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Abstract

Zero forcing is an iterative coloring process on a graph that has been widely used
in such different areas as the modelling of propagation phenomena in networks
and the study of minimum rank problems in matrices and graphs. This paper
deals with zero forcing on hypergraphs. (Representing a network by a hyper-
graph allows us to account for its community structure and for more general
interactions between different subsets of nodes.)

We consider two natural generalizations to hypergraphs of zero forcing on
graphs (one of them already known) and, for each one of these generalizations
we look into two clutters that play a significant role in the forcing process:
the clutter of minimal forcing sets and the one of minimal immune sets. A
formulation of immune sets in terms of neighbourhoods (hence without making
reference to the iterative zero forcing process) is presented, highlighting the
different behaviour of the distinct forcing rules. Moreover, we obtain the families
of minimal forcing and minimal immune sets in the case of complete hypergraphs
and we provide a full characterization of forcing and immune uniform clutters,
both in the graph and in the hypergraph case.

Keywords: hypergraphs, zero forcing, propagation in networks.

1. Introduction.

The spread of disease in a population, the dissemination of information in
a social network, or the cascading failure in a power electrical or computer
network, are examples of propagation phenomena in networks which can be
modelled by considering the following scenario: the network is represented by a
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simple undirected graph and the propagation phenomena by means of a discrete
time dynamic forcing process acting on the vertices of the graph. At any given
time each vertex is in one of two possible states (black and white). At the
beginning of the process, some vertices of the graph are colored black, while
the rest of the vertices are initially colored white. At each step, one white
vertex can become black by applying a well-defined forcing rule; and this forcing
procedure is iteratively applied until no more changes of color are possible. See,
for instance, the book [2] for a comprehensive overview of dynamical processes
on networks.

In this paper we consider a more general framework in which the network is
modelled by a hypergraph, hence allowing to account both for the community
structure of the network and for more general interactions between different
subsets of nodes than those taken into consideration by the adjacency relation
in a graph. A hypergraph H on a finite set Ω is a pair (V (H), E(H)) where
V (H) = Ω is the set of vertices of the hypergraph and E(H) = {E1, . . . , Em} is
the set of hyperedges Ei ⊆ Ω, 1 ⩽ i ⩽ m, see for example the classic book [3].
In addition, we assume that E(H) is a clutter, that is, none of the hyperedges
contains another (clutters are also known as antichains or Sperner systems, see
for instance [11]). Observe that if |Ei| = 2 for all i, 1 ⩽ i ⩽ m, then H is just
a simple graph without isolated vertices. So, since any graph can be seen as a
hypergraph, our model incorporates the graph representation of the network.

Besides, in this work we consider different zero forcing rules in order to model
the propagation phenomena. In the graph case, zero forcing was introduced in
[1, 6] and works as follows: at each forcing step, a black vertex of a graph with
exactly one white adjacent vertex will force this white vertex to become black.
In the hypergraph case, the forcing rule will be such that at each forcing step
a black subset of vertices of a certain hyperedge will force all the white vertices
of this hyperedge to become black, see for instance [4] for one possible definiton
of zero forcing on hypergraphs. Again, the sequence of forcing steps takes place
until no more color switches can happen.

An initial set of black vertices such that all the vertices of the graph or
the hypergraph become black after repeatedly applying the zero forcing rule is
named a zero forcing set. In the case of graphs, the cardinality of a smallest
zero forcing set is known as the zero forcing number and this parameter has
been heavily studied, see for instance the recent paper [12] and its references.
The zero forcing process has also been applied to minimum rank problems in
matrices and graphs, see for example [9] for a detailed discussion. In what
follows, we will refer to zero forcing sets simply as forcing sets.

Although the hypergraph model of the network has not been so widely con-
sidered as the graph model, it has been previously taken into consideration.
For instance, in [5] the authors consider the classical SIS model of epidemic
propagation in the case that the network is represented by a hypergraph; in
[7] the zero forcing generalization introduced in [4] is accounted to improve the
upper bound of the infection number of a hypergraph (which is the cardinality
of a smallest forcing set); and in [10], the value of the hypergraph zero forcing
number and maximum nullity are determined for various families of uniform
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hypergraphs.
In our work we consider two natural generalizations of zero forcing on graphs.

One of them is the definition considered in [4] and the other one is introduced in
our paper. For each one of these zero forcing rules on hypergraphs, we look into
the clutters of minimal forcing sets and minimal immune sets. As we will see,
these clutters play a remarkable role in the forcing process. Roughly speaking,
an immune set is a subset of white vertices whose color remains unchanged
during the whole zero forcing process, given that initially the rest of the vertices
of the hypergraph have been colored black.

Our main goals are, on the one hand, to provide general results on the clut-
ters of minimal forcing and minimal immune sets for arbitrary hypergraphs (and
hence also for graphs), and, on the other hand, to give more specific results in
the particular case of the family of complete hypergraphs and uniform clutters.

The paper is organized as follows. In Section 2 we consider the two different
natural generalizations to hypergraphs of zero forcing on graphs (Definitions 2.2
and 2.3). For each zero forcing rule discussed in the paper we introduce the
clutters of minimal forcing and minimal immune sets (Definitions 2.4 and 2.5),
and we relate them by using transversals (Proposition 2.6). In Section 3, a nice
characterization of the immune sets formulated in terms of neighbourhoods is
given, without reference to the iterative zero forcing process (Proposition 3.4).
In the hypergraph case this neighbourhood characterization is different for each
zero forcing rule, but both coincide in the graph case. Finally, in Section 4 we
study the role that uniform clutters play on zero forcing on hypergraphs. So
we obtain on the one hand the families of minimal forcing and minimal immune
sets in the case of complete hypergraphs (Propositions 4.3 and 4.4), and on
the other hand we provide a complete characterization of forcing and immune
uniform clutters; that is, given a uniform clutter we answer the question of the
existence of a graph or a hypergraph such that its family of minimal forcing or
minimal immune sets with respect to the considered zero forcing rule is precisely
the given uniform clutter (Theorems 4.5, 4.6 and 4.7).

2. Zero forcing rules on hypergraphs. Forcing and immune sets.

Let R denote the forcing rule defined on the hypergraph H representing the
network under consideration. We suppose that at each forcing step, and ac-
cording to some well-defined condition formulated by R, some subset of black
vertices in certain hyperedge of H will force all the white vertices of this hy-
peredge to become black. The forcing rule R is iteratively applied until no
more color changes are possible. In this paper we deal specifically with the zero
forcing rule defined for graphs as follows:

Definition 2.1 (Zero forcing rule R0, [1, 6] ). At each forcing step, a black
vertex of the graph with exactly one white adjacent vertex will force this white
vertex to become black. The zero forcing rule is then iteratively applied until no
more changes of color are possible.
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An initial set of black vertices of the graph G such that all the vertices of G
become black after repeatedly applying R0 is called a forcing set. For example,
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Figure 1: The sets {1, 2, 7} and {3, 5, 6, 7} are forcing sets.

in the graph G shown in Figure 1, the sets {1, 2, 7} and {3, 5, 6, 7} are examples
of forcing sets.

