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Abstract

Information and communications technology has evolved to the point of being present in
most things in our daily lives. Even the simplest object that everyone has in their home is
getting smarter, like toothbrushes, cars, phones and so on. All that devices are connected
to the Internet to make our life easier.

The question is, how is all that amount of data processed?
Here is when Artificial Intelligence appears. AI is the part of ICT dedicated to the de-
velopment of algorithms that allows a machine to make intelligent decisions or, at least,
behave as if it has a human-like intelligence.
The use of AI is present in many sectors such finance, health, transport, or even agricul-
ture. Machine Learning is a branch of AI based on the idea that computer systems can
learn on their own from data.
Data science has implemented Machine Learning algorithm such as the Artificial Neural
Network to work with Statistics and Linear Regression for data processing.
An ANN is the piece of a computing system designed to simulate the way the human
brain analyses and processes information. It is the foundation of AI and solves problems
that would prove impossible or difficult by human or statistical standards.

But, is this resource always the best solution?
This paper is about a comparison between Seasonal Artificial Neural Network with classic
models as Seasonal Autoregressive Integrated Moving Average for rainfall forecasting.

The project started by doing an introduction to Deep Learning and Machine Learning.
Afterwards, the process of obtaining an adequate amount of data to create a proper
dataset began.
To do that, we used data from of some pluviometers distributed over the Hauts-de-Seine
territory in France. With data from 2009 to 2020 of 19 sensors, the dataset was used
to experiment with different algorithms and different configurations to obtain different
predictions.

The forecasting performance of SARIMA model and that of SANN were compared with
four forecast performance measures:
- Mean Forecast Error, Mean Absolute Error, Mean Squared Error and Root Mean
Squared Error.
Not only will the accuracy of the model be taken into account, but also the runtime and
implementation requirements will be used as a benchmark.

Finally, all models were tested in the same work environment and a conclusion was reached
thanks to the results obtained from different reference points.

3



Resum

Les tecnologies de la informació i de la comunicació han evolucionat fins al punt d’estar
presents en la majoria de coses de la nostra vida quotidiana. Fins i tot l’objecte més senzill
que tothom té a casa és cada vegada més intel·ligent, com ara raspalls de dents, cotxes,
telèfons, etc. Tots aquests dispositius estan connectats a Internet per facilitar-nos la vida.

La pregunta és: com es processa tota aquesta quantitat de dades?
Aqúı és quan apareix la Intel·ligència Artificial. La IA és la part de les TIC dedicada al
desenvolupament d’algoritmes que permet a una màquina prendre decisions intel·ligents
o, si més no, comportar-se com si tingués una intel·ligència semblant a la humana.
L’ús de la IA està present en molts sectors, com el financer, la salut, el transport o fins i
tot l’agricultura. L’aprenentatge automàtic és una branca de la IA basada en la idea que
els sistemes informàtics poden aprendre sols a partir de dades.
La ciència de les dades ha implementat un algoritme d’aprenentatge automàtic, com és
la Xarxa Neuronal Artificial, per treballar amb estad́ıstiques i regressió lineal per al pro-
cessament de dades. Una ANN és la part d’un sistema informàtic dissenyat per simular
la manera com el cervell humà analitza i processa la informació. És el fonament de la
IA i resol problemes que resultarien impossibles o dif́ıcils per als estàndards humans o
estad́ıstics.

Però, aquest recurs és sempre la millor solució?
Aquest article tracta sobre una comparació entre la Xarxa Neuronal Artificial Estacionals
amb models clàssics com la Model Auto Regressiu Integrat de Mitjans Mòbils Estacional
per a la predicció de pluges.

El projecte va començar fent una introducció a l’Aprenentatge Profund i l’Aprenentatge
Automàtic. Després, es va iniciar el procés d’obtenció d’una quantitat adequada de dades
per crear un conjunt de dades necessari.
Per fer-ho, hem utilitzat les dades d’alguns pluviòmetres distribüıts pel territori dels
Hauts-de-Seine a França. Amb dades des del 2009 fins al 2020 de 19 sensors, el conjunt de
dades es va utilitzar per experimentar amb diferents algoritmes i diferents configuracions
per obtenir prediccions diferents.

El rendiment de la predicció del model SARIMA i el de SANN es van comparar mitjançant
quatre mesures de rendiment:
- L’Error de Previsió Mitjà, l’Error de Previsió Absolut, l’Error Quadràtic Mig i l’Arrel
de l’Error Quadràtic Mig.
No només es tindrà en compte la precisió del model, sinó que també s’utilitzaran els req-
uisits d’execució i d’implementació com a benckmark.

Finalment, tots els models es van provar en el mateix entorn de treball i es va arribar a
una conclusió gràcies als resultats obtinguts de diferents punts de referència.
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Resumen

Las Tecnoloǵıas de la información y la comunicación han evolucionado hasta el punto de
estar presentes en la mayoŕıa de las cosas de nuestra vida diaria. Incluso el objeto más
simple que todos tienen en su hogar se está volviendo más inteligente, como cepillos de
dientes, automóviles, teléfonos, etc. Todos esos dispositivos están conectados a Internet
para hacernos la vida más fácil.

La pregunta es, ¿cómo se procesa toda esa cantidad de datos?
Aqúı es cuando aparece la Inteligencia Artificial. La IA es la parte de las TIC dedicada
al desarrollo de algoritmos que permite que una máquina tome decisiones inteligentes o,
al menos, se comporte como si tuviera una inteligencia similar a la humana.
El uso de la IA está presente en muchos sectores como las finanzas, la salud, el transporte
o incluso la agricultura. El aprendizaje automático es una rama de la inteligencia artificial
basada en la idea de que los sistemas informáticos pueden aprender por śı mismos a partir
de datos.
La ciencia de datos ha implementado un algoritmo de aprendizaje automático como la
Red Neuronal Artificial para trabajar con estad́ısticas y regresión lineal para el proce-
samiento de datos.
Una ANN es la parte de un sistema informático diseñado para simular la forma en que el
cerebro humano analiza y procesa la información. Es la base de la IA y resuelve problemas
que resultaŕıan imposibles o dif́ıciles según los estándares humanos o estad́ısticos.

Pero, ¿Es este recurso siempre la mejor solución?
Este art́ıculo trata de una comparación entre la Red Neural Artificial Estacional con
modelos clásicos como Modelo Autorregresivo Integrado de Media Móvil Estacional para
el pronóstico de lluvia.

El proyecto comenzó con una introducción al Aprendizaje Profundo y al Aprendizaje
Automático. Posteriormente, comenzó el proceso de obtener una cantidad adecuada de
datos para crear un conjunto de datos necesario.
Para ello, utilizamos datos de algunos pluviómetros distribuidos en el territorio de Hauts-
de-Seine en Francia. Con datos desde el 2009 hasta 2020 de 19 sensores, el conjunto de
datos se utilizó para experimentar con diferentes algoritmos y diferentes configuraciones
para obtener diferentes predicciones.

