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Abstract

The emerging interest in satellite networks will be a key driver in the path to 6G. The
satellite segment must be conceived beyond a mere relay system, where nodes can process
data and offload the terrestrial segment. Besides, evidence suggests that energy consump-
tion is among the most important factors for the design of future communication networks.
For this motivation, we introduce Sat2C, an energy-efficient algorithm for satellite joint
routing, radio resource allocation and task offloading for latency-constrained services. We
develop a novel energy model that incorporates the power amplifier subsystem and changes
the geometry of the problem. Regarding the routing task, we propose the SHIELD algo-
rithm, based on the submodularity framework and which achieves Pareto-efficient routes.
Besides, the RRM problem is formulated as a log-log convex program. The experimental
results reveal that Sat2C has low computational complexity, provides routes with low
variance in the mean distance and the transmission powers are optimal to ensure energy
minimization.
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1 Introduction

The last two decades have seen a growing trend towards space-based Internet services.
This is the case of high-tech competitors, such as SpaceX Starlink, OneWeb and Amazon
Kuiper, that have deployed mega-constellations of LEO satellites [1]. There is a demanding
need to address the standardization of the satellite segment with respect to the ground
infrastructure, which will play a pivotal role on the path to 6G.

Of significant interest is the use case of delay-sensitive Earth Observation applications,
including emergency communications and real-time surveillance. Opposed to a wired net-
work, a satellite infrastructure provides robustness and more durability. One of the great-
est challenges of LEO constellations is the dynamism of the network associated to high
speeds. Prior studies have noted the importance of inter-satellite routing and on-board
processing as a means to provide the service ubiquitously, with shorter latency, better
Quality of Service (QoS) and, ultimately, with the satellite segment becoming less depen-
dent of the terrestrial network.

A key driver in the development of future wireless networks is energy-efficiency, which is
motivated by the operational expenditure (OPEX), the development of environmentally
sustainable technologies and extending the lifetime of networks. Much of the available
literature highlights the relevance of Radio Resource Management (RRM) in an edge
computing environment to reduce the energy consumption, even though it ignores the
potential satellite on-board processing.

This thesis seeks to explore the fundamental trade-offs between computation and com-
munication in dense LEO satellite networks. We develop Sat2C, a cross-layer algorithm
addressing the joint optimization of routing, RRM and task offloading for energy min-
imization under time delay constraints. The novelty of this study resides in using the
computation capabilities of the satellites and not just as a relay system to the data cen-
ters.

The remaining part of the thesis proceeds as follows: section 2 gives a brief overview
of the state of the art in energy-efficiency, satellite networks for Earth Observation and
Edge Computing; section 3 begins by laying out the theoretical dimensions of the research
and the proposed system model; section 4 is concerned with the methodology used for
this study; section 5 presents the experimental results and section 6 summarizes the
conclusions and proposes future lines of research.

1.1 Research contribution

We aim to solve the problem of jointly optimizing the routes, the transmission powers and
data offloading decisions in order to reduce the energy consumption of the LEO satellite
network and meet latency constraints. This formulation lacks in the current literature,
specifically for the emerging field of satellite communications.

Much of the literature is devoted to solving this problem with novel algorithms, though
they neglect to using an appropriate model of the energy consumption. Consequently, we
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dedicate part of this research to developing a more general power consumption model, in
particular, to the effect of the power amplifier module. This is particularly understudied
and brings critical implications, as the geometry of the problem changes and the existing
solutions for energy minimization may not work anymore.

Since the problem to solve is NP-hard, the methodology we propose to find a suboptimal
solution is novel as well. In order to reduce the energy consumption, the Sat2C algorithm
encompasses two components: in the former we design the SHIELD algorithm, that tack-
les the routing procedure via a submodularity framework and the Dijkstra’s shortest path
algorithm; in the latter, the radio resources and data offloading decisions are reformu-
lated into a convex problem that provides overall minimum energy with respect to the
established paths.

The findings of this research have been submitted to the W11: Evolution of Non-Terrestrial
Networks toward 6G workshop, held within the 2021 IEEE 94th Vehicular Technology
Conference: VTC2021-Fall.

1.2 Gantt diagram

15 22 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28
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Figure 1: Gantt diagram of the project.
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2 State of the Art

This section highlights the cutting edge research that leads to developing energy-efficient
algorithms for joint computation and communication in satellite networks. First, the con-
cept of energy-efficiency in wireless networks is introduced and a brief description of
satellite networks for Earth Observation is conducted. Then, we examine the Edge Com-
puting paradigm as a means to reduce the distance between users and services and how
this can be transferred to satellite networks. Finally, we propose a prospective graph-based
optimization approach for radio and computation resource management.

2.1 Energy-efficiency in wireless networks

Energy consumption is a major concern due to the increase in its demand and the chal-
lenges it entails. Via smart grids, industry automation, intelligent logistics, among other
services, Information and Communication Technologies (ICT) are a facilitator for reducing
global energy consumption. Even though, the volume of network traffic has been increas-
ing sharply in the last decade [2], which evinces the existence of an intrinsic trade-off.
The authors in [3] suggest the advent of energy-efficiency in wireless communications is
traced to the following fundamental drivers:

• Development of more complex and diverse capabilities;

• Proliferation of ad-hoc networks and support for mobility;

• Reduction of OPEX by means of energy costs minimization;

• The green communications concept due to the environmental footprint concern;

• Smaller form-factor devices.

Energy represents a fundamental restriction in communication networks and, particularly,
in wireless settings as the energy consumption affects the network lifetime. One metric
that allows to assess it is the energy-per-bit Eb, defined as the energy needed to transmit
one bit. From the Shannon’s capacity formula

R = B log2

(
1 +

P

N

)
, (1)

where B is the bandwidth allocated for transmission, P is the transmission power and N
is the noise power. The energy-per-bit can be expressed as

Eb = P tb = P
1

R
=

P

B log2

(
1 + P

N

) , (2)

where tb is the time-per-bit. The dependence of the energy spent in communication in
terms of the transmission power reveals the relevance of power control as a state of the
art procedure for managing energy consumption, besides influencing other communication
challenges (e.g., transmission delay, interference, error probability, etc.).
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Figure 2: (Retrieved from [3]) Cross-layer mechanisms for energy efficiency. The
signaling and information exchange between nonadjacent layers facilitate cross-layer

optimization of energy consumption.

In a communication system, the energy consumption arises from five different components
[4]: the direct current power supply module, the base band module, the radio frequency
module, the power amplifier module and an active cooler and battery backup module.
From those, the power amplifier is a critical source of power consumption and, paradox-
ically, not considered in many energy consumption models. This module may represent
more than 50% of power consumption in base stations [5] and it is expected to be larger
in satellite communications.

The vast majority of studies on transmission power control have focused on the traditional
TCP/IP layered protocol stack. While this allows for robust and scalable solutions, the
limited interaction between layers restricts the optimality of the algorithms. Recently, the
topic of cross-layer design for energy-efficiency is gaining attention since it favours the
expansion of functionalities of the network. Particularly, we are interested in the connec-
tion between the physical and the network layer (see Figure 2). A significant analysis and
discussion on the subject is presented in [3].

2.2 Satellite Networks for Earth Observation

In many locations environmental monitoring or agritech are out of range of terrestrial
IoT networks. Satellite-delivered IoT services could help provide connectivity for these
growing markets. The European Space Agency (ESA) has estimated that there are at
least 20 satellite companies looking to deliver space-based IoT services [6]. For instance,
the satellite mission PAZ [7] focuses on the acquisition of SAR data and it is equipped
with a transponder able to detect Automatic Identification System (AIS) data, which
allows vessels to intercommunicate their positions among other parameters in order to
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avoid collisions [8]. This mission is a relevant solution for maritime monitoring systems
since data from SAR images and AIS data can be merged in order to detect malicious
vessels. By deploying a large number of down-scaled low-cost PAZ satellites, the dual
sensing functionalities may be expanded to collaborative data fusion or collaborative
remote classification, inference and learning, aiming to provide a solution for this delay-
constrained service.

This notion of a satellite constellation for Earth Observation (EO) was promoted more
than 10 years ago [9]. This was the case of Disaster Monitoring Constellation (DMC)
[10] and RapidEye [11] which disappeared during its deployment. DMC is composed of
5 micro-satellites capable of providing multi-spectral images in less than one day with a
relevant resolution. Recently, the company Planet acquired RapidEye and it is leading
the market of EO with small satellites missions, aiming to have 12 satellites available [12].
Yet another relevant actor of non-geostationary (NGEO) Earth Observation is the Finish
company IceEye [13].

