
Universitat Politècnica de Catalunya

Facultat d’Informàtica de Barcelona

PICAE – Intelligent Publication of
Audiovisual and Editorial Contents

Alexandre Rodríguez Garau

Master in Innovation and Research in Informatics
Data Science

Student: Alexandre Rodríguez Garau,
alexandre.rodriguez.garau@estudiantat.upc.edu

Academic Supervisor: Oscar Romero Moral, oromero@essi.upc.edu

Company: EURECAT
Advisor: Rohit Kumar, rohit.kumar@eurecat.org

Departament d’Enginyeria de Serveis i Sistemes d’Informació
Facultat d’Informàtica de Barcelona

June, 2021

alexandre.rodriguez.garau@estudiantat.upc.edu
oromero@essi.upc.edu
rohit.kumar@eurecat.org

Abstract

The development in internet infrastructure and technology in last tow decades have
given users and retailers the possibility to purchase and sell items online. This has
of course broadened the horizons of what products can be offered outside of the
traditional trading sense, to the point where virtually any product can be offered.

These massive online markets have had a considerable impact on the habits of
consumers, providing them access to a greater variety of products and information
on these goods. This variety has made online commerce into a multi-billion dollar
industry but it has also put the customer in a position where it is getting increasingly
difficult to select the products that best fit their individual needs.

In the same vein, the rise of both availability and the amounts of data that
computers have been able to process in the last decades have allowed for many
solutions that are computationally expensive to exist, and recommender systems
are no exception. These systems are the perfect tools to overcome the information
overload problem since they provide automated and personalized suggestions to
consumers.

The PICAE project tackles the recommendation problem in the audiovisual sec-
tor. The vast amount of audiovisual content that is available nowadays to the user
can be overwhelming, which is why recommenders have been increasingly growing
in popularity in this sector —Netflix being the biggest example. PICAE seeks to
provide insightful and personalized recommendations to users in a public TV setting.

The PICAE project develops new models and analytical tools for recommending
audiovisual and editorial content with the aim of improving the user experience,
based on their profile and environment, and the level of satisfaction and loyalty.
These new tools represent a qualitative improvement in the state of the art of tele-
vision and editorial content recommendation.

On the other hand, the project also improves the digital consumption index
of these contents based on the identification of products that these new forms of
consumption demand and how they must be produced, distributed and promoted to
respond to the needs of this emerging market.

The main challenge of the PICAE project is to resolve two differentiating as-
pects with respect to other existing solutions such as: variety and dynamic contents
that requires a real-time analysis of the recommendation and the lack of available

i

information about the user, who in these areas is reluctant to register, making it
difficult to identify in multi-device consumption.

The project counts with the participation of the Catalan Audiovisual Media
Corporation (CCMA), the University of Barcelona (UB), Eurecat, which coordinates
the project through its Big Data & Data Science Unit, the Audiovisual Technologies
Unit and the Consultancy Department, Nextret, among others.

This document will explain the contributions made in the development of the
project, which can be divided in two: the development of a recommender system
that takes into account information of both users and items and a deep analysis of
the current metrics used to assess the performance of a recommender system.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Partners . 2
1.2 Objectives . 3

1.2.1 High Level Objectives . 4
1.2.2 Technical problems to be solved 4

2 Recommender Systems: State of the art 9
2.1 What is a Recommender System? . 9

2.1.1 Classic Recommender Strategies 10
2.2 Hybrid Recommender Systems . 10

2.2.1 Taxonomy . 11
Ensemble . 11
Monolithic . 13
Mixed . 13

3 Recommendation Metrics 15
3.1 Recommender System Evaluation . 15

3.1.1 Recommender evaluation concepts 16
Utility . 16
Novelty . 16
Diversity . 17
Unexpectedness . 17
Serendipity . 17
Coverage . 17

3.2 Metrics . 18
3.2.1 Utility . 18

Error-Based . 18
Classification Based . 19
Online Evaluation . 22

3.2.2 Novelty . 22

iii

System Level . 22
Recommendation Level . 23

3.2.3 Diversity . 23
3.2.4 Unexpectedness . 23
3.2.5 Serendipity . 24
3.2.6 Coverage . 25

3.3 Trackers . 25

4 Hybrid Design 27
4.1 Considerations for sequential recommendation 27

4.1.1 Sequential recommenders . 28
4.1.2 Data Evaluation . 29
4.1.3 Transformations . 31
4.1.4 Sequences . 33

4.2 Monolithic Design . 33
4.2.1 Latent Factors . 34
4.2.2 Matrix Factorization . 35
4.2.3 Factorization Machines . 37
4.2.4 Conclusion . 40

5 Data Platform Context 41
5.1 Data Sources . 41
5.2 Content Data . 42
5.3 Consumption Data . 42

5.3.1 Users . 43
5.3.2 Live Content . 45
5.3.3 Model Data . 45

6 Ethics in Recommendation 51
6.1 Usual Recommender Problems . 51
6.2 Considerations for Picae . 52

7 Implementation 55
7.1 Development Environment and Data 55

7.1.1 Livy, Spark and Sparkmagic 55
7.2 ALS . 56
7.3 Light FM . 59

8 Conclusions 63
8.1 Future work . 64

References 66

iv

List of Figures

2.1 Taxonomy of Hybrid recommenders [14] 11

3.1 Diagram depicting the recommendation possibilities 19

4.1 Description of the initial content sample 30
4.2 Constant variables in the sample . 30
4.3 Null values in the sample . 31
4.4 A small sample of the cleaned data 32
4.5 A simple example depicting matrix factorization 35
4.6 Objective function optimization . 36
4.7 Interactions codification . 38
4.8 Interactions to feature vectors using dummy variables 39
4.9 Adding the features to the vectors 39

5.1 Diagram depicting interactions between a logged on user and multiple
devices . 46

5.2 Histogram showing the frequency of user interactions (pre-recorded) 47
5.3 Histogram showing the frequency of user interactions (pre-recorded

and logged on users) . 48

6.1 Different types of explanation for users [27] 53

7.1 Diagram depicting the interaction among Jupyter, Livy and a Spark
Cluster . 56

7.2 Average interactions per user_id . 56
7.3 Average interactions per logged user 56
7.4 Recommendations for 10 users . 58

v

List of Tables

3.1 Symbols and their meaning in the field of Recommender Systems . . 18

4.1 Selected Columns . 32

5.1 Interactions grouped by source and live/pre-recorded 45
5.2 Pre-recorded interactions . 47
5.3 Example of a user’s consumption with different devices 48
5.4 Pre-recorded and logged on interactions 49

vii

Chapter 1

Introduction

The development of the Internet and the increase in information and options avail-
able has made personalized recommendation technology increasingly important for
consumers, users and also for companies in a wide variety of fields ranging from
e-commerce to choose a restaurant. Unlike classic search methods, the PICAE rec-
ommender provides the user with a way to access products and services based on
the concept of ‘discovery’, which allows them to access a large number of options in
a simple but effective way. For companies, the recommender opens the door to the
distribution of their entire catalog, both the most popular and the minority, allows
the development of new business strategies and especially in the case before us opens
a new relationship with the its users.

The success stories, which are many and well known, indicate the effectiveness of
this technology in a wide variety of fields. For example, in the case of e-commerce,
it is estimated that Amazon’s shopping recommendation system may be generating
more than 25% of its revenue, while in the case of the distribution of movies and
series, the e-commerce recommendation Netflix could be generating up to 80% of
revenue. These differences in effectiveness are not only explained by the differences in
the nature of the products, but also by aspects such as the quality of the information
handled by the recommender in relation to the catalog of products offered, by a good
knowledge and recognition of the user or by the use of a technology and a science
sophisticated enough to come to propose a satisfactory ‘discovery’ to the user.

The PICAE project has the common goal of all partners to develop a recommen-
dation platform that can be used in different but related areas: audiovisual content

1

2 Chapter 1. Introduction

(especially TV), textual and news. It is difficult to imagine whether the consumers
of the future will be exposed to television, the press and editorial content websites
in the way we know them today, but it seems quite clear that access to these plat-
forms must migrate from a model of passive viewer to a model that maximizes and
enhances the user’s interactive experience at a meeting point between their interests
and available content. Recommenders respond to this challenge, although previous
experiences in these areas are limited and not easily generalizable. The hypothesis
of the project is that the main causes of these partial results are two: the limited
modeling of users and the use of low-power tools for proper indexing of content.
The project aims to focus on these two aspects and their impact on the engines
of recommendation to take the current state of the art further and affect the link
between consumers and users. For this thesis we will only focus on the TV use case.

1.1 Partners

Before going deeper into the technical details of the project let us quickly review the
most relevant partners:

• EURECAT:

Eurecat is the main technological center in Catalonia. It provides the indus-
trial and business sector with differential technology and advanced knowledge
to respond to their needs for innovation and boost their competitiveness. The
added value provided by Eurecat accelerates innovation, reduces spending on
scientific and technological infrastructures, reduces risks and provides special-
ized knowledge according to the needs of each company.

Eurecat’s activity is aimed at all business sectors but, in particular, at the 7
strategic areas of the Research and Innovation Strategy for Smart Specializa-
tion in Catalonia (RIS3CAT): Food, Energy and resources, Industrial systems,
Design-based industries, Industries related to sustainable mobility, Healthcare
industries and Cultural and experience-based industries.

• Coporació Catalana de Mitjans Audiovisuals (CCMA):

Public Television and Radio Service in Catalonia. Broadcast on TV3, 33 /
Súper3, 324, Esport3, TV3 HD, Catalunya Ràdio, Catalunya Informació and
Catalunya Música. Production of audiovisual content. Distribution of content
on digital platforms (internet, smartphones and smart TVs). The CCMA occu-
pies a prominent place in the audiovisual and communication sector in Catalo-
nia. In particular, it has an 18% share of television consumption in Catalonia,
with TV3 being the leading audience channel in recent years. Catalunya Ràdio
also occupies a preferred place among the country’s radio stations.

1.2. Objectives 3

Although in terms of consumption and especially income, access to content
through the new platforms still represents a small part of the global, for some
years now, the CCMA has placed special emphasis on the development of
services within the new distribution platforms (Internet, Mobile Phones, Con-
nected Televisions ...) understanding that audiovisual consumption will gradu-
ally move from classic broadcasting platforms to the digital environment. The
very change of name of the corporation that went from being the Corporació
Catalana de Ràdio i Televisió to Corporació Catalana de Mitjans Audiovisuals
is significant of this vision.

• Universitat de Barcelona (UB):

The UB unit participating in the project is the UB Data Science Group
(DATA SCIENCE @ UNIVERSITY OF BARCELONA). DATA SCIENCE
@ UNIVERSITAT DE BARCELONA has been set up as a candidate group
for TECNIO, a seal awarded by the Generalitat de Catalunya through AC-
CIÓ. The DATA SCIENCE @ UNIVERSITY OF BARCELONA is made up
of various research groups from the UB with the aim of adding synergies to
address technology transfer projects in the field of Data Science and the pro-
cessing of massive data. These groups belong to the Faculty of Mathematics
and Computer Science and Physics and are the Complexity Lab Barcelona, the
Computer Vision and Learning Group and the Computer Vision Group.

• NexTReT

NexTReT optimizes their clients’ ICT area with managed services and ICT
infrastructure projects, applications and quality of service solutions. Big Data
is a concept that has emerged in recent years. Hadoop technologies have given
the usual systems of Business Intelligence, analytics and artificial intelligence,
the ability to work with very large volumes of data that generate new ap-
plications for organizations. NexTReT enables companies, and especially IT
departments, to adopt standard Big Data technologies. In this way, a frame-
work based on a new technology is enabled that responds to new demands, but
also to the evolution of traditional business data environments. NexTReT is
a Partner of the main Big Data technologies in the sector and contributes its
experience and knowledge to the construction of innovative solutions, helping
clients in public administration, digital media and banking.

1.2 Objectives

Let us take a look at the high level objectives of the project:

4 Chapter 1. Introduction

1.2.1 High Level Objectives

1. Improve efficiency and effectiveness in the production and distribu-
tion of content:

The knowledge acquired by the PICAE recommendation platforms, plus all
the knowledge acquired by user profiling techniques are a solid basis on which
to improve the distribution of content becoming increasingly personalized and
useful to the receiver thus improving the your satisfaction. In the same way
that automated and more accurate content indexing will allow us to minimize
efforts to classify and archive the ever-increasing number of material both
created by broadcasters and by users themselves in an environment of partic-
ipation and interaction. These two elements will allow accurate knowledge to
improve effectiveness and efficiency, but also the success of content production
and distribution.

