
Development of a virtualization framework
with LXD

Bachelor’s Thesis

submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

by

Òscar Pérez Castillo

In partial fulfillment

of the requirements for the degree in

Telecommunications Technologies and Services ENGINEERING

Advisor: Jose Luis Muñoz Tapia

Advisor: Rafael Genés Durán

Barcelona, Date 21 June 2021

Abstract

Containers are an operating system virtualization technology used to provide processes

isolate environments. They provide a lightweight solution where a single Linux kernel is

shared between the host and the containers.

Using this technology several project have emerged over the years which offer different

use cases. One of these project is ”LXD“, which offers a way of running unmodified Linux

distributions inside containers.

This thesis intends to provide a framework on top of “LXD” in order to improve some of

it’s functionalities and provide new user cases.

We have developed two command line tools and one minimal web application which

integrate all the improvements on top of “LXD”.

2

Resum

Els contenidors són una tecnologia utilitzada per el sistema operatiu que ens permet

oferir alsprocessos un entorn äıllat. Ofereixen una tecnologia molt lleugera on només es

comparteix un únix kernel entre el propi host i els contenidors.

A partir d’aquesta tecnologia diversos projectes han surgit al llarg dels anys. Un d’aquests

projectes és “LXD”, que permet utilizar distribucions Linux dintre de contenidors.

Aquesta tesis té l’objectiu d’oferir un sistema que utilitzant “LXD” permeti extendre i

millorar les propies funcionalitats.

S’han desenvolupat dues aplicaciones de comandes i una aplicació web que utilitzant “LXD”

han permès millorar les funcionalitats de “LXD”.

3

Resumen

Los contenedores son una tecnoloǵıa empleada por el sistema operativo que permite ofrecer

a los procesos un entorno aislado. Ofrecen una solución muy ligera donde únicamente se

comparte un kernel entre el propio host y los contenedores.

A partir de esta tecnoloǵıa, diversos proyectos han surgido durante los últimos años

que emplean dicha tecnoloǵıa. Uno de estos proyecto es “LXD”, que permite correr

distribuciones de Linux no modificadas dentro de contenedores.

Esta tesis tiene el objectivo de ofrecer un sistema que usando “LXD” permite extender y

mejoras sus funcionalidades.

Para eso, hemos desarollado dos comandos y una aplicación web que usando “LXD” nos

han permitido mejorar dichas funcionalidades.

4

Acknowledgements

I would like to thank you first to Jose for giving me the opportunity of working in this

thesis and next to Rafa for his continuos help and dedication during all the project. Their

help has been essential for the development of the project.

Also to my family and friends for their continuos support during the project.

5

Revision history

Revision Date Purpose

0 01/06/2021 Document creation

1 20/06/2021 Document revision

2 21/06/2021 Document release

DOCUMENT DISTRIBUTION LIST

Name e-mail

Òscar Pérez Castillo oscar.pz.castillo@gmail.com

Jose Luis Muñoz Tapia jose.luis.munoz@upc.edu

Rafael Genés Duran rafael.genes@upc.edu

Written by: Reviewed and approved by:

Date 20/06/2021 Date 20/06/2021

Name Òscar Pérez Castillo Name Jose Luis Muñoz Tapia

Position Project Author Position Project Supervisor

6

mailto:oscar.pz.castillo@gmail.com
mailto:jose.luis.munoz@upc.edu
mailto:rafael.genes@upc.edu

Contents

Abstract 2

Resum 3

Resumen 4

Acknowledgements 5

Revision history 6

Contents 8

List of Figures 9

Listings 9

1 Introduction 10

1.1 Requirements and specifications . 10

1.2 Previous efforts . 11

1.3 Work plan . 11

2 State of the art 13

2.1 Container technology . 13

2.2 Containerization systems . 15

2.3 LXC . 15

2.4 LXD . 16

3 Methodology / project development 18

3.1 lxce . 18

3.1.1 Configuration files . 20

3.1.2 Commands . 21

3.2 lxce-admin . 22

3.2.1 Configuration files . 23

3.2.2 Commands . 23

3.3 web-admin . 24

4 Implementation and results 26

4.1 lxce . 26

4.2 lxce-admin . 30

7

4.3 web-admin . 32

5 Budget 35

6 Conclusions 35

7 Future work 35

References 36

Appendices 37

A lxce 37

B lxce configuration files 49

C lxce-admin 54

8

List of Figures

1 Project’s Gantt diagram . 12

2 Virtualization vs Containers . 13

3 Runtimes landscape . 15

4 lxce architecture . 20

5 lxce-admin architecture . 22

6 web-admin architecture . 24

7 lxce list . 28

8 web-admin host view . 32

9 web-admin add host . 32

10 web-admin containers view . 34

Listings

1 Express server. 25

2 lxce init . 26

3 lxce launch . 27

4 lxce rebase . 28

5 lxce list custom . 29

6 lxce delete . 29

7 lxce uninstall . 29

8 lxce-admin config add . 30

9 lxce-admin config list . 30

10 ssh container . 31

11 API request . 33

9

1 Introduction

Virtualization is a computer mechanism that allows a single computer to host multiple

virtual machines, where each system has the ability of running a completely different

operating system than the main machine.