The design of a satellite network depends ultimately on the service and can be assessed
through the following factors [14]:

• Service requirements: for the given use case we seek for real-time applications. In
order to have global coverage dense constellations are needed, which allow to obtain
data with high-time resolution.

• Orbit: attending to the height of deployment with respect to the Earth’s surface we
find: Geostationary Orbit (GEO) satellites, located at 35.786 km and whose position
is fixed with respect to the Earth; Low Earth Orbit (LEO) satellites, located between
200 and 3000 km and Medium Earth Orbit (MEO) satellites, located anywhere
between LEO and GEO. The majority of deployed satellites are GEO as they provide
wide coverage at expenses of large delays and high power consumption, both because
of large distances. Conversely, LEO satellites are adequate for delay-constrained
services because of their low altitude with respect to the Earth surface. This also
complements energy-efficiency, as it allows to use smaller transmission powers.

• Coverage: unlike GEO, which can provide global coverage with only three satellites,
the coverage of LEO satellites is smaller, so dense constellations have to be deployed.
Moreover, the cost of deployment for LEO satellites is smaller and they provide a
better spatial resolution because of its proximity to the surface.

• Frequency band: the major source of power consumption is due to the free-space
path-loss (FSPL), which can be modelled as

FSPL =

(
4πdf

c

)2

, (3)

where d is the distance between the antennas, f is the transmission frequency and c is
the speed of light. Because of large distances between satellites, the large attenuation
is compensated with antennas providing large gains. Nonetheless, the frequency
affects the size of the antenna, the magnitude of the Doppler shift and, for frequencies
above 10 GHz, the attenuation produced by rain and other atmospheric conditions is
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Figure 3: (Retrieved from [17]) (a) Frontal view and satellite axes and (b) top view of a
Walker star constellation with 200 satellites and 5 orbital planes.

noticeable. Current development is moving towards employing Free-Space Optical
(FSO) links, as they provide higher rates. For the downlink (DL) to the ground
station this technology cannot be used because the atmospheric conditions affect
light communications.

As a consequence, dense LEO constellations are suitable for EO missions and will be
integrated in 5G and beyond networks [15, 16]. Their operational complexity comes from
high orbital speeds, resulting in a very dynamic topology. Moreover, on-board processors
usually have low capabilities, which promotes the collaboration among satellites to en-
hance the sensed data and reduce the consumed data rate. Besides that, GEO or MEO
can incorporate more information or just transmit it directly to the Earth data center as a
data relaying system. This favours the inception of multilayered networks via inter-orbital
links (IOL) that allow to trade-off and take advantage of the desired properties of every
type of orbit. Nevertheless, in this thesis we focus on dense constellations of LEO satellites
only.

LEO constellations are typically organized in groups of satellites called orbital planes
that travel in the same trajectory. Communication between satellites occurs through
inter-satellite links (ISL). We discern between intra-plane or inter-plane ISLs, whether
the communication occurs within the same plane or not, respectively. Figure 3 illustrates
a classic Walker star constellation. The white and black satellites are orbiting in opposite
directions, known as cross-seam ISLs, and resulting in large relative velocities between
them. Since it is very challenging compensating the Doppler effect, it is a common prac-
tice leaving these ISLs unimplemented [17]. To avoid collisions where the orbital planes
intersect (e.g., the poles), they are deployed at slightly different altitudes. Conversely,
this produces orbital period deviations so that the inter-plane ISLs are not fixed, which
emphasizes the dynamic structure of the network. Otherwise, satellites need to implement
active monitoring to avoid collisions, translating in more energy consumption.
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Current implementations do not route the data throughout the satellite segment. In fact,
the LEO satellite caches the data until it can establish a communication to a ground
station. This represents a drawback for delay-sensitive services, because the orbital period
of LEO satellites is around 90 minutes. Moreover, even if the data is not constrained in
time, the data storage of the satellite may be limited. This promotes the development
of routing algorithms for NGEO constellations. [17] proposes a new methodology for
establishing dynamic ISL links that maximize the throughput of the LEO network.

With the advancement of aerospace technology, commercial satellite companies such as
OneWeb [18], O3b [19], and SpaceX Starlink [20] have proposed new LEO and MEO
satellite constellation plans, increasing investment and research on satellite-related tech-
nologies, making satellites more powerful and smarter. Nevertheless, most existing appli-
cations need to be cloud-assisted. This motivates the formulation of the satellite segment
in the context of Mobile Edge Computing (MEC).

2.3 Edge Computing

Edge computing reduces the distance between users and services. It is designed to move
computing capabilities from centralized cloud servers to edge nodes near the user end,
so that tasks can be performed at the edge of the network. The hybrid design of the
satellite-terrestrial network very easily adapts to the edge computing paradigm, which
can reduce the amount of data transmitted from satellites and communication delays,
improve the bandwidth utilization of ISLs and reduce the pressure on data processing of
satellite ground stations [21].

The emergence of dense LEO constellations has shifted the research of MEC towards
including the satellite segment. In fact, throughput and latency suffer greatly in the tra-
ditional access network, essentially cancelling out much of the gain from technologies such
as optical line transfer and fiber-to-the-home, and 5G networks. LEO can alleviate part
of the edge terrestrial access. In [22], a framework for MEC to improve QoS in satellite-
terrestrial networks is proposed. Like terrestrial MEC, the satellite MEC extends the
computation capacity and can store content to reduce redundant transmissions from the
remote cloud. The authors consider a dynamic Network Function Virtualization (NFV)
system with a dynamic resource allocation to check whether a Virtual Network Func-
tion (VNF) is connected or gone. Among the computation offloading strategies that are
considered, the cooperative computation offloading, in which MEC servers cooperate to
complete computation tasks of the user tasks, is shown to provide the best performance.

The authors in [23] studied a cloud-edge computing architecture (Figure 4) where the edge
IoT layer is the LEO constellation, and the cloud side is divided into two layers, the GEO
satellite cloud and the ground cloud. Notice that the GEO satellite cloud represents a
longer routing path, but the links are always available and it allows a faster data transfer.
This layer could be removed in the future once the FSO technology is mature and can
compete with the GEO relay system. Using this architecture, satellite IoT edge nodes and
satellite IoT cloud nodes can cooperate with each other.

The other set of applications use the satellite network as a service for edge computing
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Figure 4: (Retrieved from [23]) Cloud-edge computing architecture on satellite IoT.

required from terrestrial services (e.g., IoT devices). The data is generated on the Earth
and the satellite network accepts computing tasks from ground devices. This kind of sce-
nario is considered in [24], where computation tasks from IoT device users in remote
areas are offloaded to satellite edge servers. Specifically, satellite edge computing is com-
bined with NFV, such that the available resources of LEO satellite can be abstracted into
a resource pool and provide agile service provisioning to the end-users. In [25] a hybrid
satellite-terrestrial architecture is proposed for task allocation to optimize the energy con-
sumption and delay. By exploiting the satellite segment a reduction in 50% is achieved in
both metrics.

However, in the two preceding studies no Radio Resource Management (RRM) is con-
sidered. This would significantly reduce the energy consumption and would provide more
tailor-made algorithms. In both approaches, the dynamic topology of the satellite seg-
ment is substituted by a simplified architecture where each satellite is assumed to have
four satellite neighbors. This makes the analysis more tractable though oversimplifies the
satellite constellation, which can be further exploited. To date, several studies have inves-
tigated the fundamental trade-offs of Edge Computing. Since the optimization problems
are, in general, NP, different authors focus on different approaches to find suboptimal solu-
tions based on, for instance, Markov decision processes [26], game theory [27] or Lyapunov
optimization [28].

The energy-efficiency driver is a prevalent metric for designing offloading algorithms un-
der the MEC architecture. In fact, radio resource optimization is a common practice to
compensate for the channel conditions. In [29] an OFDMA scheme is chosen to jointly
optimize power and subcarrier allocation in order to reduce the energy consumption.
[30] develops a joint Computing, Caching, Communication, and Control algorithm that
exploits the collaboration between MEC servers for Big Data applications to reduce band-
width and meet delay constraints. For non latency-critical applications a long-term metric
is more suitable. For instance, [31] adopts an stochastic analysis via communication and
computation resource management to reduce the average sum power consumption.
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2.4 Graph-based resource optimization

Graphs are powerful data structures that capture dependencies through edge connections
and provide high flexibility for representing non-Euclidean spaces. A diverse variety of
algorithms have been developed for routing, such as for shortest paths [32] and clustering
with constraints [33].