2. Search for new methodologies of knowledge and interaction with
users:

PICAE clearly places its core in the search for new methodologies of knowledge
and interaction with the audience / users and with the paradigm shift that in-
volves the digitalization of the sector towards a model where user participation
is increasingly important and where the term audiences, with a clear passive
connotation and which until now had been the driving force, has been replaced
by the user, always related to interaction and its ability to decide implicitly
or explicitly. Knowing who our users are and want, how, where, with whom
they enjoy audiovisual content will allow us to surprise, propose new content
that adapts to the profile of the person and the precise moment.

1.2.2 Technical problems to be solved

The PICAE project is articulated in four main axes that mark the development of
the new digital economy: (i) to know our users better, (ii) to better classify our
contents to provide a better (iii) personalized recommendation service that guides
the user in the universe of information, contents and possibilities (iv) in the most
automatic, friendly and reliable way possible. But it also adds an axis that makes
all this possible: the use of Big Data systems and tools that allow us to process
the huge amount of data required by the growing customization of user profiles
and more accurate content indexing, in addition to responding in real time to the
needs of the proposed tool.

• User profiling:

1.2. Objectives 5

This project introduces the vision from the field of Complexity Sciences and the
so-called Computational Social Science, mixing massive data with knowledge
about human behavior in a multidisciplinary way.

1. Introduction of user clustering from the field of complexity sciences and
which in some cases have been successful in the field of genetics. The
tools would discriminate the most relevant variables in order to be able
to characterize various communities or types of users by taking a step fur-
ther on existing algorithms in the industry with techniques from complex
networks and block models that are applied for example in data Twitter.

2. Analysis of cause-effect relationships through new algorithms that go be-
yond the observation of correlations in the framework of users’ interpre-
tation of audiovisual and editorial content.

3. Three-step approach: Stimulus, Outcome, Response from behavioral sci-
ences. Enrichment of the definition of profiling through this approach and
through controlled experiments that allow to refine the user profile both
in laboratory conditions and in operating platforms (virtual laboratories).

4. The user in his social environment. Behavior in Networks and how it
influences their knowledge. Influential users and virality.

• Indexing:

This project proposes to develop and apply textual, auditory and visual infor-
mation indexing techniques based on deep learning that allow to advance the
state of the art in the following lines:

1. Build a taxonomy of audiovisual concepts that are useful from the point
of view of content indexing aimed at the consumption of editorial, news
and TV content. This taxonomy must include from purely descriptive
concepts of the content (e.g. ‘it is a content that speaks of the last
elections to the Parliament of Catalonia”, ‘the actions happens in an
urban setting and "La Marseillaise" is playing in the background’) to
concepts related to the user experience (e.g. ‘video has a very dynamic
structure in terms of visual and sound’). This task should not cause great
difficulties from the point of view of definition, but it should also generate
a set of labeled data that allow learning algorithms to build a model. The
big challenge is being able to label a large volume of data with minimal
effort.

2. Develop a series of automatic tagging tools that efficiently process large
volumes of data according to the above taxonomy. In this case the prob-
lem can be divided into 2 subproblems:

6 Chapter 1. Introduction

(a) Define a deep learning software architecture that is able to learn
filters automatically from tagged data. This architecture should take
into account the multimodal reality of the data (text, audio, video)
and combine the three sources.

(b) Define an operating scheme, at the infrastructure level, of the result-
ing filters that allows their application to the large volumes of data
that are generated daily on a TV.

3. Study the temporal aspects (consumption in sequence of different prod-
ucts) and context (place, time, type of access, etc.) that characterize the
consumption of different types of content. Looking at the final recom-
mendation, it is important to know what consumption patterns certain
content follows. The information generated would be of the following
type: ‘Political reports with a high content of interviews are preferably
consumed in urban areas on weekend nights from connected televisions
(smart TV). These users then view a new episode of a regular series.’

• Recommendation:

While recommendation systems have proven their worth in different appli-
cation scenarios, such as e-commerce platforms like Amazon, or on-demand
video consumption platforms like Netflix, there is no generic solution that can
be applied in all the cases, being necessary to contribute specific solutions for
each case. In the case of this work, the platform to be developed will have
to satisfy the needs of personalization of two different use cases such as the
publishing world and an a la carte TV platform, where the challenges to be
solved will be:

1. Systems that combine the recommendations obtained by exploiting the
new systems of indexing and representation of the content and profiling
of users developed in the project, along with more "traditional" ones such
as those based on collaborative filters. New hybridization techniques
of recommendation systems will be studied such as the application of
probabilistic models that combine different algorithms [1], models that
train different algorithms together [2], or even and all involve users in
choosing the model they like best [3]

2. Be able to offer recommendations to anonymous users, called session-
based referral systems. Unlike applications where the user is registered
and historical information is available, in this case it must be customized
taking into account only the current session. There are other cases, such
as classified ads, where, even if the user is registered, the goal of the
user’s search is highly dependent on the session. The present work will

1.2. Objectives 7

evaluate state-of-the-art methods using recurrent neural networks [4] to
understand user behavior, as well as strategies that apply NowCasting
approaches [5] typical of meteorology applied in this case to content con-
sumption.

3. Generate context-sensitive recommendations. It is a fact that in many
cases the incorporation of contextual information into recommendation
systems improves quality [6]. In the objective of Picae it is especially
relevant because we find cases of use where the social and current con-
text is very relevant (current events, time, ...). This incorporation of the
context represents a challenge given that there are different approaches;
from the incorporation of contextual factors (location, company, purpose
of the search, ...) as a filter before or after generating the list of rec-
ommendations, or include them directly in the learning model, or even
all the very choice of the most relevant contextual factors for the user
[7]. In the project, in addition to the inclusion of context in indexing
tasks, the algorithms that incorporate contextual factors into the model
such as those based on Factorization Machines [8] or bias-based Context
will be investigated. -Aware Matrix Factorization (CAMF) [9][10], among
others.

These are the three main technical problems that will need to be solved in order
to have a state of the art recommender system. These, however, are really complex
and laborious tasks and are designed to be carried out in a very long span of time
by different teams of engineers. In this thesis we will focus mainly on the third task.

This will include research about the current state of recommender systems (2),
an overview of the main criteria and metrics to evaluate the performance of a recom-
mender system (3), a justification for the selected solution (4), a thorough evaluation
of the data at hand (5) and finally a description of the implemented solution and
experiments and their results (7).

Chapter 2

Recommender Systems: State of
the art

In this chapter we will take a look at the current status of the recommender systems
landscape and highlight the most relevant solutions for this project.

2.1 What is a Recommender System?

A recommender system is a programming tool that is used to suggest contents to
the users and other entities using a wide variety of strategies. The incremental in-
formation overload that the users have been experiencing in the last 25 years led
to the development of the first recommender systems. They hoped to help users
choose from the huge amount of options that are now available. While tradition-
ally recommendations were based on the recommendations made by experts, now
they have become automatically produced by recommender systems. In their be-
ginnings (beginning of 90s) these tools were heavily inspired by the study subject
of other closely related research disciplines such as Human Computer Interaction or
Information Retrieval. [11]

There are many different recommendation strategies among which we can high-
light Content-Based Filtering, Collaborative Filtering, Demographic Filtering or
Knowledge-Based Filtering.

9

10 Chapter 2. Recommender Systems: State of the art

2.1.1 Classic Recommender Strategies

The collaborative filtering strategy is based on the basic assumption that user pref-
erences are maintained over time. Likewise, users’ own preferences are used to look
for similarities between users and make recommendations based on these. This type
of recommender mainly suffers from cold start problems —new user or new item —
and gray sheep —users that do not fit in any taste cluster.

Content-based recommenders are based on the basic assumption that people who
have liked a particular content will also like other content with similar attributes.
The quality of the recommendation is delimited by the content attributes selected
from the contents themselves. Although to a lesser extent, they also suffer from the
problem of cold start. To a greater degree, however, its main problem is that of
overspecialization.

As for the demographic filter recommenders, their use is not very widespread
lately, as it involves the use of attributes and characteristics of users that are private.
[11]

Finally, knowledge-based recommendations use knowledge of both users and con-
tent to infer which content meets user preferences and thus generate [12] recommen-
dations. The KBF subset, known as constraint-based, seeks to be able to recommend
complex content that is rarely consumed because it involves limitations on the part
of the user —often based on price, e.g. buying a car. [13]

As can be seen, each family of recommenders has a number of strengths as well
as a number of limitations. As a result, the first hybrid systems emerged, which we
discuss in the next section.

2.2 Hybrid Recommender Systems

Each recommender system has a set of strengths and weaknesses. Thus, while col-
laborative filtering systems use user community ratings to make recommendations,
content-based recommenders use single-user ratings combined with content descrip-
tions to make recommendations. There are other methods, such as knowledge-based
ones, that are based on explicit specifications made by the users themselves in order
to be able to follow the recommendations.

Knowledge-based systems do not suffer from the problem of cold start, but suffer
from not being able to have historical interaction data. Collaborative filter systems
provide diversity and serendipity, but suffer greatly from the problem of cold start.
This does not affect content-based recommenders to the same extent, but instead
they may sin of over-specialization.

Hybrid recommendation systems combine two or more recommendation strate-
gies in order to benefit from their complementary advantages. Most studies combine
collaborative filters (CF) with other techniques; often using a weighting between

2.2. Hybrid Recommender Systems 11

models [11]. Hybrid recommenders not only provide complementary benefits, they
also try to reduce the main problems that affect each of the basic recommenders,
such as the problem of cold start and data sparsity.

2.2.1 Taxonomy

There are multiple methods for hybridizing different recommendation systems. In
this section we explore the three main types: ensemble design, monolithic design
and mixed systems.

Figure 2.1: Taxonomy of Hybrid recommenders [14]

Hybrid recommender systems are closely related to the field of set analysis in
standard classification tasks. In a way, every ensemble is a hybrid system.

Ensemble

This design has as its main characteristics the fact that it directly uses the recom-
mendations of the different recommenders to hybridize, as well as the fact that it
produces a unified prediction. Each model in the set produces a result, so the mod-
els end up being interchangeable and their output easily combinable. For example,
predictions of neighbor-based models could be combined with predictions of latent
factors.

The set design seeks to combine the predictions of k recommending systems.
Formally, we have k rating matrices, each of them of (m×n), where m indicates the
number of users and n the number of contents. So we want to combine the output
of each of these matrices so that we can return a single matrix.

But how is this done? There are two main approaches, the parallel and the
sequential.

1. Parallel: The parallel design consists of models that operate independently,
their outputs combined only at the end. Again, these systems can be subdi-
vided into Weighted and Switching.

12 Chapter 2. Recommender Systems: State of the art

• Weighted:The weighted models seek to combine the different predictions
of the set recommenders, and apply a weighted mean in order to generate
the final prediction. The search for optimal weights represents the element
of complexity, and can range from a simple uniform weight distribution
to other techniques involving heuristics or models. Formally, weighted
hybrid systems try to estimate the matrix of R ratings by combining the
output of k recommenders. This combination has some weights that we
need to estimate: To make this estimate, robust regression models can
be used, using the resulting coefficients as the respective weights of each
of the models. Also, as mentioned in [15], use Bayesian networks. This
model computes the probability distribution over the expected valuation.
The weight of each recommendation strategy is automatically selected,
adapting the model to the specific conditions of the problem. In the
model bag, we can add different types, or the same types with different
configurations. For example, we could add models of different types such
as collaborative filter engines such as neighborhood based, combined with
SVD systems and other types. The idea is to reduce the inherent bias
of each of these models. Otherwise, we can use a bag of variants of the
same model, such as a collaborative filter model, using different similarity
metrics for example.

• Switching: This type of design emerged mainly as a possible solution to
overcome the problems of cold start. As with the weighted design, it
also allows you to operate the various recommendation systems without
modifying them, but the use you make of each of them depends on the
situation. A classic example case is a combination of a collaborative filter
recommender with a content-based one [11]. For a user about whom we
have little information, the changing design will make us use the content-
based recommender, which tolerates situations near the cold start much
better. For a user of whom we have a lot of information, the system can
switch and move to use a recommender based on collaborative filter, which
can work better in these cases. The changing design does not necessarily
involve the use of a different set of models. The same model can also be
used, e.g. collaborative filter, with different weights and refinements. In
this way we have multiple instances of the same type.

2. Sequential: As the name suggests, sequential design requires that the use
of the recommenders that make up the system be done sequentially, i.e. in
order. Thus, the output of one model can feed the input of the next. We
have two methods for hybridizing recommenders sequentially: the cascading
method and the feature augmentation method.