El rendimiento de pronóstico del modelo SARIMA y el de SANN se compararon con cu-
atro medidas de rendimiento:
- Error de Pronóstico Medio, Error de Pronóstico Absoluto, Error Cuadrático Medio y
Ráız del Error Cuadrático Medio.
No solo se tendrá en cuenta la precisión del modelo, sino que también se utilizarán como
punto de referencia el tiempo de ejecución y los requisitos de implementación.

Finalmente, todos los modelos fueron probados en el mismo entorno de trabajo y se llegó
a una conclusión gracias a los resultados obtenidos de diferentes puntos de referencia.
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1 Project Plan

1.1 Introduction

In this fast-paced world where we live, it is impossible to be an expert in everything; that
is why we use technology to help us with many day to day activities. With the arrival of
IoT, cities are becoming smarter, what means that we are surrounded by a multitude of
sensors. From an autonomous driving car to the vacuum you have at home, they produce
a certain amount of data.

This is where the problem arises; how can we manage this amount of data?
We cannot improve people’s lives just by giving them technological improvements if we do
not know how to manage them. Artificial Intelligence has entered the game to the field.
Machine Learning is a branch of AI based on the idea that systems can learn from data,
identify patterns and make decisions with minimal human intervention.

In the data science world, the use of AI in conjunction with classic models is becoming
more and more common. The self-learning capability helps to handle a much larger amount
of data than was possible in the past.
Is it possible that in the future that AI will eventually replace the use of classical models
such as linear regression and statistics?
The aim of this study is to introduce Artificial Intelligence to the debate.

1.2 Statement of purpose

The aim of this project is to implement and compare the performance between a classical
model and an AI-based model for time series forecasting.
In order to make that comparison, we use the same data in all models.
The project is divided in the following sections:

• Classical model. Study and implementation of a linear regression model for sea-
sonal forecasting.

• AI-based model Study and implementation of different univariate ML models.

Once all models are implemented, we use a dataset to compare the forecast performance.
From that dataset, we forecast next 12 month.
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1.3 Requirements and specifications

• Requeriments:
In order to choose the best model for time series forecasting, we first have to create
a dataset for do all testing. Once the dataset is created, we do a study of each model
to choose the best parameters.

• Specifications:
In order to choose the best parameters of each model:

1. SARIMA model. Seasonal Autoregressive Integrated Moving Average.
A near regression model for seasonal forecasting composed by two parts: non-
seasonal parameters (p,d,q) from ARIMA and seasonal parameters (P,D,Q,s).

2. ANN-based model. Neural Network is the part of ML used to simulate the
way the human brain analyzes and processes information to forecast. There are
different types, the one used in that project are:

– LSTM: Long short-term memory is an RNN architecture used in the field
of deep learning.

– CNN: Convolutional Neural Networks is a type of neural network used
for time series.

3. Prophet: is an additive regression model developed by Facebook and designed
for automatic forecasting of univariate time series data

All those models have been tested under same dataset. This dataset is based on
data from 19 pluviometers distributed in the Hauts-de-Seine territory in France.
For Train/Test set is used data from 2009 to 2020 provided from French public
services.

The forecast performance is based on the following parameters:

– MFE: Mean forecast error (or Forecast Bias)

– MAE: Mean absolute error

– MSE: Mean squared error

– RMSE: Root-mean-square error

– Runtime: (or executing time) is the period needed to do the forecast for each
model.

14



1.4 Methods and procedures

This project is a sub-part of a larger project. It is not a continuation of any project, it is
made from scratch.
This project was proposed by PhD Eng. Robert Bešťák to the student Arnau Gispert
Becerra of the Telecommunication Engineering degree at ETSETB-UPC and accepted by
Alberto Aguasca Sole from UPC. It was supervised by Ing. Zagroz Aziz.

From CTU, through PhD Eng. Robert Bešťák, a Python script and some documents were
provided to Arnau Gispert Becerra. This Python script contained a similar unfinished
student project. The documents related information about the project that had been
done before.

The project is done in Python language in different scripts and Jupyter Notebook by
Arnau Gispert Becerra.

1.5 Milestones

This project is composed with different parts:

• Python scripts: A script of each model prepared to be executed in a environment
such Spyder IDE

• Jupyter Notebook: A Jupyther Notebook divided in different steps of the execu-
tion for each model.

• Data: A CSV file with the rainfall values from all pluviometers and the date when
they were taken.

• Requirement file: A text file with a list of all of a project’s dependencies.

All executables have notes so you know what each part does.
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1.6 Gantt Diagram

deadline

Phases of the Project

Feb. Mar. Apr. May
Planning

Enviroment
Data process.

SARIMA

ACF / PACF
Seasonality

Stationarity
Parameters

ANN

Prophet
CNN

LSTM
Testing

Conclusion

Figure 1: Project’s Gantt diagram

1.7 Deviations of the original plan and and incidences

The project started in mid-February 2021. This year has been complicated due to SARS
Covid-19 pandemic. Mobility limitations, prevention measures, government limitations
and other pandemic-related issues made us to adapt how to manage all project develop-
ment. On the other hand, we were aware about what the situation would be like as this
is not the first semester with these circumstances, so adapting the work plan was not a
big deal.

The start of the project is a bit uncertain. Due to the above mentioned situation, starting
a project in another university and another language made the first weeks not very pro-
ductive. Despite this, the first part which dealt with how to manage all the project data,
progressed fruitfully as it was very similar to previous work.
The problems arose basically with the SARIMA model, all its parameters have to be
studied exhaustively in order to be able to apply the model well. The fact of having to
apply several mathematical functions and having to analyse them properly made it take
longer than expected.
Fortunately, having learned a lot with SARIMA model, when it was time to apply the
AI-based models, it was much easier, because the scripts were already prepared. Thanks
to this, I was able to implement a larger number of models more efficiently. This meant
that the final results had even more models to compare and draw better conclusions from.
In conclusion, the project was completed on time, with more resources than expected.
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2 State of the art of the technology used or applied

in this thesis

In this section, there will be an in-depth description of the implementation techniques
used in the project. The study will contain information about the different prediction
models as well as the different algorithms used during the whole process.

2.1 Data acquisition

All data used in this study is provided from 19 pluviometers distributed over the Hauts-
de-Seineterritory. That data is provided from French public services.
There you obtain a CSV or JSON file with data of each sensor and the date it was taken
from 2009.
In this project we use CSV file. Using Python library, we can convert that CSV file into
a dataset1, where pluviometrie.csv is the CSV file downloaded from French public service
database.

2.2 Dataset structure

The dataset used for this project is structured with the following indicators:

• Date

• Pluviometer values

2.2.1 Date

The index of the dataset is the date when the sample was taken.
That value is expressed in DateTime2 format. This is used in several languages in order
to have an index with date and time. The dataset is sorted from oldest to newest.

1A dataset is basically a collection of data consisting of roughly two components: rows and columns.
In addition, a key feature of a data set is that it is organized so that each row contains one observation.

2The DateTime value type represents dates and times with values ranging from 00:00:00 (midnight),
January 1, 0001 Anno Domini (Common Era) through 11:59:59 P.M., December 31, 9999 A.D. (C.E.) in
the Gregorian calendar.
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2.2.2 Pluviometer values

The dataset consists of the rainfall measures from 19 pluviometers.
These pluviometers are rain gauges with tilting speeds. Each one consists of a small bucket
with a receiving cone. When the maximum capacity (0.2 mm) of the bucket is reached,
the pivot switches. The lever counting system then has a tipping point. The total num-
ber of switches is then continuously transmitted by the acquisition and teletransmission
equipment connected to the pluviometer.
The system therefore has an accuracy of 0.2 mm.