The studies presented thus far provide evidence that edge computing in LEO satellite
networks is an active field of research. Nevertheless, most of the existing literature focuses
on either routing or RRM, but they do not address both simultaneously. There would
therefore seem to be a definite need for a joint optimization.

Little is known whether a graph is useful for resource optimization. In [17], the authors
present a greedy algorithm to establish dynamic ISL that maximize the sum rate of the
network. In the same vein, [34] models each communication link as a node in a graph and
allocates resources for a vehicular network. Nevertheless, the graph is used as a support
for information and not fully exploited to optimize the resources.

In a recent study, [35] investigates whether the RRM problem can be formulated via
Graph Neural Networks (GNN). The authors found this method outperforms classic
optimization-based approaches, besides being highly scalable and with low computational
complexity. The use GNNs is out of the scope of this thesis, even though further research
should be undertaken to determine the usefulness of graphs for RRM.
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3 System Model

In this research we focus on the use case of remote surveillance via a LEO constellation
(e.g., the PAZ mission). The processing task is related to the detection of events in images
captured by the satellites and it must be executed within a time window. This scenario
is depicted in Figure 5 for 5 satellites. The collaborative task between satellites within an
edge computing environment is left for future research.

Let us consider a set of LEO satellites N = {1, . . . , N} gathering EO data. This EO data
has a size of Dn bits for n ∈ N . The aim of the satellite system is to offer the processed
data, Fn, to a final user. We consider an arbitrary processing function, in which the ratio

ρn =
Dn

Fn
≥ 1, (4)

is coined as the processing ratio and it provides a notion of the processing performed. In
case the processing is a compression, ρn becomes the compression ratio. This processing
is assumed that it can be done at the source LEO satellite (n ∈ N ), or at the Ground
Station (GS). The connection between the LEO satellites and the GS is done by direct
connection via a feeder link. Even though in practice there are several GS, they all will
be envisioned under a unique node, which eases notation.

The data collected by the n-th LEO satellite shall be delivered to the GS with a maximum
delay of τn. To fulfill this requirement, the satellite system shall decide i) a route between
the LEOs and the GS through; ii) where the processing is going to be performed (locally
or at the GS) and iii) the RRM parameters to be employed in the communication.

3.1 Satellite-Terrestrial Network

Let us consider a Walker star LEO constellation of M orbital planes and Na satellites
per orbital plane, where a = 1, . . . ,M . All satellites are deployed at the same altitude H.
The satellites maintain four ISLs whenever possible: two intra-plane ISLs with the closest
intra-plane neighbors, and two inter-plane ISLs with the closest inter-plane neighbors (see
Figure 3).

We model the LEO network as a weighted undirected graph G = (V , E), with vertex
set V = UGS

⋃M
a=1 Va, where UGS is the destination GS (|UGS| = 1) and Va is the set of

LEO satellites deployed in orbital plane a. The edge set E represents the wireless links
established for communication between them. The intra-plane ISLs within an orbital plane

a constitute the set of edges Ea ⊂
{
ij : i, j ∈ V(2)

a

}
and |Ea| = Na. The inter-plane ISLs

constitute the set of edges Einter ⊂ {ij : i ∈ Va, j ∈ Vb, a 6= b}. LEO satellites and the GS
are connected with the DL edges EDL ⊂ {ij : i ∈ UGS, j ∈ Va, a = 1, . . . ,M}. Finally, we
define the edge set as E = EDL ∪ Einter

⋃
a∈M Ea.

The weights ω(e) for all e ∈ E are defined by the communication cost. Without loss
of generality we consider the ISL and DL distances. Assuming a spherical model of the
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Figure 5: Scenario for remote surveillance.

Earth, the maximum distance that allows Line of Sight (LoS) between satellites u and v
is

dmax,ISL(u, v) =
√
h2u +REhu +

√
h2v +REhv, (5)

where hi is the height of satellite i and RE is the radius of the Earth [17]. Thus, this
metric bounds which potential satellites can establish a communication.

3.2 Routing

As the GS may not always be visible for all LEO satellites, there might be cases where
a LEO opts to forward the data information towards another LEO satellite. While the
constellation is dynamic, the time scale for communication and computation tasks is much
shorter. Thus, there is no time dependence and we observe the entire network at particular
time instants. In this context, we consider a route

Sn = {n, . . . ,mn} ∪ {GS}, (6)

defined as a set of ordered indexes starting from n and finalizing at the GS. Note that this
last hop between mn and GS is supported via direct DL connection. Connection through
a relay consisting of NGEO-GEO-GS link is out of the scope of this project.

Given a route Sn, the resulting time delay due to this transmission can be described as

TDLn =
mn∑
i∈Sn

(T commi + T propi ) =
mn∑
i∈Sn

(
Ln
Ri

+ T propi

)
, (7)
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where Ri is the data-rate of the link between the i-th and (i+1)-th nodes and T propi is the
corresponding propagation time. We do not need to distinguish between the ISL and DL
links as they can be modelled individually with particular constraints in their data rates
and distances. Observe that T propi is a function of the distance between the nodes, this is,
the edge weight w(e); conversely, T commi is a function of w(e) along with information of
the nodes (e.g., transmission power).

3.3 Data Offloading

Data processing can be performed either locally (at the source LEO satellite) or at the
GS. In case it is decided to perform the data processing locally, the amount of transmitted
data is substantially reduced. Assuming that the decision variable ln takes 1 value when
the processing is performed locally and 0 when it is offloaded, the data size transmitted
through the network becomes

Ln = lnFn + (1− ln)Dn = Dn

(
ln

1

ρn
+ (1− ln)

)
(8)

The energy employed for performing this processing is assumed to be governed by a
function Cp(Dn) [Joules] that only depends on the data size. This function is assumed to
be the same either the processing is performed at the space segment or at the GS. As a
result, the energy consumption of n-th LEO satellite due to the processing is defined as

Eproc
n ≤ lnCp(Dn), (9)

we can particularize for certain energy consumption model such as

Cp(Dn) = Dnzf
2
CPUν, (10)

where z is the number of CPU cycles to process 1 bit of data, fCPU is the number of
CPU cycles per second and ν the parameter that relates the required processing with
the consumed energy in Joules as en equivalent capacitance. In general, it is challenging
describing the energy consumption of a processor. A more precise model depends on the
number of instructions executed per task, the energy and the time spent per instruc-
tion. Nevertheless this parametrization is unmanageable because these specifications are
complex to estimate: the number of instructions heavily depends on the algorithm imple-
mentation, and the energy and time per instruction depend on the instruction itself (e.g.,
type of memory access, CPU architecture, supply voltage, etc.). The consumption model
we propose captures the influence of the most relevant CPU parameters, has been used
in previous research [29, 30, 25, 36, 37] and is consistent with experimental results [38],
in such a way that it is used for mobile devices.

Furthermore, we define the delay associated to processing the Dn bits as

T procn =
Dnz

fCPU
(11)

As stated in (10), the processing parameters are considered constant and identical for
all processors, even though these parameters heavily affect the energy consumption. For
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instance, the larger the clock frequency the more energy will be consumed and less time
the task will invest. This is the reason why several research lines focus on optimizing these
parameters in order to lead to convenient trade-offs (see [36] and references therein).

3.4 Radio Resource Management

We now describe the attainable rates of each mentioned link. We assume all links to
be half-duplex and used for unicast communication. Besides, ISL and DL links do not
interfere among each other, this is, the beam directivity allows Space Division Multiple
Access (SDMA) without interference. The bandwidth that is allocated to each of them is
B. For the (i, i+ 1) link the data rate is upper bounded by

Ri = B log2

(
1 + pih

2
i

)
, (12)

where pi is the transmission power between the i-th and the (i+ 1)-th nodes and hi is the
respective channel coefficient, normalized by the receive noise power.

In this context, the energy consumption due to the communication subsystem can be mod-
elled by means of Ct(Ln, Ri, pi) [Joules], a function that models the energy consumption
of transmitting Ln bits at certain data rate Ri and power pi. A simple yet representative
energy consumption model can be written as

Ct(Ln, Ri, pi) = pi
Ln
Ri

, (13)

3.4.1 Power Amplifier subsystem

Radio-frequency (RF) power amplifiers are a key component in satellite communications
and its energy consumption cannot be neglected. For satellite RF communications, Trav-
eling Wave Tube Amplifiers (TWTAs) are the main amplifier choice because they offer
higher power at higher frequencies [39]. From [40], the power consumption at the amplifier
can be linearly modelled as

Pc,i = Pfix +
c0
η
pi, (14)

where Pfix is the power consumption independent of the output power of the amplifier;
c0 is a scaling coefficient for the power loading dependency, which depends on other
subsystems such as the base band module, though these will not be considered; η is the
drain efficiency of the amplifier, defined as the ratio between the output and consumed
power by the amplifier; pi is the output power of the amplifier, this is, the transmitted
power.

