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Abstract

Nearly a year and a half have passed since severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) started the global coronavirus pandemic of 2020/2021.
Consequently, it is now an optimal time to analyse the disease’s health outcomes
and their association with socio-economic and biological factors. Here, we use data
collected through the UK Biobank program to curate a comprehensive database
of 406,408 randomly sampled English individuals that includes information on
COVID-19 health outcomes such as testing, infection, hospitalisation and mortality;
as well as key population characteristics. A multi-state model has been developed to
track the disease’s progression and Cox Proportional Hazards methodology has been
applied to obtain confounder adjusted hazard ratios. Testing prevalence has been
studied in parallel using Poisson regression count analysis.

In the current state of affairs, certain risk factors have already been well established
as adverse predictors of coronavirus-related health outcomes. However, its associ-
ation with ethnicity and socio-economic status has not been fully understood yet.
Previous research conducted early on in the pandemic has provided evidence that
ethnic minorities and socio-economically deprived groups have been disproportion-
ately affected by the pandemic. Nevertheless, empirical studies on the topic remain
limited, hence the need for further research.

Our study results reveal severely increased risk of infection for Asian, Black, Mixed
and ’other’ ethnicity individuals, as well as a much higher test count on average. In
terms of hospitalisation, increased risk is found across all ethnic groups, and Blacks
are the worst-off overall with up to twice the hazard for Whites, followed by Asians.
Mortality results indicate increased risk for Asians, most notably, and Blacks.
Regression coefficients for socio-economic strata display a steadily proportional
relationship between economic deprivation and hazard. Increased risk is found
across all health outcomes, with same-day hospitalisation appearing up to three
times as likely for the most deprived section of the population when compared with
the least. Furthermore, there is a severely increased risk of infection for the poorer
quintiles, as well as many more tests taken on average. Mortality also increases with
socio-economic deprivation, and the risk is estimated to be up to 10% higher for the
bottom quintile. These findings demonstrate the continued need to protect those at
high risk of poor outcomes due to coronavirus disease.
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Introduction 1
1.1 Background & rationale

1.1.1 The COVID-19 pandemic

Nearly a year and a half have passed since severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) started the global coronavirus pandemic of 2020/2021
[1]. It was first identified in Wuhan in December of 2019 and by the 23rd January
2020, the first cases within the United Kingdom were already confirmed [2]. At
the time of writing of this thesis (28th June 2021), there have been more than 180
million reported COVID-19 cases worldwide, and more than 3.91 million confirmed
deaths attributed to the disease [@3], making it one of the deadliest pandemics in
history. In the United Kingdom alone, about 4,717,811 people have tested positive,
and 128,089 have died [@3].
The pandemic has also caused considerable social and economic disruption. Further-
more, it has highlighted conflicts of racial and geographic discrimination and health
equity [4], which partly motivate this project’s objectives.

While countries and their medical systems now race to implement population-wide
vaccination programs, data on COVID-19’s impact keep being collected and put to
use for scientific analysis. As such, it is now an optimal time to analyse the disease’s
health outcomes and their association with socio-economic and biological factors.
A better understanding of this relationship is essential for effective health service
planning and, possibly, for future risk prevention efforts.

1.1.2 Ethnic inequality in the context of the pandemic

In the current state of affairs, certain risk factors have already been well established
as predictors of adverse coronavirus-related health outcomes. Some of these are
age, morbid obesity and male sex [5]. However, its association with ethnicity and
socio-economic deprivation has not been fully understood yet. There is evidence
that ethnic minorities have been disproportionately affected in past pandemics [6].
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Research has now shown that the same phenomenon appears to be occurring for the
COVID-19 pandemic [4][7][8]. Nevertheless, empirical studies on the topic remain
limited, hence the need for further research. Part of the reason behind it is that data
recollection on ethnic background and socio-economic status is sensitive and sparse,
and many programs do not collect it when carrying out COVID-19 cohort research.
This issue was faced early on in the project when in the preliminary results phase
it was difficult to obtain said information to guide the study. Fortunately, the UK
Biobank program put special effort into collecting population characteristics at the
time of registration, and ethnicity and socio-economic deprivation status are well
documented for most of its participants.

The treatment of ethnicity in this study is completely conditioned by UK Biobank’s
standard of data recollection, as explained in detail in the Variables section within
Methods 2.5. The Journal of the American Medical Association’s publication on The
Reporting of Race and Ethnicity in Medical and Science Journals [9] informed the
standards of writing when discussing topics of ethnicity throughout the thesis.

1.1.3 State of the art in UK Biobank research

UK Biobank is a large, non-commercial, long-term biobank project carried out in the
United Kingdom since 2006 [@10]. It was created with the goal of investigating the
role of genetic predisposition and environmental exposure towards the development
of disease [11]. It stores medical data on about half a million people, aged between
40 and 69 at the time of registration, and blood, urine and saliva samples as well as
information on their lifestyle linked to health outcomes. All volunteers remain in
follow-up for at least 30 years.

So far, some studies have conducted research into ethnic and socio-economic differ-
ences in COVID-19 health outcomes using UK Biobank’s data. Researchers at the
Social & Public Health Sciences Unit of the University of Glasgow university found
an increased risk of infection for south Asian and Black individuals [12]. Their study
was conducted early on in the pandemic, which warrants further research into the
topic given the larger amount of data available today.

Previous work from the Centre for Statistics in Medicine of the University of Oxford
also obtained results for infection risk along the same lines [13]. They found higher
relative risk rates for Black, Chinese, Asian and ’other’ ethnicities when compared
with White participants.
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The particular objectives and statistical methodology employed in this project have
not been found in other UK Biobank-based research into ethnic and socio-economic
differences in COVID-19 health outcomes.

1.1.4 The collider bias problem

Observational studies that attempt to identify risk factors for COVID-19 infection and
disease outcomes may be based on non-representative samples that induce collider
bias [14].

In statistics, a collider is defined as a variable that is causally influenced by two other
variables. In this scenario, both the risk factor and the outcome affect the probability
of being sampled. As a result, the association between these two variables may be
distorted, a phenomenon that is usually referred to as collider bias.

COVID-19 studies tend to collect their data from patient hospitalisations or people
who test for active infection. The resulting sample population may not be represen-
tative of the reality of the situation, since the probability of being sampled depends
greatly on a patient’s COVID-19 risk profile and health outcomes. In other words,
observational data could be biased because only individuals who already suffer
from coronavirus disease or are at high risk of it are observed. This implies that
sampling could be non-random. When analysing UK Biobank data, evidence was
found that participants tested for COVID-19 were highly selected for a range of traits
(genetic, demographic, behavioural, etc) [14]. Throughout the pandemic this issue
has become prevalent, particularly at the early stages when there were very few
tests and they were mostly reserved for ill individuals [15]. Some programs have
put special effort into carrying out truly random sampling to study the prevalence of
infection among the general population, like Imperial College’s REACT experiments
(Real-time Assessment of Community Transmission Findings) [16].

Analysis over a wide cohort of patients like UK Biobank’s, and not just those who
test positive for COVID-19 or are hospitalised, circumvents the majority of issues
that collider bias may induce otherwise. Herein lies part of the strength behind this
study’s design.

1.1 Background & rationale 3



1.2 Terminology

There is a variety of terms frequently used throughout this document that are specific
to the fields of epidemiology and, more specifically, to cohort studies of the kind
carried out in this thesis:

Stratification/stratum. A stratum refers to a subset of the population that is being
sampled. The process of stratification may be done on a geographical basis or by
reference to certain population characteristics. Thus, when referring to ethnicity
or socio-economic deprivation strata, one is breaking up the cohort into different
categories according to these variables, for the sake of analysis.

Confounder. In statistics, a confounding variable is one that influences both the
dependent and independent variable [17]. In other words, confounders are all the
factors influencing both exposure and outcome, causing a spurious association be-
tween the two. In the context of this study an example would be how socio-economic
deprivation confounds the relationship between ethnic background (exposure) and
COVID-19 hospitalisation (outcome). In this scenario, there may be substantial
differences in the socio-economic deprivation distribution depending on ethnicity,
whilst socio-economic status simultaneously affects health outcomes. Confounders
ought to be accounted for in statistical analysis, hence the phrase adjusting for
confounders or minimising confounders.

Follow-up is a key concept in cohort studies survival analysis that refers to the time
a given patient is monitored (observation window). When a study commences, all
individuals enter follow-up and remain in that status until they are censored, or

Censoring refers to a missing data problem or analytical decision, in which the time
to event is not observed. In survival analysis, it could be due to termination of study
before all participants have undergone the events of interest, or because a subject
leaves the study prior to the event occurring.
Left-censoring refers to all events which are not tracked because they occur prior to
the beginning of follow-up, the left-censoring date. Similarly, the right-censoring
date marks the date at which follow-up ends and events are no longer registered.

n refers to group or population size. It is commonly used in the context of large or
small n to discuss whether there are sufficient individuals within a given strata for
statistical analysis to be viable.

Furthermore, some abbreviations are often used to avoid redundancy:
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UKB is used to shorten UK Biobank, and to refer to data that comes from any of
their associated sources.

HES stands for Hospital Episode Statistics, a program of the United Kingdom’s
National Health Service that stores data on hospital admissions.

COVID-19 is used to refer to SARS-CoV-2 or to the coronavirus disease it causes,
always in the context of health outcomes (i.e., COVID-19 hospitalisation).

1.3 Introduction to multi-state modelling

In standard survival data studies, the time until the occurrence of a certain event of
interest is measured. Competing risk models [18] are used when there exist multiple
possible events, as in the generalised situation of Figure 1.1. This framework
understands that progression towards any given event is dependent on how every
other possible event’s risk “competes” with that of interest. Thus, caution is needed
when estimating the probability of any given event occurring in the presence of
other possible competing risks.