2.2. Hybrid Recommender Systems 13

• Cascade: The first recommender of the set makes a series of recommenda-
tions, which are evaluated by the next model of the queue, which tries to
improve them. This sequence continues until we reach the last model of
the set. This technique is known as boosting in the field of classification.
[14]

• Feature Augmentation: In this type of hybrid design, the output of one of
the models is used as the input of the next without any modification. If
modifications are needed, then we are talking about a monolithic design.

Monolithic

Monolithic design involves creating an integrated recommendation algorithm using
various types of data. The main result of this type of design is that the various data
sources are more strongly integrated, making it difficult to evaluate the components
of the recommendation as ‘coming from different black boxes’ [14].

There are two main methods of hybridization within monolithic design: the
combination of features and meta-level systems.

1. Feature Combination: We follow this approach when we want to combine
heterogeneous data sources in order to achieve a unified representation that
can be used in a single recommendation model. Additional steps are often
required to achieve this; either by modifications of the algorithms to be used,
or by means of an additional preprocessing of the input data.

2. Meta-level: Just as in the feature combination system the data is combined
together, in the meta-level systems, it is the models themselves that are com-
bined. A good example is when they combine collaborative filtering systems
with content-based systems. Thus, in order for the collaborative filter rec-
ommender to be able to use the characteristics of the contents, it must be
modified. For example, special weights can be added for the purpose of opti-
mizing the latent factor [14].

Mixed

These systems involve the use of multiple recommendation algorithms, but the con-
tents recommended by the various systems are presented separately. For example,
an online store may have several recommendations displayed in different sections of
the same page; one recommends more popular trends, another recommends based
on historical purchases, and so on.

Chapter 3

Recommendation Metrics

The purpose of this section is to determine the most appropriate metrics for evaluat-
ing the performance of the CCMA recommendation system. An initial introduction
to the most relevant concepts when evaluating the effectiveness of recommendations
is provided and a general review of the most used metrics in this field is continued.
It explains the events and information that must be recorded in order to be able
to use each of the metrics introduced and addresses the different ethical challenges
that these types of systems can generate.

3.1 Recommender System Evaluation

Since the advent of digital commerce and VOD platforms, recommendation systems
have proven to be of great help to users in the face of the paradox of choice. The
large extension of the catalogs of these platforms, usually generates in the user a
strong indecision on which product to choose. The more alternatives you have, the
more dissatisfied you feel with the decision you make. That is why recommending
systems are a great help to the user, as they facilitate the decision-making process
by reducing their choice of space.

In addition, they can be a great advantage for the business. These systems can
generate personalized recommendations, i.e. the user is offered products based on
their preferences, which causes niche products to be shown only to the appropriate
audience, greatly increasing the sales / views of these type of items, at the same time
that a high satisfaction of the user is obtained. There are many possible strategies

15

16 Chapter 3. Recommendation Metrics

that can be used when building a recommendation system: collaborative filtering,
factoring machines, deep learning techniques, etc. But regardless of the approach
we choose, the same question always arises: how good is our recommender?

Assessing how good the recommendations are is as or more important than the
architecture we use to build the recommendation. That is why it is important to
define a methodology that allows us to evaluate these recommendations.

3.1.1 Recommender evaluation concepts

In the context of the recommendations, the fact that most concerns researchers and
professionals in this field is the satisfaction of the end user. Under this pretext, what
is being tried to achieve with the recommendations is that they have a substantial
value for the user and that he can make the most of them. In other words, we
don’t want our recommender to always suggest the same songs, always show prod-
ucts in the same category, or never suggest new content to view. That is why we
need to explore and define the different concepts to consider when evaluating the
recommendations of our system.

Utility

Utility, also known as the relevance or satisfaction of the recommendation, is equated
with the order of preference in consumption. It is strongly related to the user’s
consumer interest and therefore to their preferences and tastes.

Novelty

The concept of novelty refers to the idea of having elements in the recommendations
that have not been previously recommended to the user. In this context, we can
divide the concept into 3 different levels: novelty at the user level, novelty at the
system level and novelty at the recommendation level.

• Novelty at the user level, or level 1, is understood as any element (included
or not in the system catalog) that the user did not know until the moment of
the recommendation.

Defining metrics to assess this level of novelty is by no means trivial, as in-
formation from outside the system should be considered in order to measure
what the user knows or does not know.

• Novelty at system level, also known as a Level 2 Novelty. It refers to system
catalog items that have never been recommended to the user. To assess this
level of innovation in the recommendations, it is necessary to know the history
of the user within the platform.

3.1. Recommender System Evaluation 17

• Novelty at the recommendation level. The third level of novelty considers
only the elements within each recommendation. Under this pretext, novelty is
defined as elements within the recommendation that have not been repeated.
Unlike the previous two levels, the metrics that evaluate this type of novelty
do not require any prior information about the user.

Diversity

Within the recommendation systems, diversity is explained as the variety of elements
within the recommendations. This concept is very important when evaluating our
recommender, as, depending on the purpose of our system, recommendations with
low diversity may be of little interest to the user.

Unexpectedness

In the context of recommendation systems, user expectations are defined as the
elements that the user would like to consume. Thus, an unexpected recommendation
would consist of deviating from these expectations, avoiding obvious or uninteresting
recommendations, with the possibility of surprising the user.

Serendipity

A serendipity is defined as a chance or unforeseen discovery made by a researcher
in the course of a goal-oriented research with different theoretical assumptions.
Serendipities occur unplanned and occur unexpectedly. In the field of recommen-
dation systems, serendipity is defined as an innovative and useful recommendation
for the user, but at the same time surprising and unexpected. If we look at it, the
concepts of utility, novelty and unexpectedness are included in serendipity, but it
should not be confused with any of them. An unexpected recommendation may
surprise the user, but it does not have to be new or useful to him / her. The same
thing happens with utility and novelty.

Coverage

Coverage refers to the extent to which a recommender system can make recommen-
dations. The concept can be divided into two branches: catalog coverage and user
coverage.

1. Catalog: The coverage of a catalog (or items) refers to the percentage of
catalog items that the recommender can recommend. In this sense, a far-
reaching recommender corresponds to a system that only considers a small
part of the catalog available to make recommendations.

18 Chapter 3. Recommendation Metrics

2. User: User coverage is defined as the proportion of users to whom the rec-
ommender system can make recommendations. The concept can be a bit
confusing, as a priori a recommender system should be able to make recom-
mendations to any user, but if we think about the cold start problem the user
reach gains strength relevance. In this situation, although the recommender
can make predictions for the user, his / her confidence in the recommendation
is very low.

3.2 Metrics

In this section we set out the most relevant metrics when measuring the concepts
defined in the previous section.

Symbol Meaning
Ru List of recommendations for users u.
U Set of Users
I Set of Items.
Hu Consumption history of user u.
Cu Items consumed by user u.

Table 3.1: Symbols and their meaning in the field of Recommender
Systems

3.2.1 Utility

Metrics for measuring the usefulness of recommendations focus on how the user
values or reacts to recommendations made by the recommender. They tell us if
the recommender has captured the interests and tastes of users, but they totally
overlook such important concepts as diversity or novelty. We classify them into
three different types.

Error-Based

Error-based metrics are widely used to determine the accuracy of predictions. In a
system where we can assign a score, r(i), to the elements that users have viewed,
either by inference or by explicit assessment of users, these metrics tell us how wrong
our system is when it comes to correctly guessing the rating, p(i), that a user will
give on a given item.

util (Ru) = MAE =
∑

i∈Ru p(i)− r(i)
|Ru|

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are two
of the most used metrics in this context.

3.2. Metrics 19

Classification Based

Two of the most common metrics in the literature are precision and recall. Accuracy,
P , is defined as the proportion of items within the recommendation, R, that the user
has consumed. On the other hand, the coverage, r, answers the following question:
of all the items consumed, C, which have been recommended?

Figure 3.1: Diagram depicting the recommendation possibilities

util (Ru) = P@N =

∣∣∣Cu ∩R(N)
u

∣∣∣∣∣∣R[N
u

∣∣∣
util (Ru) = r@N =

∣∣∣Cu ∩R(N)
u

∣∣∣
|Cu|

Where @N determines up to what position within the recommendation, R(N)
u , we

want to measure the metric. For example, if the recommender system recommends
9 items, the accuracy and coverage will not be the same if we consider only the first
4 items than if we consider the entire list.

Note, however, that while accuracy and coverage are good indicators when eval-
uating the utility of recommendations, they completely overlook the order of their
elements. In this case, metrics such as Average Precision (AP), Normalized Discount
Cumulative Gain (nDCG) or R-score come into play.

Average accuracy is characterized by being a metric that indicates how good our
system is when it comes to sorting recommendations by relevance:

util (Ru) = AP@N = 1
min (N, |Hu|)

N∑
k=1

rel (ik) · P@k

20 Chapter 3. Recommendation Metrics

Where, in this case, rel (ik) represents whether the element is relevant, 1, or
not, 0, by the user. But in terms of relevance, we don’t need to stick to a binary
classification. The elements can have different degrees of relevance depending on
the user’s preferences. In this case, it is useful to consider the normalized discount
cumulative gain:

util (Ru) = DCGp

IDCGp

Where,

DCGp =
p∑

k=1

rel (ik)
log2(k + 1)

And IDCGp is the ideal DCGp, which is what we would get from a perfectly
sorted recommendation by relevance. This metric is often used in applications where
the list of recommendations is very long and the user is expected to view many of
the recommended items. Therefore, the penalty suffered by each element decays
logarithmically with its position.

In other systems, however, the number of items that the user sees before choosing
one is very small, so the penalty in these cases must fall faster. The R-score metric
applies precisely this principle:

util (Ru) =
|R|∑
k=1

max (r (ik)− d, 0)
2ωk

;ωk = k − 1
α− 1

Where r (ik) is the user’s rating on the element ik, d represents the ‘neutral’
rating, and α is the parameter that controls the exponential decrease. For example,
in a system where the user can score up to 5 contents, r (ik) can take values between
0 and 5, and id would be equivalent to the score 3. The metric would only take into
account those elements of the recommendation with a valuation greater than 3, and
its value would decrease exponentially depending on its position, k.

Finally and probably most importantly, in cases where the recommendations
list is not really meant to be that long the metric that is most commonly used in
recommender systems is Hit Rate.

As with NDCG, Hit rate can be defined at various levels depending of how many
top elements of the recommended list we want to consider. It works in a really
similar way: instead of looking in which position the relevant items ranked it just
considers weather the items in the list are relevant.

One way of calculating this is by taking all the items that users have rated —in
our case all the videos that a user has watched—, take out the last one as ground
truth (Leave-One-Out cross-validation). Then train the model and, for each user,
check if the ground truth is present in the top-k recommended items for that user.

3.2. Metrics 21

1 def HR(train_set , test_set):
2

3 hit_ratio_5 = 0
4 hit_ratio_10 = 0
5 hit_ratio_25 = 0
6

7 n_users = len(train_set ["user"]. unique ())
8 counter = 0
9 for user in list(train_set ["user"]. unique ()):

10 counter +=1
11 # generate 25 top recommendations for current user
12 recs = get_user_recs (model , interactions , train_set ,

nrec_items =25, show=False)
13 #get ground truth for current user
14 item = list(test_set [test_set ["user"] == user]["item"]) [0]
15 # calculate hit rate
16 hit_ratio_5 += hr_at_k (user_list =recs , test_item =item , k

=5) #@5
17 hit_ratio_10 += hr_at_k (user_list =recs , test_item =item , k

=10) #@10
18 hit_ratio_25 += hr_at_k (user_list =recs , test_item =item , k

=25) #@25
19

20 hit_ratio_5 /= n_users
21 hit_ratio_10 /= n_users
22 hit_ratio_25 /= n_users
23

24 print("HR@5: {:.2f}%". format (hit_ratio_5 *100))
25 print("HR@10: {:.2f}%". format (hit_ratio_10 *100))
26 print("HR@25: {:.2f}%". format (hit_ratio_25 *100))

Listing 3.1: HR method

Where the method hr_at_k is simply:

1 def hr_at_k (user_list , test_item , k):
2 return 1 if test_item in user_list [:k] else 0

Listing 3.2: HR method

We do that for all users, sum all the times that the ground truth has been found
in the top-k and then divide by the number of users. This way we obtain the Hit
Rate or Hit Ratio of this recommender.

22 Chapter 3. Recommendation Metrics

Online Evaluation

The utility of the recommendations can also be assessed through online experiments.
That is, to measure how good the recommender is once it is already making predic-
tions in a real work environment.