Power amplifiers operate close to the saturation point, where the efficiency is maximum.
The Output Back-Off (OBO) prevents the device from trespassing the linear region and
determines the efficiency of the amplifier [40]. The OBO characterizes the drain efficiency
of the amplifier. There is also a maximum output power Pmax

out that limits the transmitted
power of the amplifier.
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The overall energy consumption model due to the RF subsystem including the power
amplifier can be represented by means of Ct(Ln, Ri, pi + Pc,i) as

ERF
n =

mn∑
i∈Sn

(Pc,i + pi)
Ln
Ri

=
mn∑
i∈Sn

(Pfix + µpi)
Ln
Ri

, (15)

where µ = 1 + c0/η.

14



4 Joint Satellite Computation and Communication

Optimization: Sat2C

In this section we formulate the energy minimization with transmission power and time
delay constraints as an optimization problem. Next we discuss the convexity of the problem
and divide it into two subproblems: the first one considers routing through the LEO
constellation and the latter manages the resource allocation and task offloading optimally
with respect to the previous routing algorithm.

4.1 Problem Statement

The objective to be minimized is the total energy, this is, the sum over all paths. Consid-
ering expression (4), the data size Dn is a common factor to all terms, in such a way that
the energy can be expressed per bit:

Etotal
b =

N∑
n=1

Etotal
b,n =

N∑
n=1

1

Dn

Etotal
n =

N∑
n=1

1

Dn

(
ERF
n + Eproc

n

)
=

N∑
n=1

ERF
b,n + Eproc

b,n , (16)

where ERF
b is the energy per bit definition used in communications. The following opti-

mization problem merges routing, data offloading and radio resource management:

minimize
{Sn}Nn=1,{pn,i}Nn=1,{ln}

N
n=1

Etotal
b (P1)

subject to Sn ⊂ N ∪ {GS}, n = Sn(1), GS = Sn(mn + 1) n = 1, . . . , N (C1-C3)

gi
Eproc
n

T procn
+ pi ≤ Pi, i ∈ Sn n = 1, . . . , N (C4)

pi ≤ Pmax
out , i ∈ Sn n = 1, . . . , N (C5)

Tn ≤ τn n = 1, . . . , N (C6)

ln ∈ {0, 1} n = 1, . . . , N (C7)

Constraints (C1-C3) restrict the paths to start at each LEO gathering data and end at
the GS. In constraint (C4), gi is a predefined parameter (i.e., not to be optimized) that
takes the value 1 when i = Sn(1) and 0 otherwise. This constraints the power to be below
the available at the satellite payload Pi. Likewise (C5) restricts the transmitted power
to be below the maximum available at the amplifier. Constraint (C6) refers to the total
time, corresponding to computation and communication:

Tn =
mn∑
i∈Sn

TDLn + lnT
proc
n =

mn∑
i∈Sn

(T commi + T propi ) + lnT
proc
n (17)
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4.2 Communication time analysis

Problem (P1) is a mixed-integer program (MIP) because of the integrality constraints
(C7). Additionally, the simultaneous optimization of routing and RRM is NP and highly
non-convex. Thus, finding the optimal solution to (P1) is not possible.

In light of [41] we will analyse the problem in terms of the communication time. For sake of
clarity we drop the superscript in T commi to simply Ti, since the other delays (processing
and propagation) are fixed. Considering (1), we can define the rate according to the
capacity and, also, as the ratio between data size and communication, which combined
lead to the following expression of the power:

pi =
1

h2i

(
2

Ln
BTi − 1

)
, (18)

and the energy cost function can be expressed as

Etotal
b =

N∑
n=1

1

Dn

(
mn∑
i∈Sn

(
Pfix +

µ

h2i

(
2

Ln
BTi − 1

))
Ti + lnCp(Dn)

)
(19)

4.2.1 Excluding the power amplifier subsystem

Most of the literature does not consider the power amplifier model, even though the
conditions of the problem change dramatically depending on its inclusion. Without loss
of generality, the exclusion of this model corresponds to Pfix = 0 and µ = 1, however only
the former changes the geometry of the problem.

Proposition 1. For Pfix = 0, the objective (19) is convex and decreasing in Ti.

Proof. The derivative of the objective with respect to Ti is

∂Etotal
b |Pfix=0, µ=1

∂Ti
=

1

Dnh2i

∂

∂Ti
Ti

(
2

Ln
BTi − 1

)
=

1

Dnh2i

(
2

Ln
BTi

(
1− ln(2)

Ln
BTi

)
− 1

)
=

1

Dnh2i

(
(1 + Si) (1− ln (1 + Si))− 1

)
(20)

≤ 0

The last equality follows from the rate definition Ri = Ln

Ti
= Blog2(1 + Si), Si being

the SNR between nodes (i, i + 1). Let f(S) be expression (20) with derivative f ′(S) =
−ln(1 + S). Since ln(S) is an increasing function in S and f ′(0) = 0, we have that
f ′(S) < 0 for S > 0. Along with that f(0) = 0, thus f(S) < 0 for S > 0. This proves the
last inequality, and the objective being a decreasing function in Ti.
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Regarding convexity, the second derivative of the objective with respect to Ti is

∂2Etotal
b |Pfix=0, µ=1

∂T 2
i

∝ ∂

∂Ti

(
2

Ln
BTi

(
1− ln(2)

Ln
BTi

)
− 1

)
= ln(2)

(
Ln
B

)2
1

T 3
i

2
Ln
BTi (21)

≥ 0

The last inequality follows from all multiplying terms being positive for Ti > 0. Equation
(21) is the diagonal entry of the Hessian. Since there are no cross-term elements in the
objective, the Hessian is a diagonal matrix with positive entries. Thus it is positive definite
and the objective convex.

This same conclusion is found in [41]. Intuitively, this means that using less power corre-
sponds to a lower SNR and an overall smaller rate, which increases the communication
time. Nevertheless, due to (C6) there is a time constraint to be fulfilled such that the
energy cannot be decreased infinitely, which leads to Corollary 1.

Corollary 1. For Pfix = 0, the minimum energy is obtained with equality in the (C6)
constraint.

mn∑
i∈Sn

(Ti + T propi ) + lnT
proc
n = τn (22)

On the contrary, the propagation time plays no role in the objective, so it can be minimized
to allow for a larger communication time, as seen in Corollary 2. Unipath routing via
minimization of the propagation time is equivalent to using path-loss: the lower the time,
the smaller the distance and the smaller the FSPL, as seen in (3). Besides, according
to [42], unipath multirate routing in LEO constellations via path-loss provides a smaller
overall latency and favours paths with large data rates in contrast to other metrics.

Corollary 2. For Pfix = 0, the minimum energy is obtained with minimum propagation
time, since ∑

i∈Sn

Ti = τn −
∑
i∈Sn

T propi − lnT procn ≤ τn −min
Sn

∑
i∈Sn

T propi − lnT procn (23)

Remark 1. Notice that the communication time is maximized for ln = 0, but this does not
ensure energy minimization. The fact that the propagation time is decoupled from energy
allows to treat it independently.

4.2.2 Including the power amplifier subsystem

Besides increasing the power consumption towards a more realistic model, the power
amplifier plays an essential role because it shifts the geometry of the problem.
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Proposition 2. For Pfix 6= 0, the objective (19) is convex and non-monotonic in Ti.

Proof. The derivative of the objective with respect to Ti is

∂Etotal
b

∂Ti
=

µ

Dn

∂

∂Ti

(
1

h2i
Ti

(
2

Ln
BTi − 1

)
+
Pfix
µ
Ti

)
=

µ

Dn

(
1

h2i
2

Ln
BTi

(
1− ln(2)

Ln
BTi

)
+

(
Pfix
µ
− 1

h2i

))
(24)

A simple way to prove that the function is not monotone is computing the limits of the
function in its domain, this is, Ti ∈ (0,∞):

lim
Ti→0

∂Etotal
b

∂Ti
= −∞ < 0 (25)

lim
Ti→∞

∂Etotal
b

∂Ti
=

µ

Dn

(
Pfix
µ
− 1

h2i

)
> 0 (26)

In (26) we assume domain knowledge to justify the sign of the expression. Indeed, the
normalized channel is larger than 1 once it is compensated through antenna gains. This
proves that the function is not decreasing in Ti.