One kind of virtualization it is the “OS-level virtualization” (or containerization), which is

a paradigm in which the operating system, through different os level functionalities, can

create user instances, where those instances are what we refer as “containers” as they have

their own set of os-resources properties in their own environment.

On top of that technology, several systems and technologies have emerged over the years.

In Linux, the “Linux Containers project [1]” has been working on containers for over ten

years and has develop an open source containers platform that provides a set of utilities

to provide a framework as close as what you get from a VM (virtual machine).

One of those utilities are “LXC/LXD [2][3]”. These utilities are a set of tools that allow us

to run unmodified Linux distributions inside containers without the overhead of creating a

virtual machine. This is extremely helpful because we can create different linux distributions

in one unique linux machine.

So, the objective of this thesis is to provide a framework on top of the “LXC/LXD” utilities

to unify some of their commands and improve the management of the containers.

1.1 Requirements and specifications

The “LXC/LXD” set of tools are used for creating such “containers”. Once created, we can

start/stop them, add them shared folders, manage memory, manage cpu resources, set up

linux distribution . . . But a lot of commands for properly set up a container with different

configurations (folders, proxies . . .) were needed. Also, when the number of containers

increase, we have no way or organize them of categorize them.

So the requirements, based on those problems, were:

• Be able to manage a common container configuration by a text file.

• Possibility to group containers by “domains”.

• Tag containers by an alias name.

• Set up proxies based on a text file.

By developing the following base of tools:

10

• lxce: base command installed on top of “lxc” command line tool. Should be respon-

sible for configuring all the containers based on configuration files and commands.

• lxce-admin: command for managing the different hosts with lxce installed in a

centralized location.

• web interface: minimal web application for visualizing all the containers and

manage them with a simple API.

1.2 Previous efforts

The thesis began with the two commands (lxce and lxce-admin) in an initial version:

• lxce: this command was in an initial version but it lacked a lot of different features

along robustness.

• lxce-admin: this command was simple but should be extended for improve some

features.

The two were written in Javascript.

For the web interface no versions were made, so it should be coded from the beginning.

1.3 Work plan

For the work plan we set the following goals, in order of preference:

• Develop a robust, well tested version for the “lxce” command.

• Integrate the “lxce-admin” improvements in the centralized “lxce-admin” command.

• Based on left time, develop the web interface application.

11

Where we can see summarize it in the following Gantt diagram:

Phases of the Project
2021

Feb Mar April May Jun
Introduction

100% completeLearn Javascript
100% completeLearn about containers

lxce

100% completev0.1
100% completev0.2

100% completev0.3
lxce-admin

100% completev0.1
Web admin application

100% completeLearn React/redux
100% completeImplement application

Thesis

Writing thesis
Presentation

Figure 1: Gantt diagram of the project.

In term of deviations of the initial plan, we intended to provide a subcommand in the “lxce”

command line tool which could generate automatic “nginx” configurations. It involved

having to configure and work with web certificates but an external approval was necessary

so at the end had to be canceled.

12

2 State of the art

This chapter will provide a general overview, in the context of Linux, of the different

technologies used by the operating system to provide the foundation of “containers”.

It will also expose a brief comparison between some systems which use containerization

and explain which one suits our needs better.

And finally it will present the set of tools in which our framework resides on.

2.1 Container technology

Containers. Operating system main abstractions are processes. Processes act as in-

stances of programs and are executed whenever the CPU schedules them. Depending on

their properties they have the ability to execute different actions (read from file, send a

packet, open a socket . . .).

Containers are no different than this. They are mainly an abstraction for a process with a

set properties provided the operating system by different technologies, and a supporting

runtime. The main technologies are namespaces and cgroups.

And as the functionalities offered are implemented inside the kernel, they don’t need to

run any kind of hypervisor or virtualization. The following image illustrates this fact:

Figure 2: Virtualization vs Containers.

This creates a lightweight solution for applications where only one service will be running

(such as a web server) without the need of setting up a whole VM with a separated kernel.

13

For enabling the existence of containers, the kernel offers some technologies for “isolate”

containers and control their resources.

Namespaces. The first kernel feature provided by the kernel, which is the main foun-

dation for the concept of containers, are the kernel namespaces. They are mainly and

abstraction that enables the kernel to limit the context and visibility of the kernel objects.

The kernel just label their resources and when it receives a request for viewing some of his

objects, it only offers the ones according to the label.

In this way, different process with different labels can have separate views of the kernel

objects and they are not able to access the objects different from their label.

The kernel provides 7 namespaces:

• Mount (mnt).

• Process ID (pid) (mnt).

• Network (net).

• Inter-process Communication (ipc).

• Control group (cgroup).

• UTS.

• User ID (user).

And they are manipulated using 3 syscalls:

• clone(): used with namespaces, creates a new process in the specified namespace.

• unshare(): modify the context of a process.

• setns(): allows attaching a process to an existing namespace.

Cgroups. Control groups (“cgroups”) are a kernel feature that allows the kernel to

allocate resources (CPU time, system memory) to a group of process. They are not

dependant of namespaces, but they are used with namespaces to limit, control and isolate

resource usage.

We won’t go into details about the technologies mentioned before, but it is good to have

to a general overview of the mechanisms used by the kernel.