The best known metric in this type of experiment is click through rate (CTR).
This metric measures the proportion of recommended items that the user has in-
teracted with. It’s a way of assessing how successful the recommender has been in
capturing the user’s attention.

util (Ru) = CTR = |Cu|
|Ru|

On the other hand we have the visit after recommended rate (VRR). This metric
captures the fact that a user interacts with content that had been previously rec-
ommended. In other words, at the time of the recommendation, due to its context,
the user may not or does not want to see the recommended items, but if they are
relevant to him / her and consume them later. Last but not least, retention. Reten-
tion measures the effect that the recommendation system has on users continuing
to consume items or use the platform. This metric is usually evaluated using A /
B tests where the difference between the retention times of two control groups is
measured.

3.2.2 Novelty

In this context, the metrics attempt to determine how innovative the recommender
system is in making recommendations. It is sought that the recommender proposes
elements that have never been shown to the user. It should be noted, however, that
it is not evaluated how useful these recommendations are for the user, which can
lead to a low level of confidence on their part in the recommendations made by
our system. We will focus on the recommender system level novelty and mention
recommendation level.

System Level

One of the most used metrics at this level of novelty is based on the similarity
between the recommendation elements and the elements in the user history[16].

nov (Ru) =
∑

i∈Ru

min
j∈Hu

d(i, j)

Where, d(i, j), is a distance function that measures the similarity between the
elements i and j. Then, the novelty, nov, of the recommendation by the user, Ru, is
represented as the sum ofminjd(i, j) on the elements, i, of Ru. The more similar the

3.2. Metrics 23

elements of the recommendation are to the elements of the user’s history, the lower
the value of the metric, which translates into a low novelty in the recommendations.

Other metrics [17][18] consider the popularity of the elements in order to deter-
mine the degree of innovation they bring to the user:

nov (Ru) =
∑

i∈Ru

log2 pop(i)
|Ru|

nov (Ru) = 1− |pop(i)|
|U |

Where popularity, pop(i), is calculated based on the number of users who have
consumed the item, |Ru| and |U | represent the number of items in the recommen-
dation and the number of users in the system respectively.

Recommendation Level

In order to measure the novelty at the recommendation level, in [19] it is proposed to
take into account the classification of the elements within the recommendation and
apply a reduction factor, disc(k), due to having to explore the list. In addition, the
metric also considers the probability that the user has seen the element, p(seen|ik).

nov (Ru) =
|Ru|∑
k=1

disc(k) (1− p (seen | ik))

3.2.3 Diversity

The most widely used metric in the literature is known as intra-list similarity.[20]:

div (Ru) =
∑

i∈Ru

∑
j∈Ru

d(i, j); ∀i 6= j

Where the function, d(i, j), is the function responsible for measuring the simi-
larity between the elements i and j. Cosine similarity is commonly used, although
any function that defines the distance between each pair of elements in a set can be
valid.

3.2.4 Unexpectedness

The simplest metric that can describe how unexpected the recommendations of our
model are is the proportion of unexpected elements it contains[17]:

unexp (Ru) = |Ru − EXu|
|Ru|

Where EXu refers to user expectations, and |Ru − EXu| indicates the number
of Ru elements not included in EXu. The main problem with this metric is how

24 Chapter 3. Recommendation Metrics

to define user expectations. Another metric introduced in [21], uses the point-wise
mutual information (PMI) function to evaluate the concept:

unexp (Ru) =
∑

i∈Ru

∑
j∈Hu

NPMI(i, j)

Where NPMI, is the standardized PMI:

NPMI(i, j) = PMI(i, j)
− log2 p(i, j)

PMI(i, j) = log2
p(i, j)
p(i)p(j)

p(i) is the probability that the element i will be scored or evaluated by any user
and p(i, j) the probability that both elements will be evaluated by the same user.
NPMI can take values between –1 and 1. At 0, it would tell us that the evaluation
of i and j are completely independent, -1 that will never occur together and 1 that
have total co-occurrence. That is, to surprise the user, what we are looking for is
for this metric to be as close as possible to 0 or for it to take negative values.

3.2.5 Serendipity

Although in the literature we find a strong consonance in its definition, the concept
of serendipity is quite complex. Therefore, it is not entirely certain that the metrics
proposed by the different authors will be able to quantify the serendipity of the
recommendations. In the case of [22], the metrics they use take into account the
concepts of utility and surprise:

ser (Ru) =
|Ru|∑
k=1

max (Ru[k]− EXu[k], 0) rel (ik) countk(k)
k

Using the user’s expectations, they evaluate the surprise that each element brings
to the user. In addition, they take into account their relevance and position in the
recommendation. In [23], they simplify the previous metric, so that they do not
consider the order of the elements in the recommendation:

ser (Ru) =
∑

i∈UNEXPu

rel(i)
|Ru|

Where UNEXPu = Ru − EXu, and rel(i) represents whether the element i is
useful (1) or not (0) for the user. Finally, in [24] they use the similarity of the cosine
to measure the similarity between the elements of the recommendations and the
user’s history:

3.3. Trackers 25

ser (Ru) = 1
|Hu|

∑
i∈Hu

∑
j∈Ru

cossim(i, j)
|Ru|

In this metric, low values indicate that the recommendations deviate from the
user’s usual behavior and, therefore, that they are innovative for the user.

3.2.6 Coverage

The simplest metric that can evaluate the coverage of the catalog is the one pro-
posed in [23], where they define the catalog as the proportion of items that can be
recommended over the total size of the catalog:

cov = |Ip|
|I|

On |I| represents the total number of items in the catalog, and |Ip| the total
number of items the recommender system can recommend.

Also, in [23] an alternative metric is proposed, where what is measured is the
range in a given space of time:

cov =

∣∣∣∪j=1.NI
j
L

∣∣∣
|I|

Here, N indicates the number of recommendations observed in a certain space
of time.

Alternatively, in [18] they use the Gini coefficient:

cov = 1
|I| − 1

|I|∑
j=1

(2j − |I| − 1)p (Ij)

This metric takes values between 0 and 1, where 0 indicates that all elements
have the same probability of being recommended and 1 would correspond to the
system always recommending the same element.

3.3 Trackers

In the previous sections we have reviewed the different concepts and metrics to con-
sider when evaluating the performance of the recommendation system we implement.
But, as we’ve seen, depending on the metric or metrics we choose, we’ll need some
kind of a priori information about users and their interactions with the platform.

First of all, the most essential aspect in almost all metrics is the history of the
user within the platform. Knowing what content the user has viewed, Hu, is critical
to determining their tastes, preferences, and expectations. And not only that, any

26 Chapter 3. Recommendation Metrics

interaction a user may have with an item: clicks, "view synopsis", "add to my list",
ratings, etc.

Second, but not least, is the information that tells us whether or not the user
has come to see the list of recommendations. That is, the platform must capture the
user’s movement through the application. For example, on a VOD platform, you
know where the recommender is located, if the user moves within the recommender,
what items in the list of recommendations have been displayed on the screen.

Chapter 4

Hybrid Design

This section proposes an initial design of the hybridization engine and justifies why.
First, a description is made of the sequential recommenders, a type of advanced
model based on deep learning that has been considered for the design of the hy-
bridization engine. The exploration carried out on the consumption data is contin-
ued, in order to be able to estimate the real possibilities of integrating a sequential
recommender into the hybridization engine. The section continues with an explana-
tion of a recommended system such as factoring machines, and explains its suitability
for the use of the PICAE project.

4.1 Considerations for sequential recommendation

The main goal of traditional recommendation systems is to model users’ preferences
for different content based on the implicit or explicit interactions that occur between
users and elements. However, they assume that all user-content interactions in
the sequence history are equally important, leading to the user having widespread
preferences over time. Also, not taking into account the sequential dependencies
between user interactions leads them to an inaccurate modeling of their preferences.

User behavior not only depends on their long-term preferences, but also largely
depends on their current intention, which could probably be inferred and / or in-
fluenced by more recent interactions. Just as we can enter a music portal one day
looking for a ‘quiet session’ and another day we look for something more moving,
also when other content is consumed, e.g. television, there are times when we look

27

28 Chapter 4. Hybrid Design

for comedies, and others when we may love more less insubstantial content. It is
in this approach that the use of sequential recommenders as possible candidates for
entering a hybridization engine is proposed for the PICAE project.

This subsection consists of two parts. An explanation of the types of sequential
recommendations as well as the case that applies to the PICAE project, followed by
a study of the consumption data made to evaluate the available sequences themselves
and evaluate the feasibility of such recommendations.

4.1.1 Sequential recommenders

Sequential recommenders, in addition to capturing users’ long-term patterns, also
seek to model the relationship between the different actions the user takes within a
single session.

These types of recommenders are based on deep learning techniques. Specifically,
what are known as recurrent neural networks —RNN.

There are a number of basics that we need to keep in mind when we talk about
sequential recommenders. They are as follows:

• Object of the behavior. Refers to the items, services or content with which
the user interacts. It can be associated with other relevant information such
as descriptions, images or interaction time.

• Types of behavior. It is defined as the way the user relates to the object of
the behavior. For example: search, click, buy, add to cart, share, and more.

• Behavior. Element-element combination. For example, in a digital com-
merce, a user who buys a smartphone (interaction, element).

• Sequence (or session). For a single user, it is defined as the combination of
multiple behaviors.

• Sequential recommendation system. System that takes as input the dif-
ferent sequences of a user and recommends the most appropriate elements,
services or content using recommendation algorithms.

Considering these aspects, the next point to assess is the type of the sequence
itself. There are several, which we summarize below:

• Sequences based on experiences. Sequences in which the user interacts
with the same element multiple times. Take for example the case of a user who
enters a digital business: first search for words in the product search engine,
then select the product that interests you, then click on the details section
(technical specifications, sizes ...) of the product, add it to the shopping cart
and finally the purchase.

4.1. Considerations for sequential recommendation 29

• Transaction-based sequences. Behavior sequences where the user interacts
with different elements, but the type of interaction is fixed - for example,
buying. The most characteristic example would be a digital business that only
records the purchases of its users.

• Mixed sequences. It’s a mix of sequences based on experiences and trans-
actions. These are the sequences that best fit a user’s behavior on digital
platforms.

Finally, and depending on the type of sequence available, sequential recom-
menders have the following objectives:

• Based on experiences. In experience-based sequential recommenders, the
user interacts with the same item multiple times. The purpose of such recom-
mendations is to predict the next interaction that the user will have with the
item in question.

• Based on transactions. In transactional-based sequential recommenders
there is only one type of behavior. The purpose of such referrals is to recom-
mend the next item that the user will purchase given their transaction history.

• Based on mixed sequences. Recommenders based on mixed sequences are
the most complex: each sequence is made up of different types of behaviors
and multiple objects of behavior. These types of recommenders are expected
to be able to model the sequential dependencies between different interactions,
different elements, and different behaviors.

The present case of the PICAE project places us in the framework of a sequential
recommender based on transactions. This is because there are multiple elements with
which users interact —content— but this is done through a single type of transaction
—consumer event. That is, initially there are no clicks, or other types of events,
but the interactions are determined by the a posteriori event in which a user has
consumed for a certain number of seconds, a certain content.

In order to be able to consider the use of this recommender within the hybridiza-
tion engine, it is necessary to evaluate the available sequences with the consumption
data.

4.1.2 Data Evaluation

The data that we have had access to during the development of the project has been
changing constantly, mainly due to confidentiality concerns. In the first stages of
the project the only source of data that we had access to was a sample contained
in a .xlsx file. Later on, the CCMA dumped a week’s worth of data in a Hive

30 Chapter 4. Hybrid Design

table that we could take advantage of more easily through Spark. Finally, halfway
through April we had access to the whole history of consumption data since 2019.

The initial work on consumption data was carried out on the small sample of
just over ten thousand records, contained in the file Big Data_ESBD-130 Relació

entre conceptes de consolidació.xlsx.

Once the concept of sequence is defined, i.e. number of transaction events within
a session for a user —either registered or anonymous— we now need to characterize
it. In order to be able to see which sequences could be available as a starting point,
a study was made of the available consumption data.

Below is a summary of the sample:

Figure 4.1: Description of the initial content sample

Thus, we observe how a total of almost 150 columns were available, half of
which contained categorical information. It is important to note that 45% of the
sample was empty, suggesting a possible redundancy in the actually usable data.
In fact, much of the data is constant and, as such, does not provide discriminatory
information:

Figure 4.2: Constant variables in the sample

Thus, we appreciate how the information coming from the columns a.n_sn,

a.bo_canal_sense_arafem ... does not add value and, consequently, is removed

4.1. Considerations for sequential recommendation 31

from the study. There are a series of highly correlated variables and, above all,
a series of variables that are virtually copies of each other, becoming redundant.
This is the case for columns like st_user_id, st_player_id and max_an. These
columns were omitted from the study. With respect to the null values, in spite of
representing almost half of the available cells, they have high concentrations in some
variables:

Figure 4.3: Null values in the sample

In the image above we can see a sample of columns where, with the exception of
the column a.sn, the rest of the columns are virtually empty, which excludes them
from the study.