Figure 2: Pluviometrie scheme

2.3 Model classification

As mentioned in the specification section in Requirements and specifications the
following models have been used during the thesis:

• SARIMA: Seasonal Autoregressive Integrated Moving Average

• ANN: Artificial Neural Network

– CNN: Convolutional Neural Network

– RNN: Recurrent Neural Network

∗ Vanilla LSTM

∗ Stacked LSTM

∗ Bidirectional LSTM

∗ CNN LSTM

∗ ConvLSTM

• Prophet
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2.3.1 SARIMA model

The Autoregressive Integrated Moving Average is one of the most used univariate time
series methods for forecasting. Despite the fact that this method can handle time series
data with trend component, it does not support data with seasonal component. That
is a time series with a repeating cycle. Here is when SARIMA appears. SARIMA is an
extension of ARIMA that support time series modeling with seasonal component.

SARIMA is the evolution of the grouping of several time series models.

• The S stands for Seasonality

• The AR stands for Autoregressive

• The I stands for Integrated

• The MA stands for Moving Average

For each time series model we have its corresponding parameter with its seasonality
component

SARIMA(p, d, q)(P,D,Q)s (1)

• p and seasonal P: indicate number of autoregressive terms (lags of the stationarized
series)

• d and seasonal D: indicate differencing that must be done to stationarize series)

• q and seasonal Q: indicate number of moving average terms (lags of the forecast
errors)

• s: indicates seasonal length in the data
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Auto-Regressive (AR) model uses the dependent relationship between an obser-
vation and some number of lagged observations. p is a parameter of how many lagged
observations to be taken in.

Yt = α + β1Yt−1 + β2Yt−2 + · · ·+ βpYt−p + ε1 (2)

Moving Average (MA) model uses the dependency between an observation and
a residual error from a moving average model applied to lagged observations. q is a
parameter of how many lagged observations to be taken in. Contrary to the AR model,
the finite MA model is always stationary.

Yt = α + εt + φ1εt−1 + φ2εt−2 + · · ·+ φqεt−q (3)

Auto-Regressive Moving Average (ARMA) model is a combination from the
Auto-Regressive (AR) and the Moving Average (MA) models.
In this model, the impact of previous lags along with the residuals is considered for
forecasting the future values of the time series.

Yt = c+ εt +

p∑
i=1

φiYt−i +

q∑
i=1

θiεt−i (4)

Auto-Regressive Integrated Moving Average (ARIMA) model is the evolution
of Auto-Regressive Moving Average (ARMA) model with Integrated (I) part. So ARIMA
model is a combination of a number of differences already applied on the model in order
to make it stationary, the number of previous lags along with residuals errors in order to
forecast future values.

Yt = α + β1Yt−1 + β2Yt−2 + · · ·+ βpYt−pεt + φ1εt−1 + φ2εt−2 + · · ·+ φqεt−q (5)
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2.3.2 Artificial Neural Network

ANN is an automatic learning and processing paradigm inspired by the way the nervous
system of animals works. It is a system of interconnecting neurons in a network that
collaborate to produce an output stimulus. This set of interconnected artificial neurons
uses a mathematical or computational model of data processing based on a connectionist
approach to computing.

Figure 3: Input-Output of neuron and myelinated axon

CNN model is a Deep Learning algorithm which can take in an input image, assign
importance (learnable weights and biases) to various aspects/objects in the image and be
able to differentiate one from the other.
Although traditionally CNN was developed for two-dimensional image data, CNNs can
be used to model univariate time series forecasting problems.

Figure 4: Convolutional Neural Network
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RNN model is a class of ANNs where connections between nodes form a directed graph
along a temporal sequence. This allows it to exhibit temporal dynamic behavior.

Figure 5: Recurrent Neural Network

Long short-term memory is an artificial recurrent neural network architecture used in the
field of deep learning.
LSTMs can be used to model univariate time series forecasting problems. These are prob-
lems comprised of a single series of observations and a model is required to learn from the
series of past observations to predict the next value in the sequence.

- LSTM Vanilla is an LSTM model that has not been customized from its original
form. It has a single hidden LSTM units layer, and an output predictions layer.
Key in the definition is the shape of the input; as the model is working with univariate
series, the number of features is one for each variable.
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- LSTM Stacked is a stack of LSTM units one on top of another, necessary to realise
a functional and robust solution. It has a multiple hidden LSTM units layer.
An LSTM layer above provides a sequence output rather than a single value output.

Figure 6: LSTM Stacked scheme

- LSTM Bidirectional connect two hidden layers of opposite directions to the same
output. It allows the output layer to get information from past (backwards) and future
(forward) states simultaneously.

Figure 7: LSTM Bidirectional scheme
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- LSTM CNN architecture involves using Convolutional Neural Network layers for
feature extraction on input data combined with Long Short-Term Memory’s to support
sequence prediction.
A CNN model can be used in a hybrid model with an LSTM backend where the CNN is
used to interpret subsequences of input that together are provided as a sequence to an
LSTM model to interpret.

Figure 8: LSTM CNN scheme

- ConvLSTM is a further extension of the CNN-LSTM approach that performs the
convolutions of the CNN as part of the LSTM for each time step.
It was developed for reading two-dimensional spatial-temporal data, but can be adapted
for use with univariate time series forecasting.

2.3.3 Prophet model

Prophet, or “Facebook Prophet,” is an open-source library for univariate (one variable)
time series forecasting developed by Facebook.
Prophet implements what they refer to as an additive time series forecasting model, and
the implementation supports trends, seasonality, and holidays. It is robust to missing data
and shifts in the trend, and typically handles outliers well.
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2.4 Model performance parameters

In order to test the performance of each model, we use a set of different accuracy measure-
ment parameters as mentioned in section Requirements and specifications to classify
the prediction error and executing time needed.

2.4.1 Forecast Error

The forecast error is calculated as the difference between the actual or real and the
predicted or forecast value of a time series or any other phenomenon of interest.

The forecast error e is the result of the following equation:

e = y − ŷ (6)

Where y is the observation and ŷ denote the forecast of y based on all previous observa-
tions.

2.4.2 Mean Forecast Error

The mean forecast error is the arithmetic mean of the forecast error:

MFE =

∑n
i=1 yi − ŷi
n

=

∑n
i=1 ei
n

(7)

Where ei is the forecast error of each sample and n is the length of the dataset.

2.4.3 Mean Absolute Error

The mean absolute error, is calculated as the average of the absolute forecast error
values, where all of the forecast error values are forced to be positive.

MAE =

∑n
i=1 |yi − ŷi|

n
=

∑n
i=1 |ei|
n

(8)

2.4.4 Mean Square Error

The mean square error, is calculated as the average of the squared forecast error values.
Squaring the forecast error values forces them to be positive; it also has the effect of putting
more weight on large errors.