For hypergraphs one can consider several natural generalizations of Defini-
tion 2.1. Let us remind first the notion of adjacency in hypergraphs. Given
two subsets of vertices X and Y of a hypergraph H we say that X and Y are
adjacent if there is a common hyperedge E such that X ⊆ E and Y ⊆ E. In
particular, if X and {v} are adjacent for some vertex v, we say that v is adjacent
to the set X.

A first generalization for hypergraphs, R1, of zero forcing on graphs was
introduced in [4].

Definition 2.2 (Forcing rule R1, [4]). At each forcing step, a black subset X
of a hyperedge E, which is such that outside of E there is not a white vertex
adjacent to X, will force all the white vertices of E to become black. This rule
is iteratively applied until no more changes are possible.

Observe that if a graph G is seen as a hypergraph H, then the zero forcing
rule R1 on H coincides with the zero forcing rule R0 on G.

In rule R1 the emphasis is put in the fact that the only white vertices
adjacent to X ⊆ E belong to the same hyperedge E, as happens in the graph
case where the hyperedges are just the edges of the graph. But in a graph we
can adopt another perspective for zero forcing: a black vertex b adjacent to a
white vertex w forces w to become black if b does not belong to any other edge
with a white vertex. From this alternative point of view, let us introduce a new
natural generalization of zero forcing for hypergraphs, R2, which is different of
the former one. As for R1, if a graph G is seen as a hypergraph H, then the
zero forcing rule R2 on H coincides also with the zero forcing rule R0 on G.
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Definition 2.3 (Forcing rule R2). At each forcing step, a black subset X of a
hyperedge E, which is such that X is not contained in any other hyperedge with
white vertices, will force all the white vertices of E to become black. This rule
is iteratively applied until no more changes are possible.

In accordance with the definitions of R1 and R2, it is clear that if some white
vertex v of a particular hyperedge can be forced to become black by applying the
rule R2, then the color of v can also be changed by R1. Nevertheless, the two
rules are not equivalent. A simple example showing this fact is, for instance, the
following one. Let Ω = {1, 2, 3, 4} and consider the hypergraph H on Ω with
hyperedges {1, 2, 3}, {1, 2, 4} and {1, 3, 4}. Then we can easily check that if
initially the set of black vertices is {1, 2}, then at the end of the forcing process
vertices 3 and 4 have become black by R1, whereas by rule R2 no change of
color is possible.

Observe that for i = 0, 1, 2, the zero forcing rule Ri satisfies the following
property. Let B ⊆ B′ ⊆ V (H) be two subsets of black vertices, let A ⊆ B
and A′ ⊆ B′ be two subsets such that A ⊆ A′, and let E be a hyperedge such
that A′ ⊆ E. Therefore if according to Ri the white vertices of E change its
color when we consider the black set A, then according to Ri these vertices
also change its color when we consider the black set A′. Thus given an initial
set B of black vertices, if Ri is iteratively applied until no more color changes
are possible, the final set of black vertices resulting in H is unique and does not
depend on the particular sequence of forcing steps performed on the hypergraph.
Let us denote by R∗

i (B) this final black set. Clearly, B ⊆ R∗
i (B). Moreover,

notice that if B ⊆ B′, then R∗
i (B) ⊆ R∗

i (B
′). Let us refer to this last property

by saying that the rule Ri is increasing.
When the forcing process is finished, either all the vertices of the graph or

the hypergraph have become black or there is still a non-empty remaining subset
of white vertices. This observation motivates the following two definitions that
we state in general for a hypergraph H on a finite set Ω and for the zero forcing
rule Ri, i = 0, 1, 2.

Definition 2.4. Let H be a hypergraph on a finite set Ω. An Ri-forcing set of
H is a non-empty subset F ⊆ Ω such that R∗

i (F ) = Ω. Let us denote by Fi(H)
the family of the inclusion-minimal Ri-forcing sets of H; that is, F ∈ Fi(H) if
and only if F is an Ri-forcing set and none of its proper subsets is an Ri-forcing
set.

Definition 2.5. Let H be a hypergraph on a finite set Ω. An Ri-immune set
of H is a non-empty subset I ⊆ Ω such that R∗

i (Ω \ I) = Ω \ I. Let us denote
by Ii(H) the family of the inclusion-minimal Ri-immune sets of H; that is,
I ∈ Ii(H) if and only if I is an Ri-immune set and none of its proper subsets
is an Ri-immune set.

Remark 1. In the case of zero forcing in graphs, the concept of immune set
has been previously considered, in particular under the name of fort. So, in [8],
the authors define a fort J of a graph as a non-empty subset of vertices such
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that no vertex outside of J is adjacent to exactly one vertex of J . Thus, a fort
is a set of vertices that do not get forced by some initial set of black vertices.
It is worth noting that, in the case of graphs, the relationship between forts
and immune sets will be more apparent in Section 3 with the neighbourhood
characterization of immune sets (see Remark 3 and Proposition 3.1).

If it is clear from the context which is the zero forcing rule Ri acting on H,
we can omit its reference and say plainly forcing set or immune set.

Remark 2. Since the zero forcing ruleRi is increasing, if F is anRi-forcing set,
then any superset F ′ ⊇ F is also an Ri-forcing set. This property is not true for
immune sets. For instance, consider the zero forcing rule R2 in the hypergraph
H on Ω = {1, 2, 3, 4} with hyperedges {1, 2}, {1, 3}, {2, 3} and {3, 4}. We can
easily check that {1, 2} is an immune set but {1, 2, 3} is not. However, notice
that if I is an Ri-immune set, then at the end of the forcing process all the
vertices of I remain white no matter which is the initial subset of black vertices
B ⊆ V (H) \ I.

By considering Fi(H) and Ii(H) some of our results can be formulated in
terms of transversals (Proposition 2.6).

We use the following well-known results on transversals. Let C be a family
of finite sets. A blocking set of C is a set that intersects (blocks) every member
of C. A blocking set of C is minimal if none of its proper subsets is a blocking
set of C. Minimal blocking sets are also called transversals. The family of all
minimal blocking sets of C is denoted Tr(C) (transversal of C). It can be shown
that if C0 is the family of the inclusion-minimal elements of a family C of finite
sets, then Tr(C) = Tr(C0) and Tr(Tr(C)) = Tr(Tr(C0)) = C0. (See for instance
the book [11] for general results on transversals.)

