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Glossary

black box model a method which learns to map inputs to outputs, where the learned

mapping is not readily interpretable.

boxplot A method for graphically depicting groups of numerical data through their

quartiles. It allows to get insights of how the numerical data values are spread.

components Learnt features from a matrix decomposition method. In other descrip-

tions they are also known as sources or basis.

convex optimization problem An optimization problem in which the objective func-

tion is a convex function and the feasible set is a convex set.

cost function Function used to determine the error (loss or distance) between an

output and a target. It is also known as loss function or error function.

frobenius norm An extension of the Euclidean norm to matrices.

image mask a filter which determines the region of interest in the image.

rgb color model an additive color model in which red, green, and blue light are added

together in different proportions to reproduce a broad variety of colours.

supervised learning the task of learning patterns from labeled data.

unsupervised learning the task of learning patterns from unlabeled data.
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Acronyms

AUC Area Under Curve.

CV Cross-Validation.

DL Deep Learning.

FAZ Foveal Avascular Zone.

ICA Independent Component Analysis.

LDA Linear Discriminant Analysis.

LDR Linear Dimensionality Reduction.

LR Logistic Regression.

MI Mutual Information.

ML Machine Learning.

MUR Multiplicative Update Rules.

NMF Non-negative matrix factorization.

NNDSVD Nonnegative Double Singular Value Decomposition.

PCA Principal Component Analysis.

RBF Radial basis function.

ROI Region Of Interest.

SSI Signal Strength Index.
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SVD Singular Value Decomposition.

SVM Support vector machine.

VQ Vector Quantization.
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Abstract

In current research in ophthalmology, images of the vascular system in the human retina

are used as exploratory proxies for pathologies affecting different organs. This thesis ad-

dresses the analysis, using machine learning and computer vision techniques, of retinal

images acquired with different techniques (Fundus retinographies, optical coherence to-

mography and optical coherence tomography angiography), with the objective of using

them to assist diagnostic decision making in diabetes mellitus and diabetic retinopathy.

This thesis explores the use of matrix factorization-based source extraction techniques,

as the basis to transform the retinal images for classification. The proposed approach

consists on preprocessing the images to enable the learning of an unsupervised parts-

based representation prior to the classification. As a result of the use of interpretable

models, with this approach we unveiled an important bias in the data. After correcting

for the bias, promising results were still obtained which merit for further exploration.

Graphical abstract
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Figure 1: Graphical outline of the data analysis workflow
of the experiments reported in the current thesis.
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Chapter 1

Introduction

Diabetic Retinopathy (DR) is the leading cause of human blindness in Type 1 Diabetes

Mellitus (DM) patients, as a consequence of impaired blood flow in the retina [1].

Type 1 DM is a serious and lifelong condition. Neither the cause of the condition nor

the means to prevent it are known [2]. Although it can appear at any age, it typically

begins in children and young adults [3]. Type 1 DM is estimated to constitute between

5 to 10% of all diabetes cases [4].

DM is a metabolic disorder that causes high levels of sugar in blood, also known

as Hyperglycemia. DM is usually diagnosed by testing the level of sugar (HbA1C)

in the blood [5]. There are several different types of diabetes, one of them being

Type 1 DM. Type 1 DM is characterized by the pancreas inability to generate enough

insulin, a hormone required by the human body cells to use sugar as a source of energy.

This condition can lead to complications and, when those affect the blood vessels in

the retina, it can develop in what its known as DR, which may cause several vision

difficulties [6].

In its early stages, DR may cause no symptoms, or, at most, only mild vision prob-

lems, which makes it hard to detect. Even if symptoms reveal themselves, and the

patient is subsequently referred to a doctor, DR is still hard to diagnose, as the differ-

ences between a healthy eye and an eye with early-stage DR are rather small. Detecting

DR early on after onset is thus very important in order to slow its advancement, or

even prevent the vision complications which can lead to blindness if left untreated.

Different non-invasive imaging techniques can be applied to the study of retinal

diseases in general, and DR in particular, such as fundus retinography (FR, Figure 1.1),

structural Optical Coherence Tomography (OCT, Figure 1.2), or Optical Coherence

Tomography Angiography (OCTA, Figure 1.3).
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Figure 1.1: Fundus Retinography
Figure 1.2: Optical Coherence Tomography

Figure 1.3: Optical Coherence Tomography Angiography

Traditionally, standard DR screening systems use retinography [7] due to its widespread

availability. For this reason, the vast majority of computational science applications in

ophthalmology have been applied to FR, and far more rarely to OCT scans, which are

not so readily available. Recently, the advent of the more advanced OCTA technology

(still available only in a limited number of clinical outlets) allows for direct visualiza-

tion of flow in the retinal vessels, representing a significant advance in the evaluation

of these patients.

