiler 2018.3 paired with Intel MPI and the
MKL mathematical libraries.

Based on the study by Ruiz et al. [8], we know that the
Vanilla version of HPCG does not take advantage of OpenMP.
Thus, we focused on the MPI version of the benchmark.
All executions have been performed with the parameters
-nx=48 -ny=88 -nz=88 -rt=300 running with the MPI-
only version of the benchmark and one rank per core (i.e., 48
ranks per node). In CTE-Arm, we set the environment vari-
ables FLIB_FASTOMP=TRUE, FLIB_HPCFUNC=TRUE, and
XOS_MMM_L_PAGING_POLICY=demand:demand:demand.

Fig. 7. HPCG performance in CTE-Arm and MareNostrum 4 for one and
192 nodes

Figure 7 shows the performance reported by HPCG in CTE-
Arm and MareNostrum 4 for one and 192 nodes. We show
both the Vanilla and Optimized versions of the benchmark.
The y-axis represents the performance (GFlop/s for one node
and TFlop/s for 192 nodes). The numbers on top of each bar
represent the percentage of the theoretical peak performance.

In CTE-Arm, the performance of HPCG with one and 192
nodes is 2.91% and 2.96% of the theoretical peak perfor-
mance, respectively. This is slightly below to the 3.62% of
Fugaku in the HPCG Top500 list of November 2020 7.

V. SCIENTIFIC APPLICATIONS

In this section, we present the first evaluation on CTE-Arm
of five HPC applications: Alya, NEMO, Gromacs, OpenIFS,
and WRF. Alya, NEMO, and Gromacs are part of the Uni-
fied European Applications Benchmark Suite (UEABS) of
PRACE, a set of twelve relevant codes together with their
data sets, which can realistically be run on large systems.
We voluntarily tested the applications “as is”, prioritizing
MPI-only parallelization, to report the performance that a
scientist could obtain when compiling without deep knowledge
of the architecture and without tuning the code for it. For
all applications, we measure their strong scaling behavior on
CTE-Arm and MareNostrum 4. In Table III we show the
configurations we used for building all applications. Compilers
or libraries with the suffix -sve offers SVE support.

7https://www.top500.org/lists/hpcg/hpcg-november-2020/

A. Alya

Alya [9] is a high-performance computational mechanics
code developed at the Barcelona Supercomputing Center. Alya
can solve different physics, including incompressible/com-
pressible turbulent flows, solid mechanics, chemistry, particle
transport, heat transfer, and electrical propagation. Our study
uses the TestCaseB input set, which models a sphere mesh
with 132 million elements. The code8 and input set9 are
publicly accessible in the UEABS repository. We run Alya
with an MPI-only parallelization. Our first attempt to compile
Alya was using the Fujitsu compiler 1.2.26b. Alya uses a
Makefile hierarchy to compile each Fortran module and link
them all together. However, we were not able to complete
the compilation process because the compiler hanged for the
most complex files. In this document, we present performance
results when compiling Alya with the GNU compiler.

The execution of Alya is divided into an initialization
phase, a computational phase, and a finalization phase. The
computational phase is further divided into iterations which
we call time steps. The number of time steps to complete the
simulation depends on the input set. The TestCaseB input set
has 20 time steps.

Fig. 8. Scalability of Alya in CTE-Arm and MareNostrum 4

Figure 8 shows the strong scalability study of Alya in
CTE-Arm and MareNostrum 4. The x-axis represents the
number of nodes, while the y-axis represents the average
time step. Each point represents the Elapsed CPU Time as
reported by the application averaged across 19 time steps (the
first iteration is discarded). The input set requires at least 12
A64FX nodes because it utilizes a large amount of memory.
For runs between 12 and 16 nodes, CTE-Arm is consistently
3.4× slower than MareNostrum 4.

We extended our study of CTE-Arm up to 78 nodes to find
the configuration that can match the performance of 16 nodes
of MareNostrum 4. The run with 44 A64FX nodes achieves
the same elapsed time than 12 MareNostrum 4 nodes.