Proposition 2.6. If Fi(H) and Ii(H) are the families of inclusion-minimal
Ri-forcing sets and Ri-immune sets, respectively, of a hypergraph H, then
Tr(Fi(H)) = Ii(H) and Tr(Ii(H)) = Fi(H).

Proof. Observe that if X ⊆ Ω is an Ri-forcing set and if Y ⊆ Ω is a subset such
that X ∩ Y = ∅, then Ω \ Y is an Ri-forcing set, because X ⊆ Ω \ Y and hence
R∗

i (Ω \ Y ) = Ω. Since a subset I ⊆ Ω is by definition an Ri-immune set if and
only if I is non-empty and R∗

i (Ω\I) = Ω\I, we deduce that if X is a Ri-forcing
set, then X ∩ I ̸= ∅ for all Ri-immune set I.

Notice also that ifX ⊆ Ω is not anRi-forcing set, then the set I = Ω\R∗
i (X)

is non-empty and moreover R∗
i (Ω\ I) = R∗

i (X) = Ω\ I. We deduce that I is an
Ri-immune set and I ∩R∗

i (X) = ∅. Since X ⊆ R∗
i (X) we conclude that if X is

not a Ri-forcing set, then there exists an Ri-immune set I such that X ∩ I = ∅.
Until now we have proved that if Γi = {I : I is an Ri-immune set}, then

Tr(Γi) = Fi(H) and so by minimality we have Tr(Ii(H)) = Tr(Γi) = Fi(H).
Finally, again by transversality, Tr(Fi(H)) = Tr(Tr(Ii(H))) = Ii(H).

Example 1. Let Ω = {1, 2, 3, 4} and consider the hypergraph H on Ω with hy-
peredges {1, 2, 3}, {1, 2, 4} and {1, 3, 4}. We can easily check that the family of
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minimal forcing sets ofH are F1(H) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
and F2(H) = {{2, 3}, {2, 4}, {3, 4}}. From the above proposition Ii(H) =
Tr(Fi(H)). Hence, by considering the transversal of Fi(H), i = 1, 2, we ob-
tain the families of inclusion-minimal immune sets I1(H) = {{1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {2, 3, 4}} and I2(H) = {{2, 3}, {2, 4}, {3, 4}}.

Example 2. If Ω ⊆ {1, . . . , i}, 1 ⩽ i ⩽ 4, then, up to isomorphism, there exist
28 hypergraphs Hi,j which are enumerated in Table 1. For simplicity, each
hypergraph Hi,j is identified with its hyperedge clutter, and for each Hi,j the
clutters F1(Hi,j), F2(Hi,j), I1(Hi,j) and I2(Hi,j) have been explicitly calculated
and displayed (up to isomorphism). For instance, if H3,3 = {{1, 2}, {2, 3}},
then F1(H3,3) = F2(H3,3) = {{1}, {3}} ∼= H2,2 and I1(H3,3) = I2(H3,3) =
{{1, 3}} ∼= H2,1; and if H3,4 = {{1, 2}, {3}}, then F1(H3,4) = F2(H3,4) =
{{1, 3}, {2, 3}} ∼= H3,3 and I1(H3,4) = I2(H3,4) = {{1, 2}, {3}} ∼= H3,4 (in this
last case we have actually an equality).

From the analysis of Table 1 we deduce the following fact: if H is a hy-
pergraph on a finite set Ω with cardinality |Ω| ⩽ 4, then, up to isomorphism,
F1(H) = F2(H) if and only if I1(H) = I2(H) if and only if H is not isomorphic
to H4,2, neither H is not isomorphic to H4,3.

The following proposition is the only general result that we provide concern-
ing the relation between forcing sets and immune sets with respect to the rules
R1 and R2.

Proposition 2.7. Let H be a hypergraph on a finite set Ω. Then the following
statements hold:

1. If F ⊆ Ω is an R2-forcing set, then F is also an R1-forcing set. Moreover,
if F ∈ F2(H) is a minimal R2-forcing set, then there exists a minimal R1-
forcing set F ′ ∈ F1(H) such that F ′ ⊆ F .

2. If I ⊆ Ω is an R1-immune set, then I is also an R2-immune set. More-
over, if I ∈ I1(H) is a minimal R1-immune set, then there exists a mini-
mal R2-immune set I ′ ∈ I2(H) such that I ′ ⊆ I.

Proof. Firstly, let us demonstrate the following claim: if B is the set of vertices
of H which are initially colored black, then R∗

2(B) ⊆ R∗
1(B). Let us prove our

claim. Clearly we have B ⊆ R∗
1(B) and hence R∗

2(B) ⊆ R∗
2(R∗

1(B)), because
the rule R2 is increasing. Let B′ = R∗

1(B). We are done if we demonstrate that
R∗

2(B
′) = B′. In agreement with the definitions of R1 and R2 we have that

R∗
2(B

′) ⊆ R∗
1(B

′). So we have that B′ ⊆ R∗
2(B

′) ⊆ R∗
1(B

′) = B′. Therefore we
conclude that R∗

2(B
′) = B′.

Now let us prove the proposition. By our claim we have thatR∗
2(F ) ⊆ R∗

1(F )
and R∗

2(V (H) \ I) ⊆ R∗
1(V (H) \ I). Therefore any R2-forcing set F is also an

R1-forcing set and any R1-immune set I is also an R2-immune set. To finish
the proof of the proposition observe that the “moreover” condition of both
statements is a basic and general result. Namely, if Γ1 and Γ2 are two families
of subsets of a set X such that Γ1 ⊆ Γ2, then for all inclusion-minimal element
Y of Γ1 there exists an inclusion-minimal element Z of Γ2 such that Z ⊆ Y .
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Table 1: Up to isomorphism, hypergraphs on Ω ⊆ {1, 2, 3, 4} and families of its minimal
forcing and minimal immune sets.