This thesis aims to analyze a high-quality multi-modal image dataset gathered

throughout previous ophthalmology research projects (Fundació La Marató TV3, Fondo

Investigaciones Sanitarias, FIS ). This work substantiates a collaboration with Dr.

Javier Zarranz-Ventura (Institut Clinic d’Oftalmologia, ICOF, Hospital Clinic de Barcelona),

who has provided the annotated database that is the basis of the thesis.

Some recent and ongoing work with the aforementioned dataset suggests that a fea-

ture extraction approach based on radiomics [8] shows reasonably good discriminative
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capabilities for DR. Still, the interpretability of the results is important in the medi-

cal field, and so in this thesis we explore the use of a source extraction approach for

data transformation, focusing on linear dimensionality reduction (LDR) techniques to

extract visually interpretable results. This way, by taking a different feature extraction

approach we aim to find out whether the pathology discrimination results based on

radiomics are reproducible and maybe even if they can be improved.

Among the many matrix factorization techniques based on LDR, this work mostly

focuses in non-negative matrix factorization (NMF) and some of its variants. NMF has

found great success in learning interpretable parts-based representations in areas such

as facial recognition, recommenders, or astronomy, to name a few.

1.1 Objectives

This thesis aims to analyze the potential of source extraction techniques, mainly by

looking at NMF and some of its variants, as a feature extraction approach for the

available retinal image dataset. The adequacy of the approach will be evaluated by

the performance of classifying different levels of DR. Specifically, the evaluation will

be based on the discrimination ability of the learnt features for two relevant tasks: To

discriminate between non-diabetics (controls) and diabetics and to discriminate between

the absence or presence of DR. To achieve these aims, we define the following set of

objectives:

• Review the concepts for understanding the imaging techniques and the literature

of application of non-negative source extraction.

• Explore the dataset to analyze and fix any incoherence and nuances found. This

is important so that that future work can be more focused on the data modeling

itself, from a classification perspective.

• Develop the necessary preprocessing and image transformations for each type

of retinal image so that the unsupervised factorization models can learn useful

representations.

• Develop a robust feature extraction scheme to make use of the three types of

retinal images in the classification stage.

• Obtain insights about the retinal images to try to understand and compare the

results with a recent radiomics feature extraction approach.
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• Assess how well suited are source extraction based on LDR techniques and espe-

cially NMF for usage on a retinal image dataset, based on the results.

1.2 State of the art

Most of the existing recent related work applying computational intelligence methods

to DR does not make distinction of the underling diabetes type. According to the ex-

pertise of the ophtalmologist advising the thesis, detecting DR for Type 1 Diabetes is

a far harder problem than that concerning the other types of diabetes. As previously

stated, most of the work in the field involves investigating FR images or clinical data,

mainly from Type 2 DM patients datasets, as this is the most frequent type of DM (up

to 90% of cases). In this section, we review some of the related work so as to provide a

viewpoint of how retinal imaging and source extraction (based on matrix factorization)

is usually employed.

Fenner et al. provide a complete review of advances in retinal imaging [9]. It

goes through how recent studies used FR, OCT and OCTA imaging for DR and other

retinal complications. An interesting use case of OCTA images is that concerning

the delineation of the foveal avascular zone (FAZ) (Figure 1.4) and how its acircularity

relates to DR [10]. Also the FAZ characteristics can be used for quantitative assessment

and monitoring of DR [11].

Figure 1.4: Evaluation of the foveal avascular zone (FAZ) [12]

The review also points to an interesting problem with the reproducibility and ro-

bustness of black-box models such as the Google Brain system [13]. It does so by citing

the work of Lynch et al. [14] which shows how Deep Learning (DL) approaches are

vulnerable to seemingly innocuous alterations of fundus images. It summarizes the

aforementioned problem as follows:
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Using a series of reference DR fundus photos containing typical features of

DR, slight pixel modifications (0.12–0.51% of total pixels) were introduced

into the images that were essentially imperceptible to human readers and

did not obviously alter the appearance of the DR lesions. [...] The modified

images were classified as normal by the image-based CNN while the lesion-

based system still detected DR.

Finally, Fenner et al. explain the prohibitive costs of expensive camera equipment,

specially for OCT and OCTA.