Fig. 1.1: General structure of a competing risks model. A patient in follow-up is simultane-
ously susceptible to a number of risk events.

To put it in perspective, an example of such a scenario could be epidemiological
research on the time from HIV infection to the development of acquired immunod-
eficiency syndrome (AIDS) or the time to leukaemia relapse after a bone marrow
transplant operation. If these were the events of interest, an event that may prevent
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their occurrence being observed would be the death of a patient before diagnosis.
Therefore, death is treated as one of the competing risks.

There are usually also intermediate events that may significantly affect the risk of
the event of interest occurring. One would usually be interested in what happens
after one such non-fatal event because it may provide detailed information on the
disease or recovery process. In the case of HIV infection, the event of an individual
developing AIDS significantly conditions prognosis, and therefore ought to be treated
as an intermediate event with an associated competing risk (Fig. 1.2).

HIV infection

AIDS

Death

Fig. 1.2: Example of a simple illness-death model for HIV/AIDS.

Note how in this framework such non-fatal events can be understood as transitions
from one state to another. As such, there is a time origin from which the patient
enters follow-up, in the above examples these would be bone marrow transplantation
and HIV infection respectively, and an endpoint, or final absorbing transition, where
the patient is censured, i.e., exits the study. Whereas competing risk models usually
deal only with several mutually exclusive absorbing states, multi-state models
generalize the concept to incorporate and describe possible intermediate events
[19][20].

The Markov property. In practice, most multi-state models are assumed to be
Markov models, including the one implemented in this study. In Markov systems,
past history conditions the occurrence of future events exclusively through the
present [21]. In other words, the next state and the time of transition towards it
depend only on the present state, and not on any past history of events.

While there are multiple important approaches to these statistical methods (fully
parametric models, additive hazards, etc), this project has employed the Cox model
framework, a non-parametric hazards multi-state model.
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1.4 Objectives

The overarching objective is to study the association between ethnicity and socio-
economic deprivation with respect to the risk of SARS-CoV-2 infection, hospitalisa-
tion, and mortality in UK Biobank’s English cohort. The project seeks to quantify
how an individual’s socio-economic status and ethnic background affects their prob-
abilities of experiencing these COVID-19 health outcomes.

An indispensable parallel goal of the project is to study COVID-19 testing prevalence
separately using different statistical methodology that allows for ’count’ analysis
instead of just the probability of being tested as a binary property. It is an essential
requirement in order to properly analyse the differences in the risk of infection.

The PICO framework [22] is commonly used in evidence-based Medicine to pose
and answer clinical questions. It is an acronym for patient, intervention, comparator
and outcome, the four stages with which to establish a research goal. According to
this process, the population or patients in the study are all UKB users who reside
in England and satisfy certain, straightforward, eligibility criteria. The intervention
or investigated conditions are ethnic background and socio-economic deprivation,
treated both separately and as mutual confounders. For ethnicity, the comparator
is the set of White patients in the cohort; and for socio-economic deprivation, it is
the uppermost quintile of the population (i.e., the least deprived). The COVID-19
outcomes of interest in this project are testing, infection, hospital admission and
death.

According to the stated framework, the specific objectives of this thesis can be
summed up as:

1. To curate an informative, structured and refined dataset from UK Biobank
sources that fulfills all the requirements to carry out analysis and modelling.

2. To analyse population characteristics within the cohort and quantify COVID-19
health outcomes.

3. To develop and implement a multi-state model that allows for transition-
specific assessment of hazard in the context of COVID-19 health outcomes
while minimizing the bias introduced by the relevant confounders.

4. To determine relative hazard ratios for ethnic background and socio-economic
deprivation within the cohort, using the set of White patients and the upper-
most quintile of the deprivation index as reference. This is to be done for
COVID-19 testing, infection, hospitalisation and death.

1.4 Objectives 7



5. To study COVID-19 testing prevalence and its relationship with ethnicity and
socio-economic deprivation using specially adapted statistical methodology.

1.5 Outline

The project’s structure largely follows the STROBE guideline for reporting obser-
vational cohort studies [23]. It is a widely used schematic in epidemiology for
publication in medical journals. The acronym stands for Strengthening the Reporting
of Observational Studies in Epidemiology. The reason for adopting this particular
guideline is partly educational, to gain experience with the scientific standards of
publication in this field, but also practical, because once finalised, the work carried
out in this project is aimed at publishing an article. There have been some sections
added that would normally not be included because this document’s goal is to also
report how the thesis has developed over time and the work that has gone into it.

The project is structured in four parts. After this introductory section, Methods,
presents all the relevant information on how the study has been designed and con-
ducted, as well as the reasons behind it. All study variables, the way they are treated
and quantified, their data sources and their utility within the model are clearly
stated and explained. It provides a summary of the multi-state model and statistical
methods that constitute the theoretical backbone behind the methodology applied,
and all the virtual resources that have been required for their implementation.

The Results chapter presents all tables and figures of the results obtained from the
data and the modelling carried out. It provides all the numbers behind the model’s
final database as well as analysis on population characteristics and COVID-19 health
outcomes. This section’s function is to present all observations and results obtained
and to provide brief summary and interpretation of these.

Discussion & conclusions, summarises the key results with reference to the study’s
objectives. It provides analysis and interpretation of the most important findings
and of how they fit into the larger narrative observed. It also discusses the study’s
limitations, addresses possible biases in the data or the methodology employed
and examines the generalisability (external validity) of the results obtained. Some
speculation of the causality behind the phenomena observed is provided.

8 Chapter 1 Introduction



Methods 2
2.1 Study design

This prospective cohort study was informed by UK Biobank studies carried out in
the United Kingdom since 2006 [11], with particular attention naturally given to
COVID-19 events that occurred during the global pandemic of 2020/2021 [24].
Participants of the program living in England were followed from the 1st February
2020 to the 20th March 2021. Combined with NHS’s Hospital Episode Statistics
[@25], a comprehensive database was built that gathered not only information
on COVID-19 testing, hospitalisation and mortality, but also key variables such as
age, sex, ethnicity, socio-economic status and previous comorbidities for the entire
cohort.

A Cox-regression-based multi-state model served as the general framework of analy-
sis, accepting (and later on testing) a proportional hazards assumption and studying
each transition between possible COVID-19 events separately, as a Markov system.
An exploration of the theoretical backbone behind the statistics employed has been
an essential part of the project and is extensively discussed in the Statistical Methods
section (2.6).

2.2 Data sources

2.2.1 UK Biobank

The primary source of data has been UK Biobank [@10]. It is a large, non-
commercial, long-term biobank project carried out in the United Kingdom since
2006 created with the goal of investigating the role of genetic predisposition and
environmental exposure towards the development of disease [11]. It stores medical
data on about half a million people, aged between 40 and 69 at the time of registra-
tion, and blood, urine and saliva samples as well as information on their lifestyle
linked to health outcomes. All volunteers remain in follow-up for at least 30 years.
It was in 2010 that the recruitment target of 500000 was reached, much earlier than
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the beginning of the COVID-19 pandemic. For this particular study, the program
provided not only population characteristics (age, sex, ethnicity and socio-economic
deprivation), but also data for COVID-19 testing and mortality.

Through UKB’s program essentially three different data-sets have been obtained.
The first is the baseline file with the population characteristics of all patients. The
second corresponds to a new COVID-19 testing database linked to the program from
Public Health England [26]. The third is a death registry for their participants that
they also update often.

2.2.2 Hospital Episode Statistics

The United Kingdom’s National Health Service stores data on all hospital admissions,
outpatient appointments, and attendances as part of its Hospital Episodes Statistics
program [@25]. All information on COVID-19 hospital admissions and relevant
comorbidities was obtained from HES Admitted Patient Cara data (HES APC),
through UKB’s portal. Registered users of UKB can be traced within HES’s records,
so the two databases are connectable.

2.2.3 Additional sources

Additional data sources were used at the early stages of the project to contrast
early findings within Biobank’s data with national statistics. Imperial College’s
REACT program (Real-time Assessment of Community Transmission Findings) [16]
provided great information on community transmission and COVID-19 prevalence
in wider society, not just UKB’s cohort. It was particularly useful because it also
tracked its participants’ population characteristics, so it was possible to contrast
early findings from our data on ethnic background and COVID-19 prevalence with
Imperial’s estimates.

A study that included testing data stratified by ethnicity was carried out by the
United Kingdom’s government from 28th May 2020 to 26th August 2020 [@27],
when evidence of an ethnic disparity in the consequences of the pandemic was
already beginning to be studied. We were able to compare our early findings on
COVID-19 testing differences with those the government measured for the entire
population. The same source was again used to obtain macro numbers on the
country’s ethnic composition, in order to compare the proportions in our cohort with
those of England.
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2.3 Setting

The main location of interest in this study is England. Despite the fact that UK
Biobank has data for members all across the United Kingdom, England has its own
particular multiple economic deprivation index [28] different from that of Scotland,
Wales, etc. For this reason, we have restricted the area of study to participants
exclusively within England.

The relevant date chosen for the beginning of follow-up (and left-censoring in the
model) is the 1st February 2020, when it can be considered that inhabitants of the
United Kingdom were under considerable exposure to COVID-19. Because Biobank
users are tracked since registration, which occurred long before this project’s follow-
up began, up until the present moment, they were still in follow-up at the time the
study was carried out.
The study’s end of follow up (or right-censoring) has been chosen to be the 20th
March 2021, or earlier in the event of death. The criterion behind this decision has
been to settle on the oldest available data entry common to all different sources
(testing, hospitalisation episodes, mortality records, etc), so as to have epidemiologi-
cal consistency when studying the transitions from one COVID-19 state to another.
All other posterior data entries have been neglected. In this case, it was the HES
database that imposed the right-censoring date. Since each data source is collected
and posted independently, the end of follow-up date has been updated numerous
times and will continue to be in the coming weeks after the presentation of this
thesis, for the sake of future publication. This process has required streamlining of
all the programming involved so as to be capable of accepting an input of all the
different raw data files and processing everything accordingly from there.