Hi,j F1(Hi,j) F2(Hi,j) I1(Hi,j) I2(Hi,j)

H1,1 = {{1}} H1,1 H1,1 H1,1 H1,1

H2,1 = {{1, 2}} H2,2 H2,2 H2,1 H2,1

H2,2 = {{1}, {2}} H2,1 H2,1 H2,2 H2,2

H3,1 = {{1, 2, 3}} H3,5 H3,5 H3,1 H3,1

H3,2 = {{1, 2}, {1, 3}, {2, 3}} H3,2 H3,2 H3,2 H3,2

H3,3 = {{1, 2}, {1, 3}} H2,2 H2,2 H2,1 H2,1

H3,4 = {{1, 2}, {3}} H3,3 H3,3 H3,4 H3,4

H3,5 = {{1}, {2}, {3}} H3,1 H3,1 H3,5 H3,5

H4,1 = {{1, 2, 3, 4}} H4,20 H4,20 H4,1 H4,1

H4,2 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} H4,10 H4,2 H4,2 H4,10

H4,3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}} H4,10 H3,2 H4,2 H3,2

H4,4 = {{1, 2, 3}, {1, 2, 4}} H2,2 H2,2 H2,1 H2,1

H4,5 = {{1, 2, 3}, {1, 2, 4}, {3, 4}} H4,11 H4,11 H4,5 H4,5

H4,6 = {{1, 2, 3}, {1, 4}} H3,5 H3,5 H3,1 H3,1

H4,7 = {{1, 2, 3}, {1, 4}, {2, 4}} H4,16 H4,16 H4,3 H4,3

H4,8 = {{1, 2, 3}, {1, 4}, {2, 4}, {3, 4}} H4,10 H4,10 H4,2 H4,2

H4,9 = {{1, 2, 3}, {4}} H4,14 H4,14 H4,9 H4,9

H4,10 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} H4,2 H4,2 H4,10 H4,10

H4,11 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}} H4,13 H4,13 H4,17 H4,17

H4,12 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}} H4,11 H4,11 H4,5 H4,5

H4,13 = {{1, 2}, {1, 3}, {2, 4}, {3, 4}} H4,13 H4,13 H4,17 H4,17

H4,14 = {{1, 2}, {1, 3}, {1, 4}} H3,2 H3,2 H3,2 H3,2

H4,15 = {{1, 2}, {1, 3}, {2, 4}} H4,19 H4,19 H4,4 H4,4

H4,16 = {{1, 2}, {1, 3}, {2, 3}, {4}} H4,3 H4,3 H4,16 H4,16

H4,17 = {{1, 2}, {3, 4}} H4,13 H4,13 H4,17 H4,17

H4,18 = {{1, 2}, {1, 3}, {4}} H3,3 H3,3 H3,4 H3,4

H4,19 = {{1, 2}, {3}, {4}} H4,4 H4,4 H4,19 H4,19

H4,20 = {{1}, {2}, {3}, {4}} H4,1 H4,1 H4,20 H4,20

3. Neighbourhood characterization of immune sets.

For zero forcing, a nice characterization of the immune sets can be given in
terms of neighbourhoods, without making reference to the iterative zero forcing
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process. Let us consider first the case in which the hypergraph is a graph G.
Given X ⊆ V (G), let V (G)\X be the initial set of black vertices. Observe that
a white vertex of X can be forced (by a black vertex v ∈ V (G) \X) to become
black if and only if |N(v) ∩X| = 1. So we have the following fact.

Remark 3. Let G be a graph. A non-empty subset X ⊆ V (G) is an immune
set of G if and only if |N(v) ∩X| ≠ 1 for all v ∈ V (G) \X.

Let H be a hypergraph on a finite set Ω. Given a subset B ⊆ Ω, let us
define the open neighbourhood of B, N (B), as N (B) = {B′ ⊆ Ω : B ∩B′ = ∅
and B ∪ B′ ∈ E(H)}. Notice that if H is a graph G and v is a vertex, then
N ({v}) = {{w} : w ∈ N(v)}. Hence if G is seen as a hypergraph H, Remark 3
can be alternatively formulated as follows:

Proposition 3.1. Let G be a graph. A non-empty subset X ⊆ V (G) is an
immune set of G if and only if |{B′ ∈ N ({v}) : B′ ∩ X ̸= ∅}| ≠ 1 for all
{v} ⊆ V (G) \X.

If in a hypergraph H we consider the zero forcing rule R2, then Proposi-
tion 3.1 can be straightforwardly generalized.

Proposition 3.2. Let H be a hypergraph on a finite set Ω. A non-empty subset
X ⊆ Ω is an R2-immune set of H if and only if |{B′ ∈ N (B) : B′∩X ̸= ∅}| ≠ 1
for all B ⊆ Ω \X.

Proof. Given ∅ ̸= X ⊆ Ω, let Ω \ X be the initial set of black vertices and
let A be a hyperedge such that A \ X ̸= ∅ and A ∩ X ̸= ∅. According to
the zero forcing rule R2 the black subset A \ X of the hyperedge A will force
the white subset A ∩ X to become black if and only if there is not another
hyperedge with white vertices and containing A \ X. Hence a black subset
B ⊆ A \X ⊆ Ω \X of an hyperedge A will force A ∩X to become black if and
only if |{B′ ∈ N (B) : B′ ∩X ̸= ∅}| = 1.

Observe that if we use the standard definition in hypergraphs of the neigh-
bourhood of a subset of vertices B, namely N(B) = {A ∈ E(H) : B ⊆ A},
then the necessary and sufficient condition in the above proposition can also
be expressed as: |{A′ ∈ N(A \ X) : A′ ∩ X ̸= ∅}| ⩾ 2 for all hyperedge A
such that A \X ̸= ∅ and A ∩X ̸= ∅. This observation motivates the following
notation, that will allow us to characterize also the R1-immune sets of H. Let
H be a hypergraph on a finite set Ω. Let X ⊆ Ω be a subset of vertices, and let
A ∈ E(H) be a hyperedge. Let us define the following sets:

Σ1(X,A) = {A′ ∈ N(A \X) : (A′ ∩X) \A ̸= ∅};
Σ2(X,A) = {A′ ∈ N(A \X) : A′ ∩X ̸= ∅}.

Notice that if A is a hyperedge of H such that A \X ̸= ∅ and A ∩X ̸= ∅, then
we have Σ1(X,A) ∪ {A} ⊆ Σ2(X,A) but, in general, the above inclusion is not
an equality.

Using these sets we have the following characterizations of immune sets in
graphs and hypergraphs.
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Proposition 3.3. Let G be a graph, and let X ⊆ V (G) be a non-empty subset.
Then the following conditions are equivalent:

1. X is an immune set of G with respect to the zero forcing rule.

2. |Σ1(X, e)| ⩾ 1 for all edges e ∈ E(G) such that e \X ̸= ∅ and e ∩X ̸= ∅.

3. |Σ2(X, e)| ⩾ 2 for all edges e ∈ E(G) such that e \X ̸= ∅ and e ∩X ̸= ∅.

Proof. The result follows from Remark 3 and the fact that if G is a graph and
e = {v, w} ∈ E(G) is an edge such that e \ X = {v} and e ∩ X = {w}, then
Σ2(X, e) = Σ1(X, e) ∪ {e} and |Σ2(X, e)| ⩾ 2 if and only if |Σ1(X, e)| ⩾ 1, if
and only if |N(v) ∩X| ⩾ 2.