For convexity, we need to compute the Hessian. By inspection, expression (24) differs from
(20) by a constant term so both Hessian matrices match and this function is convex as
well.

From Proposition 2, the minimum energy is not obtained with maximum propagation
time. Considering a unique link, this is, N = 1 and a fixed set Sn = {n,GS}, we can
particularize (P1) and rewrite it in terms of Ti. Without loss of generality we can assume
ln = 0:

minimize
Ti

µ

D

(
1

h2i

(
2

D
BTi − 1

)
+
Pfix
µ

)
Ti (P1a)

subject to Ti ≤ τn , Tmax (C1)

Ti ≥
Ln

Blog2(1 + h2iPmax)
, Tmin (C2)

where Pmax = min{Pi − Eproc
n /T procn , Pmax

out }. Figure 6 illustrates the objective of (P1a)
along with both time constraints (refer to Section 5.1 for the parameters’ setup). Depend-
ing on the scenario the problem may be posed in different zones: in region I (Tmax below
Emin
b,n ) the function is decreasing in Ti and so equivalent to the case with Pfix = 0; in region

II (as in Figure 6) there is an optimal time delay (and thus transmission power) such that
the energy is minimized; and in region III (Tmin above Emin

b,n ) the energy is minimized at
minimum delay, this is, transmitting at maximum power. Unlike Corollary 2, in regions II
and III the minimum energy is not achieved with maximum communication time, which
leads to the following corollary.

Corollary 3. For Pfix 6= 0, the minimum energy is not obtained in general with equality
in the (C6) constraint.
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Figure 6: Energy dependence on Ti.

Nevertheless, minimizing the propagation time as Corollary 2 states is advantageous for
different reasons: first, minimizing the propagation time reduces the total time delay,
which is suitable. When the time constraint is inactive (i.e., regions II and III) minimizing
the propagation time pushes Tmax to the right with no effect on the energy minimization,
but on reducing the total delivery time. Second, when the time constraint is active (i.e.
region I), minimizing the propagation time leads to minimum energy. Heuristically, mini-
mizing the propagation time always reduces the total delivery time and it may reduce the
energy consumption when the problem is posed in region I or may not affect the energy
in the other two cases. As a conclusion, minimizing the propagation time (or path-loss)
will be the metric used to assess the routing procedure.

4.3 Routing algorithm

From the previous result, we will determine the sets Sn as the paths minimizing the
propagation time. Given the set N with satellites having data to be transmitted and
processed, we define the optimization problem (P2).

minimize
{Sn}Nn=1

N∑
n=1

mn∑
i∈Sn

T propi (P2)

subject to Sn ∩ Sm = {GS}, ∀m 6= n n = 1, . . . , N (C1)

Sn(1) = A(n) n = 1, . . . , N (C2)

Sn(mn + 1) = GS n = 1, . . . , N (C3)
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The constraint (C1) ensures path deconfliction, this is, that any two paths share no
intermediate nodes, whereas (C2) and (C3) ensure feasibility, that each path starts at the
origin satellite and terminates at the GS, respectively. We assume that τn is much larger
(e.g., some order of magnitude) than any propagation time so that all solutions remain
feasible.

Finding the optimal solution to the shortest path problem with constraints is NP-hard.
There is up-to-date literature dealing with path search for multiple agents with node de-
confliction [43]-[47]. This has been tackled through relaxation methods to apply convex
optimization [48] and via tailored algorithms [49]. A more robust approach is via submod-
ularity, a functional tool with similar properties to convexity in the discrete domain. As
opposed to the previous methods, submodularity can provide solutions that are scalable
and with provable near-optimality guarantees [50].

4.3.1 Greedy maximization of submodular set functions

Definition 1. A set function f : 2N → R defined over a set N is submodular if for every
A ⊆ B ⊆ N and e ∈ N\B it holds that

f(e | A) ≥ f(e | B), (27)

where f(e | S) = f(S ∪ e)− f(S) is termed as the marginal gain of function f at S with
respect to e.

Definition 2. A set function f : 2N → R is monotone if for every A ⊆ B ⊆ N

f(A) ≤ f(B) (28)

Definition 3. A set function f : 2N → R is normalized if

f(∅) = 0, (29)

where ∅ is the empty set.

The objective of problems dealing with multiway partitions is to divide a set S into k
disjoint sets S1, . . . ,Sk, Si ∩ Sj = ∅, ∪ki=1Si = S such that

∑k
i=1 fi(Si) is maximized. A

simple approach to solve normalized monotone submodular function maximization under
a multiway partition constraint is via a greedy algorithm that allocates each element e
to the best subset at that point S∗j ← S∗j ∪ {e}, where j∗ = argmaxj fj(Sj ∪ {e}) and
e = argmaxj, e∈N\Sj fj(e | Sj).

This greedy algorithm provides a one-half-approximation guarantee [50]. The performance
of this low-complexity algorithm can be explained through the marginal gain: by definition
(27), the elements added at the beginning are more relevant because they provide a larger
marginal gain. Similarly, the greedy algorithm only optimizes over the next element, which
maximizes the marginal gain at each iteration.
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4.3.2 SHIELD algorithm

Consider a set S with all possible paths from all LEO satellites in N to the GS. The goal is
using submodularity to obtain a multiway partition of N sets, such that each set contains
only one path. This could be designed as a submodular minimization with cardinality
constraints, though we will follow an unconstrained approach. The function

f(Si) =
∑
p∈Si

T propp +K|Si| (30)

computes the propagation time for all paths in Si, where T propp is the total propagation
time for path p. Then, it adds an extra term weighted by the cardinality of the set |Si|,
i.e., the number of paths in Si.

Lemma 1. f(Si) is modular.

Proof. Consider Sj ⊆ Si ⊆ S and e ∈ S\Si, it holds that

f(e | Sj) = f(Sj ∪ {e})− f(Sj)

=
∑
p∈Sj

T propp + T prope +K|Sj ∪ {e}| −
∑
p∈Sj

T propp −K|Sj|

= T prope +K (31)

The result in (31) does not depend on Sj because f is a sum of linear set functions
and, hence, linear. Thus f(e | Si) provides the same result and the relationship in (27)
is fulfilled with equality. Similarly, −f also accomplishes the relationship with equality.
Hence, f is submodular and supermodular and, thus, f is modular.

It is easy to see that f is also monotone and normalized, so it is appropriate for the
previously defined greedy algorithm. Even though it was defined as a maximization prob-
lem, because of the linearity, the problem can be minimized as well and the theoretical
convergence is guaranteed.

The role of the last term in (30) is that it allows to generate subsets of cardinality one.
The intuition behind it follows from that at a given iteration of the greedy algorithm, the
minimum path may be found for a node that already has allocated a path. When only
considering the propagation time, this second path would be added to the existing ones,
which is undesirable. This cardinality term adds a penalty to the sets that already have
a path to ensure that they are not eligible.

Theorem 1. The multiway partition greedy algorithm computed over f(Si) produces sub-
sets of cardinality one.

Proof. At a given iteration, consider two sets S1 = ∅ and S2 = {p}. At the next iteration
there are two paths e, e′ ∈ N\S2 that minimize the marginal gain (i.e., propagation time)
of every set, respectively. Then, the function evaluation for every set is

f(S1 ∪ e) = T prope +K (32)

f(S2 ∪ e′) = T propp + T prope′ + 2K (33)
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Comparing both results and rearranging the terms, we can find an expression for K:

f(S2 ∪ e′) > f(S1 ∪ e) =⇒ K > T prope − T propp − T prope′ (34)

With a sufficiently large K, if the propagation time of p and e is smaller than e′, the
algorithm will never select a non-empty set.

We introduce the original SHIELD algorithm (Submodular HIErarchicaL Dijkstra’s al-
gorithm) in Algorithm 1, used for routing. In practice it is not necessary to compute S,
this is, all feasible paths from N to the GS. For a given node, only the shortest path until
the GS minimizes the marginal gain, meaning that we only need to compute the shortest
path for each feasible node at every iteration. We use the Dijkstra’s algorithm, which is a
well-known algorithm used to efficiently compute the shortest path between two nodes in
a graph [32]. Besides that, K was only used theoretically to demonstrate the correctness
of the algorithm. In practice, only the empty subsets are considered at each iteration.