14

2.2 Containerization systems

The concept of ”container“ is enabled by the different kernel technologies mentioned before,

but there is another key element that takes part - the runtime.

The uses and systems in which containers are used nowadays vary a lot, but the key that

they have in common is that they want to run some kind of application with all their

dependencies in a confined environment (a.k.a the containers).

Different runtimes and systems have emerged over the recent years:

Figure 3: Runtimes landscape.

Where this thesis has been builded with the runtime of “LXD”, as it is intended to provide

a kind of full virtual machine “container” that behaves like a normal linux distribution,

whereas other systems (such as Docker) are more focused in running applications (ex:

running a database service).

2.3 LXC

As we have stated before, the framework developed in this thesis has been constructed in

top of “LXC/LXD”, which are both open source tools provided by the Linux Containers

project.

In reality, LXD is built on top of LXC, so we will explain the two tools separated to have

a general idea how their work.

15

LXC. LXC is a userspace interface for the kernel containment features, according to [2].

It provides a powerful API and simple tools to manage system or applications containers.

It combines namespaces and cgroups, along as other security mechanisms to provide

isolated environments and contain processes.

It is formed basically by:

• C library (liblxc).

• Several languages bindings.

• Set of tools for controlling containers.

• Distribution templates.

It offers some programs for managing containers:

• Creating a container with an Ubuntu template:

[host] # lxc-create -n mycontainer -t ubuntu

• Run a command inside the container:

[host] # lxc-attach -n webserver -- ifconfig eth1 192.168.1.2/24

Where we can customize the containers in different ways such as:

• Attaching devices.

• Configure bridges, hardware addresses, network configurations ...

• Migrate containers from one host to other host.

• Set up unprivileged containers.

2.4 LXD

LXD. LXD is a tool written in Go, defined as a system container manager which offers a

user experience similar to virtual machines but using Linux containers instead, according

to [3].

Is composed basically by:

• A REST API over a local unix socket as well as over the network.

16

• A client, provided by a new command line tool “lxc”, which talks with the REST

API.

so we are able to manage the containers by a REST API in a flexible and composable way.

It has also different integrations with container services along other advanced features.

It is not a rewrite of the previous tool (LXC) but a tool builded on top of it through liblxc

and the Go bindings.

Some examples for interacting with containers:

• Creating a container with an Ubuntu template:

[host] # lxc launch ubuntu:20.04 box

• Obtain a shell inside the container named box:

[host] # lxc exec box bash

• Create a proxy device connecting container port 80 with host port 80:

[host] # lxc config device add box testport80 listen=tcp:0.0.0.0:80

connect=tcp:127.0.0.1:80↪→

• Shared a host folder with the container test:

[host] # lxc config device add box devicewww disk source=/wwwdata

path=/var/www/html↪→

17

3 Methodology / project development

In order to construct our framework we had to develop a set of tools. Basically we developed

two commands and a minimal web application:

• lxce.

• lxce-admin.

• web-admin.

This chapter will provide with the technical implementation of each tool and how they are

constructed and organized.

3.1 lxce

The first tool developed in this thesis is what we have called “lxce”.

It is basically a command line tool coded in Typescript built on top of the “lxc” command

line tool with the idea of improving the management and set up of the containers.

We could already work only with the “lxc” tool but the problem is that in order to have a

properly set up container we would have to do the following steps, for every container:

• Create the container with linux image specified:

[host]# lxc launch ubuntu:20.04 container

• Configure password inside container for user ubuntu:

[host]# lxc exec container -- bash -c "ubuntu:1234 | chpasswd"

• Set up shared folders between host and container:

[host]# lxc config device add containers myfolder disk

source=/www/data path=/data↪→

• Set up a proxy, connecting host port 4000 with container port 80:

[host]# lxc config device add myproxy proxy listen=tcp:0.0.0.0:4000

connect=tcp:10.1.2.1:80↪→

18

Then, if we would like to access the containers by ssh or vnc we would have to create also

the corresponding configuration files.

Everything is managed individually, which is good for a basic set up, but for situations

where we are working with +50 containers is unmanageable.

So the idea of this command is to resolve such limitations with a command which could:

• Manage containers by configuration files, with a default configuration file.

• Organize containers by “domains”.

• Be able to reference containers by aliases.

• Configure proxies and shared locations with a configuration file.

• Generate SSH and VNC configuration files to be distributed.

The architecture of the command line tool is the following:

19

LXD

LXD REST API

LXC COMMAND LINE

LXCE

LXC

LINUX KERNEL

HOST

Figure 4: lxce architecture.

Once defined all the specifications for the command, we will explain how are the configu-

ration files organized and the list of subcommands implemented.

3.1.1 Configuration files

Our command uses a series of configuration files for defining a list of properties (general

and specific for each container). These configuration files are used by “lxce” and are

updated acordingly.

The list of configuration files is the following:

• container-default.conf : default configuration file. Defines the default container

20

configuration template.

• lxce.conf : general command configuration. Defines properties such as the hostname

of host.

• individual container configuration files: they follow the container based tem-

plate and are updated based on their properties.

• remmina: defines a configuration file specific for a VNC client (Remmina [4]).

• ssh: ssh-config specific files for each container.

* see Appendix B for a further documentation of the configuration files

3.1.2 Commands

For the commands that are available for our command, we have develop the following

commands:

• lxce init: initializes the command (configuration files and folder structure).