The monography [15] provides a summary of the current state of the art of applied

artificial intelligence (AI) systems in ophthalmology. It reviews many of the AI models

and how they are trained and applied to different types of retinal imaging modalities

and different retinal diseases, including DR.

The authors of [16] make use of a 3D OCT tensor, using a novel DL framework

with two stages: first, a segmentation network; and second, a classification network.

The authors claim this framework to tackle the generalization to a new scanning device

thanks to having the second stage being device-independent. Furthermore, the study

claims that the framework has an error rate which outperforms clinical experts in an

OCT-only setting when predicting referral urgency of DR.

Two Kaggle competitions for DR diagnosis using FR images have been organized.

The first one back on 2015 was won by Ben Graham [17], while the second was orga-

nized in 2019 [18] and won by Guanshuo Xu. One interesting observation related to the

competition scores is that, back in 2015, the top score was 0.84957 while the top 100

was 0.45082. Instead, in 2019 the top score was 0.936129, while the top 100 score was

a close 0.922081. Furthermore, while back in 2015 all the winners preprocessed in some

way the images, the 2019 competition winner did not [19]. Guanshuo Xu achieved his

solution by carefully training and ensembling eight DL models (Inception and ResNet).

He reported that, for image input sizes above 384 pixels, he did not see any significant

improvement in results.

In [20], authors perform retinal vessel segmentation with NMF and a 3D U-Net on

FR images. They develop a new within-class and between-class constrained NMF al-

gorithm to extract neighborhood feature information of every pixel and reduce feature
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data. They discuss their image preprocessing, which consists on extracting the green

channel, applying a Gaussian filter, a gamma correction and, finally, region processing.

In another medical (but unrelated) area, the authors of [21] recently applied blind

source separation on magnetic resonance spectroscopic imaging (MRSI) data of brain

tumors with Convex-NMF. They extracted signal sources that are interpretable given

that they are formed as a linear combination of the original data samples. Those source

weights were used as features in classification models which perform great for separating

healthy from necrotic tissue.

1.3 Structure of the document

The reminder of the thesis document is organized as follows. On Chapter 2 the rela-

tionship between the anatomy of the eye and the imaging techniques is explained along

with how the retinal images are taken and where they come from. In Chapter 3 the

NMF method is presented along with other related factorization methods. On Chapter

4, we summarily describe some computer vision and machine learning concepts that

are used in the thesis. In Chapter 5 we explain all the experimental setting of the

thesis: The methodology, the description of the dataset, an exploration of how the un-

supervised models work, the developed preprocessing steps and, finally, we report the

learnt sources and the classification results. In Chapter 6, we gather the conclusions

and outline future work.
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Chapter 2

Retinal Images

In this chapter, we provide readers with a self-contained summary of the anatomy

of the eye, a basic description of diabetic retinography and explanation about the

different retinal imaging techniques. The three non-invasive retinal imaging techniques

considered in this thesis are FR, OCT and OCTA. They capture the posterior part of

the eye, also known as the fundus. Each imaging technique achieves a distinct result

which comes with its own advantages and disadvantages.

2.1 Anatomy of the eye

In order to understand what each type of image captures, a reminder of the eye general

anatomy is bound to be helpful, and is provided in Figure 2.1.

Figure 2.1: Anatomy of the eye [22]
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The relevant parts for understanding the imaging techniques are: the fovea, the

retina and the choroid. Other parts of interest include the area around the fovea which

is called macula and the optic disc which is where the optic nerve exits the retina.

2.2 Diabetic Retinopathy

When an eye is affected with DR, damages will start to develop in the form of hem-

orrhages, hard exudates, aneurysms, etc. In Figure 2.2, we display a representative

example. The dark spot on the left hand side is the macula.

Figure 2.2: DR lesions in the eye [23]

Usually, a clinician rates the presence of DR in each image on a scale of 0 to 4,

according to the following description in Table 2.1:

0 No DR
1 Mild
2 Moderate
3 Severe
4 Proliferative DR

Table 2.1: DR rating scale [24]

An eye is categorized as being in one of those levels of severity according to guidelines

of the visible lesions on the eye retinal images [25]. Despite that, one concern is that

the labeling can have a large inconsistency and, as a consequence, the results obtained

for a given dataset will not necessarily generalize to another. This same concern was

brought out by the authors of [13] in a presentation at the TensorFlow Dev Summit
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2017, where they showed the degree of inconsistency in the labeling of DR. A slide from

the presentation can be seen in Figure 2.3. The authors claim to approach the problem

by using the consensus over several ratings of different experts, but did not make their

dataset public. A later replication study tried the proposed model on public datasets

but they were not able to reproduce the results [26]. Therefore, one must be careful,

given that the nature of the problem is inherently noisy.