4.1.3 Transformations

The steps conducted to have a working dataset look as follows.

1. Column prefix removal

2. Removal of empty and / or highly sparse columns

3. Removal of duplicate columns

4. Elimination of invariant columns

The final set of information can be seen in the following table (4.1):

32 Chapter 4. Hybrid Design

Col Name Description Type

an whether the user can be tracked or not user
bo_es_diferit pre-recorded or live user
min_data timestamp when the user started watching user
bi_segons_consum total seconds spend watching user
usuari_id user/device identifier user
player_id random value to identify the session of the user user
font TDT or IP user
media_tipus video or audio content
producte_id HbbTV, CCMA web platform... user
contingut_id Content identifier content
sbt indicates whether the subtitles are active user
canal_nom channel name user
programa_id program identifier content
programa_nom name of the program content
durada length of the content content
programa_capitol episode of the program content
media_titol name of the content content
tematica thematic of the content content
dispositiu_model model of the device user
dispositiu_vendor manufacturer of the device user
dispositiu_browser_nom name of the browser user
dispositiu_tipus kind of device (tablet, PC, phone, smartTV) user

Table 4.1: Selected Columns

In essence, these columns contain the main information that we can have through
the use of content consumption. It is information highly consistent with the sources
studied by the team in charge of the user profiling. We end with a set similar to the
following:

Figure 4.4: A small sample of the cleaned data

4.2. Monolithic Design 33

4.1.4 Sequences

The above work serves two purposes. The first, an initial familiarization with con-
sumption data and the second, to see what sequences are available.

The first problem with sequences is that, strictly speaking, there are none in
the initial sample analyzed. That is, for each user and session, only one consumer
event is available. In other words, we have sequences of an event, which makes them
uninteresting. It is for this reason that it was decided to explore a larger sample in
size.

Before we had access to the whole data —which was late due to the signings
of all partners of NDAs being delayed— the CCMA provided us acces to a HIVE
database through Apache Thrift.

The Hive sample consists of approximately 300,000 records. Although, in com-
parative terms, it represents a minimal fraction of the consumption data available at
the CCMA, if we assumed that this sample is representative of the whole we would
obtain the following:

• More than a third of the sessions are uni-event

• More than 50% of the sessions are of two events

• 5% of sessions have three or more events

This does not make it absolutely unfeasible to propose a sequential model based
on transactions, but it does limit its possible usefulness.

While it is true that the concept of sequence itself could be changed in order to
adjust it to the reality of the data, e.g. considering sequences of events over several
days, in a first iteration it is ruled out to hybridize sequential models for
recommendations.

4.2 Monolithic Design

As we saw earlier in the section on hybridization taxonomies, there are many tech-
niques that can be used. Depending on the technique, we also need to know, not
just how we will hybridize but what we will hybridize.

In the PICAE project, and in view of the preliminary results of the consumption
data, it is temporarily ruled out making use of transactional-based sequential recom-
menders. This leaves us with other options to combine. For example, collaborative
filter systems, content-based, knowledge-based systems, and so on.

To make the most of the data available, as well as the profiling and indexing
exercise, we need a recommender that allows us to use it. That is why we introduce
the concept of factorization machines as a monolithic system that provides an ex-
cellent format for conveying all this data and incorporating it together. Thus, not

34 Chapter 4. Hybrid Design

only can we capture user interactions with content, but we can also add features
that result from user profiling and content indexing.

We then dedicate a section to factorization models, to then introduce factoriza-
tion machines as a generalization of these models, highlighting their benefits and
possible application to the context of the PICAE project.

As a previous step to introducing factorization machines we will first explain
latent factors.

4.2.1 Latent Factors

Latent factor models are one of the most technically advanced models currently
within the recommendation systems landscape. These models take advantage of
dimensionality reduction techniques to fill in empty entries - ratings.

The idea of dimensional reduction is to rotate the axis of the system to elim-
inate correlations between dimensions. The key to these methods lies in reduced,
rotated, and fully specified representations, which can be robustly estimated from
an incomplete data matrix. Once this specification has been obtained they can be
rotated back to the original system axis.

The use of these correlations is critical for all collaborative filter methods, whether
neighborhood-based or model-based. For example, user neighborhood-based models
employ correlations between users, while item-based ones employ the correlation
between them. Matrix factorization methods provide a way to take advantage of all
the correlations between rows and columns at once in order to estimate the entire
matrix[14].

Latent factor models address collaborative filtering with the holistic goal of dis-
covering the latent factors that explain the observed ratings of the contents. Exam-
ples of techniques that exploit latent factors include pLSA, Neural Networks, and
models that are based on user-content valuation matrix factorization — based on
Singular Value Decomposition (SVD). Recently matrix factorization models have
gained a lot of popularity thanks to the accuracy and scalability they offer.

Factorization models are recommendation systems that belong to the collabo-
rative filtering branch. The main idea of these algorithms is the decomposition of
the matrix of interaction between users and items in the matrix product of two
rectangular matrices of remarkably reduced dimensionality.

Matrix factorization-based models map both users and items into a space of
latent factors of dimensionality f , such that user-item interactions are defined as
scalar products within that space.

The latent space attempts to explain ratings by characterizing both items and
users with factors automatically inferred from user feedback. If the items are movies
the latent factors can be as simple as comedy vs. drama, amount of action or
orientation to a child audience, more complex factors such as the development of

4.2. Monolithic Design 35

the characters or the “peculiarity” of the film and even completely uninterpretable
factors or dimensions.

4.2.2 Matrix Factorization

Given an matrix of ratings A, where m is the number of users and n is the number
of items, the model learns:

• A Matrix of latent factors U ∈ Rm×d where the row i are the latent factors
for the user i, where d is the number of latent factors.

• A Matrix of latent factors V ∈ Rn×d where row j are the latent factors for
item j.

Figure 4.5: A simple example depicting matrix factorization

Latent factors are learned such that the product UV t is a good approximation of
the matrix of ratings A. In the previous image 4.5 we can see how the matrix A (on
the left) can be expressed as the product of U (4×2 left of the resulting matrix) and
V (2 × 5 above the resulting matrix). It is important to note that the input (i, j)
of UV t is simply the scalar product of the vectors U i and V j (latent factors) of the
user i and the item j, which we want to be as close as possible to the value Ai,j .
It is important to see that matrix factorization typically provides a more compact
representation than learning the entire matrix. This would have O(nm) inputs or
positions while the latent factor matrices U and V have ((n+m)d) positions, where
d is usually much smaller than m and n. This is why matrix factorization finds
a latent structure in the data, assuming that the observations are close to a low-
dimensional sub-space. In the above example this advantage is not seen due to the
size of the matrix, but in real systems the factorization of matrices can be much
more compact than the whole matrix.

How do the matrices U and V look like?
We will first define a function that will be the one we will try to optimize when

we make the UV t product. Intuitive function would be square distance. That is, we
will minimize the sum of the squares of the errors on all observed pairs of ratings.

36 Chapter 4. Hybrid Design

min
U∈Rm×d

, V ∈ Rn×d
∑

(i,j)∈obs
(Aij − 〈Ui, Vj〉)2

It should be noted that in this formula we only consider observed pairs (i, j),
i.e. values other than 0. This is not a good idea as an matrix of 1s would minimize
the error and produce a model that does not make good recommendations and that
does not generalize. This corresponds to the first case on the left of the following
figure 4.6

Figure 4.6: Objective function optimization

Alternatively, unobserved values such as 0 can be treated and all entries in the
matrix added together. This is called the Frobenius distance between A and its UV t

approximation. This would correspond to the second case in the image 4.6.

min
U∈Rm×d,V ∈Rn×d

∥∥∥A− UV T
∥∥∥2

F

This problem can be solved by SVD, but it is not the best solution because in
real systems the matrix A will be very sparsely populated (sparse, videos seen by
a user as opposed to all videos on the platform) and therefore the UV t solution
it will be very close to 0, thus giving a very poor generalization. This solution is
represented on the right of the figure 4.6.

For this reason, weighted matrix factorization is proposed, which consists of 2
terms:

• Sum of the terms observed.

• Sum of unobserved terms (treated as zeros)

min
U∈Rm×d,V ∈Rn×d

∑
(i,j)∈ obs

(Aij − 〈Ui, Vj〉)2 + w0
∑

(i,j)/∈ obs
(〈Ui, Vj〉)2

w0 is a hyperparameter that gives weight to the terms so that the target func-
tion is not dominated by one or the other. In the training process fine-tuning this

4.2. Monolithic Design 37

parameter is key. In real systems it will also be important to assign a weight to the
observed entries to eliminate the disproportionate weight that very popular content
may have. These can also dominate the target function. The objective function,
therefore, will be:

∑
(i,j)∈obs

wi,j (Ai,j − 〈Ui, Vj〉)2 + w0
∑

i,j /∈obs
〈Ui, Vj〉2

where wij is a function of the frequency of the user i and the item j. Minimization
of the objective function. There are several algorithms to minimize the objective
function, among which we highlight:

• Stochatic Gradient Descent: Generic method of target function minimization

• Weigted Alternating Least Squares (WALS): method designed specifically for
this particular goal.

The complexity is quadratic for both matrices U and V . The operation of WALS
is as follows: Initially random values are given latent factors and then alternate
between

• Fix U and solve V and

• Fix V and solve U .

Each iteration can be solved exactly (using a linear system) and can be dis-
tributed. This method ensures convergence as each step ensures that the target
function will decrease[25].

In our particular case, we are interested in WALS in particular because it has a
working implementation in PySpark’s MLLib and allows us to process the massive
amount of data that involves making individual recommendations for all users of
the platform.

4.2.3 Factorization Machines

In principle factorization machines (FM) work in a relatively similar way to Matrix
factorization although they are a more general concept. Factorization machines
appear as an evolution of Support Vector Machines (SVM). SVMs do not work
well with sparse data and this issue is solved by FMs by adding latent factors. On
the other hand, FMs also try to solve specific problems that come from Matrix
Factorization models. We mainly talk about two specific problems:

1. Matrix Factorization models are not applicable with standard data prediction
vectors (i.e. a feature vector within the Rn space) and

38 Chapter 4. Hybrid Design

2. Matrix Factorization models are usually derived individually for each specific
task and require modeling and design of learning algorithms.

FMs are more general predictors that are able to estimate parameters even under
high sparsity conditions. Defined relatively formally, FMs have a standard prediction
task in which they try to estimate a function that, given a vector x ∈ Rn returns a
value T (where T = R in a case of regression, T = +,− for classification e.g.). It
is assumed that we have a training set D of the form D = (x(1), y(1)), (x(2), y(2)), ...
where we have feature vectors and function values that we are trying to estimate.

So far we have only had one matrix with user identifiers and items, along with
those observed interactions. In the factorization models we did not have the pos-
sibility to use information about users or items or to express the training data set
in the form of data vectors. In FM, however, we do have these possibilities and we
must express the observed rating as a set of interactions that detail the user, the
item and the rating assigned to the item.

Figure 4.7: Interactions codification

Once this has been done, as in 4.7, this list should be transformed into a set of
feature vectors where each user and item will be represented using dummy variables,
i.e. a binary indicator that is at 1 if the user who has in fact the valuation is the
one represented by that variable and at 0 otherwise. We will do the same for the
items. This means that we will have a total of |U |+ |I| dummy variables to represent
users and items, and in each vector there will be only two values set to 1 in these
variables, one for the user and one for the item. This can be seen in the following
figure 4.8.

4.2. Monolithic Design 39

Figure 4.8: Interactions to feature vectors using dummy variables

Finally, we can add other implicit variables to this table that serve to better
explain the interactions between user and item, such as display time, other displayed
items, content genre, etc. Figure 4.9 shows how this is done.

Figure 4.9: Adding the features to the vectors

Given this representation of the data it could be considered a linear regression
model to estimate user ratings, but this option is quickly discarded as linear re-
gression is unable to account for interactions between variables (user-item). The
solution of a polynomial regression model also does not work for us because the
number of dummy variables we have introduced means that in the vast majority of
cases P � N , that is, the number of parameters is considerably higher than the
number of observed cases (Curse of Dimentionality).

This is why a method is needed to capture interactions between pairs of variables
while also being able to make accurate predictions with very sparse data. The FM
is defined as:

40 Chapter 4. Hybrid Design

ŷ(x) := w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

〈vi,vj〉xixj

Where the parameters to be estimated are w0 ∈ R, w ∈ Rn and V ∈ Rn×k. A
row viof V describes the i-th variable with a number of factors k ∈ N+. k defines
the dimensionality of factorization.