• lxce alias: allow us to define custom names for the containers, as the container

names are random.

• lxce delete: deletes containers and configurations/folders related.

• lxce launch: launch containers with folders/proxies/permissions configured accord-

ing to the configuration files.

• lxce list: output a table of the current containers and their properties.

• lxce pass: computes password of each container. They are all generated by a common

seed that is stored in the main configuration file.

• lxce proxy: configures the proxies associated to the containers.

• lxce rebase: allow us to change a container base linux distribution without modifying

the container properties.

• lxce show: outputs the container configuration files.

• lxce start: start containers in a group or individually.

• lxce stop: same as the start subcommand.

• lxce uninstall: removes all the configuration files and container running in the host.

* see Appendix A for a complete description of each command

21

3.2 lxce-admin

The second command implemented is intended to be used as an administration tool for

managing the hosts with “lxce” installed.

The idea is to have a central host with remote access to a list of hosts with the command

line tool installed “lxce” in order to synchronize all configuration files from all the available

hosts.

Because with all the configurations files in a centralized location we have:

• Complete view of all the containers across different hosts.

• Access to configuration files for SSH and VNC services.

• Ability to compute password for remote access to containers.

The synchronization is done using a sync tool (rsync[5]) that enable us to have synchronized

folders between different hosts.

We can see how would look like in the following figure:

LXCE-ADMIN

LXCE

LXCE

LXCE

LXCE

- SSH
- REMMINA
- PASSWORDS

HOST

HOST

HOST

HOST

ADMIN HOST

Figure 5: lxce-admin architecture.

22

3.2.1 Configuration files

The files that must be synchronized are mainly:

• SSH: ssh-config files to be distributed and used by the admin host.

• VNC: remmina configuration files to be used for the admin host and to be distributed.

in order to be able to use the command ssh correctly and have the automatic vnc

configurations for the remmina VNC program (the command will also configure the

passwords to be used along remmina).

3.2.2 Commands

The subcommands we have develop for the “lxce-admin” tool are:

• lxce-admin config add: configures a new host with lxce installed and syncronized

all the configuration files for first time.

• lxce-admin config list: list a table with the hosts configured and the total number

of domains and containers.

• lxce-admin config remove: removes a configured host and it’s configuration files.

• lxce-admin config update: synchronized configuration files from specific host.

• lxce-admin pass: computes password for containers in specific host.

• lxce-admin remmina: init remmina client into container.

• lxce-admin vnc: starts a vnc connection with standard vnc client.

* see Appendix C for a complete description of each command

23

3.3 web-admin

The last tool implemented consist of a web application builded with React (framework of

javascript [6]) along with a minimal server providing a REST API in each host with “lxce”

installed.

It is basically a web front-end for our framework that enables to view all our hosts and

containers in a detailed view in real time.

REACT APP

LXCE

LXCE

LXCE

LXCE

HOST

HOST

HOST

HOST

API

API

API

API

Figure 6: web-admin architecture.

The web application will mainly consult each host with HTTP requests to the API, and

based on the responses will construct the view of the application.

It has only been implemented the view of the containers, but the idea of the web application

is to be able to manage of all the “lxce” commands through the API provided and offer a

web alternative for the “lxce-admin” command line tool.

24

The API is provided by this simple express server:

const express = require("express")

const child = require("child_process")

const cors = require("cors")

const app = express()

const PORT = process.argv[2]

app.use(cors())

app.get("/containers", (req, res) => {

const response = child.execSync("lxce list -f json").toString()

res.setHeader('Content-Type', 'application/json');

res.send(response)

})

app.listen(PORT, () => {

console.log(`[*] Server listening on port ${PORT}`)

})

Listing 1: Express server.

which mainly listens in a specific port and exposes a single API endpoint.

25

4 Implementation and results

In this chapter we will explain the different use cases that our framework provides along

with the programs captures of the tools explained in chapter 3.

We will explain one workflow for each tool.

4.1 lxce

For the first workflow, we will explain how to initialize the command and manage some

containers configurations.

In specific we will:

• Initialize the command.

• Create some containers.

• Change linux distributions for containers.

• Delete some containers.

• Add and delete proxies on containers.

• Delete the command and configurations.

Initialize the command The first thing we have to do is initialize the command in order

to generate the default configurations files and select different parameters.

root@oscar-vm: # lxce init

? lxce.conf: Select hypervisor hostname: localhost

? lxce.conf: Select ssh suffix: oscar-vm

? lxce.conf: Select vnc server: localhost

? lxce.conf: Select vnc port: 5901

? lxce.conf: Select data location [full path]: /datasdd

? Want to add another data location (just hit enter for YES)? No

? container.default: Select containers base: ubuntu:20.04

? container.default: Select default container location: /datasdd

[] Good!

root@oscar-vm: #

Listing 2: Init lxce command.

26

Create containers Then we can create 3 containers with different alias in the domain

test with:

root@oscar-vm: # lxce launch -r 3 -d test -a alice bob peter

[*] --

[*] Checking ...

[*] Initialized

[*] Initialized: ok!

[*] Access

[*] Access: ok!

[*] Checks: ok!

[*] --

[*] Launching container with managing-harlequin

[**] launching ...