2.4 Participants & study size

Eligibility criteria have been simple and straightforward, based on the available data
and the required variables of study. The final cohort size is 406,408, and all the
particular numbers at each stage of participant selection are outlined in the Results
section 3.1.

The first major “cut-off” in cohort size occurs in the restriction of using only England
as the location of interest, starting from the wider United Kingdom. Since the major-
ity of registered users reside there, it is not a large number to neglect in comparison
to the total. The second largest reduction comes from censoring all those users who
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died before the beginning of follow-up (1st February 2020). Only users alive at this
time are eligible for study, naturally.
An additional required step is to censor those users who have requested their data
not be used for studies. UK Biobank readily provides a list of said user IDs that are
to be excluded. The number is again not significant given the study size (a reduction
of 21 participants).
The last exclusion occurs depending on whether data on ethnic background is re-
ported or not. Since this variable is self-reported by each registered user, some prefer
not to answer and show up in the data as NA (Not available). These participants
ought to be excluded due to the fact that our model requires this variable to be
known for the entire cohort. Furthermore, in the data exploration phase two other
small groups with a different ethnicity categorisation from the rest were found.
These were individuals who categorised their ethnic background as: ’Do not know’ or
’Prefer not to say’. Besides the fact that both groups were too small so as to allow for
statistical modelling, they had to be excluded because their information was outside
the area of interest of this study.

2.5 Variables

The essential exposure variables in this study are: sex, age, ethnic background
and socio-economic deprivation, with the latter two being the main focus points of
analysis. Needless to say, most of these are potential confounders when it comes to
COVID-19 risk assessment, so all have to be accounted for in the model.

Ethnicity has been categorized into five different groups in accordance with the
Government Statistical Service’s Ethnicity harmonized standard (GSS) [@29] for
England. Their official recommendation is that ethnic group data be gathered by
asking an individual what group they belong to from the following:

– Asian / Asian British –

1. Indian

2. Pakistani

3. Bangladeshi

4. Chinese

5. Any other Asian background, please describe
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– Black / African / Caribbean / Black British –

1. African

2. Caribbean

3. Any other Black background, please describe

– Mixed / Multiple ethnic groups –

1. White and Black Caribbean

2. White and Black African

3. White and Asian

4. Any other Mixed ethnic background, please describe

– White / White British –

1. English / Welsh / Scottish / Northern Irish / British

2. Irish

3. Gypsy or Irish Traveller

4. Any other White background, please describe

– Other ethnic group –

1. Arab

2. Any other ethnic group, please describe

At the time UK Biobank carried out recruitment, the official standard used for the
population census was slightly different: Chinese ethnicity was a category on its
own, and not part of the wider Asian ethnicity as it is today. Thus, all the granularity
available within UKB’s ethnic background data was grouped into these five primary
categories: Asian, Black, Chinese, Mixed, White and ’other’.

As previously mentioned, a small number of registered users had self-reported their
ethnicity as “do not know”, “prefer not to answer” or showed up as “not available”.
They have been excluded from the study’s cohort since they do not allow for the
study of ethnicity as a statistically viable covariate. The majority of participants
are of White ethnicity (∼94.1%), and the two following largest groups are Asian
(∼2.2%) and Black (∼1.8%). Detailed breakthrough of each group’s n at every stage
in the model is available in the Results section.
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Socio-economic deprivation was studied according to the official measure of rel-
ative deprivation in England: the English Indices of Deprivation (IoD2) [28]. The
distinction between poverty and deprivation is that people are considered to be
living in poverty if they lack the financial resources to meet their needs, but are
considered deprived if they lack any kind of resources, including income. Thus,
the main variables behind the estimates are income and employment but it also
takes into account: education and skills training, health, crime, barriers to hous-
ing and services, etc (for a total of 39 indicators that make up the final index).
It provides measures at a “Lower Layer Super Output Area” (LSOA) level, small
territorial units usually of the size of a neighbourhood or postal code, dividing the
whole of England into 32,844 units and ranking them relatively from most to least
deprived. Participants are therefore assigned a given deprivation index depending
on their designated residence. Even though the index is a continuum of values, the
participants in this study have been grouped into quintiles (according to England’s
standards, not just the study’s sample population) [@30].

Age was deduced from the provided dates of birth (only the month and year, for
privacy purposes) calculated with respect to the date of beginning of follow-up
(1st February 2020). All ages are stored with up to two decimal figures, to have a
more continuous spectrum. The median age in our cohort study is 70.25, with an
interquartile range of [62.6,75.7]. The youngest registered user is 51 and the oldest
87.

Age has been studied first as a continuous variable with a linear relationship with
COVID-19 hazard and later on as polynomial dependency. It is now a well-known
fact that COVID-19 risk is not exactly linearly dependent with age, which is the
reason behind the exploration of a different polynomial relationship. After careful
study and given the advanced age of most of the cohort, it was deemed unnecessary
to implement non-linear relationships for age and risk in the model, since most
transitions were actually best fitted linearly, or very close to linearly.

Sex was provided with no further information on gender or sexuality available.

2.6 Data curation

Data curation has been an essential part of the project and has required the most
working hours by far. Essentially, it has consisted on gathering all the files from
the aforementioned data sources, analysing and exploring their content to see what
was possible to do with modelling, manipulate and filter them, and make them all
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compatible with each other. Furthermore, it was important to streamline all the
programming to allow for regular updates to the data. By the end of the project,
it was possible to download the updated files from the source and have a series
of codes curate the data and carry out all the modelling required with no manual
intervention. The goal behind this is to have the ability to easily update results for
posterior publication of an article, as more data is gathered and published.

Most data registries from UKB and HES have a multiplicity of entries for an individual
user. In the case of testing data, for example, there would be one for every test the
patient has taken. This applies for all other databases, including mortality records
where there is an entry for each diagnosis at the time of death of a patient. For
multi-state modelling it was necessary to gather all data sources and combine them
into one large dataframe with one row per patient. As such, each entry is a row
containing all COVID-19 events of interest and population characteristics of a given
patient in the cohort.

The end-product is a large file containing a 406,408x19 one-row-per-patient dataframe
with all the relevant information for multi-state expansion and modelling.
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2.7 Statistical methods

2.7.1 Modelling COVID-19

To model the virus’ health outcomes, extensive data exploration was required be-
forehand to know precisely what could and could not be done with the data at hand.
One of the first challenges to arise was to determine how to count hospital episodes
and deaths based on the data at hand.

The 28-day principle. There are two different methodologies that are commonly
used for COVID-19 data recollection and analysis to establish how to count coron-
avirus related deaths and hospitalisations. The simplest option is to select COVID-19
patients by medical diagnosis: when a doctor registers the hospital episode or death
as being caused by the virus. Although, it is straightforward as far as data recollec-
tion goes, the problem is that it requires unification between the different hospital
and medical organisations in the way they report it. It is well-known that at the
beginning of the pandemic no such standard existed, as it was a new virus. In the
case of the United Kingdom, it was not until the ICD-10 (International Statistical
Classification of Diseases and Related Health problems) [31] registered new codes
for coronavirus disease (U071 & U072) that such a standard began to be adopted.
Although its use is now widespread, many cases were not registered in the beginning
of the pandemic. Furthermore, it is not always trivial to diagnose a hospital episode
or death as being caused by coronavirus. We found that in HES’s hospitalisation data
there were very few episodes registered as being caused by COVID-19 and many
who were left as unspecified or unknown and were from around the time when the
virus was taking its heaviest toll on the medical system. Furthermore, many patients
were found to have tested positive at around the time of hospital admission. All in
all, this methodology created too many complications to be practical. If this principle
is summarised as due to COVID, the second principle would then be with COVID.
Following this methodology, any hospitalisation or death that occurred within 28
days of an individual having tested positive is counted as with COVID. Many coun-
tries and institutions have adopted this principle throughout the pandemic as it
circumvents many of the problems of using the diagnosis principle. It is important to
note that this methodology relies solely on testing records being comprehensive and
readily available. Fortunately, after the first months of the pandemic most European
countries began to do so as more tests became available for public use, the United
Kingdom included. After much deliberation and data exploration, this project settled
on using this methodology for all states in the model.
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After it became evident which principle to use for defining each state, a number
of different multi-state structures were tested. Through weekly meetings I would
present the week’s work and show preliminary results as well as early model results
to discuss and shape the project. Figure 2.1 displays the final transition diagram
used for modelling.

CURRENT: Phase transitions

UK Biobank
Cohort

Negative Positive Hospital Death

*28-day criterion: Hospital = Hospitalised with COVID-19
Death = Dead with COVID-19

1
2 3

4 5 7

6

Fig. 2.1: Transition structure of the multi-state model created. All eligible patients start
from the initial UKB state and may transition from there if any of the shown
COVID-19 risk events occur. The only absorbing state is Death.

All participants begin follow-up as part of the wider UKB cohort and may transition
to testing negative, testing positive or direct hospitalisation. One may quickly realise
that, by implementing the 28-day principle, the transitions to Hospital/Death would
have to start from the testing states. After all, it is necessary to have a positive
test before the transition to Hospital or Death is possible. The explanation behind
the third transition (UKB-Hospital) is that there were a number of with COVID-19
hospitalisations were the positive test occurred in the same day as hospital admission.
Since this leads to numerical divergence and breaks the assumption that event times
are distinct, the third transition was artificially put in place. Those cases were
then manually set to bypass the second transition towards the Positive state and go
directly from UKB to Hospital.