This FM is of degree 2 (d = 2) and is capable of capturing all interactions
between pairs of variables.

The parameter w0 represents the total bias. wi indicates the weight or force of
the variable i. Finally, the scalar product between vi and vj models the interaction
between the variables i and j. That is, instead of using a wi,j parameter for each
interaction, FMs model the interactions by factoring them.

4.2.4 Conclusion

Given the above, it is expected that the following can be entered at the input of the
factoring machine:

• Contents: feature vector resulting from audio processing

• Contents: vector of characteristics resulting from video processing

• Contents: vector of characteristics resulting from the processing of the text

• Users: vector of characteristics resulting from profiling

User feature and content vectors can, by the way factoring machines operate,
enter the model directly without any prior modification. It should also be noted
that these vectors can be summarized into a single embedding vector.

Thus, we would have the following:

1. Computation of interactions. As shown in figure 4.8, the ‘Rating’ would
be the result of a user’s interaction with a particular content. For the case
of PICAE, we are assuming an initial binary case, which materializes once
60% of the content is consumed. We could also assume that the fact that a
user clicked on the video means it is a positive interaction, meaning that all
interactions would have a rating of 1.

2. Entry of user and content representative vectors. As seen in figure 4.9,
these vectors represent users, taking advantage of the user profiling results;
and also represent the contents, thus taking advantage of the item profiling.

In the following chapters we will further explore the data and detail the imple-
mentations of the models.

Chapter 5

Data Platform Context

In this chapter we will discuss the data that is available and that will be used to
create a working recommender system. Overall, as explained before, to build a
recommender only three things are strictly required:

1. User IDs

2. Item IDs

3. Ratings

With these three we can create triplets of information of the form (user_id,

item_id, rating) with which we can represent the interactions between the users
and the items that are available. That being said, let us describe how the data that
we have available is organized and has change over the course of the development of
the project.

5.1 Data Sources

There are two main data sources and each one of them tell us different information
about the main actors in a recommender: the Users and the Items. This sources are
Consumption data and Content data. The following subsections will detail how this
data is stored, what it contains and why it will be useful to build a recommender
system.

41

42 Chapter 5. Data Platform

5.2 Content Data

This is the source that, to this point, has been exploited the least. Content data
contains information about every video that the CCMA has stored in their video
repository. This data includes simple information such as the channel where the
program was broadcast, the length of the program or the timestamp when it was
broadcasted.

However, here we can also find other metadata that can provide information
about the content that will be useful when it comes to characterizing the contents
that will be recommended. Some examples could be the thematic of the video —
Current events, entertainment, fiction, sports, etc.—, the language of the video or
the ethical code for that content —for all audiences, 7+, 13+, 18+.

This data would be of key importance if we were trying to create a content
based recommender system since it thoroughly describes the items that need to be
recommended to the users. Even though this is not the case, this information will
come in very handy to create a matrix factorization recommender because we will
be able to cross the ids of the videos that have been played with this information
and use it as item features.

As of the moment of writing this thesis, the total amount of different programs is
135112. In order to store this data the CCMA decided to store it to an ElasticSearch
index so that we can have a systems that allows fast response times and also supports
many requests. This index is hosted on a NexTReT machine.

We can access this data via python or even URI through the IP where it is
hosted, the name of the index and the query. For example, we can count the number
of documents in the index:

http://10.210.4.141:9200/picaecataleg/_count/

{

"count": 135112,

"_shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": 0

}

}

5.3 Consumption Data

The other big part of the necessary data that is needed in order to understand and
explain the habits of the users corresponds to the consumption data. This is a

http://10.210.4.141:9200/picaecataleg/_count/

5.3. Consumption Data 43

considerably bigger data source compared to the content data because it describes
every interaction between a user and a content that is either being broadcast or
being consumed on on-demand platforms —such as TV3 a la carta, SmartTV apps
or mobile apps.

The volume of data is immensely bigger because of the rate at which each dataset
grows:

• Content Data only increases whenever a new content is added to the CCMA
video repository —it doesn’t happen too many times a day— which means
that this ElasticSearch index will grow very slowly, if at all, because some
contents can be taken out of the repository due to various reasons —rights
expiration or no longer recommendable.

• Consumption Data, on the other hand, does not depend on how much
content is being produced, but on how many users are watching the contents
at each moment. This means that, the more users there are, the faster the
consumption data grows.

We’ve explained why this source is considerably bigger, but we haven’t detailed
what this data represents, so we will proceed to explain that below.

Currently, this table contains 1.700 million records and keeps growing by the
day. These records contain all the relevant information about the interactions —
consumption— between a viewer and a any kind of content in video form belonging
to a CCMA channel or platform. Shortly we will explain in which situations a new
record is inserted to the table. The table is formed by 145 columns that store all
kinds of metadata, ranging from the user_id, seconds_consumed or content_id

to thematic or device_vendor, among many others.

5.3.1 Users

It is important to emphasize the meaning of being logged in. The CCMA has
a common online platform for all of the channels —TV3, TV3HD, TV3CAT, 33,
324, Esport3 and Super3— and everybody can watch any content that has been
broadcast, as long as they still have the rights. A user can create an account in
the platform and access the usual functionalities that a video-on-demand platform.
This, however, means that that user will now have a unique id every time they watch
content while being logged in.

This is relevant because when the user that is consuming content is not logged in,
the data of that interaction is tied to the cookie stored in that device, meaning that
if a user that is not logged in watches content in two different devices —a tablet and
a TV, for example— two different ids will be stored, corresponding to the respective
cookies of each device. The consequence of this is that it is impossible to link these

44 Chapter 5. Data Platform

two different ids to the single person, and when it comes to computing personalized
recommendations, these will be calculated for each cookie, and therefore, for each
device. It is also possible that the cookies from a device are deleted and a new cookie
is created, virtually creating a new user, but this is not very common.

The CCMA has a very open policy about its contents and lets any user, logged
or not, access all of the content available. This means that there are not many
incentives for users to create an account in the website, to the point where only a
2% of all recorded interactions come from logged users.

There are three cases in which a new record is added to the table:

1. When a logged in user watches content using either the web —https://www.

ccma.cat/—, the mobile app on either phone or tablet or a TV that is com-
patible with HbbTV —most TV after 2012 are. In these cases the same user
id will appear in all different interactions regardless of the device.

2. When a not logged in user watches content in all the previous cases and the
devices accept cookies. Each device will have its own user id because the cookie
is not the same between devices.

3. When someone watching TV that does not accept cookies puts on a CCMA
channel. In this case the user cannot be tracked using a cookie or a permanent
id but the interaction is still recorded and the id field is populated with an
anonymous id. Every time the user puts a CCMA channel while channel-
zapping a new record is inserted into the table.

These are the three possible scenarios in which new consumption data can be
created. This way, an average of 2.071.033 interactions are recorded every day since
01/01/2019.

Overall we can see two different kinds of users: Identifiable users, either via id or
cookie, and anonymous users. In a similar vein, the content can also be separated
in two different categories: live and pre-recorded —diferit. Live content can be
consumed through TV and via application. Most pre-recorded content that airs on
TV can later be consumed in the platform.

The CCMA separates the two ways of consuming content considering the source
of the video. If it has been consumed by watching TV, then this is considered TDT.
All other methods are considered IP. Let us see how the consumption is distributed
in the following table.

In this table we can see all the possible combinations considering the source
of the content, whether the user is anonymous and the kind of content —live or
pre-recorded. It is apparent that there are some missing combinations:

• Content consumed via TDT can only be live.

https://www.ccma.cat/
https://www.ccma.cat/

5.3. Consumption Data 45

Consumption distribution
Source Anonymous Live Count Percentage
IP false directe 138817370 7.8%
IP false diferit 171838816 9.7%
TDT false directe 861089000 48.3%
TDT true directe 610628359 34.2%

Table 5.1: Interactions grouped by source and live/pre-recorded

• There are no anonymous users for content consumed via IP. This makes sense
since there is always the possibility of storing a cookie in the device.

Looking at the table we can see that 34.2% of the content is consumed by users
that can not be tracked. This means that the information that is generated by these
users is not useful, because it does not allow us to track users individually therefore
making it impossible to create personalized recommendations.

5.3.2 Live Content

Live content also carries its own problems. A content that is being broadcast might
not always be recommendable for various factors.

When a content is being broadcast it might be being recorded live. If that is
the case then it means that the video can not be already available on the platform.
Because of this, this interaction record cannot reference a content because it does
not yet exist in the video repository and thus, the content_id will be null. This
happens for both TDT and IP sources.

Sometimes, due to rights ownership, the content might no be uploaded at all
to the platform or it could be uploaded in small clips —for comedy sketches, for
example.

The consequence of this is that even though we have the ability to track many
user’s consumption, it is almost impossible to link the content that the user watched
live on TV to a video in the CCMA repository. There are methods for some of
the contents to link them to existing videos in the repository using the production
number but this falls outside of the scope of this project.

Summing up, we can conclude that most, if not all, live data is unusable for us at
this stage of the project. This accounts for 90.3% of the total data or 1.610.534.729
rows. Therefore only 9.7% of the data —171.838.816 rows— will actually be useful:
it uniquely identifies a user —or device— and the content that has been watched.

5.3.3 Model Data

We have carefully analyzed and identified which subset of the data will actually be
useful. This dataset will be used to train a recommender that outputs personalized

46 Chapter 5. Data Platform

recommendations for all users. However, we have to take into account some factors.

• To make sure we don’t run into a cold-start situation we need to select those
users that have a minimum amount of interactions.

• Having multiple devices that aren’t logged in may introduce many more users
that have few interactions —because every different device will have its own
user_id.

The current dataset contains a total of 171.838.816 interactions made by 25.787.952
users. Also, the number of different items or videos made by these users is 485.759.
As we can see the number of users is very high compared to the total number of
interactions and this is because, as mentioned before, every device is considered
as a different user. This dilutes the interactions of a single user into many differ-
ent user_id and, unless the user was logged on, it is impossible to link all these
interactions to a single user.

The ids used to identify the devices are UUIDs and are generated every time a
new cookie is created for a device. They have a really low chance of being dupli-
cated (finding a duplicate within 103 trillion version-4 UUIDs is one in a billion)
[26]. Version 4 —the version used— are created randomly whereas the previous ver-
sions are created using other terms such as MAC address or timestamps. They are
represented as 32 hexadecimal digits displayed in five groups separated by hyphens
(8-4-4-4-12).

Contrary to the user_id, the identifier ui serves as an id that is common for all
the interactions made from devices that are logged on with the same account.

Figure 5.1: Diagram depicting interactions between a logged on user
and multiple devices

Furthermore, even if we still wanted to recommend for all different user_id, the
average amount of interactions per user is 6.75, meaning that there will be many
users that will have 1 or 2 interactions. Let us see it in the following figure.

5.3. Consumption Data 47

Figure 5.2: Histogram showing the frequency of user interactions
(pre-recorded)

Interactions

count 25787952
mean 6.75
std 4.946
min 1
25% 1
50% 1
75% 3
max 18166

With this short descriptive table combined with the
previous histogram we can see how more than 50% of
users have only 1 interaction and 77.83% of them have
3 or less. The user with the most interactions had
18166 and, as mentioned before, there are a total of
more than 25 million different user_id. As expected,
this dataset will probably not be good for training a
reliable recommender due to the lack of interactions
per user.

Table 5.2: Pre-recorded interactions

It is clear that we need to find a more reliable set of users, where the interactions
are less spread among users. To achieve that the logical course of action is to use
the interactions made only by logged on users. These, as explained before, are
identifiable by a platform id even if they are made using different devices. The
following table showcases an example of a user that used different devices but can
be grouped using the unique identifier ui.

48 Chapter 5. Data Platform

ui usuari_id segons cont_id prog_id durada prog_nom tematica

MzMz... 66339... 5561 6094841 6012425 03:36:06 Tot es mou ACTUALITAT
MzMz... 6a507... 12427 6067483 6012425 03:40:37 Tot es mou ACTUALITAT
MzMz... 28666... 113 5853746 6012425 00:04:04 Tot es mou ACTUALITAT
MzMz... 28666... 9037 5853792 6012425 03:08:39 Tot es mou ACTUALITAT
MzMz... 395ab... 1490 6038830 4000472 00:24:25 Notícies 3/24 ACTUALITAT
...

Table 5.3: Example of a user’s consumption with different devices

This identifier only has a value different than null for those users that registered
and watched a content while being logged on. We can clearly see in this example
that the user has the same ui in all interactions but the user_id takes up to 4
different values. It is because we have the ability to link the interactions to the same
user that this dataset will prove more useful.