[**] waiting for container...

[**] Getting user

[**] Getting user: ubuntu !!

[**] Password created: fa89a2eaca

[**] launching: ok!

[**] creating configurations

[**] creating configurations: ok!

[**] read only directories

[**] added data-test shared folder

[**] added data-managing-harlequin shared folder

[**] read only directories: ok!

[**] adding proxies

[**] added proxy-ssh

[**] added proxy-test

[**] adding proxies: ok!

[**] dns resolution: managing-harlequin.lxd -> 10.10.1.171

[] Launching container with managing-harlequin

[*] Launching container with excited-amethyst

[] Launching container with excited-amethyst

[*] Launching container with coloured-purple

[] Launching container with coloured-purple

[*] --

[*] Success!!

Listing 3: Launch 3 containers.

27

Where we can see the containers created, along with their properties, with:

Figure 7: lxce list.

Change container base We have set up all the containers to be run with an ubuntu:20.04

base, but if we we would like to change one container (peter for example) to use ubuntu:18.04

instead we could do it by:

root@oscar-vm: # lxce rebase -d test -a peter -b ubuntu:18.04

? Do you want to rebase coloured-purple container within test with

ubuntu:18.04? Yes↪→

[*] Rebasing coloured-purple

[**] Removing coloured-purple

[**] launching container with base: ubuntu:18.04 ...

[**] waiting for container

[**] Getting user

[**] Getting user: ubuntu !!

[**] added proxy-ssh

[**] added proxy-test

[**] added data-ubuntu

[**] added data-test

[**] dns resolution: coloured-purple.lxd -> 10.10.0.168

[] Rebasing coloured-purple

Listing 4: lxce rebase.

where all the properties of the container will remain the same.

28

So then we would have the following:

root@oscar-vm: # lxce list -c nadb

+--------------------+-------+--------+--------------+

| NAME | ALIAS | DOMAIN | BASE |

+--------------------+-------+--------+--------------+

| coloured-purple | peter | test | ubuntu:18.04 |

+--------------------+-------+--------+--------------+

| excited-amethyst | bob | test | ubuntu:20.04 |

+--------------------+-------+--------+--------------+

| managing-harlequin | alice | test | ubuntu:20.04 |

+--------------------+-------+--------+--------------+

Listing 5: lxce list custom.

Delete containers Now if we want to delete a specific container, it’s configuration and

shared folder:

root@oscar-vm: # lxce delete -d test -a alice

[*] Init: ok!

[*] Permission checked

? Do you want to delete managing-harlequin? Yes

[**] Removing managing-harlequin

Listing 6: lxce delete.

Uninstall command Finally, if we want to uninstall the command (i.e: remove all

containers, configurations files and shared locations folders) we simply:

root@oscar-vm: # lxce uninstall

[*] Init: ok!

[*] Permission checked

? Do you want to uninstall the lxce command and all it's configurations?

Yes↪→

[*] Deleting and stopping current containers

[**] Removing coloured-purple

[**] Removing excited-amethyst

[*] Delete /etc/lxce/

Listing 7: Uninstall lxce command.

29

4.2 lxce-admin

The second workflow will consist in how to use the “lxce-admin” tool to manage and

existing host with the lxce command installed.

For this example we will do it everything in local but the same applies for external machines

with remote access.

But before starting typing commands in the admin host, we must set up the following in

each of the hosts with lxce installed:

• Install lxce.

• Init lxce and configure container bases with graphical support for enabling VNC

access.

• Configure public key access to host.

• Set up a localhost VNC server listening according to the lxce configuration file.

Add host The first thing that we must do is to add a remote host:

root@oscar-vm: # lxce-admin config add

? Select host (ssh config): oscar-vm

? Select hostname: localhost

? Select ssh port: 22

? Select private key location [full path]:

/home/oscar/.ssh/localhost_oscar↪→

[*] Updating files

[**] Updating passwords

[*] Updating files: ok

Listing 8: Add host lxce-admin.

root@oscar-vm: # lxce-admin config list

+----------+---------+------------+

| HOST | DOMAINS | CONTAINERS |

+----------+---------+------------+

| oscar-vm | 1 | 3 |

+----------+---------+------------+

Listing 9: lxce-admin config list.

30

Test SSH Once set up the host, we have already access to the ssh configuration file of

each container.

We can test it by ssh [host.domain.containerName/containerAlias]:

root@oscar-vm: # ssh oscar-vm.google.itchy-bronze

ubuntu@192.168.122.118's password:

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by

applicable law.

To run a command as administrator (user "root"), use "sudo <command>".

See "man sudo_root" for details.

ubuntu@itchy-bronze:~$

Listing 10: ssh container.

VNC Another service that is available is VNC access to every container.

For connecting to the container through VNC we can use two methods:

• lxce-admin vnc: will open a normal VNC client:

root@oscar-vm: # lxce-admin vnc --host oscar-vm -d google -n

real-black --scale 1↪→

• lxce-admin remmina: will open remmina (VNC client). The advantage is that

remmina is able to use system passwords saved in the computer chain generated by

the command, so we won’t have to type the ssh password not the vnc password:

root@oscar-vm: # lxce-admin remmina --host oscar-vm -d google -n

real-black↪→

31

4.3 web-admin

For configuring the web-admin web app we should:

• Start the web application in an admin host.