Within one time step of Alya, we find multiple phases. The
two most time-consuming phases are the Assembly phase and

8https://repository.prace-ri.eu/ueabs/ALYA/2.1/Alya.tar.gz
9https://repository.prace-ri.eu/ueabs/ALYA/2.1/TestCaseB.tar.gz

https://www.top500.org/lists/hpcg/hpcg-november-2020/
https://repository.prace-ri.eu/ueabs/ALYA/2.1/Alya.tar.gz
https://repository.prace-ri.eu/ueabs/ALYA/2.1/TestCaseB.tar.gz


TABLE III
BUILD CONFIGURATIONS FOR ALL HPC APPLICATIONS

Application CTE-Arm MareNostrum 4

Alya

Compiler GNU/8.3.1-sve GNU/8.4.2
Flags -O3 -march=armv8.2-a+sve

-msve-vector-bits=512
-ffree-line-length-512 -DNDIMEPAR
-DVECTOR_SIZE=16 -DMETIS

-O3 -march=skylake-avx512
-ffree-line-length-none
-fimplicit-none -DNDIMEPAR
-DVECTOR_SIZE=16 -DMETIS

MPI Flavor Fujitsu/1.1.18 OpenMPI/4.0.2
Metis metis/4.0 metis/4.0

NEMO

Compiler GNU/8.3.1-sve Intel/2017.4
MPI Flavor Fujitsu/1.2.26b Intel/2018.4
Dependencies HDF5/1.12.0 NetCDF-C/4.7.4 NetCDF-F/4.5.3 HDF5/1.8.19 NetCDF-C/4.2 NetCDF-F/4.2
C Flags -O3 -O3
Fortran Flags -fdefault-real-8 -O3

-funroll-all-loops -fcray-pointer
-ffree-line-length-none

-g -i4 -r8 -O3 -xCORE-AVX512
-mtune=skylake -fp-model strict
-fno-alias -traceback

Gromacs
Compiler GNU/11.0.0 Intel/2018.4
Flags -O3 -fopenmp -march=armv8.2-a+sve

-msve-vector-bits=512
-O3 -qopenmp -xCORE-AVX512
-qopt-zmm-usage=high

MPI Flavor Fujitsu/1.2.26b Intel/2018.4
Dependencies fftw3/3.3.9-sve Fujitsu SSL2/1.2.26b fftw/3.3.8 MKL/2018.4

OpenIFS

Compiler GNU/8.3.1-sve Intel/2018.4
C Flags -O0 -O0
Fortran Flags -O2 -fconvert=big-endian

-fopenmp -ffree-line-length-none
-fdefault-real-8 -fdefault-double-8

-m64 -O2 -fpe0 -fp-model precise
-fp-speculation=safe -convert
big_endian -r8

MPI Flavor Fujitsu/1.2.26b Intel/2018.4
Dependencies HDF5/1.12.0 NetCDF-C/4.7.4 NetCDF-F/4.5.3 ec-

codes/2.18.0 BLAS/Internal LAPACK/Internal
HDF5/1.8.19 NetCDF-C/4.4.1.1 NetCDF-F/4.4.1.1
eccodes/2.18.0 MKL/2018.4

WRF

Compiler GNU/8.3.1-sve Intel/2017.4
MPI Flavor Fujitsu/1.2.26b Intel/2017.4
Dependencies NETCDF/4.2 HDF5/1.8.19 NETCDF/4.4.1.1 HDF5/1.8.19
CFLAGS_LOCAL -w -O3 -c -w -O3 -ip
FCOPTIM -O2 -ftree-vectorize -funroll-loops -O3
FORMAT_FIXED -ffixed-form -FI -cpp
FORMAT_FREE -ffree-form -ffree-line-length-none -FR -cpp
BYTESWAPIO -fconvert=big-endian

-frecord-marker=4
-convert big_endian

FCBASEOPTS_NO_G -w $(FORMAT_FREE) $(BYTESWAPIO) -ip -fp-model precise -w
-ftz -align all -fno-alias
$(FORMAT_FREE) $(BYTESWAPIO)

FCBASEOPTS $(FCBASEOPTS_NO_G) $(FCDEBUG) $(FCBASEOPTS_NO_G) $(FCDEBUG)

Fig. 9. Alya: Assembly phase in CTE-Arm and MareNostrum 4

the Solver phase. The Assembly phase is a computationally
intensive phase that can benefit from SIMD and vectorization

techniques. Figure 9 shows the scalability of this phase across
multiple nodes of CTE-Arm and MareNostrum 4. Each point
represents the elapsed time of the Assembly phase of the
slowest process averaged across 19 time steps. We observe
that 12 nodes of MareNostrum 4 are 4.96× faster than 12
nodes of CTE-Arm. It takes at least 62 nodes of CTE-Arm to
achieve the same performance as 12 nodes of MareNostrum 4.