Proposition 3.4. Let H be a hypergraph on a finite set Ω and let X ⊆ Ω be
non-empty subset. Then the following statements hold:

1. X is an R1-immune set if and only if |Σ1(X,A)| ⩾ 1 for all hyperedges A
such that A \X ̸= ∅ and A ∩X ̸= ∅.

2. X is an R2-immune set if and only if |Σ2(X,A)| ⩾ 2 for all hyperedges A
such that A \X ̸= ∅ and A ∩X ̸= ∅.

Proof. Given ∅ ≠ X ⊆ V (H), let V (H) \X be the initial set of black vertices
and let A be a hyperedge such that A \X ̸= ∅ and A ∩X ̸= ∅.

According to the zero forcing rule R1 the black subset A\X of the hyperedge
A will force the white subset A ∩ X to become black if and only if there are
no white vertices outside of A adjacent to A \ X. Therefore A \ X will force
A∩X to become black if and only if the set of white vertices adjacent to A \X
is contained in A ∩X; if and only if Σ1(X,A) = ∅. This proves the part of the
proposition concerning R1.

Analogously, according to the zero forcing rule R2 the black subset A \X of
the hyperedge A will force the white subset A ∩X to become black if and only
if there is not another hyperedge A′ with white vertices and containing A \X;
if and only if Σ2(X,A) = {A}. This finishes the proof of the proposition.

Remark 4. Notice that if |Σ1(X,A)| ⩾ 1, then |Σ2(X,A)| ⩾ 2 and so if X is an
R1-immune set, then it is also an R2-immune set, as stated in Proposition 2.7.

4. Characterization of uniform forcing and immune clutters.

As discussed in Section 2, given a hypergraph H, the families Fi(H) and
Ii(H) of its (inclusion-)minimal forcing and immune sets with respect to the
zero forcing rule Ri constitute a pair of clutters, each one being the transversal
of the other. (If the hypergraph is a graph G, we can emphasize this fact by
denoting its families of minimal forcing and minimal immune sets by F(G) and
I(G), respectively.) Two interesting open problems arise at this point: given a
clutter ∆ on a finite set Ω, is there a graph G or, more generally, a hypergraph
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H, with vertex set Ω, such that its family of minimal forcing or immune sets
with respect to the zero forcing rule Ri is precisely ∆; and if the answer is in
the affirmative, can we find G or H? These questions motivate the following
definition.

Definition 4.1. Let ∆ be a clutter on a finite set Ω. Then

(a) ∆ is a graph-forcing clutter (respectively, an Ri-forcing clutter) if there
exists a graph G (respectively, a hypergraph H) such that V (G) = Ω and
F(G) = ∆ (respectively, V (H) = Ω and Fi(H) = ∆). In this case, we
say that G is a graph-forcing realization (respectively, H is an Ri-forcing
realization) of ∆.

(b) ∆ is a graph-immune clutter (respectively, an Ri-immune clutter) if there
exists a graph G (respectively, a hypergraph H) such that V (G) = Ω and
I(G) = ∆ (respectively, V (H) = Ω and Ii(H) = ∆). In this case, we say
that G is a graph-immune realization (respectively, H is an Ri-immune
realization) of ∆.

To illustrate Definition 4.1 let us consider the following example:

Example 3. From Table 1 we also deduce which ones of the 28 non-isomorphic
clutters ∆ defined on a set Ω with cardinality |Ω| ⩽ 4 are Ri-forcing clutters
and which ones are Ri-immune clutters. This analysis is detailed in Table 2.
We underline the following facts:

1. ∆ is an R1-forcing clutter (respectively, ∆ is an R1-immune clutter) if
and only if ∆ is an R2-forcing clutter (respectively, ∆ is an R2-immune
clutter).

2. There are cases in which ∆ is both an Ri-forcing clutter and an Ri-immune
clutter; for example, H4,16 = F1(H4,7) = I1(H4,16). There are samples
in which ∆ is an Ri-forcing clutter but not an Ri-immune clutter; for
instance, H4,13 = F2(H4,11) but there is no realization of H4,13 as an
R2-immune clutter. There are also cases in which ∆ is an Ri-immune
clutter but not an Ri-forcing clutter. Finally, observe that ∆ is not an
Ri-forcing clutter nor an Ri-immune clutter if and only if ∆ ∼= H4,6,H4,7,
H4,8,H4,12,H4,15,H4,18.

3. The realizations of a given ∆ may depend on Ri and, moreover, the num-
ber of non-isomorphic realizations may be different depending on ∆.

Our goal in this section is to provide a complete characterization of forcing
and immune uniform clutters. The k-uniform clutter Uk,Ω on a finite set Ω is
Uk,Ω = {A ⊆ Ω : |A| = k}.

The transversal of Uk,Ω is also a uniform clutter on Ω; namely, Tr(Uk,Ω) =
U|Ω|−k+1,Ω. Thus, by Proposition 2.6, the determination of forcing and immune
uniform clutters are equivalent problems.

11



Table 2: Up to isomorphism, clutters ∆ on Ω ⊆ {1, 2, 3, 4} and realizations of ∆ as Ri-forcing
and Ri-immune clutters.

Hk,ℓ such that Hk,ℓ such that Hk,ℓ such that Hk,ℓ such that
∆ = Hi,j F1(Hk,ℓ) = ∆ F2(Hk,ℓ) = ∆ I1(Hk,ℓ) = ∆ I2(Hk,ℓ) = ∆

H1,1 H1,1 H1,1 H1,1 H1,1

H2,1 H2,2 H2,2 H2,1,H3,3,H4,4 H2,1,H3,3,H4,4

H2,2 H2,1,H3,3,H4,4 H2,1,H3,3,H4,4 H2,2 H2,2

H3,1 H3,5 H3,5 H3,1,H4,6 H3,1,H4,6

H3,2 H3,2,H4,14 H3,2,H4,3,H4,14 H3,2,H4,14 H3,2,H4,3,H4,14

H3,3 H3,4,H4,18 H3,4,H4,18

H3,4 H3,4,H4,18 H3,4,H4,18

H3,5 H3,1,H4,6 H3,1,H4,6 H3,5 H3,5

H4,1 H4,20 H4,20 H4,1 H4,1

H4,2 H4,10 H4,2,H4,10 H4,2,H4,3,H4,8 H4,8

H4,3 H4,16 H4,16 H4,7 H4,7

H4,4 H4,19 H4,19 H4,15 H4,15

H4,5 H4,5,H4,12 H4,5,H4,12

H4,6

H4,7

H4,8

H4,9 H4,9 H4,9

H4,10 H4,2,H4,3,H4,8 H4,8 H4,10 H4,2,H4,10

H4,11 H4,5,H4,12 H4,5,H4,12

H4,12

H4,13 H4,11,H4,13,H4,17 H4,11,H4,13,H4,17

H4,14 H4,9 H4,9

H4,15

H4,16 H4,7 H4,7 H4,16 H4,16

H4,17 H4,11,H4,13,H4,17 H4,11,H4,13,H4,17

H4,18

H4,19 H4,15 H4,15 H4,19 H4,19

H4,20 H4,1 H4,1 H4,20 H4,20

In the first place let us obtain the families Fi(H) and Ii(H) for a complete
hypergraph on a finite set Ω; that is, a hypergraph Hk,Ω whose collection of
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hyperedges is the uniform clutter Uk,Ω.
Observe that if Ω is a finite set of size n, then the complete hypergraph H2,Ω