• Start the express server in each of the hosts with lxce installed in order to serve the

corresponding API.

Once everything is set up, the main page of the web application is the following:

Figure 8: Web-admin principal view.

Where we can add a host:

Figure 9: Adding host in the web application.

The action of adding a host in the web application will cause a request to the corresponding

host the list of current containers running in the system. This is done by a simply GET

request to an API which has the following structure:

32

http --json GET localhost:5000/containers

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

Connection: keep-alive

Content-Length: 824

Content-Type: application/json; charset=utf-8

Date: Mon, 14 Jun 2021 18:12:46 GMT

ETag: W/"338-Zebo3shS16lkGZNcHRE+1oMR2Oc"

Keep-Alive: timeout=5

X-Powered-By: Express

{

"hostname": "oscar-vm",

"ip": "localhost",

"status": "running",

"containers": [

{

"alias": "",

"base": "ubuntu:20.04",

"cpu": "23.54 (s)",

"domain": "default",

"ipv4": "10.10.1.201",

"ipv6": "fd42:7c8c:7fab:4125:216:3eff:fe34:89d4",

"name": "voiceless-blue",

"ports": "22:10000-3000:10001-",

"ram": "110.44 MB",

"status": "Running",

"user": "ubuntu"

},

],

}

Listing 11: GET /containers from host.

Where it is basically a json will all the properties of the current containers of a host. This

json response is then saved in the internal state of the application and is continuously

updated with the last information of each host.

33

Then whenever we open the view of a specific host we get a table page of the current

containers. For the moment only the view is implemented, but we could add the management

of the containers in the current table:

Figure 10: View of the current containers in host.

where the different tables with the containers will be updated each time we open the

corresponding page.

34

5 Budget

For the budget of this project, we should include:

• Single developer role. Total time of 600h at 12€/h.

• Double role for supervisor. Total time of 150h at 15€/h.

• Single laptop for development. Cost at 1000€.

• Server for development. Cost at 5000€.

All sum ups a total of 17.700€ for the project.

6 Conclusions

In this thesis we have achieved the following accomplishments:

• Improvement of the “lxce” command line tool in a more improved, tested version.

• Added functionalities to the “lxce-admin” tool improving the management of the

containers.

• Complete build of an initial web application with a view for improvements and

extensibility.

The main limitations were working and learning a new technology (“containerization”) not

known at the beginning of the project, plus developing the set of tools in a programming

language (javascript/typescript) without any previous experience. Also for development of

the web application learning about React was needed.

Also, some systems administration research was needed for setting up the development

environment.

7 Future work

The next steps for this project would involve mainly:

• Integrate into the “lxce” command a new functionality involving web services in a

way in we could define a web proxy and expose a service inside the container by a

configuration file.

• Improve the web application integrating all the “lxce” commands along with extend-

ing the current API.

35

References

[1] Linux containers project. https://linuxcontainers.org/.

[2] lxc: container tool utility. https://linuxcontainers.org/lxc/introduction/.

[3] lxd: container tool utility. https://linuxcontainers.org/lxd/introduction/.

[4] Remmina access screeen and file sharing. https://remmina.org/.

[5] Rsync tool. https://rsync.samba.org/.

[6] React: javascript framework. https://reactjs.org/.

[7] Linux containers project. https://linuxcontainers.org/.

[8] Virtualization. https://en.wikipedia.org/wiki/Virtualization.

[9] Redux: State container. https://redux.js.org/.

[10] Information and history of containers. https://github.com/saschagrunert/

demystifying-containers.

[11] Red hat containers. https://www.redhat.com/en/topics/containers/

whats-a-linux-container.

36

https://linuxcontainers.org/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxd/introduction/
https://remmina.org/
https://rsync.samba.org/
https://reactjs.org/
https://linuxcontainers.org/
https://en.wikipedia.org/wiki/Virtualization
https://redux.js.org/
https://github.com/saschagrunert/demystifying-containers
https://github.com/saschagrunert/demystifying-containers
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.redhat.com/en/topics/containers/whats-a-linux-container

Appendices

A lxce

For the commands that are available for our command, we have the following structure:

Usage: lxce [command] <options> <flags>

Commands:

lxce alias Manage containers aliases

lxce completion Output completions scripts

lxce delete Delete containers and configurations/folders related

lxce init Initialize lxce command

lxce launch Launch containers

lxce list List containers properties

lxce pass Compute password from containers

lxce proxy Delete and restart proxies

lxce rebase Relaunch container with new base specified

lxce show Show containers configurations files

lxce start Start containers

lxce stop Stop containers

lxce uninstall Remove all configurations from the lxce command

Flags

--version Show version number

-h, --help Show help

-v, --verbose

37

lxce alias

Usage: lxce alias [command] <options> <flags>

Commands:

lxce alias set set container alias

lxce alias unset unset container alias

lxce alias check check container alias

Flags

--version Show version number

-h, --help Show help

-v, --verbose

lxce alias set

Usage: lxce alias set [options] <flags>

Options

-d, --domain container domain

-n, --name container name

-a, --alias new container alias

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce alias set -d google Set alias alice to container