The Solver phase is further divided into multiple iterations,
which are separated by collective MPI communications. Thus,
the Solver phase is heavily dominated by process communica-
tion and memory transactions. Figure 10 shows the scalability
of the Solver phase across multiple nodes of CTE-Arm and
MareNostrum 4. Each point represents the elapsed time of the
Solver phase of the slowest process averaged across 19 time
steps. In contrast to the Assembly phase, we observe a much
smaller gap between the performance of 12 MareNostrum 4
nodes and 12 CTE-Arm nodes (1.79× in the Solver phase
compared to 4.96× in the Assembly phase). Being the Solver



Fig. 10. Alya: Solver phase in CTE-Arm and MareNostrum 4

phase more memory-bound than the Assembly phase, we
suspect that it can take advantage of the higher performance
of the HBM within a A64FX compared to the DDR4 of
MareNostrum 4. Also, we observe that it takes at least 22
nodes of CTE-Arm to achieve the same performance as 12
nodes of MareNostrum 4.

B. NEMO

NEMO10 (Nucleus for European Modelling of the Ocean)
is a mathematical modeling framework for research activi-
ties and prediction services in ocean and climate sciences
developed by a European consortium. It is intended to be
a tool for studying the ocean and its interaction with the
other components of the earth’s climate system over a large
number of space and time scales. The model uses a curvilinear
orthogonal grid in the horizontal direction, and in the vertical
direction, a full or partial step z-coordinate, or s-coordinate,
or a mixture of the two. The distribution of variables is a
three-dimensional Arakawa C-type grid for most of the cases.
The model is implemented in Fortran 90, with preprocessing
(C-pre-processor) and parallelized by domain decomposition
with MPI. The ORCA family11 is a series of global ocean
configurations. The NEMO system is provided with five built-
in ORCA configurations, which differ in horizontal resolu-
tion. The use case executed is BENCH [10], a simplified
configuration designed to evaluate performance that mimics
the computational behavior and communication patterns of an
ORCA-like execution with a horizontal resolution of 1 degree
(corresponding to ORCA1).

Our first attempt to compile the application was using the
Fujitsu compiler. We encountered several compilation errors,
and we were not able to successfully compile NEMO. The
compilation errors do not appear when compiling with the
GNU compiler toolchain, so we decided to continue our study
with the GNU compiler. For our evaluation, we compiled
the version of NEMO v4.0.2 with the compiler setting and
dependencies reported in Table III.

10https://www.nemo-ocean.eu/
11https://www.nemo-ocean.eu/doc/node108.html

We measured the execution time averaging three runs of
NEMO running from 8 up to 192 compute nodes of CTE-
Arm and from 1 up to 24 nodes in MareNostrum 4. Results
are depicted in Figure 11. On the x-axis, we report the number
of compute nodes (fully populated with MPI processes) on
logarithmic scale. The y-axis reports the execution time in
seconds, also on logarithmic scale.

Fig. 11. NEMO: Scalability in CTE-Arm and MareNostrum 4

We note that we need at least 8 nodes of CTE-Arm to fit
the input of NEMO selected for this evaluation because of
memory constraints. The performance of MareNostrum 4 is
between 1.70× and 1.79× higher than CTE-Arm It takes 48
A64FX nodes to achieve the same performance as 27 nodes
of MareNostrum 4. We also note that the scalability on CTE-
Arm flattens at around 128 nodes because of strong scalability
limitations (problem size too small for the number of nodes).