Let us check the differences with the previous dataset and a new dataset that
only contains interactions of logged on users. First we will start by taking a look at
the histogram of number of interactions for this new dataset.

Figure 5.3: Histogram showing the frequency of user interactions
(pre-recorded and logged on users)

5.3. Consumption Data 49

count

count 107952
mean 24.13
std 92.752
min 1
25% 2
50% 4
75% 13
max 6896

The difference between the two sets of data is imme-
diately recognizable just by looking at the percentage
of users that only have 1 interaction. While in the
previous one more than 50% of the users had 1 inter-
action, this one does not even reach 25%. What is
more, 52.63% of the users have 4 or more interactions.
Grouping the interactions this way also has made the
average number of interactions per user rise from 6.75
to 24.13.

Table 5.4: Pre-recorded and logged on interactions

It is important to highlight that the proportion of interactions with pre-recorded
content made by users that are logged on is really small compared to the total of
pre-recorded interactions —about a 2%. In numbers, all pre-recorded interactions
round the 170 million while logged on pre-recorded are only ≈ 2.6 million. However
we have to consider two things:

1. The users that are being taking into account in this dataset are probably the
ones that are going to benefit the most from a recommender system because
they are the most frequent users.

2. A smaller dataset does not mean not significant. There is still a lot of data to
process and create a robust recommender.

To sum up, the subset of data that we will end up working with is that which
contains all interactions made with pre-recorded content by users that are logged
on. It has a total of 2.6 million rows, 107.000 users and an average of 24 interactions
per user.

Chapter 6

Ethics in Recommendation

In this short section we will discuss some topics related to ethical recommendation
and factors that we have to take into account when producing personalized sugges-
tions to users of the platform. These considerations are specially important in our
case because we are building a recommender for a public TV channel.

The recommender has to make good recommendations from the point of view of
all platform stakeholders, which rises the question: Who are the stakeholders?

One could argue that the stakeholders are the CCMA, the users, the advertisers
and even the content providers. These are all the parts that can be impacted by
a recommendation. A recommender will have a negative impact if either of the
stakeholders gets a negative effect from it or if the recommender violates some rights.

6.1 Usual Recommender Problems

Recommender systems can run into a variety of problems derived from the content
that they recommend. Let us quickly go over them:

1. Recommending inappropriate content: Depending on the setting there
might be some content that is not meant to be consumed by all users.

2. Privacy: Since we are using data from individual users about their consump-
tion habits, we are at risk of leaking data that is meant to be private.

3. Opacity: Sometimes recommender systems are just seen as black boxes and
offer absolutely no explanation for the recommendations that they make.

51

52 Chapter 6. Ethics in Recommendation

4. Fairness and other biases: Recommender systems can have a discrimina-
tory behaviour when dealing with gender, race, age, etc. and might have other
undesired biases.

5. Transparency and Social Responsibility: The objective of the recom-
mender must be very clear and we have to avoid echo chamber effects, specially
for political content.

In our particular case not all problems apply. The vast majority of content
is suitable for all audiences. Also, we do not have to worry about discriminatory
content because the CCMA has really neutral content regarding these topics. The
same applies for echo chamber effects.

6.2 Considerations for Picae

While we established that some of the more general problems do not apply, there
are some that do, so let us review them and propose a solution.

• Privacy:

We have to include a generic explanation that informs the user about what
information is being stored and used, how it is being processed and which
protective measures are being applied in order to protect the privacy of the
user.

Also, depending on the level of decision that we want to give the user we can
even let them choose whether their data is used by the recommender or not.

• Opacity:

The best way to avoid opacity is to give good and concise explanations about
why a content has been recommended to a user. The following figure summa-
rizes different possibilities of doing so (6.1):

6.2. Considerations for Picae 53

Figure 6.1: Different types of explanation for users [27]

While either of these possibilities would be ideal, we have to keep into account
that due to the nature of factorization machines it is really complicated to
explain why a recommendation is made. Deeper analysis of the subject is
required. This is more applicable for item/user based collaborative filterings.

• Unwanted Biases:

One of the most widespread flaws in recommender systems is that they become
biased really fast. For example, if we watch a news section and then watch
a current events program, the recommender might only recommend content
related to current events, obscuring other thematics.

To avoid these behaviours a solution could be to provide the user with the
possibility to select preferences of content that they want/do not want to
watch. An alternative way to tackle this issue could be to target diversity as
a metric to improve.

Another issue that is abundant in recommender systems is the popularity bias.
We should avoid having the most popular items being the most recommended.

• Transparency:

54 Chapter 6. Ethics in Recommendation

The objective of the recommender is very important to define because it will
dictate the course of action to follow once decisions must be taken. In other
companies such as Netflix it is obvious that their recommender is key in their
business. They want users to consume as much content as possible to keep the
engaged, this way retaining them and earning more money. This is probably
not applicable in our case because the CCMA is a publicly funded company
and does not have the same objectives as a privately managed company.

For this reason, the objective should be clearly defined and explained to the
user in a section of the web page.

Chapter 7

Implementation

In this chapter we will discuss the chosen implementation of the Recommender
system. As detailed in previous chapters, the recommendation techniques that we
decided to explore, aside from the discarded sequential recommenders, are matrix
factorization and factorization machines. They each offer a wide variety of libraries
that implement these models and in the following sections we will detail the chosen
ones, a justification, some details of the implementation and the results. First,
however, we will briefly describe the development environment.

7.1 Development Environment and Data

As mentioned in previous sections (4.1.2), the data that has been available has been
changing. First we only had access to a .xlsx file, then we could access a more
significant Hive database and finally to the whole data. This data is updated daily
and is stored in a huge parquet file in a server provided by NexTReT. Since many
people will be working with this data, NexTReT also provided a Jupyter Notebook
for everyone as well as enough memory and storage to run processes there.

7.1.1 Livy, Spark and Sparkmagic

Of course, to work with such volumes of data, some big-data processing engine is
required. This is why, in order to have a notebook that allows multiple users working
at the same time with the possibility of also connecting to a Spark cluster (hosted
by NexTReT as well) we needed Apache Livy.

55

56 Chapter 7. Implementation

Livy is a service that enables easy interaction with a Spark cluster over a REST
interface. It enables easy submission of Spark jobs or snippets of Spark code, syn-
chronous or asynchronous result retrieval, as well as Spark Context management.

To connect, however, Jupyter and the Spark cluster through livy we need a set
of tools called sparkMagic. Also, it automatically creates a Spark session and
a Hive Context to query the dataframes. The following diagram summarizes the
connection:

Figure 7.1: Diagram depicting the interaction among Jupyter, Livy
and a Spark Cluster

This way we can easily and quickly read and manipulate the data from HDFS
from a comfortable environment such as Jupyter. The following examples show how
we can effortlessly query gigabytes of data:

Figure 7.2: Average interactions per user_id

Figure 7.3: Average interactions per logged user

7.2 ALS

The first solution that we explored was using the implementation of a collaborative
filtering solution by the Spark machine learning library MLlib. Spark has a whole

7.2. ALS 57

library of machine learning algorithms that cover virtually all the needs in the land-
scape. In our case we will make use of the ALS module, which provides a distributed
algorithm to calculate the latent factors that will be used to approximate the rating
matrix.

This algorithm relies on matrix factorization to perform the task and, as expected
by the name, uses Alternating Least Squares to learn the latent factors. It only
requires an input dataframe and the name that correspond to the columns that
contain the information about the user_id, the item_id and rating.

In our particular case, users do not have the capacity to rate the videos that they
watch on the platform. For to this reason we will treat all interactions as positive
interactions, since the user made an active effort to find and watch the content they
chose. Therefore, all ratings are 1. The fact that all interactions are treated as
positives brings us to the following question: do we need negative interactions in
order to have a balanced set?

The question makes a lot of sense because interactions can tell us about what
the users likes —positive interactions— but also about what the user does not like
—negative interactions. This is why, in recommender datasets it is always advised
to have a balanced set of positive and negative interactions for each user.

If the dataset that we have at hand does not have negative interactions —like
ours— we might need to fabricate our own. The best way to do this is by selecting
items that are very popular but the that user has not interacted with. It is generally
believed that the fact that an item is very popular but the user has no interaction
with it means that the user is not interested in the item. As for the unpopular items,
the user may not find the item on the website at all, so it’s not interesting either
way.

Hence, going back to the question, the answer is no, and it due to the way
ALS treats unseen entries: it is meaningless to manually add negative samples —
samples with Rui = 0— because the missing value / non-observed value is 0 for the
algorithm as well, indicating that the user did not interact with the item. We can
see a practical example in [28].

After clearing that up we can go ahead and create the recommender.

1 (training , test) = df. randomSplit ([0.8 , 0.2])
2 als = ALS(maxIter =5, regParam =0.01 , userCol =" indexUser ", itemCol ="

indexItem ", ratingCol =" rating ")
3

4 model = als.fit(training)
5

6 predictions = model. transform (test)
7 user_recs = model. recommendForAllUsers (10)
8 user_recs .show ()
9

58 Chapter 7. Implementation

10 evaluator = RegressionEvaluator (metricName ="rmse", labelCol ="
rating ",

11 predictionCol =" prediction ")
12 predictions = predictions .where(f" prediction != \'NaN\'")
13 rmse = evaluator . evaluate (predictions)
14 print(rmse)

Listing 7.1: Spark ALS

As is apparent in the code example, the input columns for both items and users
are called indexUser and indexItem. This is because previous to being fed to the
recommender it is necessary that the input columns be in integer type because ALS

only supports integer identifiers. Therefore, we link each user_id to an integer
index and we do the same for item_ids.

Also, the values of the parameters have been set to the recommended values,
but the correct course of action would be to find the best values for them via the
use of hyperparameter tuning —implemented in spark with CrossValidator and
TrainValidationSplit.

The reason why we take only those predictions that are not empty is because
due to the random nature of the split of the training and test set, it is actually very
common to encounter users and/or items in the test set that are not in the training
set, making it impossible to predict a rating.

Finally, this model trained with the dataset resulting from all the analysis from
5 yields a RMSE = 0.1891.

In the following image 7.4 we can see a list for 10 users and the top recommen-
dations for each user.

Figure 7.4: Recommendations for 10 users

7.3. Light FM 59

7.3 Light FM

As explained in previous sections, the idea of the whole project is to create a rec-
ommender system that can take advantage of information derived from two other
processes: user profiling and content indexation. Both of these will output feature
vectors that can be associated with content —video in our case— and users —the
viewers.

As we saw in the previous section 7.2, ALS takes users and items as inputs as well
as the rating of their interaction. However there is no possibility to take advantage
of other information that we might have available. This is why the ALS recommender
is only half useful: it performs adequately but doesn’t take advantage of the whole
data that could take recommendations to a superior level.

This is why a recommender system based on Factorization Machines was nec-
essary: the need to integrate all of the resources that we have at our disposal. At
the current state of the project we do not have yet implemented the pipelines nor
the complete processes to extract the features from users and contents. In order to
make use of these assets once they are computed in the future they are to be stored
in an Elasticsearch index.

The chosen library, for a first iteration at least, was LightFM. Since the dataset
that we use is the same as the previous solution the same concern about the negative
samples arises.

Contrary to the previous algorithm, in LightFM the embeddings are learnt through
stochastic gradient descent methods. This method, as explained in 4.2.2, is a generic
method to optimize an objective function. LightFM offers 4 different objective func-
tions —logistic, Bayesian Personalised Ranking (BPR), Weighted Approximate-
Rank Pairwise (WARP) and k-OS WARP— that can be used depending on the
nature of the data at hand.

In our case, and as the documentation says, we use a Bayesian Personalised
Ranking objective function because it is specially useful when only positive inter-
actions are present. BPR maximises the prediction difference between a positive
example and a randomly chosen negative example, understanding by negative ex-
ample an interaction that has not been observed in the training set. Since this
algorithm produces its own negative samples through sampling we do not need to
generate negative samples either.

That being said, let us quickly explain the necessary steps to create a model
using LightFM. The first step is, similar to the indices from section 7.2, to create
a mapping between the user and item ids from our input data to indices that will
be used internally by our model. We do this because LightFM works with user and
item ids that are consecutive non-negative integers. The Dataset class allow us to

60 Chapter 7. Implementation

create a mapping between the IDs we use in our systems and the consecutive indices
preferred by the model. The method fit does that for us:

1 dataset = Dataset ()
2 dataset .fit ((row['user '] for _, row in train_set . iterrows ()),
3 (row['item '] for _, row in train_set . iterrows ()))

Listing 7.2: Id mapping for items and users

The second step is to build the interaction matrix.