-n front -a alice front within google domain

38

lxce alias unset

Usage: lxce alias unset [options] <flags>

Options

-d, --domain container domain

-n, --name container name

-a, --alias new container alias

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce alias unset -d google -n front Unset alias to container front

within google domain

lxce alias unset -d google -a alice Unset alias to container with

alice alias within google

domain

lxce alias check

Usage: lxce alias check [options] <flags>

Options

-d, --domain container domain

-a, --alias new container alias

-f, --format output format ["plain", "json", "csv"]

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce alias check -d google -a alice check alice alias existence

39

within google domain

lxce delete

Usage: lxce delete <options> <flags>

Options

-g, --global apply to all containers

-d, --domain domain name for a group of containers

-n, --name container name

-a, --alias container alias

-y, --yes yes to questions

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce delete --global Deletes all containers and

configurations related

lxce delete -d google Deletes all containers within

google domain

lxce delete -d google -n still-yellow Deletes container referenced

by name

lxce delete -d google -a alice Deletes container referenced

by alias

lxce init

Usage: lxce init <flags>

Flags

--version Show version number

-h, --help Show help

-v, --verbose

40

lxce launch

Usage: lxce launch <options> <flags>

Options

-d, --domain domain for the container/containers

-r, --range range of container (ex: -r 5)

-n, --names names/name of the containers/container

-a, --aliases aliases/alias of the containers/container

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce launch -d google Launch one container within

google with a random name

lxce launch -d google -r 3 Launch three containers

within google with

random names

lxce launch -d google -r 3 -n back front Launch three containers

base within google with

specified names

lxce launch -d google -r 3 -n back front Launch three containers with

base -a alice bob eve name and alias

specified

lxce launch -d google -r 3 -a alice bob Launch three containers

eve with random names and

alias specified

41

lxce list

Usage: lxce <options> <flags>

Format options

==============

-n: "name"

-a: "alias"

-u: "user"

-b: "base"

-r: "ram (MB)"

-p: "ports"

-4: "ipv4"

-6: "ipv6"

-s: "status"

-d: "domain"

-c: "cpu usage (s)"

Options

-c, --columns Values to show

-f, --format Output format

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce list -c naubr

lxce list -f json

42

lxce pass

Usage: lxce pass <options> <flags>

Options

-g, --global Apply to all containers

-d, --domain Domain name for a group of containers

-n, --name Container name

-a, --alias Container alias

-p, --plain plain output

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce pass --global Compute all container passwords

lxce pass --domain google Compute all domain passwords

lxce pass -d google -n front Compute container name password

lxce pass -d google -a alice Compute container alias password

43

lxce proxy

Usage: lxce proxy <options> <flags>

Options

-g, --global Apply to all containers

-d, --domain Domain name for a group of containers

-n, --name Container name

-a, --alias Container alias

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce proxy --global Restart all containers proxies based

on their configuration files

lxce proxy -d google Restart all domain containers proxies

based on their configuration files

lxce proxy -d google -n front Restart container proxies

lxce proxy -d google -a alice Restart container proxies

44

lxce rebase

Usage: lxce rebase <options> <flags>

Options

-g, --global Applied to all containers

-d, --domain Domain name for a group of containers

-n, --name Container name

-a, --alias Container alias

-b, --base Container base

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce rebase --global Applies new base to existing

containers and future ones

lxce rebase -d google Applies new base to all

containers withing

google domain

lxce rebase -d google -n still-yellow Applies new base to container

lxce rebase -d google -a alice Applies new base to container

45

lxce show

Usage: lxce show <options> <flags>

Options

-g, --global Apply to all containers

-d, --domain Domain name for a group of containers

-n, --name Container name

-a, --alias Container alias

-e, --extra Show extra information

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce show --global Show all containers configurations

lxce show -d google Show all containers configurations

within domain

lxce show -d google -n still-yellow Show container configurations

defined by name

lxce show -d google -a alice Stop container configuration

defined by alias

46

lxce start

Usage: lxce start <options> <flags>

Options

-g, --global Apply to all containers

-d, --domain Domain name for a group of containers

-n, --name Container name

-a, --alias Container alias

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce start --global Start all containers

lxce start -d google Start all container within domain

lxce start -d google -n still-yellow Start container defined by name

lxce start -d google -a alice Start container defined by alias

47

lxce stop

Usage: lxce stop <options> <flags>

Options

-g, --global Apply to all containers

-d, --domain Domain name for a group of containers

-n, --name Container name

-a, --alias Container alias

Flags

--version Show version number

-h, --help Show help

-v, --verbose

Examples:

lxce stop --global Stop all containers

lxce stop -d google Stop all container within domain

lxce stop -d google -n still-yellow Stop container defined by name

lxce stop -d google -a alice Stop container defined by alias

lxce uninstall

lxce uninstall <options> <flags>

Options

-y, --yes

Flags

--version Show version number

-h, --help Show help

-v, --verbose

48

B lxce configuration files

The “lxce” configuration files structure is the following one:

/etc/lxce

|--- container.conf.d # Container configurations files

| |--- default # Default domain configurations

| | '--- voiceless-blue

| '--- derecho

| '--- relieved-beige

|--- container_default.conf # Default container template

|--- lxce.conf # lxce command configuration

|--- remmina # remmina configurations files

| |--- default

| | '--- oscar-vm.default.voiceless-blue.remmina

| '--- derecho

| '--- oscar-vm.derecho.relieved-beige.remmina

'--- ssh # ssh-config files

|--- default

| '--- voiceless-blue.conf

'--- derecho

'--- relieved-beige.conf

Where the configurations files content is the following:

49

• container-default.conf

This file acts as a template for every container to be created.