The same phenomenon was present for immediate transitions from Hospital to
Death or Positive to Death, so another artificial transition UKB-Death was also ex-
perimented with. Besides having too little n for hazard ratio confidence intervals to
actually have a physical interpretation, this transition was deemed unrepresentative
of the reality of the situation. What was done instead was to manually add half
a day to the date of death for said instances and keep those cases in the original
transitions (6 & 7). This way numerical convergence was achieved without distorting
the data in a transcendental way. It was agreed upon that this necessary solution
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more accurately portrayed those cases than an artificial UKB-Death transition since
it is more realistic to expect that those deaths occurred soon after testing positive or
being hospitalised, but not immediately.

For patients with multiple COVID-19 tests, only the first negative test and subsequent
positive test are counted. If any other tests were taken after having entered the
Positive state, they are neglected. Since all transitions are unidirectional by design,
an individual who has their first negative test after having tested positive goes
straight to Positive from UKB (transition 2) and the negative test is neglected.

Another ’absorbing state’ for recovered patients was discussed and experimented
with. In the end, it was deemed unnecessary since it added no real information
to the results obtained from all other hazard ratios and it only served to further
complicate the modelling and programming.

All in all, the combination the of Cox proportional hazards methodology with this
COVID-19 model made it possible to obtain hazard ratios for each transition and
covariate of interest.

2.7.2 The Cox proportional hazards model

The Cox proportional hazards model [32] is a regression model widely used in epi-
demiological and statistical medicine research for analysing the association between
a set of patient covariates and their survival times.

Common covariates in medical studies are sex, age, previous comorbidities, drug
treatments, operations, etc. What is generally understood by survival times is the
time that passes before certain events of interest occur. The hazard or risk of an
event occurring, λ(t), is probabilistic and varies over time. It can be interpreted as
being indirectly proportional to the survival function, S(t), which describes how
an individual’s chances of not experiencing the event (i.e. surviving it) decrease
as time passes. These functions are unique to every patient depending on their
characteristics but share a common time-dependent term representative of the
proportional hazards nature of the model.

Mathematically, hazard rates (or transition intensities) can be defined as:

λij(t) = lim
∆t→0

Prob(t ≤ T < t+ ∆t|T ≥ t)
∆t (2.1)
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Where T denotes the time of reaching sate j from state i in the i→ j transition. We
can therefore easily define the cumulative hazard for the i→ j transition as:

Λij(t) =
∫ 1

0
λij(s) ds (2.2)

And, because hazard completely describes the survival distribution, it can also be
derived from the survival function:

λij(t) = 1
Sij(t)

lim
∆t→0

Sij(t)− Sij(t+ ∆t)
∆t = −d logSij(t)

dt
(2.3)

So, finally, combining equations 2.2 and 2.3 the following relation is obtained:

Sij(t) = exp(−Λij(t)) (2.4)

Proportional hazards assumption. In proportional hazards models, like Cox’s, the
key underlying assumption is that the effect of covariates is only multiplicative
with respect to hazard. In other words, all participants share the same baseline
hazard curve, λ0(t), but it is multiplied by the coefficients associated to each
covariate (which are different for every individual). It is more simply explained by
its mathematical expression:

λij(t|Z) = λij,0(t) exp(βTijZ) (2.5)

Where λij,0(t) is the aforementioned baseline hazard function for the i→ j transition
and βij the vector of regression coefficients that adjust the effect of the covariate
vector Z for the same transition. Naturally, βTijZ denotes

∑p
K=1 βij,k × Zk (with p

being the total number of covariates implemented).

There are multiple methods for testing the proportional hazards assumption before-
hand in order to see whether a proportional hazards model is adequate for the data.
This is a necessary procedure in multi-state modelling of the kind performed in this
study because it is a crucial assumption in the derivation of its formulas and it un-
derpins the very concept of hazard ratios. One of the most widely methods consists
on graphically plotting survival curves for individuals with different characteristics
using the Kaplan-Meier estimator [33]. This is explained in more detail in the last
section under Statistical methods 2.7.4.

The vector of regression coefficients βij is obtained by maximising the Cox partial
likelihood. All event times are assumed to be distinct in order to perform this
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calculation. It is easy to check said assumption computationally because if it is not
the case one obtains divergence in the results. From now on the ij transition indices
will be omitted for ease of notation purposes, with the understanding that what is
presented would be performed for each transition separately.

Breslow’s estimate of the baseline hazard function. The Cox partial likelihood is
obtained using Breslow’s estimate of the baseline cumulative hazard:

Λ̂0(t) =
∑
j:tj≤t

1∑
l∈Rj

exp(β̂TZl)
(2.6)

Where Rj denotes the set at risk at event time tj and j is now used as a general
index (unrelated to the previous transition numbers).

By plugging 2.6 into the full likelihood of the event being observed occurring for a
subject at a given time, the result is the product of two factors. The first factor has
no dependence on the regression coefficients and only depends on the censoring
pattern in the data. The second factor is the following partial likelihood:

L(β) =
N∏
j=1

exp(βTZj)∑
l∈Rj

exp(β̂TZl)
(2.7)

Recalling the hazard function’s expression (2.5), the last equation is simply the
product, over the event times, of quotients that compare the hazard of an individual
with the event occurring at tj with the hazard of all individuals at risk of that event
at tj (including the subject himself).

By maximising the partial likelihood in 2.7, one obtains the vector of regression
coefficients β and from there a series of hazard ratio coefficients (essentially eβ) that
quantify the relative effect of each covariate on hazard. Since they are statistical
regression coefficients, they have associated confidence intervals and p-values that
depend on the n at each transition and on the nature of the event times in the
data.

One of the greatest insights of Cox’s model is that the effect of said covariates can be
estimated without having to model the baseline hazard function λ0(t). Thanks to
the proportional hazards assumption, the common baseline hazard function cancels
out in the quotients in equation 2.7.

Confounder adjustment. Another powerful aspect of Cox’s model is that it is very
simple to see how confounders are adjusted for. By looking at the exp(βTijZ) term
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in equation 2.5, it is clear that when all confounder variables are included in
the regression, risk is assigned to each of them jointly. If only one covariate was
used for modelling, the results would be fully confounded hazard ratios where
partial likelihood maximisation would have occurred over just one parameter. If,
on the other hand, all covariates are inputted simultaneously, the model distributes
risk taking into account the separate effect of each of them on the overall hazard
function.

Time scales. There are two frequently used approaches for scaling time to events
in multi-state models: ’clock forward’ and ’clock reset’ [19]. In the latter, the time
argument t in λij(t) refers to the time since entry to state i, so the clock is reset
whenever the patient enters a new state. This method is commonly referred to as
backward recurrence time. This project adopted the former approach. In ’clock
forward’ systems, times are always valued with respect to the origin: when a patient
enters the initial state and begins follow-up. So the clock only moves forward, even
when transitions occur.

2.7.3 Poisson regression

A different statistical methodology was adopted for analysing testing data as stratified
by socio-economic deprivation and ethnic background. The idea arose from the
fact that UKB’s data holds records for all COVID-19 tests patients in the cohort
have taken and that it was possible to count them and incorporate it into the larger
database created for the study. With multi-state modelling it is only possible to
calculate hazard ratios for one test per person, which is why only the first negative
and positive tests were taken.

Assuming a Poisson distribution, the Poisson regression generalised linear model
[34] was used to fit the data. The Poisson distribution is as follows:

Pr(Y = y) = (λV )y

y! e−λV (2.8)

Where V may be understood as the typical time parameter despite actually repre-
senting patients-time.

One essential characteristic of Poisson distribution and regression is the equidisper-
sion property: the expectation value and variance of the random variable Y are
equal.
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E(Y ) = V ar(Y ) = λV (2.9)

The comparison between different strata of the cohort is derived as follows:

ln[E(Y )] = ln(λV ) = ln(λ) + ln(V ) (2.10)

And assuming:
ln(λ) = β0 + β1X1 + ...+ βkXk (2.11)

So that, for analysing sex differences, for example:

ln(λ) = β0 + β1Male+ β2Age+ ... (2.12)

And:
λ = eβ0+β1Male+β2Age+... (2.13)

Finally, it is possible to define the risk ratio as:

RR(male V s female) = eβ0+β1+β2Age+...

eβ0+β2Age+... = eβ1 (2.14)

By regression with respect to the data it is possible to obtain such relative β co-
efficients for different groups, with different levels of confounding (note how the
example only shows Age but could also include the other covariates). In practice,
this methodology allowed for proper analysis of testing differences in the UKB cohort
depending on a patient’s characteristics.

It is important to note that, due to over-dispersion in the distribution (i.e., variance
greater than the mean), the Quasi-Poisson model [35] was shown side by side with
the regular model for more accurate estimates of the standard error. Essentially, it
is a generalisation of the Poisson regression which assumes that the variance is a
linear function of the mean.

2.7.4 Kaplan-Meier estimator

As previously mentioned, the Kaplan-Meier estimator [36] may be used to graphically
check the proportional hazards assumption. It is based on a simple concept: so long
as the independent censoring assumption holds, λ(tj) can be estimated simply by
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the at risk sample proportion that may fail (have the event of interest occur) at tj .
Mathematically:

λ̂(tj) = dj
nj

(2.15)

Where dj represents the number of observed events at tj and nj the size of the set
of patients at risk of the event at tj .