MSE =

∑n
i=1(yi − ŷi)2

n
=

∑n
i=1 e

2
i

n
(9)
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2.4.5 Root-mean-square error

The root-mean-square error represents the square root of the second sample moment
of the differences between predicted values and observed values or the quadratic mean of
these differences.

RMSE =
√
MSE =

√∑n
i=1(yi − ŷi)2

n
(10)

2.4.6 Runtime

In a computer, the runtime (or execution time) is the time interval in which a program
runs on an operating system. This time starts when the program is put into main memory
and the operating system starts executing its instructions.
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3 Methodology

The process followed in this project has been: researching the important topics (Machine
Learning, forecasting models and rainfall data), the process of obtaining and adjusting
the data to create the dataset, and the implementation of all models on the dataset. A
separate script has been created for each model to facilitate its execution.
Last part of the project consist that all prediction models have been tested under the
same work environment and the same dataset. All results are shown in graphs comparing
the model with the data obtained and the forecast of one year. To measure the accuracy
of each model, forecast performance parameters have been used to reach a final conclusion
of the project.

3.1 Machine Learning and Rainfall forecast research

Researching about Machine Learning and prediction models, I discovered that the best
way to apply them is through languages such R and Python. As Python is one of the
most popular programming languages and based on the fact that I already had a previous
acknowledgement, I decided to implement the whole project with this language.
To learn about Machine Learning and classification algorithms, I enrolled the course Ma-
chine Learning & Deep Learning in Python & R3 which focuses on how to use the different
algorithms such ANN, CNN and SARIMA, and focuses mainly on a more practical use
of Machine Learning.

3.2 Dataset creation

For the creation of the dataset used in the project tests, it was decided to use data from
the rain gauges of the Hauts-de-Seine territory. To do so, we go with the following link to
the web portal of the public services of the French government where we can obtain the
required data.
There we find different ways of obtaining the data, either in JSON format or in CSV
format. Despite the fact that JSON format has many advantages over CSV, in our case
the CSV format was more useful because the data was organised by columns, which made
it easier to create the desired dataset.
As each model has its own script, we have tried to make them as similar to each other
as possible. Therefore, all models use the same dataset creation, and only the way of
implementing the model changes in each case.

1 pluviometrie_csv = pd.read_csv("pluviometrie.csv",’;’)

2 pluviometrie_csv[’date’] = pd.to_datetime(pluviometrie_csv[’date’])

3 pluviometrie_csv.sort_values(by=[’date’], inplace=True)

4 pluviometrie_csv = pluviometrie_csv.set_index(’date’)

5 pluviometrie_csv.insert(0, "rainfall", pluviometrie_csv.mean(axis =1))

Listing 1: Dataset index and sort of values

3an Udemy course based on the field of Data Science, Machine Learning, Python, R and Deep Learning.
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With the creation of pluviometrie csv we have a matrix with columns for date, rainfall
mean and every pluviometer. The rainfall mean value is the mean from all sensors for
each day.
That matrix is sorted by the index columns, which is the date column in order to have
the dataset organized from the oldest to the newest parameter.
To implement all models, we create an auxiliary vector named df with just date and
rainfall mean columns.

1 df = pluviometrie_csv.loc[:, :’rainfall ’]

2 df = pluviometrie_csv.loc[:, :’rainfall ’]. resample(’M’).mean()

Listing 2: DataFrame vector

For this project, we use a monthly mean of all sensors. If you want to have more data
and therefore more precision, you can omit the last line so that the df vector only has
the daily and not the monthly average value of all the sensors.

3.3 SARIMA model

In order to apply the model appropriately, the parameters mentioned in section Model
classification have to be found. In order to find them, a step-by-step analysis will have to
be done to choose them manually.

3.3.1 Stationarity

In time series data, stationarity means that the statistical properties of a process do not
change over time. In general, a stationary time series will have no predictable patterns
in the long-term. This is important because stationary processes are easier to analyze,
detect and model.

Figure 9: Data stationarity meaning
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Dickey-Fuller test seeks to determine the existence or non-existence of unit roots in
a time series. The null hypothesis of this test is that a unit root exists in the series.
We can check the stationarity of the data thanks to this test.

1 Dickey -Fuller test results:

2

3 ADF = -5.16878383817796

4 p-value = 1.0178254081600643e-05

5 1%: -3.479

6 5%: -2.883

7 10%: -2.578

8

9 p-value is less than or equal to 0.05

10 reject the null hypothesis because the data does not have a unit root

and is stationary.

Listing 3: Dickey-Fuller test

The null hypothesis is rejected (p-value < 0.05) for this test because the data is stationary.

3.3.2 ACF and PACF Plots

In order to choose the right SARIMA parameters, it is necessary to analyse the data to
find the best fit.
Applying the Autocorrelation function we can find the correct q parameter from the
Moving Average part of the model.
With the Partial Autocorrelation function, we can find the correct p parameter from
the Auto Regressive part.

Figure 10: Autocorrelation function

Analysing the above graphs, we can select the Moving Average parameter q = 3.
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Figure 11: Partial Autocorrelation function

With the graph of the Partial Autocorrelation function we can see that the parameter
corresponding to the Auto-regressive part is p = 5.

3.3.3 SARIMA function

Once we have chosen the AR and MA parameters, we try different values for the Inte-
grated(I) part. The values are usually d = 0 or d = 1.
After testing all possible values, the one that fits better is d = 1.

The values related with the seasonal part have to be found after some iterations. On the
other hand, the value of seasonal length in the data is known to be s = 12 because it is
annual (12 months).

After some iterations, the parameters with the best AIC4 are the following:

SARIMA(5, 1, 3)(0, 1, 1)12 (11)

Once the appropriate parameters have been found, we declare the function in the script
through the SARIMAX library:

1 model = sm.tsa.statespace.SARIMAX(df, order =(5,1,3), seasonal_order

=(0,1,1,12))

2 model.fit(max_iter = 1000, method = ’powell ’)

Listing 4: DataFrame vector

3.3.4 Model evaluation

Once we have the model defined, we evaluate the model on the dataset df we have.

1 forecast = model.predict(start=df.shape [0], end=df.shape [0] + 12)

Listing 5: SARIMA forecast

To this forecast, we add 12 more forecast periods (1 year) for future predictions.
4The Akaike information criterion is an estimator of prediction error and thereby relative quality

of statistical models for a given set of data.
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3.4 ANN models

Neural Network models can be classified as univariate and multivariate. In this project
we will deal with a univariate dataset.
On the other hand, in order to test as many models as possible, we will adapt the multi-
variate models to be able to apply our dataset and draw more conclusions.

3.4.1 Data preparation

Consider a given univariate sequence:

[10, 20, 30, 40, 50, 60, 70, 80, 90]

We can divide the sequence into multiple input/output patterns called samples, where
n steps time steps are used as input and one time step is used as output for the one-step
prediction.

X, y
10, 20, 30 40
20, 30, 40 50
30, 40, 50 60
...

The split sequence() function below implements this behavior and will split a given uni-
variate sequence into multiple samples where each sample has a specified number of time
steps n steps and the output is a single time step.