Since the SHIELD algorithm runs the Dijkstra’s algorithm N2 times, its time complexity
can be bounded by O(N2(V + E logV)).

Algorithm 1 SHIELD

Input: G and N
Output: Si for i = 1, . . . , N

Initialize Si = ∅ ∀i
for i = 1, . . . , N do

for j = i, . . . , N do
ej = Dijkstra(G,N (j), GS)
j∗ = argminj fj(Sj ∪ {e})

end
Si ← {ej∗}
G ← {G \ Si} ∪ {GS}

end

Theorem 2. SHIELD provides a Pareto efficient solution.

Proof. An allocation SA = {S1, . . . ,SN} is Pareto optimal if there is no SB = {S ′1, . . . ,S ′N}
such that f(S ′i) ≤ f(Si)∀i, with f(S ′j) < f(Sj) for some j. Without loss of generality, we
assume that there are no two different paths providing the same distance.

By contradiction, suppose that there exists a set S ′j fulfilling f(S ′j) < f(Sj). At iteration j

the allocation S ′j cannot contain non-assigned nodes in SA, this is, S ′j∩{G \
⋃j−1
i=1 Si} = ∅,

because the optimality of the Dijkstra’s algorithm ensures finding the path with minimum
length [51]. Thus, S ′j ∩ Si 6= ∅ for some i = 1, . . . , j − 1, meaning that S ′j 6= Sj. However,
the algorithm assigns nodes greedily such that ej = argminj, e∈N\Sj f(e | Sj), and so
f(S ′j) ≥ f(Sj), which contradicts the assumption.
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4.4 Radio Resource Allocation and Offloading strategy

As a result of the routing procedure, the RRM and offloading problem is decoupled for
every path Sn. From Corollary 3, we can express the time constraint as

mn∑
i∈Sn

1

log2 (1 + pih2i )
≤ B

Ln

(
τn −

mn∑
i∈Sn

T propi − lnT procn

)
︸ ︷︷ ︸

γn(ln)

(35)

Thus for each path Sn we need to determine the optimal power allocations fulfilling
constraint (35). Following the initial approach, we propose problem (P4), which is a
MIP. However, due to the low dimensionality of ln, the optimal offloading corresponds to
allocating optimal powers for ln = {0, 1} and choose the ln minimizing the energy. Thus
in the following we focus on the RRM problem.

minimize
{pi}mn

i=1, ln
Etotal
b,n = µ

Ln
DnB

mn∑
i∈Sn

pi +
Pfix

µ

log2 (1 + pih2i )
+ ln

1

Dn

Cp(Dn) (P4)

subject to
mn∑
i∈Sn

Ti ≤ γn(ln) (C1)

gi
Eproc
n

T procn
+ pi ≤ Pi i = 1, . . . ,mn (C2)

pi ≤ Pmax
out i = 1, . . . ,mn (C3)

ln ∈ {0, 1} (C4)

Proposition 3. The objective of Problem (P4) is not convex in pi.

Proof. The second derivative with respect to pi is

∂2Etotal
b,n

∂p2i
= ln(2)µ

Ln
DnB

h2i

2h2i

(
pi +

Pfix

µ

)
+
(
h2i

(
Pfix

µ
− pi

)
− 2
)
ln (1 + pih

2
i )

(1 + pih2i )
2
ln3 (1 + pih2i )

(36)

To know the sign of the numerator in (36) we can compute its limits once again in the
domain of the function:

lim
pi→0

∂Etotal
b

∂pi
= lim

pi→0
2h2i

(
pi +

Pfix
µ

)
= 2h2i

Pfix
µ

> 0 (37)

lim
pi→∞

∂Etotal
b

∂pi
= 2h2i

Pfix
µ

+ lim
pi→∞

pih
2
i

(
2− ln(1 + pih

2
i )
)

+

(
h2i
Pfix
µ
− 2

)
ln(1 + pih

2
i )

= lim
pi→∞

pih
2
i

(
2− ln(1 + pih

2
i )
)

= −∞ < 0 (38)

Thus, we cannot ensure the Hessian is positive semidefinite and the function is not convex
nor concave.
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Even though the energy function is not mathematically convex, we see that it may be
geometrically convex within the feasible region. In Figure 7(a) we represent the total
energy per bit for one dimension and h(pi) is the numerator of the second derivative, this
is, expression (36). Up to around 35 W the function switches convexity. Since we allow
for a maximum power of 10 W (see Table 2), an interior-point algorithm can reach the
optimal solution if we consider this upper bound.

4.4.1 Energy minimization via log-log convex program (LLCP)

We seek for a more robust approach, this is, that we can define an equivalent optimization
problem that is always convex. We observe that both functions (energy cost and delay
constraint) in (P4) are log-log convex in pi, meaning that we can perform a bijective
transformation in the domain (pi > 0) such that the problem is convex. Problem (P5) is
the log-log transformation of problem (P4).

minimize
{pi}mn

i=1, ln
Ẽtotal
b,n = log

(
µ
Ln
DnB

mn∑
i∈Sn

eui +
Pfix

µ

log2 (1 + euih2i )
+ ln

1

Dn

Cp(Dn)

)
(P5)

subject to log

(
mn∑
i∈Sn

1

log2 (1 + euih2i )

)
≤ log (γn(ln)) (C1)

log

(
gi
Eproc
n

T procn
+ eui

)
≤ log (Pi) i = 1, . . . ,mn (C2)

log (pi) ≤ log (Pmax
out ) i = 1, . . . ,mn (C3)

ln ∈ {0, 1} (C4)

Log-log convex programs (LLCP) are the generalization of Generalized Geometric Pro-
grams (GGP) and the log-log transformation is equivalent to expressing the objective and
constraints in log-log scale [52]. In the following we will prove that (P5) corresponds to
the log-log transformation of (P4) and that it is a convex optimization problem. To do
so, we will need to prove of several lemmas.

Lemma 2. The sum of log-log convex functions is convex.

Proof. We need to show that the log-log transformation is convex. The sum function is

f(x1, . . . , xn) =
n∑
i=1

xi (39)

and its log-log transformation is

F (u) = logf(eu1 , . . . , eun) = log

n∑
i=1

eui , (40)

which is the log-sum-exp, a well-known convex function [53].

Lemma 3. Function f(x) = x+a
ln(1+x)

for a ≥ 0 is log-log convex.
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Proof. A necessary and sufficient condition [52] for a twice-differentiable function to be
log-log convex is

f ′′(x) +
f ′(x)

x
− f ′(x)2

f(x)
≥ 0 (41)

Analytically we can compute the derivatives to obtain that

f ′′(x) +
f ′(x)

x
− f ′(x)2

f(x)
=

2(x+ a)− (x+ 2− a)ln(1 + x)

(1 + x)2ln3(1 + x)
+
ln(1 + x)− x+a

1+x

xln2(1 + x)
−
(
ln(1 + x)− x+a

1+x

)2
xln3(1 + x)

=

x(x+ a)2 − (3x+ a− 2)(x+ a)ln(1 + x) + a(1 + x)2ln2(1 + x)

x(x+ a)(1 + x)2ln3(1 + x)
≥ 0 (42)

In (42) the denominator is always positive in the domain (x > 0), and the numerator
is trivially shown to be positive. Another way to show the log-log convexity of f(x) is
to show that its log-log transformation is convex, which corresponds to expression (43).
Figure 7(b) shows the plot of F (u), which is convex.

F (u) = lnf(eu) = ln

(
eu

ln(1 + eu)

)
= u− ln (ln(1 + eu)) (43)

Lemma 4. Function g(x) = 1
ln(1+x)

is log-log convex.

Proof. The easiest way to show it is by means of the convexity of its log-log transformation:

G(u) = lng(eu) = ln

(
1

ln(1 + eu)

)
= −ln(ln(1 + eu)), (44)

which is convex since it differs from (43) by a linear term. Similarly, the plot is depicted
in Figure 7(b) to show its convexity.

Theorem 3. Problem (P5) is the log-log transformation of (P4) and it is a convex opti-
mization problem in pi.

Proof. Ẽtotal
b,n is the sum of several f(x) of Lemma 7 and the delay function in (C1) is the

sum of several g(x) functions of Lemma 8. They only differ by a constant (the logarithm
base) and a linear transformation of the optimization variable (ui ← pih

2
i ), which do not

affect convexity. In light of Lemma 5 both functions are log-log convex. Constraints (C2)
and (C3) are clearly convex, which can be also derived from Lemma 5. Thus we obtain
(P5), a convex optimization problem in pi.