Consequently, the probability of survival up to time tj would then be the product
of the probability of survival up to tj−1 (given by the survival function) and the
conditional probability of survival at tj:

Ŝ(tj) = Ŝ(tj−1)(1− λ̂(tj)) = Ŝ(tj−1)
(

1− dj
nj

)
(2.16)

By applying the previous concept repeatedly, one obtains the Kaplan-Meier estima-
tor:

Ŝ(t) =
∏
j:tj≤t

(
1− dj

nj

)
(2.17)

The larger the sample size, the more it approaches a continuous distribution.

This method is straightforward, it can even be done by hand, and provides useful
estimation of the survival function. In this study in particular, it makes it possible to
plot survival curves stratified by the covariates of interest. The proportional hazards
assumption establishes that these curves should be proportional and therefore never
cross. If the graphs do not exhibit this behaviour, the Cox proportional hazards
model may not be right for the data. Some of the estimated survival plots for this
study are presented in the Results section 3.6.

2.8 R resources used

Although it is widely used in medical data science and statistics, the R programming
language [@37] is not taught as part of the Engineering Physics Bachelor’s degree
of which this thesis is the final work. At the beginning of the project, other, more
familiar, programming languages were used (MATLAB and Python) for early analysis.
After the first weeks, all work began to be carried out with R. A learning process was
required to learn to use the language proficiently and to incorporate all the external
software packages needed (listed below).
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Most data work was carried out through the tidyverse collection of R packages [@38].
It is a library of data science tools with shared grammar and data structures. Among
the most used in this project are: dplyr, tidyr and readr. These all provide dataframe
manipulation tools. The package ggplot2 was also used for graphical representation,
though often extended with other survival analysis graphical packages. The combi-
nation of tidyverse with the visualisation tools of the RStudio IDE [@39] provided
strong data science capabilities without which this project would not have been
possible.

For multi-state modelling, the mstate package [@40] allowed for building the
necessary data structures for regression. Taking the one-row-per-patient dataframe,
it expands it into ’long format’ and includes the transition-specific covariates [41].
Then, the Cox proportional hazards coefficients are obtained through regression
with the survival package [@42]. Kaplan-Meier estimates of the survival function
were obtained with survivalAnalysis [@43]. Furthermore, the mfp package [@44]
(Multivariable Fractional Polynomials) was used for experimentation with non-linear
treatment of age with respect to hazard.

Additional resources

Stock date handling capabilities in the R language are limited, so lubridate [@45]
was used throughout all data curation. It served to make all date formats from the
different sources compatible with each other and create time-dependent filters for
censoring, among other things.

The reader package [@46] was used to simplify reading data from files. For specially
large data frames that could not be be loaded onto the RAM directly, the data.table
package [@47] made it possible to read only the sections of interest from the data.

A different set of resources were used for graphical results and tabulation, often
in conjunction with R Markdown software (knitr). All tables were produced with
kable and kableExtra [@48]. For Kaplan-Meier survival plots, the survminer package
[@49] was used. Radar charts were created using viridis, patchwork, hrbrthemes,
fmsb and colormap.

The pacman package manager [@50] was necessary given the number of external
resources used.
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Results 3
3.1 Participants & population flow diagram

From a starting cohort size of just over half a million participants, a sizeable reduction
is made in order to arrive at a final, usable, cohort of 406,408. The principles behind
these exclusions, as shown in Figure 3.1, are:

• Requests that personal data not be used for studies after registering with UK
Biobank. The program readily provides a list of these mandatory exclusions.

• Participants who died before the beginning of follow-up: 1st February 2020.

• Participants who live outside England are not ranked within the English Indices
of Deprivation (IoD). Since socio-economic deprivation is one of the key
variables of analysis, the location of interest of this study has been forcibly
reduced to England and all other participants have been excluded.

• Self-reported ethnicity as: ’Do not know’ or ’Prefer not to answer’.

• Ethnicity shows NA (not available). Data was not recorded or is missing.

No other eligibility criteria have been applied besides these necessary exclusions. All
patients who are available for study and have the necessary variables recorded have
been included in the cohort.

The possibility of non-participation throughout follow-up is not really an option,
besides the event of death or the request to be excluded from any studies whatsoever.
Otherwise, all tests and hospital records are recorded by either HES or UK Biobank
from the beginning of follow-up to the end (20th March 2021) for all users.

The final cohort size of 406,408 allows for different levels of stratification depending
on group identity. When it comes to ethnic background, however, some groups
within the study population do not have enough participants suffering from an
event for precise regression estimates. This is particularly problematic for the latter
transitions, like the Positive-Death transition, where there are too few individuals
for calculation and sometimes none at all (in which case model results diverge). The
exact numbers are presented in the following sections.
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n = 502,510 

Excluded (n= 64,838) 
▪Patients outside England 
▪Do not have IoD2019 indices 
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Alive at the start of follow-up 

n = 473,544 

UKB England 

n = 408,706 

Excluded (n=2,298) 
▪Self-reported ethnicity as: 
    “Prefer not to say”, “Do not know” 
▪Ethnicity data “Not available” 
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Final cohort 

n = 406,408 

Excluded (n=21) 
▪Requested their data not be used 
 
 
 
 
 
6 

Patients available for analysis 

n = 502,489 

Excluded (n=28,945) 
▪Died before left-censoring date: 
 01/02/2021 
 
 
 
 
 
6 

Fig. 3.1: Population flow chart outlining step exclusions in cohort size.
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3.2 Descriptive data

All participants in the study share some demographic characteristics: they are all
English, of advanced age, and, chronologically, had the same exposure to COVID-19.
They differ considerably in other traits like socio-economic status, although there
is higher prevalence among the upper quintiles of the socio-economic deprivation
index (least deprived): 29.7% in Q1 and 23.9% in Q2. Ethnically, the sample is
varied but shows a large White majority (94.1%).

By design, no participants in the final cohort have missing data for the variables of
interest and the covariates, since it is required for multi-state modelling. Therefore,
the exclusions shown in the population flow diagram (Figure 3.1) also reflect all the
necessary reductions in cohort size to fulfill this condition.

The maximum follow-up time for any participant is 413 days, from left-censor to
right-censor dates. The only event to definitively end follow-up prematurely is
death.

3.2.1 Population characteristics

Table 3.1 summarises the cohort’s population characteristics.

Tab. 3.1: Cohort’s population characteristics. Stratified by ethnicity and displaying sex, age
and socio-economic deprivation characteristics. Age is presented by group median
age alongside interquartile range. All percentages (in brackets) are calculated
with respect to group size n.

The age variable is represented by each group’s median age and its interquartile
range, to show what the bulk of the population’s age is. The advanced age of most
the cohort (by UKB’s design) is evident: 70.25, IQR=[62.6,75.7]. It is also notable
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that Whites (70.7 [63,75.8]) are about 5 years older than the other ethnic groups,
which gives further indication of the importance of treating age as a significant
confounder.

The relationship between socio-economic deprivation and ethnic background in
the sample can be shown using radar charts, as in Figure 3.2, by quantifying the
percentage of individuals that belong to a given socio-economic deprivation quintile
with respect to the group’s size.

Fig. 3.2: Radar charts for socio-economic deprivation quintile population distribution, strat-
ified by ethnicity. Percentages are calculated as the fraction of group members
within a given a quintile. Shown in grey is the distribution of the entire cohort,
without stratifying.

As mentioned in the Methods section, socio-economic deprivation quintiles are set
according to the national ranking, not the study’s cohort. Thus, if UK Biobank’s
English participants had been selected in a completely unbiased manner the overall
distribution would much more closely resemble a perfect pentagon. Instead, what
is observed is a slightly higher concentration in the upper quintiles, displaying the
socio-economic bias in the sample population.

Despite the sample’s overall tendency for the less deprived quintiles, inequalities
between the ethnic groups are still stridently evident. All groups except Chinese
participants are generally more deprived than Whites, with the Black and ’other’
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groups having the biggest gap. These differences in socio-economic status point to
the importance of studying both socio-economic deprivation and ethnic background
as variables of interest and mutual confounders separately.

3.3 Outcome data

Health outcomes in the study’s model are measured directly by the population size
at each transition, depending on the stratification of interest. All of the following
percentages shown in Table 3.2 are relative to the population size that was suscepti-
ble to undergo each particular transition. In other words, it is the fraction of those
who transitioned with respect to those who could have. The two age classifications
are in fact chosen according to the median age of the cohort: 70.25.

Tab. 3.2: Outcome event numbers. Stratified by ethnicity, socio-economic deprivation
quintile, sex and age. All percentages (in brackets) are calculated as the fraction
of individuals who undergo a particular transition from the total who were in
the states preceding it (susceptible to transitioning). Age is divided into those
younger and older than the median, 70.25.
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In the following sections, hazard ratios for the Positive-Death transition are omitted.
It is clear from Table 3.2 why that is: when stratifying by ethnic background most
groups have no individuals undergoing that transition. Consequently, regression
calculations diverge or result in confidence intervals that are too wide to provide
any real information about hazard ratios.

3.4 Main results

3.4.1 Ethnicity: hazard ratio coefficients

The results from the Cox proportional hazards model are relative hazard ratio
coefficients that display the effect of belonging to a given group on the baseline
hazard.

The numbers presented below are the exponential of the components of the vector
of regression coefficients (eβi) that adjust the effect of the covariate vector Z, as
explained in the Statistical methods 2.7.2 section. Thus, they can be interpreted
as the direct multiplicative effect on hazard that belonging to a given ethnicity
is associated to (with respect to the reference majority group: Whites). Table
3.3 displays these transition-specific coefficients for different levels of confounder
adjustment.