1 def split_sequence(sequence , n_steps):

2 X, y = list(), list()

3 for i in range(len(sequence)):

4 # find the end of this pattern

5 end_ix = i + n_steps

6 # check if we are beyond the sequence

7 if end_ix > len(sequence) -1:

8 break

9 # gather input and output parts of the pattern

10 seq_x , seq_y = sequence[i:end_ix], sequence[end_ix]

11 X.append(seq_x)

12 y.append(seq_y)

13 return array(X), array(y)

Listing 6: Univariate split sequence function

Using the vector df created earlier with the values from the dataset, we create an auxiliary
vector to use as an input sequence in the function.

1 raw_seq = df.reset_index ()

2 raw_seq = np.squeeze(np.asarray(raw_seq[’rainfall ’]))

Listing 7: Univariate input sequence
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As a result of this vector we obtain the following sequence:

[1.7075 1.4633 1.0659 1.5160 2.1695 2.092 1.3670 ... 3.7978]

In this project, using the split sequence() function with our auxiliary sequence, we split
the univariate series into samples that have n steps=12 input time steps and one output
time step.

[1.7075 1.4633 1.0659 1.5160 2.1695 ... 3.0571] 1.595
[1.4633 1.0659 1.5160 2.1695 2.092 ... 1.595] 2.0175
...
[3.1485 0.9423 3.7135 1.6402 0.7623 0.5111] 3.7978

3.4.2 Keras library

Keras is a deep learning API written in Python, running on top of the machine learning
platform TensorFlow 5.
TensorFlow 2 is an end-to-end, open-source machine learning platform. You can think of
it as an infrastructure layer for differentiable programming. It combines four key abilities:

• Efficiently executing low-level tensor operations on CPU, GPU, or TPU.

• Computing the gradient of arbitrary differentiable expressions.

• Scaling computation to many devices

• Exporting programs (”graphs”) to external runtimes such as servers, browsers, mo-
bile and embedded devices.

This library is used to implement deep learning neural network models. All predictions
and graphs are computed using this library.
As the specifications state, it can be optimised by using CPUs and GPUs.

5TensorFlow is a free and open-source software library for machine learning developed by Google
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3.4.3 CNN model

A one-dimensional CNN is a CNN model that has a convolutional hidden layer that
operates over a 1D sequence.
The convolutional and pooling layers are followed by a dense fully connected layer that
interprets the features extracted by the convolutional part of the model.

We almost always have multiple samples, therefore, we have to reshape the input compo-
nent of training data to fit with the requested from the model:

[samples, timesteps, features]

Now that we have the correct input shape, we can define the CNN model as follows:

1 model = Sequential ()

2 model.add(Conv1D(filters =64, kernel_size =2, activation=’relu’,

input_shape =(n_steps , n_features)))

3 model.add(MaxPooling1D(pool_size =2))

4 model.add(Flatten ())

5 model.add(Dense (50, activation=’relu’))

6 model.add(Dense (1))

7 model.compile(optimizer=’adam’, loss=’mse’)

Listing 8: CNN model

Key in the definition is the shape of the input; it is specified in the input shape argument
on the definition of the first hidden layer.
The model expects as input for each sample in terms of the number of time steps
n steps=12 and the number of features n features=1.

3.4.4 LSTM Vanilla model

A - LSTM Vanilla is an LSTM that has a single hidden layer of LSTM units, and an
output layer used to make a prediction.

As with the previous model, we have to reshape the input data to fit the requirements of
the model:

[samples, timesteps, features]

Now that we have the correct input shape, we can define the Vanilla LSTM model as
follows:

1 model = Sequential ()

2 model.add(LSTM(50, activation=’relu’, input_shape =(n_steps , n_features))

)

3 model.add(Dense (1))

4 model.compile(optimizer=’adam’, loss=’mse’)

Listing 9: LSTM Vanilla model
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Key in the definition is the shape of the input; that is what the model expects as input
for each sample in terms of the number of time steps and the number of features.
The model expects as input for each sample in terms of the number of time steps
n steps=12 and the number of features n features=1.

3.4.5 LSTM Stacked model

A - LSTM Stacked is an LSTM that has multiple hidden LSTM layers stacked one on top
of another.

As with the previous model, we have to reshape the input data to fit the requirements of
the model:

[samples, timesteps, features]

Now that we have the correct input shape, we can define the Stacked LSTM model as
follows:

1 model = Sequential ()

2 model.add(LSTM(50, activation=’relu’, return_sequences=True , input_shape

=(n_steps , n_features)))

3 model.add(LSTM(50, activation=’relu’))

4 model.add(Dense (1))

5 model.compile(optimizer=’adam’, loss=’mse’)

Listing 10: LSTM Stacked model

Key in the definition is the shape of the input; an LSTM layer requires a three-dimensional
input and LSTMs by default will produce a two-dimensional output as an interpretation
from the end of the sequence.
We can address this by having the LSTM output a value for each time step in the input
data by setting the return sequences=True argument on the layer. This allows us to have
3D output from hidden LSTM layer as input to the next.
The model expects, as in previous LSTM models, as input for each sample in terms of
the number of time steps n steps=12 and the number of features n features=1.
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3.4.6 LSTM Bidirectional model

A - LSTM Bidirectional is an LSTM that allow to learn the input sequence both forward
and backwards and concatenate both interpretations.

As with the previous model, we have to reshape the input data to fit the requirements of
the model:

[samples, timesteps, features]

Now that we have the correct input shape, we can define the Bidirectional LSTM model
as follows:

1 model = Sequential ()

2 model.add(Bidirectional(LSTM(50, activation=’relu’), input_shape =(

n_steps , n_features)))

3 model.add(Dense (1))

4 model.compile(optimizer=’adam’, loss=’mse’)

Listing 11: LSTM Bidirectional model

Key in the definition is that we can implement a Bidirectional LSTM for univariate time
series forecasting by wrapping the first hidden layer in a wrapper layer called Bidirectional.
The model expects, as in previous LSTM models, as input for each sample in terms of
the number of time steps n steps=12 and the number of features n features=1.

3.4.7 LSTM CNN model

A - LSTM CNN is an CNN that can be used in a hybrid model with an LSTM backend
where the CNN is used to interpret subsequences of input that together are provided as
a sequence to an LSTM model to interpret.

Compared to the previous models, as this is a hybrid of CNN and LSTM, the input data
must meet more requirements for the implementation of the model:

[samples, subsequences, timesteps, features]

Although we use the split sequence() function as explained in Data preparation, when
applying the model, we have to change some parameters to reshape the input to match
the requirements of the model.
Now the number of time steps, unlike the previous models which was n steps=12, will
be n steps=2.
On the other hand, we change the number of features to n features=1 and the number
of sequences to n seq=6.
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Now that we have the correct input shape, we can define the CNN LSTM model as follows:

1 model = Sequential ()

2 model.add(TimeDistributed(Conv1D(filters =64, kernel_size =1, activation=’

relu’), input_shape =(None , n_steps , n_features)))

3 model.add(TimeDistributed(MaxPooling1D(pool_size =2)))

4 model.add(TimeDistributed(Flatten ()))

5 model.add(LSTM(50, activation=’relu’))

6 model.add(Dense (1))

7 model.compile(optimizer=’adam’, loss=’mse’)

Listing 12: LSTM CNN model

Key in the definition is that we can implement a CNN model, so we need to split the
input sequences into subsequences to be processed.
We first split our univariate time series data into input/output samples with twelve
(n steps=12) steps as input and one as output.
Each sample then is splited into six (n seq=6) sub-samples, each with two time steps.
The CNN can interpret each subsequence of two (n steps=2) time steps and provide a
time series of interpretations of the subsequences to the LSTM model to process as input.