Remark 2. At first sight the RRM optimization problem might seem to be posed at the
Pareto frontier, this is, there are several power allocations that can reach the same energy
consumption. However, since there are not cross-terms and the problem is convex in every
variable the optimal power allocations are unique.
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(a) (b)

Figure 7: (a) Convexity of Etotal
b,n and (b) log-log transformation of f(x) and g(x).

4.5 Sat2C Algorithm

Algorithm 2 describes the overall optimization for routing, resource allocation and task
offloading. The independence between the routing and the rest of tasks provides a basis
for future updates without interfering in the optimality of the RRM. This is particularly
useful because Sat2C is dominated by the routing algorithm: the RRM increases with N ,
whereas the former with N2.

We envision its implementation as a centralized algorithm. Sat2C needs to be deployed
in some agent of the network that receives the information of the satellites and sends the
updates back to them with the output of the algorithm. We can assume it is deployed
in one or several GEO satellites because of the following reasons: the on-board processor
may have more capabilities than the one from the LEO satellites and the whole coverage
of the constellation is guaranteed with only three GEO satellites. Besides, the position of
the satellites can be estimated without having feedback of all satellites.

Algorithm 2 Sat2C

Input: G and N
Output: Sn, ln, {pi}mn

i=n for n = 1, . . . , N

Si ← SHIELD(G,N )
for n = 1, . . . , N do
{pi}i∈Sn ← solve (P5)

end

26



5 Results

In this chapter we test the performance pf the Sat2C algorithm with respect to alterna-
tive approaches. We simulate an scenario and analyse the effectiveness of the SHIELD
algorithm for routing, along with the capabilities of the whole Sat2C algorithm. These
experiments have been implemented in Matlab and the optimizations via the built-in
interior-point procedures [58].

5.1 Setup

We consider a Kepler constellation of M = 7 orbital planes with Na = 20 LEO satellites
per plane. The orbital planes correspond to polar orbits, this is, perpendicular to the
equatorial plane, and all deployed at the same altitude of H = 600 km. There are 26 GSs,
whose location can be found in Table 1. We append an artificial node linked to all GSs
and with null weight that allows to be conceived as the destination GS. There are N = 14
randomly selected satellites with EO data.

The communication parameters are adjusted according to the spectral efficiency for the
DVB-S2X system [59]: the modulation and coding schemes cover the range of SNRs
[−2.85, 19.57] dB, such that the spectral efficiency is 0 if SNR < −2.85 dB and 5.90 if
SNR ≥ 19.57 dB. Hence, the antenna design and the selection of transmission power is
focused on achieving SNRs within this interval. The SNR between satellites u and v is
computed in linear as

SNR(u, v) =
piGtxGrx

σ2L(u, v)L2
p

, (45)

where σ2 is the noise power and computed as σ2 = κBTNB, where κB is the Boltzmann
constant, TN is the thermal noise in Kelvin, B is the channel bandwidth in Hertz, and Lp
is the pointing loss. Similarly, the antenna sizes were adjusted after setting Pi = 10 dB
via

G = ηa

(
πD

λ

)2

, (46)

where ηa is the efficiency of the parabolic antenna, D is the diameter of the dish in meters
and λ is the wavelength in meters.

The minimum distance to ground is, naturally, H. Therefore, the transmission power
and antenna sizes were selected to provide maximum SNR in the ground to satellite link
of SNR(h) ≈ 19.57 dB. Conversely, for the inter-plane ISL, the maximum LoS distance
corresponds to expression (5).

Equivalently, the transmission power and antenna sizes were selected to provide a mini-
mum SNR in the inter-plane ISL of SNR(dmax,ISL(u, v)) ≈ −2.85 dB. With this, the rate
is greater than zero for any satellite that has at least one neighbor within LoS. For a com-
munication system located in the Ka-band, Table 2 lists a configuration of parameters
satisfying these requirements.

Regarding the power amplifier subsystem, we consider using a single-carrier per transpon-
der (SCPT), which corresponds to an OBO of 0 dB and η = 0.65 [54]. According to [4],
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Table 1: Locations of the Ground Stations

# Location Latitude Longitude

1 Troll, Antarctic −72.01 2.53
2 Cordoba, Argentina 78.33 15.99
3 Tolhuin, Argentina −32.09 −63.79
4 Inuvik, Canada −54.51 −67.19
5 Punta Arenas, Chile 68.36 −133.72
6 Nemea, Greece −53.16 −70.90
7 Nuuk, Greenland 37.82 22.66
8 Bangalore, India 64.17 −51.73
9 Tokyo, Japan 12.97 77.59
10 Mauritius 35.68 139.75
11 Awarua, New Zealand −20.27 57.57
12 Svalbard, Norway −46.50 168.36
13 Tromsø, Norway 69.64 18.95
14 Vardø, Norway 70.33 30.96
15 Panama 8.55 −81.13
16 Azores, Portugal 37.80 −25.47
17 Singapore 1.34 103.83
18 Hartebeesthoek, South Africa −25.63 28.08
19 Puertollano, Spain 38.68 −4.11
20 Dubai, United Arab Emirates 25.07 55.18
21 Fairbanks, Alaska, US 64.83 −147.71
22 Los Angeles, California, US 34.05 −118.24
23 Hawaii, US 19.58 −155.42
24 Maspalomas, Canary Islands, Spain 27.76 −15.58
25 Jeju, South Korea 33.38 126.53
26 Mingenew, Australia −29.11 115.44

we set the power loading factor to c0 = π
4
η, Pfix = 5 W and Pmax

out = 10 W.

With respect to the processing we use a standard configuration of fCPU = 250 MHz,
z = 737.5 CPU cycles/bit and ν = 10−27 J/Hz3 [30, 25].

High resolution images, such as Google’s Aerial Orthoimagery [55] or Planet [56] are
typically used. For instance, the latter equips three cameras per satellite to capture a
region 24 km × 16 km within a scene of 2560 pixels × 1080 pixels. For 16 bits of depth,
this results in images around 128 Mb. However, the processing time needed for this images
exceeds 60 seconds, which is inconsistent with the assumption of working with a snapshot
of the network. We set the data size per image to Dn = 1.2 Mb, which results in a
processing time below 4 seconds, and τn = 10 s, ∀n. Finally, the compression ratio for
images for on-board LEO satellites is set at ρn = 4,∀n [57].
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Table 2: Communication parameters for the Kepler constellation

Parameter Symbol LEO to GS Inter-plane ISL

Carrier frequency (GHz) f 20 26
Bandwidth (MHz) B 500 500
Transmission power (W) p 10 10
Antenna diameter (Tx – Rx) (m) (Dtx – Drx) (0.26 – 0.33) (0.26 – 0.26)
Antenna gain (Tx – Rx) (dB) (Gtx – Grx) (32.13 – 34.20) (34.41 – 34.41)
Pointing loss (Tx – Rx) (dB) Lp (0.3 – 0.3) (0.3 – 0.3)
Antenna efficiency (Tx – Rx) (–) ηa (0.55 – 0.55) (0.55 – 0.55)
Noise temperature (K) TN 50 290
Noise figure (dB) Nf 1.5 2
Noise power (dB) σ2 −119.32 −114.99

5.2 SHIELD Performance

In the following we evaluate the SHIELD routing algorithm. We compare it to a simpler
algorithm called Hierarchical Dijkstra, which ordersN according to τn, such that τi ≤ τi+1.
Then, it finds the shortest path for every node hierarchically using the Dijkstra’s shortest
path algorithm. This algorithm is less expensive as it increases with N and not N2. Figure
8(a) displays an instance of the routes determined by the SHIELD algorithm, where red
nodes are GSs, black nodes are satellites with EO data and highlighted green edges are
the respective paths.

Using a Monte Carlo method, both algorithms are run 1000 times and averaged. Figure
8(b) shows the mean propagation time per path according to the satellite’s route assign-
ment order and the shaded areas represent the standard deviation. The first conclusion
is that it is effective to route in satellite networks, as both algorithms outperform the
existing solutions (i.e., the satellite sends the data directly to the GS when it has LoS).
Both algorithms produce shorter paths for early assigned routes, since in late iterations
some nodes have been already assigned and the graph is more constrained. Likewise, both
route lengths increase exponentially with the number of satellites. The SHIELD algorithm,
however, provides shorter routes in mean and with smaller variance, which means it is a
more robust and reliable algorithm. On the other hand, with the Hierarchical Dijkstra one
can control which satellite receives the shortest route, even though there is high variance
in the solution.