Figure 2.3: Inconsistency of ophthalmologist’s estimation [13]

2.3 Fundus Retinography

Fundus Retinography (FR) is a photograph of the posterior part of the eye (the back of

the eye). Specialized camera equipment technology produces and digitalizes the image.

Figure 2.4 shows how a FR looks like, including some of the eye anatomical features.

Figure 2.4: FR with marked features [27]

For a right eye, the optic disk will be on the right, whereas for the left eye the
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situation is flipped around the vertical axis, being the optic nerve on the left. Therefore,

the eye shown in Figure 2.4 is a right eye. Furthermore, unless the FR is centered around

the macula, the right eye will have the macula slightly to the left, whereas the left eye

will have the macula slightly to the right.

Moreover, the FR can be taken using different fields of view, which can appear as

a cropped circle and with different level of zoom. We can see such examples in Figure

2.5.

Figure 2.5: Field of view of FR [28]

The lesions associated with DR will be relatively apparent in the FR images, es-

pecially for more advanced stages of DR. An annotated example is provided in Figure

2.6, where the lesions can be appreciated.

Figure 2.6: DR eye lesions in a FR image [29]

2.4 Optical Coherence Tomography

Optical Coherence Tomography (OCT) uses a type of imaging that produces a three-

dimensional cross-section of the eye, allowing to see in the depth of the tissue. Figure

2.7 shows a marked OCT. The center target of the OCT scans for retinal images is

usually the fovea.
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Figure 2.7: OCT scan shows the fundus cross-section around the fovea [30]

OCT relies on tomography, the process of imaging by sections through the use of a

penetrating wave [31]. OCT builds a tomogram by using the principles of interferometry

and coherent light. By scanning light across the target at each iteration, a depth profile

is produced from the time delay and intensity of the backscattered light [32]. This

is called an amplitude scan, or A-scan for short. A cross-sectional tomogram can be

assembled by laterally combining neighboring A-scans [33]. The assembled tomogram

is known as B-scan or brightness scan. Figure 2.8 shows the relative orientation of the

A-scan and B-scan.

Figure 2.8: Relative orientation of the axial scan (A-scan),
longitudinal slice (B-scan) and transversal slice (C-scan) [34]

To sum up, OCT is built by beaming coherent light to obtain A-scans (each of which

samples a single slice) and then many neighboring A-scans are assembled to build a two-

dimensional B-scan. If we then obtain many neighboring B-scans we would obtain a

three-dimensional tomograph [32]. Figure 2.9 graphically depicts the procedure of how

the scans are obtained.
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Figure 2.9: Scan types with Optical Coherence Tomography [32]

2.5 Optical Coherence Tomography Angiography

The Optical Coherence Tomography Angiography (OCTA) images are taken by sam-

pling several OCT scans on the same slice many times to estimate the retinal flow. This

procedure is repeated for several slices around the fovea.

For the OCTA, the side dimensions of the captured area are usually taken to be

either 3 × 3mm, 6 × 6mm, or 8 × 8mm. The OCTA images are then reconstructed

in two modalities of image based on the two main vascular plexus of the retina, the

superficial and deep vascular plexus. The superficial images allow a good view of the

superficial vessels while the deep images allow the visualization of the deep vascular

plexus, that often is affected in early phases of DR showing areas of impaired blood

flow. Moreover, the OCTA images allow to delineate the foveal avascular zone (FAZ)

area which is the center dark spot on the OCTA images. On Figure 2.10 we can see an

example of progression of DR on OCTA images.

Figure 2.10: DR progression seen in OCTA images [35]
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2.6 Relationship between FR, OCT and OCTA

To further understand how the imaging techniques are related, in Figure 2.11 an illus-

tration is provided. The FR image corresponds to the “orange” circle. The OCT image

corresponds to a cross-sectional slice centered around the fovea (the darker spot in the

center) in the depth direction (capturing some layers of tissue). Finally, the OCTA

captures the area of the drawn green square centered in the fovea; it can be seen as a

way of capturing the vessels around that area with higher resolution than FR, allowing

the estimation of the blood flow and the FAZ area.