3.4.8 ConvLSTM

A - ConvLSTM is a type of LSTM related to the - LSTM CNN, where the convolutional
reading of input is built directly into each LSTM unit.
The ConvLSTM was developed for reading two-dimensional spatial-temporal data, but
can be adapted for use with univariate time series forecasting.

Compared to the previous models, as the layer expects input as a sequence of two-
dimensional images, the input data must meet more requirements for the implementation
of the model:

[samples, timesteps, rows, columns, features]

As with the previous LSTM CNN model, we split each sample into subsequences where
timesteps will become the number of subsequences (n seq=6), and columns will be the
number of time steps for each subsequence (n steps=2). The number of rows is fixed at
1 as we are working with one-dimensional data.
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Now that we have the correct input shape, we can define the ConvLSTM model as follows:

1 model = Sequential ()

2 model.add(ConvLSTM2D(filters =64, kernel_size =(1,2), activation=’relu’,

input_shape =(n_seq , 1, n_steps , n_features)))

3 model.add(Flatten ())

4 model.add(Dense (1))

5 model.compile(optimizer=’adam’, loss=’mse’)

Listing 13: ConvLSTM model

Key in the definition is that we can define the ConvLSTM as a single layer in terms of
the number of filters and a two-dimensional kernel size in terms of (rows, columns). As
we are working with a one-dimensional series, the number of rows is always fixed to 1 in
the kernel.

3.4.9 Evaluation

Once we have the dataset and model defined, it is time to test the set.
The Python library includes a function that trains the model for a fixed number of epochs
(iterations on a dataset).

1 model.fit(X, y, epochs =1000 , verbose =0)

Listing 14: Model evaluation

For all ANN models, we use the same function with the same dataset and the same number
of epochs.

1 yhat = []

2 for i in range(len(X[0])):

3 yhat.append(X[0][i][0])

4

5 for i in range(len(X)):

6 x_input = X[i]

7 x_input = x_input.reshape ((1, n_steps , n_features))

8

9 yhat.append(model.predict(x_input , verbose =0) [0][0])

10

11 for i in range (12):

12 x_input = array(yhat[len(yhat)-n_steps :])

13 x_input = x_input.reshape ((1, n_steps , n_features))

14

15 yhat.append(model.predict(x_input , verbose =0) [0][0])

Listing 15: Forecasting

In order to create our yhat model vector, we divide the process into three parts; the
first n step=12 month of data of yhat is the same as the dataset, the following data
is created from the original data through the model and finally a 1 year (12 months)
prediction is made respect to the last data from the model.
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3.5 Prophet model

Prophet model is an open source time series forecasting algorithm designed by Facebook
for ease of use without any expert knowledge in statistics or time series forecasting.
As this model also works in univariate forecasting, we only have to adapt the dataset in
order to implement the it.

3.5.1 Data preparation

As we have done with ANN models, we take the vector df from the dataset and adapt it
to our model.

1 df = df.reset_index ()

2 df.columns = [’ds’, ’y’]

Listing 16: Prophet sequence

The Prophet model asks for a dataset with columns ds and y, where first column is the
datetime and second column is the value of the sample.

3.5.2 Model

Once we have the input ready, we can define the parameters of the model to be applied.

1 my_model = Prophet(interval_width =0.3, yearly_seasonality=True ,

changepoint_prior_scale =2)

2 my_model.add_seasonality(name=’monthly ’, period =30.5, fourier_order =5,

prior_scale =0.02)

Listing 17: Prophet definition

The width of the uncertainty intervals can be set using the parameter interval width
The model also allows us to define the seasonality, in our case we can specify that there
is annual seasonality. In addition, with another function we add the monthly definition of
the interval.
Finally, we can use changepoint prior scale to increase the uncertainty of the forecast.

3.5.3 Evaluation

Once the model has been defined and the dataset has been prepared for correct operation,
we can evaluate its performance.

1 my_model.fit(df)

2

3 future_dates = my_model.make_future_dataframe(periods =12, freq=’m’)

4 forecast = my_model.predict(future_dates)

Listing 18: Prophet evaluation

First of all we evaluate the model defined with the dataset df.
Next, also with the model defined above, we make a forecast adding 1 year (12 months)
of prediction.
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3.6 Plotting

Once we have prepared the dataset and each model has applied a one year forecast, we
show on the screen a graph of the comparison of the data collected by the pluviometer
and the model applied.

1 pyplot.plot(fc[’forecast ’], color=’r’, label=’model’)

2 pyplot.plot(df[’rainfall ’], label=’actual ’)

3 pyplot.legend ()

4 pyplot.show()

Listing 19: Graphs plotting

In blue the dataset data is shown and in red the data of the applied model.
On the axes the value and the month in which the sample was taken is shown together
with a legend of the graphs.

3.6.1 SARIMA plots

In addition to plotting the model, the SARIMAX library also allows to display of graphs
that can help to analyse better the parameters that have been chosen appropriately.

1 model.plot_diagnostics(figsize =(15 ,12))

Listing 20: SARIMA residual plot

Figure 12: Residual diagnostics
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In order to be able to interpret the residual value plots of the model, we can divide it into
4 parts:

• Standardized residual: The residual errors fluctuate around zero mean and with
an uniform variance.

• Histogram: The density plot suggest normal distribution with zero mean.

• Normal Q-Q: All the dots fall perfectly in line with the red line.

• Correlogram (ACF): The plot shows the residual errors are not autocorrelated.
Any autocorrelation would imply that there is some pattern in the residual errors
which are not explained in the model.

3.6.2 Prophet plots

The Facebook library allows us to display on screen the decomposition of the dataset
according to trend and seasonality.

Figure 13: Prophet plots

With the first line of code we call the vector forecast created previously to plot it with its
uncertainty threshold. On the other hand, the second line of code plots its components.

1 my_model.plot(forecast , uncertainty=True)

2 my_model.plot_components(forecast)

Listing 21: Prophet components plot
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4 Experiments and Results

The aim of this section is to show the results obtained by applying the different set of
models selected for this project to our dataset.
The results are shown in different ways, either in the form of graphs to visually show how
the model behaves, or in the form of different accuracy measurement values mentioned in
the section Model performance parameters

4.1 Models forecasting

This section shows the comparison of the original data with the chosen prediction model.
For the ANN models, two predictions have been made with different number of epochs6;
the first prediction with 100 and the second with 1000.
All tests include a 12-month forecast from the end of the dataset. As the dataset data
ends in 2020, the forecast is for the whole of 2021.