C. Gromacs

Gromacs is a versatile package to perform molecular dy-
namics, i.e., simulate the Newtonian equations of motion for
systems with hundreds to millions of particles. It is primarily
designed for biochemical molecules like proteins, lipids, and
nucleic acids with many complicated bonded interactions.
Since Gromacs is extremely fast at calculating the nonbonded
interactions (that usually dominate simulations), several re-
search groups are also using it for research on non-biological
systems, e.g., polymers.

Our first attempt to compile Gromacs was using the Fu-
jitsu compiler 1.2.26b. Gromacs uses cmake as its build-
ing framework so we also used a compatible version of
cmake. During the cmake configuration, we enabled the
MPI parallelization and indicated to use the external libraries
that we supplied: fftw3, BLAS, and LAPACK. We also
enabled the SVE optimization implemented in Gromacs using
the -DGMX_SIMD=ARM_SVE flag. Lastly, we preceded the
cmake command with environment variables that indicate the
compiler and compiler flags that should be used. However, we
were not able to compile the application because of an error
in the cmake step of the build process. Since we could not
compile Gromacs using the Fujitsu compiler, we decided to try
the GNU compiler with the basic flags reported in Table III.

https://www.nemo-ocean.eu/
https://www.nemo-ocean.eu/doc/node108.html


The study presented in this section includes results of Gromacs
in the CTE-Arm cluster compiled with the GNU compiler. We
employed version 11.0.0 because 8.3.1-sve does not meet the
requirements of Gromacs.

We used the input set lignocellulose-rf12 [11]
from the UEABS repository for our study. The
lignocellulose-rf use case uses a reaction field
for electrostatics, which implies good scalability in a
large number of nodes. It leverages the MPI and OpenMP
parallelization of Gromacs and runs a simulation with 10000
steps. We run a scalability study of Gromacs at two levels of
scale: i) Single-node, and ii) Multi-node. For each run, we
fixed the number of OpenMP threads per MPI process to 6
and increased the number of processes like recommended by
Gromacs developers.

Figure 12 and Figure 13 show the scalability study within
one node and across multiple nodes of CTE-Arm and
MareNostrum 4 respectively. The x-axes represent the number
of cores and nodes, respectively, while the y-axes represent the
time (in days) to compute one nanosecond of simulation.

Fig. 12. Gromacs: Scalability in one node of CTE-Arm and MareNostrum 4

Looking at the single-node scalability study, we observe
that MareNostrum 4 is consistently outperforming CTE-Arm.
With 6 cores, CTE-Arm is 3.48× slower than MareNostrum 4.
With a whole node, CTE-Arm is 3.10× slower than MareNos-
trum 4.

Looking at the multi-node scalability study, we observe that
the run with 16 MPI processes performs unexpectedly bad
in both machines. We currently do not have an explanation
for this behavior. We tested a run with the same number of
cores distributed in 12 MPI processes and 8 OpenMP threads.
The performance of this alternative configuration follows the
scalability trend in both machines as indicated by the dotted
lines in Figure 13. With 144 full nodes, CTE-Arm is 1.5×
slower than MareNostrum 4.

D. OpenIFS

OpenIFS is a numerical weather prediction system, from
medium-range to seasonal timescales. It is developed and

12https://repository.prace-ri.eu/ueabs/GROMACS/1.2/GROMACS_
TestCaseB.tar.gz

Fig. 13. Gromacs: Scalability across nodes of CTE-Arm and MareNostrum 4

maintained by the European Centre for Medium-Range
Weather Forecasts (ECMWF) and provides the same forecast
capability as IFS (Integrated Forecasting System) but with an
easy-to-use version. In this section, we present our results of
OpenIFS in CTE-Arm and MareNostrum 4. We used version
oifs43r3v1 in both clusters. Our first attempt to compile the
application in CTE-Arm was using the Fujitsu compiler. How-
ever, we encountered a compiler error that required modifying
the code. The modifications to the code were minimal. After
successfully compiling OpenIFS with the Fujitsu compiler, we
encountered an error during the execution that we could not
solve. Finally, we decided to compile and run OpenIFS using
the GNU compiler toolchain.