Figure 2.11: Relationship between the three imaging techniques: FR, OCT, OCTA [36]
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Chapter 3

Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a widely used blind source separation tech-

nique for the analysis of multivariate data. When the conditions are right, it automat-

ically learns a meaningful parts-based representation [37]. Even if the conditions are

not quite right, a carefully constrained NMF can produce parts-based representations,

resulting in interpretable models [38]. NMF seeks to take advantage of the property

that some data is often non-negative by nature, like pixel intensities, user scores, or am-

plitude spectra, among others. Intuitively, a part-based representation is the notion of

combining parts to form a whole [39] and from a signal processing viewpoint, it assumes

that the observed data are the manifiestation of a combination of signal sources.

3.1 History

Non-negative matrix factorization was first introduced in 1994 by Paatero and Tapper

[40]. They were the first to show interest in the problem and propose approaches to

solve it. Later it was popularized by Lee and Seung on 1999 through a paper published

in Nature for “learning the parts of objects” [39]. Since then, it turned into a widely

used tool in various research areas for diverse applications.

Lee and Seung presented an algorithm to solve NMF using multiplicative updates

and presented two use cases, learning features on a face and topics from documents.

They showed that a decomposition with non-negativity constraints enables a sparse and

part-based decomposition to be learnt because cancellation of features is not allowed,

only addition. Figure 3.1 shows the original example that Lee and Seung provided in

their paper. It can be seen that NMF reconstructs a face from a non-negative basis

matrix and encoding matrix.
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Figure 3.1: Example from Lee and Seung paper which shows how NMF learns a parts-
based representation of faces, while vector quantization (VQ) and principal component
analysis (PCA) learn holistic representations [39].

In essence, NMF can be interpreted as a process of reconstructing multivariate

data as a linear combination of the learnt features (sources). That makes the result-

ing decomposition of the data interpretable as a weighted combination of the features

extracted.

3.2 Standard NMF formulation

A non-negative matrix, is a matrix where all the entries are xij ≥ 0 which we also write

in matrix form as X ≥ 0. Let X be a m × n non-negative matrix. NMF consists on

finding a decomposition X ≈ WH where W and H are also non-negative matrices with

sizes n× r and r ×m respectively and 0 < r < min(m,n).

Standard NMF can be formulated as an optimization problem as follows:

min
H≥0,W≥0

||X −WH||2F (3.1)

This formulation of NMF turn out to be non-convex. However, the formulation

reduces to a convex sub-problem when either H or W is fixed. As such, most of the

algorithms that solve NMF rely on non-convex optimization methods such as Block
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Coordinate Descent [41].

3.3 NMF Properties

Many researchers have analyzed and characterised the properties of the NMF problem.

It has been shown that the NMF problem is, in general, a NP-Hard problem [42]. Also,

the work [43] showed that non-trivial NMF solutions always exist and also that the

NMF problem can be actually formulated as a convex optimization problem. Never-

theless, a practical convex formulation does not yet exist.

Because of NMF being a NP-Hard problem and lack of practical convex formula-

tions, most algorithms solve the more practical non-convex formulation [41]. Those

algorithms only ensure convergence to local optima (reaching an stationary point), but

with the advantage of doing so in reasonable computational time.

Solving the non-convex NMF formulation is an ill-posed problem and the solution is

non-unique [44, 45]. To address this issue, several variants exist that impose additional

constraints on the set of possible solutions to select solutions with some additional

desired properties [46]. For example, sparsity constraints can be added on either W or

H [47].

3.4 Algorithms

Most of the algorithms for solving NMF are based on the property that the standard

NMF formulation reduces to a convex sub-problem when either H or W is fixed, follow-

ing for a two-block coordinate descent scheme [37]. The method is shown in Algorithm

1. In fact, the sub-problem is a non-negative least squares problem (NNLS) when using

the Frobenius norm [48].

Algorithm 1: Two-Block Coordinate Descent

Input: A non-negative matrix X and factorization rank r
Output: Non-negative matrices W and H

1 Initialize the non-negative matrices W and H
2 while stopping criterion not met do
3 Update W by solving the sub-problem minW≥0 ||X −WH||2F
4 Update H by solving the sub-problem minH≥0 ||X −WH||2F
5 end
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Inside an iteration, there is no special reason to first fix H and update W and then

fix W and update H. The updates could be done the other way around. The stopping

criterion is usually a maximum number of iterations and some convergence test based

on the improvement of the solution between iterations. Also, the Frobenius norm can

be changed to any other cost function.