For no confounder adjustment at all, ’unadjusted’ is written. In these cases regression
is calculated with hazard depending exclusively on ethnicity. Then, regression is
calculated taking into account age and sex as relevant covariates. Finally, ’fully
adjusted’ stands for regression coefficients that are computed taking into account
ethnicity, age, sex and socio-economic deprivation.
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Tab. 3.3: Hazard ratio coefficients stratified by ethnicity, shown at different levels of
confoundinga,b. All coefficients are relative to the reference group, Whites.
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For graphical representation of these hazard ratios and their confidence intervals,
one may use forest plots. Figure 3.3 only shows the fully adjusted coefficients since
they are the main point of interest.

Fig. 3.3: Forest plots for ethnicity-stratified hazard ratios, fully adjusted a,b. The scale used
for visualisation is linear but differs from transition to transition. The two dots
reflect the x = 1 axis.

It is clear that for the latter transitions in the model the confidence intervals widen
considerably. It is the effect of the lower n at these stages, particularly when
stratifying the cohort.
Chinese participants have been excluded from Fig 3.3 because they are one of the
groups with the lowest n and their hazard ratio confidence intervals widen too
greatly for the other results to be displayed properly. The numbers are displayed in
Table 3.3 however.

Higher risk for ethnic minorities is found across the board, with the exception of
positive and negative testing for Chinese patients. Poisson regression results, shown
in the next section, back up this result. The Hospital-Death transition results are
inconclusive for Chinese, Mixed and ’other’ ethnic groups, given the confidence
intervals obtained.
Intensive analysis of the results obtained is reserved for the Discussion section.
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3.4.2 Ethnicity: Poisson regression on testing

To analyse group differences in COVID-19 testing, Poisson regression provides
relative estimates that can also be stratified by ethnic background.

Table 3.4 shows the estimated Poisson coefficients, their standard error and the
associated risk ratios. The latter is simply derived from the coefficients by taking
the exponential, as shown in the equations presented in the Methods section 2.14.
The results ought to be interpreted much in the same way as with the previous
hazard ratios, but in this case understanding Poisson risk ratios as the difference in
the average tests per person of each ethnic group with respect to Whites. As previ-
ously mentioned, the Quasi-Poisson model is shown side by side for more accurate
estimates of the standard error, since there is overdispersion in the sample.
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Tab. 3.4: Poisson regression coefficients on number of tests taken, stratified by ethnicity and
shown at different levels of confoundinga. Risk ratios are the exponential of the
regression estimates, with the corresponding confidence intervalsb. Quasi-Poisson
model results are shown due to overdispersion in the sample.

All ethnic groups except Chinese are found to have a high risk ratio of testing for
COVID-19 in comparison to Whites. In the case of Asian and Black patients, the
difference is as large as 25%. Chinese patients appear to be take many less tests on
average than Whites.
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3.4.3 Socio-economic deprivation: hazard ratio coefficients

In the same manner, it is possible to stratify by socio-economic deprivation quintile
instead and analyse the effect of belonging to a given group on COVID-19 hazard,
as Table 3.5 illustrates through the obtained hazard ratio coefficients.

Tab. 3.5: Hazard ratio coefficients stratified by soico-economic deprivation quintile, at
different levels of confoundinga,b. All coefficients are relative to the reference
group, the least deprived quintile Q1.

The results in Table 3.5 ought to be interpreted in the same manner as the ethnicity-
stratified hazard ratios, except that now they are all relative to the least deprived
quintile.

There is a clear general trend of augmenting risk for more socio-economically
deprived patients. It is most apparent in the risk of COVID-19 hospitalisation, where
people who belong to the most deprived quintile are subject to almost three times
the risk as those in Q1. Deprivation is also monotonically associated with testing
(both negative and positive) and conversion (negative-positive). No association is
observed between socio-economic status and mortality following hospital admission,
although results do point towards increased risk for the most deprived quintile.
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Figure 3.4 graphically displays the fully adjusted hazard ratios in the form of forest
plots.

Fig. 3.4: Forest plots for socio-economic deprivation-stratified hazard ratios, shown fully
adjusteda,b. The scale used for visualisation is linear but differs from transition to
transition. The two dots reflect the x = 1 axis.

The same effect on confidence intervals for latter transitions appears as for the
ethnicity stratification. In this case it is slightly less pronounced due to the larger
group sizes when stratifying by socio-economic deprivation quintile.

3.4.4 Socio-economic deprivation: Poisson regression on testing

The same procedure follows for testing differences based on socio-economic depriva-
tion strata, as Table 3.6 shows.

Testing appears to grow steadily more prevalent as socio-economic deprivation
increases, with those in the most deprived quintile estimated to take more than 40%
as many tests on average as those in Q1.
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Tab. 3.6: Poisson regression coefficients on number of tests taken, stratified by socio-
economic deprivation quintile and shown at different levels of confoundinga,b.

3.5 Secondary results: sex & age

With the same methodology used to obtain the previous results, it is also possible
to set sex or age as the variable of interest and the other variables as covariates to
see their effect on COVID-19 hazard. Regression calculations are now remodelled to
adjust partially only by age in the case of sex hazard ratios, and vice versa. Table
3.7 shows the Cox hazard ratio coefficients and Table 3.8 the Poisson risk ratios for
testing differences.

We find a higher risk of infection for females, both following a negative test (conver-
sion from negative to positive) and directly in their first test. Conversely, men display
a higher probability of testing negative, and of severe forms of disease, with a higher
risk of hospitalisation and death with COVID-19. Whilst older age is associated with
negative testing and with severe disease (hospitalisation and mortality), younger
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Tab. 3.7: Hazard ratio coefficients stratified by sex and age, at different levels of
confoundinga,b. Coefficients for sex are for males relative to females. The age
coefficients reflects the change in hazard for every year older that a patient is.

age is associated with a higher probability of testing positive. The effect of age was
monotonic and quasi-linear in our models.

Tab. 3.8: Poisson regression coefficients on number of tests taken, stratified by sex and age,
at different levels of confoundinga,b. Sex coefficients are for males relative to
females. The age coefficients reflects the change in hazard for every year older
that a patient is.

Poisson regression results confirm the finding that male sex, and older age are
associated with a higher number of tests, in line with the results produced by the
multi-state model.

Interestingly, the relationships observed remained after adjusting for confounders
and did not vary in any significant way. This suggests that differences may be largely
biological.
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3.6 Other analyses: Kaplan-Meier plots

As discussed under the Methods section 2.7.4, Kaplan-Meier plots serve to graphi-
cally check the proportional hazards assumption, an essential requisite for the Cox
proportional hazards model. If the assumption holds then all curves should be
proportional to each other and not differ in form or intersect one another.

Stratifying by ethnic background, survival curves and their respective confidence
intervals are shown in Figure 3.5 for the events of testing positive and hospitalisation
with COVID-19. Below the two upper curves are the associated log-log plots of the
survival function. All other risk events in the model have been studied but only these
two are shown in this document to illustrate the usefulness of this methodology.
Chinese ethnicity could not be displayed because the wide confidence intervals
cluttered the figures and prevented the other curves from being displayed clearly.

Fig. 3.5: Ethnicity-stratified Kaplan-Meier survival curves for the events of testing positive
(left) and hospitalisation (right). The lower plots display the log-log curves of the
survival functions above, with logarithmic axes. The x-axis displays time in days
since the beginning of follow-up.
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It is clear that there is no significant violation of the proportional hazards assumption
for the three largest ethnic groups. Though the curves are not perfectly proportional,
they all display similar behaviour and do not intersect each other. The curve
for participants of ’other’ ethnicity does seem to cross that of Asians for positive
testing and slightly touches that of Whites for hospitalisation. Confidence intervals
complicate the evaluation of whether or not this is actually problematic for Cox
regression. Furthermore, in the positive testing survival plot, the curve behaves
correctly with respect to its reference curve, Whites. All in all, we consider it to be a
very minor issue that does not warrant the need for a different parametric model.

Figure 3.6 shows the survival plots for socio-economic deprivation strata. In this case
it is evident that the proportional hazards assumption holds very well. Narrower
confidence intervals are obtained due to the larger n of these strata.

Fig. 3.6: Socio-economic deprivation-stratified Kaplan-Meier survival curves for the events
of testing positive (left) and hospitalisation (right). The lower plots display the
log-log curves of the survival functions above, with logarithmic axes. The x-axis
displays the time in days since the beginning of follow-up.
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Discussion & conclusions 4
4.1 Key results & conclusions

Referring back to the study’s objectives outlined in Introduction 1.4, all have essen-
tially been achieved.

In regards to the first objective, a database has been generated that contains the
relevant information for eligible English patients of UK Biobank’s cohort for a final
population of 406,408. All patients have been monitored from the 1st February 2020
to the 20th March 2021, to include the better part of the observational window for
COVID-19 health outcomes available so far. Combining a series of different sources,
a cohesive single file has been created with the dataframe necessary for all statistical
analysis. Furthermore, the complete set of codes has been streamlined to allow for
automatic updates, as UKB and HES incorporate new data into their system.
The discussion that follows covers the work carried out for the other objectives.