Fig. 14. OpenIFS: Scalability in one node of CTE-Arm and MareNostrum 4

Table III shows the software configuration of OpenIFS in
CTE-Arm and MareNostrum 4. The configuration in MareNos-
trum 4 is based on the Makefile distributed with the applica-
tion. Software dependencies were already installed in the clus-
ter and available to all users. The configuration in CTE-Arm
is based on MareNostrum 4, translating the optimization flags
from the Intel compiler to the GNU compiler. It was necessary
to compile and install some of the software dependencies from
the source codes. BLAS and LAPACK are marked as Internal
in CTE-Arm because the build uses the implementation of
these libraries provided with the code of OpenIFS.

https://repository.prace-ri.eu/ueabs/GROMACS/1.2/GROMACS_TestCaseB.tar.gz
https://repository.prace-ri.eu/ueabs/GROMACS/1.2/GROMACS_TestCaseB.tar.gz


Our study of OpenIFS is at two levels of scale: i) Single-
node, using the TL255L91 input set and; ii) Multi-node,
using the Tco511L91 input set. Figure 14 and Figure 15
show the scalability study of both input sets in CTE-Arm
and MareNostrum 4. The x-axes represent the number of
MPI ranks or the number of nodes while the y-axes the
time to simulate one day measured in seconds. Each point
in the plot represents the average performance reported by the
application across five executions. With 8 ranks, the CTE-Arm
is 3.72× slower than MareNostrum 4. With one full node, the
performance CTE-Arm is 3.28× slower than MareNostrum 4.

The multi-node input set runs on a minimum of 32 A64FX
nodes because of memory requirements. With 32 nodes, CTE-
Arm is 3.55× slower than MareNostrum 4. With 128 nodes,
CTE-Arm is 2.56× slower than MareNostrum 4.

Fig. 15. OpenIFS: Scalability across nodes of CTE-Arm and MareNostrum 4

E. WRF

The Weather Research and Forecasting (WRF) Model is
a next-generation mesoscale numerical weather prediction
system designed for atmospheric research and operational
forecasting applications. The model serves a wide range of
meteorological applications across scales from tens of meters
to thousands of kilometers. Our study used an input set
representing the Iberian peninsula with 4 km resolution and
56 hours of simulation. During execution, WRF generates an
output frame for each hour of simulation, summing up a total
of 54 frames per run. In order to evaluate the effects of the
IO operations during the output of the frames, we run all our
tests two times: i) with IO enabled and, ii) with IO disabled.

Figure 16 shows the scalability study of WRF in CTE-
Arm and MareNostrum 4. The x-axis represents the number of
nodes, while the y-axis represents time. Each point represents
the elapsed time as reported by the application. We observe
that there is little difference in time between the runs that
enable IO and the runs that do not, giving the runs with
IO disabled a slight advantage. With one node, CTE-Arm
is 2.16× slower than MareNostrum 4. With 64 nodes, CTE-
Arm is 2.23× slower than MareNostrum 4. MareNostrum 4 is
consistently outperforming CTE-Arm.

Fig. 16. WRF: Scalability across nodes of CTE-Arm and MareNostrum 4

VI. CONCLUSIONS

This paper evaluated the CTE-Arm machine, an HPC cluster
housing 192 nodes with the same architecture of the Fugaku
supercomputer. Table IV summarizes the speedups of the
benchmarks and applications tested.

TABLE IV
SPEEDUP OF CTE-ARM RELATIVE TO MARENOSTRUM 4

We notice that synthetic benchmarks have a speedup of up
to 1.7× for LINPACK and up to 3.4× for HPCG compared to
MareNostrum 4. The HPC applications tested suffer a slow-
down between 1.6× and 3.4× compared to MareNostrum 4.
We verified that the compiler could not leverage the SVE unit
in several cases, leaving the performance to be delivered by the
scalar core. Thus, the overall poor performance of applications
can be explained by the weaker out-of-order capabilities of the
scalar core of the A64FX CPU compared to Intel one. For this
reason, tools should focus on more aggressive vectorization, so
to take advantage of SVE. The weaker scalar core of A64FX is
somewhat compensated by its fast memory subsystem, which
mitigates performance drops with memory-bound applications
(e.g., the Solver phase of Alya).