is just the complete graph Kn. If we consider zero forcing, R0, on Kn it is easily
checked that the minimal forcing sets are the sets of cardinality n− 1, whereas
the minimal immune sets are the ones of cardinality two. Therefore we have the
following fact.

Proposition 4.2. Let Kn be the complete graph of n vertices. Then F(Kn) =
Un−1,Ω and I(Kn) = U2,Ω.

Next we generalise the above proposition to hypergraphs. Namely, we com-
pute the Ri-forcing sets and the Ri-immune sets of the complete hypergraph
Hk,Ω. Our results are stated in the following two propositions that highlight
the difference between the rules R1 and R2.

Proposition 4.3. Let Hk,Ω be a complete hypergraph on a finite set Ω, 1 ⩽
k ⩽ |Ω|. Then the following statements hold:

1. F2(H1,Ω) = U|Ω|,Ω and I2(H1,Ω) = U1,Ω.

2. F2(Hk,Ω) = U|Ω|−1,Ω and I2(Hk,Ω) = U2,Ω for 2 ⩽ k ⩽ |Ω| − 1.

3. F2(H|Ω|,Ω) = U1,Ω and I2(H|Ω|,Ω) = U|Ω|,Ω.

Proof. Let Ω = {1, . . . , n}. First observe that the set of hyperedges of H1,Ω is
{{1}, . . . , {n}} and so for i = 1, 2 we have Fi(H1,Ω) = Un,Ω and Ii(H1,Ω) =
Tr(F2(H1,Ω)) = Tr(Un,Ω) = U1,Ω. This observation proves statement 1. Anal-
ogously, to prove statement 3 notice that Ω is the only hyperedge of Hn,Ω and
thus Fi(Hn,Ω) = U1,Ω and Ii(Hn,Ω) = Tr(U1,Ω) = Un,Ω.

Let us demonstrate statement 2. In order to prove that F2(Hk,Ω) = Un−1,Ω

it is enough to show that if B ∈ Un−1,Ω, then B is a minimal R2-forcing set.
Let B ∈ Un−1,Ω be the set of vertices initially colored black. Without loss

of generality we can take B = {1, . . . , n− 1}. In accordance with R2 the black
subset B′ = {1, . . . , k − 1} of the hyperedge {1, . . . , k − 1, n} forces vertex n to
become black, because any other hyperedge containing B′ has all its vertices
colored black. Thus B is an R2-forcing set.

Now let us demonstrate that if B′ ⊊ B, then B′ is not an R2-forcing set.
It is enough to prove this fact in the case B′ = {1, . . . , n − 2}. Consider a
hyperedge A such that A ∩ B′ ̸= ∅ and A \ B′ ̸= ∅. Observe that if k = 2,
then we can assume that A is either A1 = {1, n − 1} or A2 = {1, n}, while if
3 ⩽ k ⩽ n − 2, then without loss of generality we can assume that A is either
A1 = {1, . . . , k−1, n−1} or A2 = {1, . . . , k−1, n} or A3 = {1, . . . , k−2, n−1, n}.
In any case, any black subset of Ai is contained in some other hyperedge with
white vertices. We conclude that R2(B

′) = B′ and so B′ is not an R2-forcing
set.

Finally observe that I2(Hk,Ω) = Tr(F2(Hk,Ω)) = Tr(Un−1,Ω) = U2,Ω.

Proposition 4.4. Let Hk,Ω be a complete hypergraph on a finite set Ω, 1 ⩽
k ⩽ |Ω|. Then F1(Hk,Ω) = U|Ω|−k+1,Ω and I1(Hk,Ω) = Uk,Ω.
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Proof. Let Ω = {1, . . . , n} and let us demonstrate that I1(Hk,Ω) = Uk,Ω. It is
enough to show that if X ∈ Uk,Ω, then X is a minimal R1-immune set. If k = 1
or k = |Ω| the result holds trivially (as noticed in the previous proof). Hence
let us assume 2 ⩽ k ⩽ |Ω| − 1. We remind that given X ⊆ Ω and A ∈ E(H),
the set Σ1(X,A) is defined as Σ1(X,A) = {A′ ∈ N(A \X) : (A′ ∩X) \A ̸= ∅}.
In accordance with Proposition 3.4 we have to show the following two facts: (1)
if X ⊆ Ω is a subset with cardinality |X| = k, then |Σ1(X,A)| ⩾ 1 for all A
such that |A| = k, A \ X ̸= ∅ and A ∩ X ̸= ∅; (2) if X ⊆ Ω has cardinality
1 ⩽ |X| ⩽ k−1, then there exists A such that |A| = k, A\X ̸= ∅ and A∩X ̸= ∅
and such that |Σ1(X,A)| = 0.

Let us prove fact (1). Without loss of generality we can suppose that X =
{1, . . . , k} and we can take A = {1, . . . , r, ar+1, . . . , ak} where 1 ⩽ r ⩽ k − 1
and ar+1, . . . , ak ∈ {k + 1, . . . , n}. Then A′ = (A ∪ {r + 1}) \ {r} ∈ Σ1(X,A),
because A′ ∈ N(A \X) and r + 1 ∈ (A′ ∩X) \A.

To prove fact (2) we can assume X = {1, . . . , r} where r ⩽ k − 1. Then
Σ1(X,A) = ∅ if A = X ∪ {r + 1, . . . , k}.

To conclude the proof notice that F1(Hk,Ω) = Tr(I1(Hk,Ω)) = Tr(Uk,Ω) =
Un−k+1,Ω.

Remark 5. If k = 2 and |Ω| = n, then H2,Ω is the complete graph Kn and
Propositions 4.3 and 4.4 coincide; namely, F(Kn) = Un−1,Ω and I(Kn) = U2,Ω.