4.1.1 Population characteristics

Population characteristics have been extensively examined and quantified. We find a
large White majority, about ∼94.1% of the cohort. The next two largest groups are
Asian (∼2.2%) and Black (∼1.8%), followed by ’other’ (∼1.0%), Mixed (∼0.6%)
and Chinese (∼0.3%). In terms of socio-economic status, there is an overall tendency
for the less deprived quintiles, with about 29.7% of the cohort belonging to the least
deprived quintile and only 12.8% in the most. It is important to note, however, that
there is a stark difference between the entire cohort’s socio-economic distribution
and that of ethnic minorities, as this phenomenon seems to only affect White and
Chinese individuals. The largest inequality observed in the cohort is that of Blacks
when compared with Whites. About 43.0% of Black individuals reside in areas
within the most deprived quintile, while only 5.3% are in the top quintile. Such
drastic differences may condition analysis, even when confounders are minimised,
which will be discussed in the following sections.
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In terms of age, we find that the cohort is generally of advanced age. This occurs
due to UK Biobank’s design, as this was their target population at the time of
recruitment. The median age is 70.25, with the interquartile range extending from
63 to 76 years of age. The youngest registered user is 51 and the oldest 87. Again,
the overall population characteristics are heavily conditioned by those of Whites,
since they make up the large majority of the cohort. This is particularly apparent
when measuring age too. All other ethnic groups have a median age at least 5
years younger than Whites, with the youngest overall being Mixed (62.5 median,
IQR=[57.3,70.2]) and Black individuals (62.8 median, IQR=[57.7,69.8]).

The cohort is generally majority female (∼55.2%), where only Asian male individuals
outnumber their female counterparts (47.2%). The largest difference appears for
the Chinese ethnic group, with about 64.7% of all patients being female.

4.1.2 Health outcomes

We find the most transitions at the beginning stages of the multi-state COVID-19
model developed, in the Negative and Positive states. Prior to modelling, there is
already evidence that ethnic minorities are more likely than Whites to be infected at
some point. The most notable difference is observed in Asians having a positivity
rate of 6.3% compared to the cohort-wide 2.9%. Chinese patients are the only group
with a lower rate (1.9%). The same phenomenon is clearly observed for the more
deprived quintiles of the population, where there is a steady rise in the percentage
of infection as socio-economic deprivation increases. Overall, 2.9% of the cohort has
tested positive for COVID-19 during the time of follow-up.
The percentage for testing negative is 14% cohort-wide, and there is no clear pattern
of differences between ethnic or socio-economic strata, though White individuals
have a slightly higher rate.

In terms of hospital admissions, the majority of episodes occur with a positive test
prior to the date of admission. Here we find that about 9.3% of patients with a
registered positive test end up hospitalised. A further 0.9% of those who enter the
hospital on the same day they are tested, and Black individuals appear to suffer
the greatest amount of these extreme scenarios (1.3%), as evidenced by the UKB-
Hospital transition. Asian, Black and Chinese patients have higher percentages of
hospitalisation than Whites, with the largest difference being 4 percentage points
higher for Blacks. Those of Mixed and ’other’ ethnicity have lower hospitalisation
rates.
The adverse effect of lower socio-economic status is again immediately apparent.
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The most deprived quintile of the population has a rate of hospitalisation of 11.5%,
and the top quintile 8.4%. The same occurs for same-day positive tests and hospital
admission. Interestingly, hospitalisation is least frequent among those in the second
least deprived quintile.

Of those patients who do suffer COVID-19 hospital episodes, 21.1% die from it.
There does not seem to be any trend of ethnic or socio-economic differences in
COVID-19 mortality, except that Whites have the highest at 24.1%. The second least
deprived quintile of the population appears again to be the least affected, with 18%
mortality. Viewing these results, it is also important to consider the aforementioned
differences in the probability of being hospitalised in the first place.

There are no noticeable differences in testing depending on sex. Nevertheless, males
have a higher hospitalisation rate (11.6% vs 7.3%) and mortality (23.6% vs 17.7).
Patients older than the median age (70.25) do not have a higher hospitalisation rate
but do display much higher mortality than those younger than the median (16.8%
vs 4.2%).

It is important to note that the percentages discussed above correspond to completely
unadjusted calculations, as they are merely based on the percentage of individuals
who undergo a given transition with respect to the total group who were susceptible
to it.

4.1.3 Ethnic differences in relative risk

Cox regression analysis provides hazard ratios for relative risk assessment. This
methodology allows for confounder minimisation, which is why they are the central
piece of this thesis’ results. The third and fourth objectives of the project revolve
around creating the necessary structures to obtain these estimates, and they both
have been achieved.

When compared with White patients, the fully adjusted coefficients for the UKB-
Positive transition display increased risk of infection for Asian 1.72 [1.58,1.88],
Black 1.1 [0.99,1.23] and ’other’ 1.09 [0.93,1.26] ethnicity patients (in brackets are
the 95% confidence intervals). Chinese individuals have a significantly decreased
risk of infection 0.52 [0.35,0.77] and Mixed ethnicity individuals have no substantial
difference when compared with Whites.
The Negative-Positive transition, for those who have tested negative before they
test positive, displays even greater risk for Blacks (1.39 [1.04,1.87]) and Mixed
(1.4 [0.84,2.34]) individuals than the UKB-Positive transition. ’Other’ ethnicity
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participants have a coefficient of 2 [1.42,2.82], much higher than for the previous
transition. All in all, there is an increased risk of infection for ethnic minorities all
across the board, with the exception of Chinese individuals; and Asians seem to
suffer the greatest risk.
As for the UKB-Negative transition, there is a slight variation with respect to Whites,
most notably Blacks having a coefficient of 1.07 [1,1.14] and Mixed ethnicity patients
1.09 [0.98,1.22]. Chinese individuals are again the only group to display severely
reduced risk, (0.64 [0.53,0.77]). These results point to Chinese patients generally
taking fewer COVID-19 tests on average.

Hospitalisation coefficients present much more drastic differences. Blacks patients
are the worst off overall, with a coefficient of 1.8 [1.35,2.41] for the Positive-Hospital
transition and 2.36 [1.91,2.92] for the more extreme UKB-Hospital transition where
testing occurs on the same day as hospital admission. There is also increased risk
for Asians: 1.32 [1.02,1.71] and 1.79 [1.43,2.24] (for Positive-Hospital and UKB-
Hospital respectively). The confidence intervals widen greatly for the other ethnic
groups, due to the lower number of individuals undergoing these transitions. Never-
theless, all of them have increased risk: 2.65 [0.85,8.24] and 1.66 [0.86,3.19] for
Chinese patients; 1.18 [0.61,2.27] and 1.24 [0.72,2.14] for Mixed; 1.25 [0.77,2.03]
and 1.5 [1.03,2.16] for ’other’ ethnicity patients.
Altogether, there is clear evidence of much increased hazard of hospitalisation for
ethnic minorities when compared with Whites, in some cases even doubling it. It is
important to state once more that all of the results mentioned above correspond to
calculations fully adjusted for socio-economic deprivation, age and sex, which only
highlights the gravity of the situation.

Results on mortality hazard ratios reveal a different trend. Only Asians and Blacks
appear to be under increased risk, with coefficients of 1.33 [0.91,1.94] and 1.08
[0.74,1.59] respectively. All other groups have significantly decreased risk of dying
with COVID-19 when compared with Whites. Chinese patients have 0.58 [0.15,2.34],
and ’other’ ethnicity patients have 0.62 [0.26,1.51]. Mixed individuals appear to
have the lowest hazard of death at 0.55 [0.18,1.7]. Note that confidence intervals
are quite wide for this final transition, which makes drawing conclusions from the
results difficult.

4.1.4 Socio-economic differences in relative risk

The following is a discussion of the results on hazard ratios for socio-economic strata
obtained from calculations fully adjusted for ethnicity, age and sex. We find a directly
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proportional relationship between socio-economic deprivation and COVID-19 hazard
that is steady for most coefficients, which is why discussion will mostly cover the
results obtained for the most deprived quintile of the population.

There is severely increased risk across all transitions for the most deprived quintile
with respect to the least. The most drastic results are observed for hospitalisa-
tion: the UKB-Hospital transition returns a hazard rate of 2.95 [2.6,3.35], and
Positive-Hospital 1.35 [1.13,1.61]. In other words, patients from the most deprived
neighbourhoods are up to three times as likely to enter the hospital on the same
day they test positive. The risk of infection is also greatly increased, with the
UKB-Positive returning a coefficient of 1.84 [1.74,1.95] and the Negative-Positive
transition 1.82 [1.53,2.15]. The risk of testing negative is slightly higher too, at 1.08
[1.05,1.11]. This suggests that poorer individuals generally take more tests but also
have a greater positivity rate when they do. Finally, the risk of dying with COVID-19
reflects an increased of 1.12 [0.9,1.4].

An additional observation that may be important to point out is that, what was
observed early on in the health outcomes phase of the study in regard to the second
most privileged quintile, still stands after proper analysis and confounder adjustment.
We find that the second quintile has a reduced risk of hospitalisation 0.88 [0.73,1.06]
and death 0.89 [0.7,1.14].

Sex & age differences in relative risk. Our results point to increased hazard for
males when it comes to hospitalisation 1.06 [1.05,1.07] and death 1.08 [1.06,1.09].
The risk of infection appears to be lower than that of females, with both the Negative-
Positive and UKB-Positive transitions returning coefficients of 0.95 [0.95,0.96] and
0.94 [0.94,0.95], respectively. There is however a slight increase in the risk of testing
negative (1.03 [1.02,1.03]). As for age differences, our model estimates that the
effect of being one year older is an increased relative risk of 1.08 [1.06,1.09] for
mortality and 1.06 [1.05,1.07] for hospitalisation. The risk of infection does appear
to decrease with age. In conclusion, our results back up the now well-established
notion that male sex and age are adverse predictors of COVID-19 health outcomes.
It is interesting to note that these relationships are largely unaffected by confounder
adjustment, which may be indicative of mostly biological causes.

4.1.5 Ethnic differences in testing prevalence

The final objective of this thesis was to model and analyse group differences in
testing prevalence using an specially adapted methodology. This has been carried
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out using Poisson regression count analysis, which allows for the obtention of relative
risk ratios. These are to be interpreted in a similar manner as with the previous Cox
coefficients, and they are also provided alongside their 95% confidence intervals,
but in this scenario they are to be understood more like average differences in tests
per person.