Besides the slowdown, other factors are harming the adop-
tion of CTE-Arm as a general-purpose production machine:
i) Single node memory limitations: e.g., Alya, OpenIFS, and
NEMO can not be run with a low number of nodes due to
this limitation, NP in Table IV. ii) Compiler restrictions: only
Fujitsu compiler is available, and not all applications can be
compiled with it. iii) MPI restrictions: the only available MPI
implementation that supports the Tofu network is strongly



dependent on the Fujitsu Compiler. Combining this MPI
installation with the GNU compiler suite is not accessible
for an average user. iv) Job scheduler restrictions: the job
scheduler does not allow allocating specific nodes or enforcing
specific process binding. The effort of Fujitsu and the Arm
community should lead towards a more complete and robust
set of tools (e.g., compilers) and system software (e.g., MPI
libraries, job scheduler) for A64FX and future Arm-based
CPU targeting HPC. As a side note, we point out that HPCG
is supposed to be a “more representative” benchmark than
LINPACK. However, it does not seem to predict/mimic the
trend of any of the applications tested.

ACKNOWLEDGMENTS

This work is partially supported by the Spanish Govern-
ment (SEV-2015-0493), by the Spanish Ministry of Science
and Technology (TIN2015-65316-P), by the Generalitat de
Catalunya (2017-SGR-1414), by the European and Horizon
2020 POP CoE (GA n. 824080).

REFERENCES

[1] S. McIntosh-Smith et al., “A performance analysis of the first generation
of HPC-optimized Arm processors,” Concurrency and Computation:
Practice and Experience, vol. 31, no. 16, 2019.

[2] F. Mantovani, M. Garcia-Gasulla et al., “Performance and energy
consumption of HPC workloads on a cluster based on Arm ThunderX2
CPU,” Future Generation Computer Systems, 2020.

[3] M. Nakao, K. Ueno, K. Fujisawa, Y. Kodama, and M. Sato, “Perfor-
mance of the supercomputer fugaku for breadth-first search in graph500
benchmark,” in International Conference on High Performance Com-
puting. Springer, 2021, pp. 372–390.

[4] E. Arima, Y. Kodama, T. Odajima, M. Tsuji, and M. Sato, “Power/per-
formance/area evaluations for next-generation hpc processors using the
a64fx chip,” in 2021 IEEE Symposium in Low-Power and High-Speed
Chips (COOL CHIPS). IEEE, 2021, pp. 1–6.

[5] M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji,
H. Yashiro, M. Aoki, N. Shida, I. Miyoshi et al., “Co-design for a64fx
manycore processor and” fugaku”,” in SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2020, pp. 1–15.

[6] J. D. McCalpin et al., “Memory bandwidth and machine balance in
current high performance computers,” IEEE computer society technical
committee on computer architecture (TCCA) newsletter, vol. 1995, pp.
19–25, 1995.

[7] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai, T. Shimizu,
S. Hiramoto, Y. Ikeda, T. Yoshikawa, K. Uchida et al., “The tofu
interconnect d,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2018, pp. 646–654.

[8] D. Ruiz, F. Spiga, M. Casas, M. Garcia-Gasulla, and F. Mantovani,
“Open-source shared memory implementation of the hpcg benchmark:
analysis, improvements and evaluation on cavium thunderx2,” in 2019
International Conference on High Performance Computing & Simulation
(HPCS). IEEE, 2019, pp. 225–232.

[9] M. Vázquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra,
R. Arís, D. Mira, H. Calmet, F. Cucchietti, H. Owen et al., “Alya:
Multiphysics engineering simulation toward exascale,” Journal of Com-
putational Science, vol. 14, pp. 15–27, 2016.

[10] S. V. P. Ticco, M. C. Acosta, M. Castrillo, O. Tintó, and K. Serradell,
“Keeping computational performance analysis simple: an evaluation of
the nemo bench test.” [Online]. Available: https://bit.ly/nemo-bench

[11] B. Lindner, L. Petridis, R. Schulz, and J. C. Smith, “Solvent-driven
preferential association of lignin with regions of crystalline cellulose in
molecular dynamics simulation,” Biomacromolecules, vol. 14, no. 10,
pp. 3390–3398, 2013.

https://bit.ly/nemo-bench