{

"name": "",

"alias": "",

"user": "",

"id_domain": 0,

"id_container": 0,

"domain": "default",

"base": "ubuntu:20.04",

"userData": "/datasdd",

"proxies": [

{

"name": "ssh",

"type": "tcp",

"listen": "0.0.0.0",

"port": 22

},

{

"name": "test",

"type": "tcp",

"listen": "0.0.0.0",

"port": 3000

}

],

}

50

• lxce.conf

This file specifies different parameters of the host where the command is installed,

such as:

– SSH IP

– Hostname

– Local VNC server configuration

– Seed used for generating passwords

– List of container domains currently in the host

– List of locations available for the shared containers folders location

{

"hypervisor": {

"SSH_hostname": "localhost",

"SSH_suffix": "oscar-vm",

"VNC_server": "localhost",

"VNC_port": 5901

},

"seed": "4b5a003f0e1715df",

"domains": [

{

"id": 0,

"name": "default"

},

{

"id": 1,

"name": "derecho"

}

],

"locations": [

"/datasdd"

]

}

51

• container configuration file

This files list the configured parameters for each container and the ids that uniquelly

identifies it

{

"name": "voiceless-blue",

"alias": "",

"user": "ubuntu",

"id_domain": 0,

"id_container": 0,

"domain": "default",

"base": "ubuntu:20.04",

"userData": "/datasdd",

"proxies": [

{

"name": "ssh",

"type": "tcp",

"listen": "0.0.0.0",

"port": 22

},

{

"name": "test",

"type": "tcp",

"listen": "0.0.0.0",

"port": 3000

}

],

}

52

• VNC configuration

Remmina configuration file used internally by the tool:

[remmina]

ssh_tunnel_privatekey=

name=oscar-vm.default.voiceless-blue # Container name

ssh_tunnel_passphrase=

password=. # Indicate saved

... password

server=localhost:5901 # VNC server

disablepasswordstoring=0

ssh_tunnel_username=ubuntu

disableclipboard=0

window_maximize=1

ssh_tunnel_password=. # Indicate saved

password

enable-autostart=0

proxy=

ssh_tunnel_server=localhost:10000 # Container SSH Port

ssh_tunnel_auth=0

group=oscar-vm.upc.edu

...

protocol=VNC

username=ubuntu # VNC username

showcursor=0

colordepth=32

• SSH configuration

Ssh-config files for each container:

Host oscar-vm.default.voiceless-blue

Hostname localhost

User ubuntu

Port 10000

TCPKeepAlive yes

ServerAliveInterval 300

53

C lxce-admin

lxce-admin config

Usage: lxce-admin [command] <flags>

Commands:

lxce-admin config add Add host and sync files

lxce-admin config list List configured hosts

lxce-admin config remove Remove host and associated files

lxce-admin config update Update host associated files

Flags

--version Show version number

-h, --help Show help

-v, --verbose

lxce-admin config add

Usage: lxce-admin config add <options> <flags>

Options

--dry-run

Flags

--version Show version number

-h, --help Show help

-v, --verbose

lxce-admin config list

Usage: lxce-admin config list

Flags

--version Show version number

-h, --help Show help

-v, --verbose

54

lxce-admin config remove

Usage: lxce-admin config remove <options> <flags>

Options

--host configured host

--dry-run

Flags

--version Show version number

-h, --help Show help

-v, --verbose

lxce-admin config update

Usage: lxce-admin config update <options> <flags>

Flags

--version Show version number

-h, --help Show help

-v, --verbose

55

lxce-admin pass

Usage: lxce-admin pass <options> <flags>

Options

--host configured host

-d, --domain container domain

-n, --name container name

-a, --alias container alias

Flags

--version Show version number

-h, --help Show help

-v, --verbose

lxce-admin remmina

Usage: lxce-admin remmina <options> <flags>

Options

--host configured host

-d, --domain container domain

-n, --name container name

-a, --alias container alias

Flags

--version Show version number

-h, --help Show help

-v, --verbose

56

lxce-admin vnc

Usage: lxce-admin vnc <options> <flags>

Options

--host configured host

-d, --domain container domain

-n, --name container name

-a, --alias container alias

--scale scale vnc viewer

--dry-run

Flags

--version Show version number

-h, --help Show help

-v, --verbose

57

	Abstract
	Resum
	Resumen
	Acknowledgements
	Revision history
	Contents
	List of Figures
	Listings
	Introduction
	Requirements and specifications
	Previous efforts
	Work plan

	State of the art
	Container technology
	Containerization systems
	LXC
	LXD

	Methodology / project development
	lxce
	Configuration files
	Commands

	lxce-admin
	Configuration files
	Commands

	web-admin

	Implementation and results
	lxce
	lxce-admin
	web-admin

	Budget
	Conclusions
	Future work
	References
	Appendices
	lxce
	lxce configuration files
	lxce-admin