Compared with Whites, the fully adjusted Poisson coefficients return high risk ratios
for all ethnic groups except Chinese (0.66 [0.51,0.86]). The most notable differences
appear for Black (1.32 [1.23,1.43]) and Asian (1.26 [1.17,1.36]) patients. This
implies that Chinese participants on average take about 34% less tests than Whites,
and that Blacks and Asians take 32% and 26% more. These results back up the
previous finding that Chinese individuals take less tests in general.

4.1.6 Socio-economic differences in testing prevalence

As with the Cox hazard ratios for socio-economic deprivation strata, we find a steady
rise in testing prevalence for the more deprived quintiles. The coefficient for the most
economically deprived with respect to the least is 1.44 [1.38,1.49]. This implies that
the poorest section of the population takes on average more than 40% COVID-19
tests as the richest.

It is interesting to note that the Poisson risk ratios obtained do not seem to be
altered very much by the level of confounder adjustment. This suggests that testing
prevalence depends very strongly on socio-economic status, and not so much on
ethnicity, sex or age.

Sex & age differences in testing prevalence. Our results point to an approximate
increase of 10% in the amount of tests taken by males when compared with females
(1.1 [1.07,1.12]). In the case of age, the estimation obtained is that, for every year
older a patient is, testing prevalence increases by 2% (1.02 [1.02,1.02]). Again,
these results do not vary depending on confounder adjustment.

4.1.7 Conclusions

Our study results reveal severely increased risk of infection for Asians, who also
taken substantially more tests on average and still display a higher positivity rate
than Whites. The same is observed for Black, Mixed and ’other’ ethnicity patients.
Chinese individuals are the only group with reduced risk and less tests on average
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than Whites.
In terms of hospitalisation, increased risk is found across all ethnic groups, and
Blacks are the worst-off overall with up to twice the hazard for Whites, followed
by Asians. The greatest difference is found for the scenario where an individual
undergoes hospital admission on the same day they test positive.
Mortality results indicate increased risk for Asians, most notably, and Blacks. The
other ethnicities display reduced risk when compared with Whites.

Regression coefficients for socio-economic status display a steadily proportional
relationship between deprivation and relative hazard. Increased risk is found across
all health outcomes, with same-day hospitalisation appearing up to three times as
likely for the most deprived section of the population when compared with the least.
Furthermore, there is severely increased risk of infection for the poorer quintiles,
as well as many more tests taken on average. Mortality also increases with socio-
economic deprivation, and the risk is estimated to be up to 10% higher for the
bottom quintile.

Lastly, our results establish male sex and age as adverse predictors of hospitalisation
and mortality. There is also indication of higher tests taken on average, though
females appear to have a greater risk of infection.

4.2 Limitations, generalisability and strengths

There is a number of limitations, present by design in the study, that ought to be
discussed as they are likely to affect the generalisabilty of the results obtained.

4.2.1 Socio-economic bias

There is considerable bias present in the population that makes up UK Biobank’s
study. It has been well documented that users who signed up for the program
generally belong to noticeably privileged socio-economic backgrounds, when com-
pared to the wider population. Figure 3.2 directly displays this phenomenon. The
deprivation distribution is not heterogeneous however. We find that White and
Chinese individuals in the cohort are notably more privileged than the other ethnic
groups, and that Blacks are the worst-off overall. A 2017 study by the University
of Oxford concluded that as a result of this socio-economic bias, UKB participants
were non-representative of the wider population [51]. They found that they were
less likely to be obese, smoke or drink alcohol on a daily basis, and that cancer was
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much less prevalent than in the national average. Altogether, it has to be taken into
consideration that participants of the study are generally healthier than the wider
population, which may limit the result’s generalisability.

4.2.2 Age limitations

The other form of bias present in the sample comes from the fact that the cohort
is of advanced age (all patients are at least fifty years old). This occurs as a result
of UK Biobank’s design, because this was their target population at the time of
recruitment. Therefore, it must be taken into consideration that all the results
for COVID-19 health outcomes presented concern the most vulnerable sectors of
the population. Where this is likely to have the largest effect is in findings of
hospitalisation and mortality. Generalisation to other age groups may be limited as
a result. Nevertheless, serious course of the COVID-19 disease affects those patients
above 60 especially. Therefore, the biased age of the cohort may actually provide
valuable knowledge about hospitalisation and deaths.

An additional factor that possibly limits generalisability is the geographical limitation,
as this study only covers individuals living in England. While results are certainly
indicative of what one could expect from similar cohort studies in other Western
countries like the United States, especially for findings on socio-economic, age and
sex differences, proper analysis of each individual situation would be required before
drawing any conclusions.
Furthermore, the presence of large aggregations of people in cities like London,
Birmingham or Manchester, may condition results. It is now well-known that
London has been a focal point of the COVID-19 pandemic, which may explain in
part what has been observed in this study for the second least deprived quintile of
the population with respect to the first.

The data and statistical methodology employed offer a number of great strengths too.
UK Biobank provides the possibility of studying such a large and varied cohort and all
of their population characteristics, which enables the obtention of powerful results
like the ones shown above. It also offers the advantage of circumventing collider bias,
as discussed in Introduction 1.1.4. Furthermore, there is a chronological advantage
to having performed the study at this particular time (February to June 2021), as
the observation window for COVID-19 health outcomes is greater now than it has
ever been since the pandemic began. Cox and Poisson regression analysis also allow
for confounder minimisation, which is necessary to properly analyse the effect of
ethnicity and socio-economic deprivation on risk.
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4.3 Interpretation & future work

Explaining the severity of the results observed for ethnic minorities, even when
adjusting for socio-economic deprivation, age and sex, is complicated. Needless
to say, it falls beyond the objectives and scope of this project, and much more
bibliographic work and research would be required to draw any solid conclusions.
Nevertheless, providing some speculation into the causes behind the conditions
observed may attract further research into the topic.

There is a variety of factors that may be at play, and a correct explanation is likely
to be based on a combination of them. Cultural norms may affect an individuals
risk of infection greatly [52]. Differences in the number of people living in the same
household, routine habits like eating together or not, and the overall approach to
COVID-19 safety measures can vary between different cultural subgroups. It could
also partly explain why Chinese patients have a much reduced risk of infection, since
the SARS outbreak of 2002-2004 was a major epidemic that took its biggest toll
on China. It is likely that it left its mark on the collective consciousness and that
cultural norms with regards to epidemic safety reflect it in some way.

There is of course the possibility of institutional neglect and discrimination on the
part of official institutions and society at large [4]. Furthermore, past history of
racism and abuse may condition an individual’s trust on the medical system [53],
which could reflect adverse attitudes in regards to COVID-19 testing and early
hospital admission for patients suffering from the disease.

Lastly, it is possible that genetics play a significant role in COVID-19 susceptibility
and severity and that variability between ethnic groups partly explains the results
obtained. This, like all other speculation provided in this section, requires careful
research, in order to most effectively protect the population in future epidemics.

In regards to the last two points, our results can be interpreted to provide some
indication into which factor has more relevance. We find that, once in the hospital,
mortality does not vary greatly for ethnic minorities. This is heavily conditioned by
the previous transitions, which reflect an increase in risk. All in all, this suggests
that differences are not so much biological, but more to do with exposure (higher
risk of infection) and with issues of health equity in early access to medical care.
Furthermore, Black patients in the cohort have similar risk of infection to Whites,
but much higher risk of direct diagnosis at the time of hospital admission. This could
again be indicative of reduced access to health services.
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When it comes to the drastic socio-economic differences in risk observed, the most
direct cause is likely to be greater workplace exposure. We find a considerable
increase in the number of tests taken by the poorer quintiles, which probably
indicates that their professions require face to face interaction, and therefore regular
testing. It is to be expected that those in the least deprived quintiles found less
trouble adapting to COVID-19 restrictions, as their jobs could be more easily adapted
to online work from home. Besides an increased risk of infection, poorer individuals
also face greater risk of hospitalisation and mortality due to the severe adverse effect
of socio-economic deprivation on health outcomes in general.

In any case, the conclusion that should be drawn from the study’s results is that
medical institutions may need to put more emphasis on protecting ethnic minorities
from viral epidemics of this kind in the future, as they appear to be at greater risk.
The same is clearly true for socio-economically deprived individuals, who have also
been under much increased risk throughout the COVID-19 pandemic.

4.3.1 Future work

All of the results and notions discussed above are incomplete without proper adjust-
ment of the residual confounding caused by comorbidities. The greatest future effort
will go towards expanding our dataset and building behaviour and comorbidity
population characteristics into it. Relevant diseases when it comes to COVID-19
hazard are leukemia, diabetes, morbid obesity and a range of others that will be
accounted for in the Cox and Poisson regression coefficients. Smoking, alcohol
consumption and body-mass index also reveal important health habits, and they
ought to be included too.

Although non-linear dependencies between hazard and age were experimented with,
they were deemed a very minor improvement to the model. We found that for
all transitions the relationship was best fitted linearly or very close to linear, so it
was deemed unnecessary to implement it for the time being. This occurs due to
the particular age distribution of the cohort. Nevertheless, more research may be
directed at this topic in the future to assess if implementing it would be lead to more
accurate results.

Throughout the month of July 2021, the team will continue perfecting and updating
the model, especially as more data is incorporated into our sources and it becomes
possible to advance the right-censoring date. All codes developed for this project
will be made publicly accessible through a GitHub repository once it is finalised.
Ultimately, we hope to publish this thesis’ findings in a scientific journal.
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