By setting k′ = |Ω| − k + 1 we deduce from Proposition 4.4 that the hy-
pergraphs Hk′,Ω and Hk,Ω are an R1-forcing realization and an R1-immune
realization of the clutter Uk,Ω, respectively. Hence the next statement holds.

Theorem 4.5. Let Ω be a finite set. Then, for any 1 ⩽ k ⩽ |Ω|, the k-uniform
clutter Uk,Ω is both an R1-forcing clutter and an R1-immune clutter.

Now let us see that Theorem 4.5 also holds if one considers the zero forcing
rule R2. However, since Proposition 4.4 is no longer true if the rule is R2, the
result is not deduced so straightforwardly.

Theorem 4.6. Let Ω be a finite set. Then, for any 1 ⩽ k ⩽ |Ω|, the k-uniform
clutter Uk,Ω is both an R2-forcing clutter and an R2-immune clutter.

Proof. Since Tr(Uk,Ω) = U|Ω|−k+1,Ω and Tr(F2(H)) = I2(H), it is enough to
prove that for any 1 ⩽ k ⩽ |Ω|, the k-uniform clutter Uk,Ω is an R2-forcing
clutter.

Set Ω = {1, 2, . . . , n}, let 1 ⩽ k ⩽ n and consider the zero forcing rule R2.
Clearly, if H is the hypergraph with E(H) = {Ω}, then F(H) = U1,Ω; while
F(H) = Un,Ω if E(H) = {{1}, . . . , {n}}. So, from now on we assume that
2 ⩽ k ⩽ n− 1. In this case, let H be the hypergraph with vertex set Ω and set
of hyperedges E(H) = {A1, A2, . . . , Am}, where m =

(
n−1
k−1

)
+ 1, A1 = Ω \ {1}

and A2, . . . , Am are all the subsets of the form {1}∪A′, where A′ ∈ Uk−1,Ω\{1}.
We are going to demonstrate that F(H) = Uk,Ω; that is, we must prove that if
X is a set of vertices of size |X| ⩽ k, then X is a forcing set if |X| = k, but it
is not a forcing set if |X| ⩽ k − 1.
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Let us consider first the case |X| = k. If 1 ∈ X, then X is of the form
{1} ∪ A′, where A′ ∈ Uk−1,Ω\{1}. In this case, by the zero forcing rule, the set
of black vertices A′ forces all the white vertices of A1 to be become black, and
so X is a forcing set. Now assume 1 ̸∈ X. In this case, by applying the zero
forcing rule, the set of black vertices X forces all the white vertices of A1. Now,
applying again the zero forcing rule, we have that any subset A′ ∈ Uk−1,Ω\{1}
forces vertex 1 to become black.

Next we consider the case |X| = m ⩽ k − 1. Since the forcing rule is
increasing it is enough to prove that if |X| = k− 1, then X is not a forcing set.

Supose first that |X| = k − 1 and 1 ̸∈ X. Without loss of generality we can
assume that X = {2, . . . , k}. We must prove that if the vertices 2, . . . , k are
black and the vertices 1, k + 1, . . . , n are white, then R∗(X) = X. This is clear
because {1, 2, . . . , k} ∈ E(H) and {2, . . . , k, k + 1, . . . , n} ∈ E(H) (recall that
k + 1 ⩽ n).

Finally, we consider the case |X| = k − 1 and 1 ∈ X. Now we can sup-
pose that X = {1, 2, . . . , k − 1}, and we must demonstrate that if the vertices
1, . . . , k−1 are black and the vertices k, . . . , n are white, then R∗(X) = X. This
fact is straightforward because {1, . . . , k − 1, l} ∈ E(H) for l = k, . . . , n (recall
that k ⩽ n− 1).

The previous proof constructs a hypergraph H that is an R2-forcing realiza-
tion of Uk,Ω. By applying the construction in the case k′ = |Ω| − k+1 we get a
hypergraph H′ that is an R2-immune realization of Uk,Ω.

Finally, let us show that if one restricts to graphs, then there are graph-
realizations of ∆ only for some particular values of k.

Theorem 4.7. Let Ω be a finite set and let 1 ⩽ k ⩽ |Ω|. Then,

1. Uk,Ω is a graph-immune clutter if and only if k = 1 or k = 2.

2. Uk,Ω is a graph-forcing clutter if and only if k = |Ω| − 1 or k = |Ω|.

Proof. First of all observe that statement 2 follows from statement 1, because
Tr(Uk,Ω) = U|Ω|−k+1,Ω and Tr(I(G)) = F(G). Hence let us prove statement 1.

Set Ω = {1, 2, . . . , n}. It is clear that I(Kn) = U2,Ω and that I
(
Kn

)
= U1,Ω,

where Kn and Kn are, respectively, the complete graph and the empty graph
with vertex set Ω.

Also, it is easily checked that Un,Ω is not a graph-immune clutter if n ⩾ 3.
Indeed, if I(G) = Un,Ω for some graph G with vertex set Ω, |Ω| ⩾ 3, then
each vertex v must have degree one, because Ω \ {v} is not an immune set. We
conclude that G is a disjoint union of copies of K2, and hence I(Kn) ̸= Un,Ω,
because, for instance, each subset of two adjacent vertices is an immune set.

Thus, the proof will be complete by showing that a contradiction is achieved
if we assume that there is a graph G with V (G) = Ω = {1, 2, . . . , n} and such
that I(G) = Uk,Ω for some 3 ⩽ k ⩽ n − 1. Let G be such a graph. Then,
from Remark 3, we have that Uk,Ω is the collection of the inclusion-minimal
elements of the family {X ⊆ V (G) : |N(v) ∩ X| ̸= 1 for all v ∈ V (G) \ X}.
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Let X ⊆ V (G), |X| = k − 1, and let us denote V (G) \ X as X. Notice that
|X|, |X| ⩾ 2, because 3 ⩽ k ⩽ n − 1. Since X ̸∈ Uk,Ω, there is a vertex v ∈ X
such that |N(v) ∩X| = 1. Next we are going to prove that if vX is the vertex
belonging to N(v)∩X, then N [v] = {vX}∪X. Indeed, let u ̸= v be a vertex inX
and consider Xu = {u}∪X. Since Xu ∈ Uk,Ω and v ̸∈ Xu, then |N(v)∩Xu| ≠ 1
and hence N(v) ∩Xu = {vX , u}, because N(v) ∩X = {vX}. We conclude that
u ∈ N(v) for any u ∈ X, u ̸= v, and so N [v] = {vX} ∪X. (See Figure 2.)