4.1.1 SARIMA model

Figure 14: SARIMA test

Performance parameters

• MFE: -0,034

• MAE: 0,721

• MSE: 0,930

• RMSE: 0,965

• Consumed time: 7,962s

6The number of epochs is a hyperparameter that defines the number times that the learning algorithm
will work through the entire training dataset.
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4.1.2 CNN model

Figure 15: CNN test (100 epochs)

Performance parameters 100 epochs

• MFE: -0,083

• MAE: 0,646

• MSE: 0,710

• RMSE: 0,843

• Consumed time: 5,759s

Figure 16: CNN test (1000 epochs)

Performance parameters 1000 epochs

• MFE: 0,008

• MAE: 0,246

• MSE: 0,128

• RMSE: 0,357

• Consumed time: 12,246s
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4.1.3 LSTM Vanilla model

Figure 17: LSTM Vanilla test (100 epochs)

Performance parameters 100 epochs

• MFE: 0,111

• MAE: 0,696

• MSE: 0,845

• RMSE: 0,920

• Consumed time: 9,497s

Figure 18: LSTM Vanilla test (1000 epochs)

Performance parameters 1000 epochs

• MFE: 0,017

• MAE: 0,187

• MSE: 0,065

• RMSE: 0,256

• Consumed time: 31,729s
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4.1.4 LSTM Stacked model

Figure 19: LSTM Stacked test (100 epochs)

Performance parameters 100 epochs

• MFE: 0,155

• MAE: 0,681

• MSE: 0,835

• RMSE: 0,914

• Consumed time: 13,644s

Figure 20: LSTM Stacked test (1000 epochs)

Performance parameters 1000 epochs

• MFE: 0,026

• MAE: 0,158

• MSE: 0,047

• RMSE: 0,218

• Consumed time: 52,857s
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4.1.5 LSTM Bidirectional model

Figure 21: LSTM Bidirectional test (100 epochs)

Performance parameters 100 epochs

• MFE: 0,063

• MAE: 0,700

• MSE: 0,839

• RMSE: 0,916

• Consumed time: 9,794s

Figure 22: LSTM Bidirectional test (1000 epochs)

Performance parameters 1000 epochs

• MFE: 0,093

• MAE: 0,123

• MSE: 0,024

• RMSE: 0,153

• Consumed time: 36,056s
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4.1.6 LSTM CNN model

Figure 23: LSTM CNN test (100 epochs)

Performance parameters 100 epochs

• MFE: -0,013

• MAE: 0,594

• MSE: 0,633

• RMSE: 0,796

• Consumed time: 8,171s

Figure 24: LSTM CNN test (1000 epochs)

Performance parameters 1000 epochs

• MFE: 0,010

• MAE: 0,030

• MSE: 0,002

• RMSE: 0,041

• Consumed time: 12,385s
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4.1.7 ConvLTSM model

Figure 25: ConvLTSM test (100 epochs)

Performance parameters 100 epochs

• MFE: -0,072

• MAE: 0,737

• MSE: 0,860

• RMSE: 0,927

• Consumed time: 10,532s

Figure 26: ConvLTSM test (1000 epochs)

Performance parameters 1000 epochs

• MFE: 0,010

• MAE: 0,906

• MSE: 1,374

• RMSE: 1,172

• Consumed time: 43,912s
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4.1.8 Prophet model

Figure 27: Prophet test

Performance parameters

• MFE: 0,000

• MAE: 0,640

• MSE: 0,644

• RMSE: 0,803

• Consumed time: 1,992s

4.2 Perform parameters comparison

Below is a summary table of the forecasting performance parameters mentioned previously
grouping the results of all models used in the project.

Model runtime MFE MAE MSE RMSE

SARIMA 7,962s -0,034 0,721 0,930 0,965
CNN 5,759s -0,083 0,646 0,710 0,843

LTSM Vanilla 9,497s 0,111 0,696 0,845 0,920
LTSM Stacked 13,644s 0,155 0,681 0,835 0,914

LSTM Bidirectional 9,794s 0,063 0,700 0,839 0,916
LSTM CNN 8,171s -0,013 0,594 0,633 0,796
ConvLTSM 10,532s -0,072 0,737 0,860 0,927

Prophet 1,992s 0,000 0,640 0,644 0,803

Table 1: Summary table of forecasting perform parameters with 100 epochs
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Model runtime MFE MAE MSE RMSE

SARIMA 7,962s -0,034 0,721 0,930 0,965
CNN 12,246s 0,008 0,246 0,128 0,357

LTSM Vanilla 31,729s 0,017 0,187 0,065 0,256
LTSM Stacked 52,857s 0,026 0,158 0,047 0,218

LSTM Bidirectional 36,056s 0,093 0,123 0,024 0,153
LSTM CNN 12,385s 0,010 0,030 0,002 0,041
ConvLTSM 43,912s 0,010 0,906 1,374 1,172

Prophet 1,992s 0,000 0,640 0,644 0,803

Table 2: Summary table of forecasting perform parameters with 1000 epochs

4.3 Analysis of the results

4.3.1 Mean Forecast Error

The Mean Forecast Error can be analysed according to its bias.
A value other than zero suggests a tendency of the model to over forecast (negative
error) or under forecast (positive error).

Starting to analyse with the models that are not based on the use of ANN, we can
observe that SARIMA is slightly over forecast. On the other hand, we can highlight that
the Prophet model is the one that is closest to zero.
In the case of ANN models, all models except the LSTM Bidirectional model, improve
their bias as epochs increase tending more to zero from positive error.

We can summarize this parameter by saying that the Prophet model and the CNN-based
models are the ones with the best Mean Forecast Error.

4.3.2 Mean Absolute Error

The Mean Absolute Error is calculated as the average of the forecast error values, where
all the forecast error values are forced to be positive.
These error values are in the original units of the predicted values. A mean absolute
error of zero indicates no error.

On this parameter we can see that the SARIMA and Prophet models differ considerably
from the zero value.
On the other hand, it is observed that the ANN models are closer to zero the more epochs
we use, except for ConvLSTM, whose error increases.

In conclusion, we can say that the LSTM CNN model is the one with the best Mean
Absolute Error.
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4.3.3 Mean Square Error

The Mean Square Error is calculated as the average of the squared forecast error values.
Squaring the forecast error values forces them to be positive; it also has the effect of
putting more weight on large errors.
The error values are in squared units of the predicted values. A mean squared error of
zero indicates perfect skill, or no error.

As with Mean Absolute Error, the SARIMA and Prophet models present a difference of
zero which, in this parameter, is even more considerable.
The same also applies to the ANN models, where we can note that ConvLSTM has
considerably increased its error and, in contrast, the value of LSTM CNN is practically
zero.

In conclusion, we can still say that the LSTM CNN model is the one with best error
performance, now the one with the best Mean Square Error.

4.3.4 Root-Mean-Square Error

The Root-mean-square error is the the square root of the mean square error described
above.
The RMSE values are in the same units as the predictions. As with the mean squared
error, an RMSE of zero indicates no error.

Following the same behaviour of the previous parameters, the SARIMA and Prophet
models follow the same upward error trajectory. On the behaviour of the ANN models, it
is observed that all models follow the same behaviour as with the previous parameters.
The high value of the ConvLSTM model and the tending to zero value of the LSTM CNN
model stand out.