5.3 Parametric analysis

The performance of Sat2C is compared to three alternative approaches:

• Never-Offload Policy: this algorithm optimizes the radio resources and always
computes the task locally. It is equivalent to Sat2C with ln = 1,∀n.

• Always-Offload Policy: this algorithm optimizes the radio resources and always
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(a) (b)

Figure 8: (a) An instance of the routes determined by SHIELD and (b) mean
propagation time per route depending on the satellite’s route assignment order.

offloads the task to the GS. It is equivalent to Sat2C with ln = 0, ∀n.

• Maximum Power: this algorithm transmits at maximum power (i.e., does not
perform RRM) and computes the optimal task offloading decision for each route.

We use a Monte Carlo setup of 1000 samples and average the results for all routes and all
instances. In other words, we will not appreciate the effect of the routing algorithm, since
the energy consumption is averaged for all N paths. Figure 10(a) represents the mean
total energy per bit, and clearly Sat2C outperforms the other algorithms. Notice that
the Maximum Power policy consumes less than the Never-Offload and Always-Offload
policies. This is because the consumption due to processing is much significant than the
used for communication. Thus, under this specific scenario, optimizing the task allocation
is much more relevant than optimizing the transmission power.

These results highly depend on the CPU specifications, which motivates a parametric
analysis of the energy consumption. In the following, we analyse the energy consumption
varying one parameter at a time and observing the optimality of Sat2C. With these
experiments, we can find the conditions under which Sat2C can be implemented.

We do not show the influence of the data size Dn nor the time delay τn because the energy
optimization is not affected by these variables. Conversely, they do affect the time delay
constraint. Nonetheless, this constraint remains inactive most of the time.

5.3.1 Clock frequency

As fCPU increases, the energy spent in processing does as well. In Figure 10(b), the Never-
Offload policy is heavily affected by the speed of the CPU since it always computes the
task locally. On the contrary, the Always-Offload algorithm remains constant because it
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always offloads the task to the GS (i.e., it is not affected by the computation model).
The optimal solution approaches the Never-Offload strategy when the frequency is low
(computation energy is low) and the Always-Offload policy when it is very expensive to
compute it locally. Around 250 MHz it heavily depends on the channel conditions, thus
some tasks are computed locally and the rest are offloaded, evincing the optimality of this
criterion. This finding is unexpected and suggests that the faster the processor does not
correlate with energy minimization.

5.3.2 CPU cycles per bit

Both the energy and the computation time increase with z, as seen in Figure 10(c). When
this parameter is low, the optimal policy degrades to the Never-Offload policy, as the task
can be computed locally while satisfying the time constraint. Conversely, when the cost of
computing locally is expensive, the optimal policy tends to the Always-Offload strategy.

5.3.3 Equivalent capacitance

ν relates the capabilities of the processor with the energy consumption and, so, it is a
measure of the current technological development. As seen in Figure 10(d), these results
are consistent with the previous ones: when this parameter is small, the energy consumed
at the processor is smaller and Sat2C always computes the task locally. Otherwise, the
task is offloaded to the GS.

5.3.4 Compression ratio

As Figure 10(e) shows, the Never-Offload policy decreases with ρ because the more com-
pressed is the data, the less bits are transmitted. Besides, this parameter does not affect
the processing energy. Thus, the Never-Offload policy shows how the communication en-
ergy is reduced as the processing compresses the information. Sat2C degrades to the
Always-Offload policy when the data is not compressed, as the satellite would spend en-
ergy processing and then transmit the same amount of information. However, once the
data is somewhat compressed, Sat2C offloads some of the tasks to the GS and some are
computed on-board, providing minimum energy consumption.

5.4 Current technological development

As stated previously, these results are highly affected by the capabilities of the on-board
processor. Even though the data size does not affect the energy consumption per bit,
it does affect the optimal offloading decision: for instance, for D = 10 Mb, the time
delay cannot be ensured with local processing and the task is always offloaded to the
GS. Thus, in the following we analyse the current technological development of the CPU
consumption.

For these experiments we set T proc = 4 s and z = 737.5 cycles/bit, ∀n. With expression
(11), we find the required CPU frequency. We consider data sizes ranging D = [10−3, 10]
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Figure 9: Data sizes that support satellite computation for current CPU technologies.

Mb. Larger data sizes require fCPU > 2 GHz, which is unattainable for current off-the-
shelf processors.

In Figure 9 we represent the energy consumption of Sat2C for different ν and D, for the
cases where the algorithm does not degrades to the Always-Offload policy. In this way we
can analyse in which scenarios the satellites process data locally, this is, we can dimension
what kind of data fits with Sat2C. The red vertical line denotes the current development
in CPUs (ν = 10−27): the right side contains attainable energy consumptions, whereas
the left side has not been achieved yet for current processors.

For light data (e.g., D = 10 kb), there is a wide range of ν where Sat2C decides to
compute some tasks locally. Conversely, for D = 10 Mb the plot is located at the left side,
meaning that Sat2C will always offload the task to the GS. In conclusion, for D ≥ 10
Mb, the current processors cannot process data locally in order to meet the time delay
constraints for dynamic LEO constellations.

Increasingly, many services require large batches of data and the current processors are
not enough to satisfy the needs of this scenario. A different approach for large amounts
of data is to distribute the processing among satellites, which is equivalent to moving
towards the right in Figure 9. Along with that, an active research issue is to develop
new acceleration engines capable of supporting more demanding applications in the latest
mobile systems on chips [60].
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Figure 10: (a) Etotal
b,n for four different algorithms and (b-e) Etotal

b,n dependence on different
parameters.
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6 Conclusions and Future Development

In this thesis we have examined the ongoing state of the art of non-terrestrial LEO net-
works for Earth Observation, which will be a fundamental driver for the next generation
networks in the path to 6G. The increasing performance of on-board processors allows to
conceive satellites as edge computing devices, beyond a relay system to the data centers.
Besides, the current environmental concern emphasizes the development of green tech-
nologies. All these considerations lead to the formulation of Sat2C, an energy-efficient
algorithm for joint routing, radio resource management and task offloading optimization
for delay-sensitive services.

Particularly, we have developed SHIELD, an original routing algorithm for dense LEO
constellations based on submodularity, and the RRM and data offloading tasks are solved
via log-log convex programs. In the former, we formulate a greedy algorithm, that provides
one-half-approximation guarantee, with low complexity and low variance in the mean path
distance; the latter provides the optimal transmission powers and data offloading for each
satellite to minimize the energy consumption. Apart from these innovative mathematical
tools, the novelty of this research resides in a precise model of the energy consumption
for satellite networks, including the power amplifier module, which lacks in most of the
literature. Overall, the optimization problem we have formulated and analysed in this
research was not studied before in the literature, leading to a submission of a publication
in the 2021 IEEE Vehicular Technology Conference.

In the era of Big Data, we have concluded that satellites cannot process large batches
of data on-board and meet the delay requirements at the same time. This motivates
the distribution of the computation among satellites, coined as partial offloading. This
complicates the optimization because the data has to be scheduled among the nodes. A
further study could assess the trade-off in energy consumption for partial offloading, since
a more sophisticated algorithm is more consuming.

Moreover, with the adoption of FSO, communication between satellites is faster and pro-
duces less interference. Nevertheless, both technologies will coexist because many constel-
lations that are already deployed use RF links. Under these heterogeneous conditions, the
scenario changes dramatically: FSO links provide rates with several orders of magnitude
larger than RF, at the expense of a repointing that it is not instantaneous. This is critical
for LEO constellations, because of the dynamism of the network.

We forecast that these studies should be supported by the modelling of the network via
graphs. This will allow to take advantage of the architecture and ease the joint optimiza-
tion of routes and resources, apart from including new capabilities (e.g., caching data).
For example, by means of graph signal processing, a clustering algorithm could be de-
signed to determine which satellites process data and which forward only. More broadly,
research is also needed to determine the usefulness of GNNs for resource optimization.

Since the network may be used for other services beyond EO, the simultaneous opti-
mization of several objectives would be a fruitful area for further work. Apart from
energy minimization, time minimization is suitable for delay-constrained applications.
Conversely, some companies may aim to minimize the DL rate for several considerations:
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the GS may be running other tasks, so we seek to minimize its workload; by reducing DL
rate (i.e., data in the DL), more satellites can communicate with the GS; if the terrestrial
infrastructure does not belong to the satellite company, reducing the workload of the GS
corresponds to a reduction in OPEX.
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