X

v

vX

u ∈ X

Figure 2: N [v] = {vX} ∪X

Now set X ′ = (X \ {vX}) ∪ {v} and X ′ = V (G) \ X ′. As before, since
X ′ ̸∈ Uk,Ω, there must exist a vertex v′ ∈ X ′ such that |N(v′) ∩X ′| = 1. Now
we are going to prove that N [v′] = N [v].

First let us see that N(v′) ∩ X ′ = {v}. Indeed, if v′ = vX , then v′ is not
adjacent to any other vertex than v of X and hence N(v′) ∩X ′ = {v}. On the
other hand, if v′ ̸= vX , then v′ ∈ X ′ \ {vX} = N(v) ∩X and N(v′) ∩X ′ = {v}
also holds. (See Figure 3.)

X ′

v

v′ = vX

X ′

v

vX

v′

Figure 3: X′ = (X \ {vX}) ∪ {v}, v′ = vX (left), v′ ̸= vX (right)

Now let u ∈ X ′ \ {v′} and consider X ′
u = X ′ ∪ {u}, Since X ′

u ∈ Uk,Ω

and v′ ̸∈ X ′
u, then |N(v′) ∩ X ′

u| ̸= 1 and hence N(v′) ∩ X ′
u = {v, u}, because

N(v′) ∩X ′ = {v}. We conclude that u ∈ N(v′) for any u ∈ X ′, u ̸= v′, and so
N [v′] = {v} ∪X ′ = {vX} ∪X = N [v]. (See Figure 3.)

Until now we have proved that if G is a graph with V (G) = Ω and such that
I(G) = Uk,Ω for some 3 ⩽ k ⩽ n− 1, then there exists a pair of vertices v and
v′ such that N [v] = N [v′] and |N [v]| = |N [v′]| = n− k + 2.
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Let us see that the case k = 3 is not possible. Indeed, if I(G) = U3,Ω, then
|N [v]| = |N [v′]| = n− 1, and so the only vertex u ∈ Ω \N [v] = Ω \N [v′] is not
adjacent with v or v′. Hence N [v] = N [v′] = Ω \ {u}. Therefore we have that
|N(u)∩ {v, v′}| = 0 and |N(u′)∩ {v, v′}| = 2 for all u′ ∈ Ω \ {u, v, v′}. Thus we
conclude that {v, v′} is an immune set, contradicting I(G) = U3,Ω.

At this point we can set, without loss of generality, v = 1, v′ = 2 and
N [1] = N [2] = {1, 2, k + 1, . . . , n}, with k ⩾ 4 and n ⩾ 5.

Now we consider X = {1, 2, . . . , k} \ {3}. As before, since X ̸∈ Uk,Ω, there
is a vertex v ∈ Ω \ X = {3, k + 1, . . . , n} such that |N(v) ∩ X| = 1. Since
vertices k + 1, . . . , n are all adjacent to both 1 and 2, we conclude that v = 3
and without loss of generality we can assume that N(3) ∩ X = {4}. Clearly
N(3) ⊆ {4, k + 1, . . . , n}. Let k + 1 ⩽ l ⩽ n and consider Xl = X ∪ {l}. Since
Xl ∈ Uk,Ω and 3 ̸∈ Xl, then |N(3) ∩ Xl| ̸= 1. So N(3) ∩ Xl = {4, l}, because
N(3) ∩ X = {4}. Thus, l ∈ N(3) if k + 1 ⩽ l ⩽ n and hence, the equality
N [3] = {3, 4, k + 1, . . . , n} holds. Furthermore, we claim that N [4] = N [3]. To
prove our claim let us consider the set X ′ = (X ∪ {3}) \ {4}. Since X ′ ̸∈ Uk,Ω,
there is a vertex v′ ∈ Ω \ X ′ such that |N(v′) ∩ X ′| = 1. Now we have that
Ω \ X ′ = {4, k + 1, . . . , n}, that N [1] = N [2] = {1, 2, k + 1 . . . , n}, and that
N [3] = {3, 4, k + 1, . . . , n}. Therefore, v′ = 4 and N(4) ∩X ′ = {3} and hence
N(4) ⊆ {3, k + 1, . . . , n}. The proof of our claim will be completed by showing
that l ∈ N(4) for k + 1 ⩽ l ⩽ n. Let k + 1 ⩽ l ⩽ n and consider X ′

l = X ′ ∪ {l}.
Since X ′

l ∈ Uk,Ω and 4 ̸∈ X ′
l , then |N(4) ∩ X ′

l | ̸= 1. So N(4) ∩ X ′
l = {3, l},

because N(4) ∩ X ′ = {3}. Thus, l ∈ N(4). This completes the proof of our
claim.

Finally, to achieve a contradiction, we consider the set X = {2, 4, 5, . . . , k +
1}. Observe that |N(v) ∩ X| ≠ 1 for all v ∈ Ω \ X = {1, 3, k + 2, . . . n}.
We conclude from Remark 3 that there exists X ′ ∈ I(G) with X ′ ⊆ X. By
assumption I(G) = Uk,Ω. Therefore we get that |X ′| = k and this equality
leads us to a contradiction, because |X| = k − 1. This completes the proof of
the theorem.

5. Conclusions

We have discussed two natural generalizations for hypergraphs of zero forcing
on graphs such that if a graph is seen as a hypergraph, then each one of these
generalized rules reduces to standard zero forcing. The families of minimal
forcing and minimal immune sets of the hypergraph have been characterized
within the setting of transversal theory for these forcing rules (and so also for
zero forcing in graphs), and, moreover, a formulation of immune sets in terms of
neighbourhoods has been provided. In Propositions 4.3 and 4.4 we have proven
that the families of minimal forcing and minimal immune sets of a complete
hypergraph (i.e. a hypergraph whose family of hyperedges is a uniform clutter)
are also uniform clutters. Finally, in Theorems 4.5, 4.6 and 4.7 we characterize
the hypergraph and graph realizations of uniform clutters.

A clutter ∆ = {A1, . . . , Am} is k-homogeneous if |A1| = · · · = |Am| = k.
Hence, a clutter ∆ is k-homogeneous if and only if ∆ ⊆ Uk,Ω. It is worth noting
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that the transversal of a homogeneous clutter is not in general homogeneous.
For instance, the homogeneous clutter ∆ = {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
on Ω = {1, 2, 3, 4} has as transversal the non-homogeneous clutter Tr(∆) =
{{1, 2, 3}, {1, 2, 4}, {3, 4}}. A continuation of the research presented in this work
is the study of which homogeneous clutters have a hypergraph realization and,
in such case, how many non-isomorphic realizations there are. It is worth men-
tioning that, since for homogeneous clutters we cannot apply transversality, the
results on forcing and immune clutters will have to be handled separately.
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