As with the previous parameters, we come to the same conclusion that the LSTM CNN
model is the one with the lowest error compared to the other models.

4.3.5 Runtime

The Runtime is the time it takes for the script to run. You can easily see that the lower
the value, the faster it will be to implement the model.

We can see that the fastest model to apply is the Prophet model followed for SARIMA
model.
On the other hand, we only consider ANN models with 1000 epochs test because the other
tests do not have sufficient accuracy.
Therefore, the CNN and LSTM CNN models are the fastest of this set.
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5 Economical analysis

The financial analysis of this project is detailed as follows:

• Computer: Apple MacBook Pro 13-Inch ”Core i7” 3.1 Early 2015

• Software: Anaconda Navigator

– Spyder

– Jupyter Notebook

– Python

• Cloud services: GitHub

• Salary: Telecommunications student salary

– 9eper hour

– Final project of 20 ECTS

– 1 ECTS = 25 hours

• Office: Coworking Office Spaces

– 200eper month

– Project duration of 4 months

Concept Amount

Computer 2.124,09 e
Software Free

Cloud services Free
Salary 4.500e
Office 800e

Total: 7.424.09e

Table 3: Economic budget

The final budget for the project is 7.424.09e
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6 Conclusions and Future Work

The goal of this section is to make a comparison of the different models through the
results mentioned previously, as well as to mention the weaknesses of the project and also
to define possible improvements for future developments.

6.1 Conclusions

The aim of this project is to compare a classical model such as SARIMA with a SANN
model. In the search for models for univariate forecasting we have come across the exis-
tence of another recent type of forecasting model created by Facebook called Prophet.
Therefore, the final comparison will be between the SARIMA model, the Prophet model
and the best ANN based model for our dataset.

With the help of the experiments carried out in the section on Experiments and Results
we can see that the best ANN-based model is the CNN LSTM model.
We can observe that CNN models need much less runtime to be implemented than the
others ANN models. Also this is the one with the lowest error rate when applying the
model and, therefore, its forecasting will be more accurate.

We will now come to the final conclusion of this project by comparing the SARIMA,
Prophet and LSTM CNN models.
The model with the shortest execution time is the Prophet model with approximately 2s,
in contrast to SARIMA which needs 8s and LSTM CNN with 12s.
Looking at MFE, we can see that Prophet and LSTM CNN are the models that come
closest to being ideal because of their closeness to zero. In contrast, SARIMA presents a
slightly over forecast.
Talking about MAE, MSE and RMSE we can observe that the model with more proximity
to zero than the other models is the LSTM CNN model.

We can affirm that despite the fact that LSTM CNN model has longer execution time, it
that can offer us the best prediction.
Another good option would be Prophet, as its runtime is by far the longest of the other
models and its error ratio is still considerably favourable.

In conclusion, the SARIMA model is currently not a good option to be applied for fore-
casting. Its error ratio is slightly worse than the others, but if on top of that its execution
time is higher and in order to apply it you need an exhaustive analysis of the dataset to
find the SARIMA parameters, this makes it a better option today to implement any of
the other two models.
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6.2 Future Work

Although a wide variety of forecasting models have been implemented in this project,
many of them are multivariate models. The fact that we have adapted our dataset to be
able to implement them has turned its implementation far from optimal.
This can be solved if in our dataset we add data related to rainfall like temperature,
humidity, wind speed, air pollution, etc.

Another aspect to improve could be the optimization of the model implementation. Now
the models are implemented using a monthly average of the dataset, but a daily average
could be used to have higher accuracy.
This is an impediment due to the hardware limitations of the test environment.
ANN-based models are implemented using the Keras library which is more optimal with
the use of GPU for computing.

Keras optimization is available if our work environment has compatible CPU and
GPU. The best way to improve the performance of a neural network is through CUDA
Cores7 and Windows operating system.
On the other hand, if our work environment does not have this requirements, it can also
be optimised by configuring it according to the hardware we have available.

Finally, one of the improvements that could be applied to the models is the use of k-Fold
Cross-Validation that will help us to measure the behaviour of the models to find a better
model quickly.

k-Fold Cross-Validation use the original sample randomly partitioned into k equal
sized subsamples. Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining k-1 subsamples are used as training data.
The cross-validation process is then repeated k times, with each of the k subsamples used
exactly once as the validation data. The k results can then be averaged to produce a
single estimation.

Figure 28: k-Fold Cross-Validation

7CUDA Cores is a parallel computing platform and API model created by nVIDIA
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Appendices

A Installation

The following will detail how to install the programs and libraries necessary to test the
project.

A.1 Work environment

In order to develop the whole project, we have used the program Anaconda.
Anaconda is a distribution of the Python and R programming languages for scientific com-
puting (data science, machine learning applications, large-scale data processing, predictive
analytics, etc.), that aims to simplify package management and deployment.

Using the following link will direct us to its main web page where we can download the
program.
This program contains a multitude of programs and libraries. We are mainly interested
in it because it contains Python, Spyder and Jupyter Notebook.

Once the program is installed, using the Anaconda Prompt application, we can update
its components with the command conda update anaconda

A.2 Python libraries

In order to be able to run all models correctly, we will need to install a number of external
libraries. To do this we will use the Anaconda Prompt tool mentioned above.

The following libraries are required:

• pmdarima: ARIMA estimators

• tensorflow: TensorFlow for machine learning

• fbprophet : Facebook automatic forecasting procedure

To install the libraries, use the following command in the Terminal to install all the
dependencies.

1 pip install -r requirements.txt

Listing 22: Requirements installation

In order to install it manually, use the command pip install and add the name of each
library.
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A.3 CUDA Cores

If our environment has a compatible NVIDIA GPU, we will be able to optimise our
variable computation through the CURA Cores of this GPU. To do this we will go to the
following link where we will get more information on compatibility.

In order to use this optimisation we will need to have previously installed the following
software on our PC:

• NVIDIA® GPU drivers

• CUPTI ships with the CUDA® Toolkit.

• cuDNN SDK

• cuDNN SDK

• (Optional) TensorRT to improve latency and throughput for inference on some
models.

On the other hand also have the latest version of TensorFlow installed.

A.4 Tensorflow XLA

The computer with which the project tests have been carried out does not have a graphics
card compatible with the optimization for Tensorflow.
However, with the following code, we can activate the Tensorflow XLA8 accelerator:

1 import os

2

3 os.environ[’TF_XLA_FLAGS ’] = ’--tf_xla_enable_xla_devices ’

Listing 23: Optimizing Compiler for Machine Learning

Figure 29: XLA comparative

8Accelerated Linear Algebra is a domain-specific compiler for linear algebra that can accelerate
TensorFlow models with potentially no source code changes.
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Abbreviations

AI Artificial Intelligence

AIC Akaike information criterion

ANN Artificial Neural Network

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

CSV Comma-Separated Values

CTU Czech Technical University (CVUT)

ETSETB Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona

GPU Graphics Processing Unit

IA Intel·ligència artificial

ICT Information and communications technology

IoT Internet of Things

JSON JavaScript Object Notation

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MFE Mean Forecast Error

ML Machine Learning

MSE Mean Squared Error

RMSE Root-Mean-Square Error
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