1 (interactions , weights) = dataset . build_interactions (
2 [(row['user '], row['item ']) for _, row

in train_set . iterrows ()])

Listing 7.3: Creating the interaction matrix

The idea is to create a list of tuples containing which user has interacted with
which item. The same thing can be done in order to create the features for both
users and items:

1 item_features = dataset . build_item_features (
2 [(row['item '], row['tematica ']) for _,

row in train_set . iterrows ()])

Listing 7.4: Creating the features for items

In this case we add, as an example, the thematic of the content, but we could
add anything that is related to the content and that we might think will be useful.

Finally, we have all the pieces that we will need to build the model:

1 model = lightfm . LightFM (loss='bpr ')
2 model.fit(interactions , item_features = item_features , epochs =30,

num_threads =16)

Listing 7.5: Creating the features for items

As we can see we are using BPR as loss or objective function, leaving the re-
maining parameters to their default value. Just like with ALS, we could do some
hyperparameter tuning to find the best combination of parameters. The epoch pa-
rameter tells us how many iterations at maximum it will do before stopping and
num_threads tells us on how many threads the process will run —it is set at 16
because the CPU from the NexTReT server has 16 cores.

7.3. Light FM 61

Now, to assess the performance of the recommendations we used Hit Rate. In
the metrics chapter (3.1) we can see a detailed implementation of the method to
calculate this metric.

Once we have trained the model we can apply the hit rate algorithm. First, as
a test, we trained the model using the user_id as id for the users, instead of the id
for logged on users ui. With this configuration we obtained the following results:

• HR@5: 3.58%

• HR@10: 7.86%

• HR@25: 14.38%

Let us see that using one identifier or another makes a difference. The following
results are obtained using ui as the identifier for the users.

• HR@5: 4.32%

• HR@10: 8.98%

• HR@25: 15.90%

Although these results might not seem very good at first glance we have to
consider that we are looking for a very specific item among a set of more than 15000
items. Also, as expected, we see and improvement of 20% just by using the better
identifier.

In terms of time performance, the model trained in 16 minutes and 12 seconds
and the metric was calculated in 8 minutes and 43 seconds. Hit rate is an expensive
metric because for each sample in the test set —1 for each user— it requires to
calculate the first 25 recommendations and check if it is in the first top 5, 10 and
25.

Chapter 8

Conclusions

After working in this project the biggest takeaway that I got was how little of the data
we can actually take advantage of. After a very thorough analysis and exploration
of the data to find out what we actually consider useful, we end up considering only
2.6 million rows out of the total 1700 million. This is due to the policy that the
CCMA has about their content: allowing everyone access all of the content either if
they are registered or not.

If the CMMA wants to improve the range of people that the recommender can
reach they should really consider changes in their content availability policy. For
example, making some content exclusively accessible for logged on users or only
making it watchable for not registered users some time after it has been released —
temporarily exclusive. In short, actions to encourage users to register to the platform
to increase the base of registered users because at the present time there are very
little incentives for a user to create an account.

Another important point that has become really clear to me is how difficult
it is to asses the performance of a recommender system. While other predictive
methods can use typical metrics such as RMSE, Precision, Recall, F1 score, R2

... in Recommender Systems we have to really be sure what we are looking for
in our recommender. Most of the metrics are not really related. For instance, a
really diverse recommender might not be really accurate and also offer really small
coverage. It is often difficult to optimize many metrics at once, which makes it so
that we have to decide what we want our recommender to excel at. And in our case,
what metric is the most important to take into account?

63

64 Chapter 8. Conclusions

Since the CCMA is a public entity, their main concern is not economic but to
provide the best service to their users and also promote their own content. Consid-
ering this, a diverse recommender would achieve both. Serendipity is always a goal
for a recommender but is really difficult to target.

8.1 Future work

At this moment the project is still in a really premature stage. Out of the three
main technical problems (1.2.2) none of them are completed or close to being so.
For this reason it is difficult to see the progress of the whole ensemble because all
of the pieces are incomplete and, therefore, do not fit. So far our work has served
to create the base for a next level recommender system. A study of the state of
the art of recommender systems has been done and has been essential to find and
understand the best implementation from the huge variety of recommenders that
there is. It has also been key, combined with the conducted data exploration, to
discard the previous ideas for a sequential recommender. Also, the study in the
metrics that will be used to evaluate the recommender will be necessary due to the
special implications of developing a recommender for a public entity.

The tasks that are pending are:

• User Profiling: This ongoing task plans to create a set of features for each
user.

• Content Indexing: Similar to the previous task, it is expected to create a
set of features for the videos that can be consumed by users.

• Joint Recommendation: using the previous two assets jointly with a factor-
ization machine recommender system like the one described in section (7.3).

The terrain has been explored and prepared for this curated information to be
fed into the recommender. However, some architectural work also needs to be done
to store the features once they have been computed. These, as a first consideration,
will be stored in an ElasticSearch index, one for user features and another for content
features. The latter will most likely be stored in the already existing content index,
jointly with the content metadata explained in section (5.2). Setting up all these
structures and subsequent processes that will later query the required data when
needed —probably when creating the interaction matrix to add the features— is
also a long and key task for the project.

Other concepts to studied in the future are ideas the could hinder the perfor-
mance of the recommender but that are not flaws or characteristic of the recom-
mender itself:

8.1. Future work 65

• Failing Importance: Most recommenders do not consider whether the rec-
ommendation they made actually worked. This is why, in the future, the fact
that the top recommendation for a user was seen and not selected should pe-
nalize that content in order to improve recommendation in the future for that
user. This impact should be studied in the future.

• Cannibalization: The recommender section in the web page is not at the top.
Hence, a lot of content links can be seen and accessed before scrolling down
enough to see the recommender section itself. It could happen that a user sees a
content that is shown in the page —such as the new episode of the tv series that
they follow— and clicks it to watch it before having reached the recommender
section. There is the possibility that the content that they clicked was on the
recommendation list. Therefore, they watched a recommended content but
not thanks to the recommender, although it probably would have worked if
the recommender had shown up in a higher part of the web page.

References

[1] P. Kouki, S. Fakhraei, J. Foulds, M. Eirinaki, and L. Getoor, “Hyper: A flexible
and extensible probabilistic framework for hybrid recommender systems,” 09
2015. [Cited on page 6]

[2] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. An-
derson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain,
X. Liu, and H. Shah, “Wide & deep learning for recommender systems,” pp. 7–
10, 09 2016. [Cited on page 6]

[3] M. Ekstrand, D. Kluver, F. Harper, and J. Konstan, “Letting users choose
recommender algorithms,” pp. 11–18, 09 2015. [Cited on page 6]

[4] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural networks for session-
based recommendations,” pp. 17–22, 09 2016. [Cited on page 7]

[5] Y. Sun, N. Yuan, X. Xie, K. McDonald, and R. Zhang, “Collaborative now-
casting for contextual recommendation,” pp. 1407–1418, 04 2016. [Cited on page

7]

[6] G. Adomavicius, B. Mobasher, F. Ricci, and A. Tuzhilin, “Context-aware rec-
ommender systems,” AI Magazine, vol. 32, pp. 67–80, 09 2011. [Cited on page

7]

[7] M. Braunhofer, I. Fernández-Tobías, and F. Ricci, “Parsimonious and adaptive
contextual information acquisition in recommender systems,” 01 2015. [Cited on

page 7]

[8] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme, “Fast
context-aware recommendations with factorization machines,” pp. 635–644, 01
2011. [Cited on page 7]

[9] L. Baltrunas, B. Ludwig, and F. Ricci, “Matrix factorization techniques for
context aware recommendation,” pp. 301–304, 10 2011. [Cited on page 7]

[10] A. Odic, Ante, TKALČIČ, Marko, TASIČ, J. F, A. Kosir, and Andrej, “Predict-
ing and detecting the relevant contextual information in a movie-recommender
system,” Interacting with Computers, vol. 25, pp. 1–17, 01 2013. [Cited on page

7]

67

68 REFERENCES

[11] E. Çano, “Hybrid recommender systems: A systematic literature review,” In-
telligent Data Analysis, vol. 21, pp. 1487–1524, 11 2017. [Cited on pages 9, 10, 11,

and 12]

[12] R. Burke, “Knowledge-based recommender systems,” in ENCYCLOPEDIA
OF LIBRARY AND INFORMATION SYSTEMS, p. 181–201, Marcel Dekker,
2000. [Cited on page 10]

[13] A. Felfernig and R. Burke, “Constraint-based recommender systems: Technolo-
gies and research issues,” ACM International Conference Proceeding Series,
p. 3:1–3:10, 01 2008. [Cited on page 10]

[14] C. C. Aggarwal, Recommender Systems - The Textbook. Springer, 2016. [Cited

on pages v, 11, 13, and 34]

[15] L. de Campos, J. Fernández-Luna, J. Huete, and M. Rueda-Morales, “Com-
bining content-based and collaborative recommendations: A hybrid approach
based on bayesian networks,” Int. J. Approx. Reasoning, vol. 51, pp. 785–799,
09 2010. [Cited on page 12]

[16] M. Nakatsuji, Y. Fujiwara, A. Tanaka, T. Uchiyama, K. Fujimura, and
T. Ishida, “Classical music for rock fans? novel recommendations for expanding
user interests,” pp. 949–958, 10 2010. [Cited on page 22]

[17] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. Wakeling, and Y.-C. Zhang, “Solv-
ing the apparent diversity-accuracy dilemma of recommender systems,” Pro-
ceedings of the National Academy of Sciences of the United States of America,
vol. 107, pp. 4511–5, 02 2010. [Cited on page 23]

[18] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender systems hand-
book. New York; London: Springer, 2011. [Cited on pages 23 and 25]

[19] S. Vargas and P. Castells, “Rank and relevance in novelty and diversity metrics
for recommender systems,” pp. 109–116, 10 2011. [Cited on page 23]

[20] C.-N. Ziegler, Cai-Nicolas, S. McNee, S. M, Konstan, J. A, Lausen, and Georg,
“Improving recommendation lists through topic diversification,” 01 2005. [Cited

on page 23]

[21] D. Kotkov, S. Wang, and J. Veijalainen, “A survey of serendipity in recom-
mender systems,” Knowledge-Based Systems, vol. 111, 08 2016. [Cited on page

24]

[22] T. Murakami, K. Mori, and R. Orihara, “Metrics for evaluating the serendipity
of recommendation lists,” vol. 4914, pp. 40–46, 12 2008. [Cited on page 24]

REFERENCES 69

[23] M. Ge, C. Delgado, and D. Jannach, “Beyond accuracy: Evaluating recom-
mender systems by coverage and serendipity,” pp. 257–260, 01 2010. [Cited on

pages 24 and 25]

[24] Y. Zhang, D. Séaghdha, D. Quercia, and T. Jambor, “Auralist: Introducing
serendipity into music recommendation,” pp. 13–22, 02 2012. [Cited on page 24]

[25] Google, “Matrix factorization; recommendation systems; google developers,”
Feb 2020. [Cited on page 37]

[26] D. Wagner, “A generalized birthday problem,” in In CRYPTO, pp. 288–303,
Springer-Verlag, 2002. [Cited on page 46]

[27] Catly_hit, “Explainable recommendation: A survey and new perspectives,”
Aug 2018. [Cited on pages v and 53]

[28] Vinta.ws, “Negative sampling; vinta.ws,” May 2017. [Cited on page 57]

	Front
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Partners
	Objectives
	High Level Objectives
	Technical problems to be solved

	Recommender Systems: State of the art
	What is a Recommender System?
	Classic Recommender Strategies

	Hybrid Recommender Systems
	Taxonomy
	Ensemble
	Monolithic
	Mixed

	Recommendation Metrics
	Recommender System Evaluation
	Recommender evaluation concepts
	Utility
	Novelty
	Diversity
	Unexpectedness
	Serendipity
	Coverage

	Metrics
	Utility
	Error-Based
	Classification Based
	Online Evaluation

	Novelty
	System Level
	Recommendation Level

	Diversity
	Unexpectedness
	Serendipity
	Coverage

	Trackers

	Hybrid Design
	Considerations for sequential recommendation
	Sequential recommenders
	Data Evaluation
	Transformations
	Sequences

	Monolithic Design
	Latent Factors
	Matrix Factorization
	Factorization Machines
	Conclusion

	Data Platform Context
	Data Sources
	Content Data
	Consumption Data
	Users
	Live Content
	Model Data

	Ethics in Recommendation
	Usual Recommender Problems
	Considerations for Picae

	Implementation
	Development Environment and Data
	Livy, Spark and Sparkmagic

	ALS
	Light FM

	Conclusions
	Future work

	References