Multiplicative Update Rules

The usual iterative gradient descent algorithm using additive rules would update the

matrices W and H with negative values. To avoid this problem, Lee and Seung pre-

sented an algorithm based on multiplicative update rules (MUR) and proved their

convergence to an stationary point [39].

The multiplicative update algorithm became popular given its simplicity and ease

of implementation [49]. Furthermore, those update rules generalize easily to any beta-

divergence cost function [50]. The MUR can be viewed as an adaptive rescaled gradient

descent algorithm [41]. In fact, this optimization approach is similar to the Expecta-

tion–Maximization (EM) algorithms. The MUR follow the two-block coordinate descent

scheme.

The updates rules are the following ones:

Wij ← Wij
(XHT )ij

(WHHT )ij
(3.2)

Hij ← Hij
(W TX)ij

(W TWH)ij
(3.3)

However the MUR have some drawbacks. First of all, the algorithm is known to

be rather slow [41] compared to other more complex ones. This is in part because it

has a first-order convergence rate [51, 52]. Moreover, the multiplicative nature means

that the algorithm has trouble updating zeros or very small values in the matrices.

Nowadays, other more sophisticated algorithms exist to solve NMF, such as Hierarchical

Alternating Least Squares (HALS) algorithm [53].

3.5 Choosing the number of components

The number of components (basis or sources) to be extracted is determined by the rank

r. The rank r is a key NMF parameter. It fixes the dimensions of the factor matrices

H and W , thus, deciding how many sources are extracted. It should be noted that the
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standard NMF formulation is not sequential like SVD or PCA, meaning that the factor

matrices using rank r can be completely different to those of rank r + 1 [54].

There are several common methods used for choosing the rank r. The obvious one

is to try different values of r and choose the one performing the best for the application

problem at hand. The model order can be robustly estimated with cross-validation

scheme [55] when we have a classification task at hand. Moreover, the rank r can be

estimated by looking at the decay of the singular values of the input data matrix [56].

Other approaches in the literature involve using a Bayesian approach [57] or meta-

heuristics.

One common heuristic for the quality of the obtained NMF solution is to look at

how much of the data matrix X variability is retained in the approximation. We can

compute a Relative Reconstruction Error as ||X−WH||F
||X||F

. Naturally, the lower the relative

reconstruction error, the better.

3.6 Initialization

The solution obtained by the NMF algorithms will depend strongly on the initializa-

tion, given that different initializations will converge to different local optima. In the

literature, there are many ways of initializing the initial matrices W and H.

3.6.1 Random

The most simple method is to initialize the matrices with random non-negative values

drawn from a known statistical distribution, such as the uniform distribution.

3.6.2 NNDSVD

Perhaps one of the most popular methods is Nonnegative Double Singular Value De-

composition (NNDSVD) [58]. As explained on the Nimfa library [59], NNDSVD is a

method to enhance the initialization stage of the NMF when sparsity is desired. The

method has no randomization and is based on two SVD processes: one approximating

the data matrix and the other approximating positive sections of the resulting partial

SVD factors.

If sparsity is not desired, there is the variant NNDSVDa which fills the zeros with

the average of the data matrix X, and the faster variant NNDSVDar which fills the
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zeros with values drawn from a uniform distribution.

NNDSVD is well suited to initialize NMF algorithms with sparse factors. Fur-

thermore, empirical evidence suggests that NNDSVD leads to a fast reduction of the

approximation error in many NMF algorithms [58].

3.6.3 Random Vcol

Random Vcol [60] initializes each column of the basis matrix W by averaging m random

columns of the data matrix X. The initialization of encoding matrix H is performed

in a similar way but row-wise. The reasoning behind the procedure is that it can make

more sense to build the basis vectors from the data rather than randomly.

3.6.4 Random C

Random C [60] initializes each column of the basis matrix W by averaging m random

columns at random from the columns in the data matrix X with largest `2 norm.

Therefore, the most dense columns of the data matrix X are used. The initialization

of encoding matrix H is performed in a similar way but row-wise.

3.7 Cost function and beta-divergences

The most popular cost function is the Frobenius || · ||F norm but it can be changed to

any beta-divergence cost function dβ(X,WH) [50]. The beta-divergence distance can

be defined as [61]:

dβ(X, Y ) =
∑
i,j

1

β(β − 1)
(Xβ

ij + (β − 1)Y β
ij − βXijY

β−1
ij )

being the Frobenius norm when β = 2. For β = 0 and β = 1 the defined beta-divergence

is not continuous. However, these two special cases can be continuously extended and

are known as Kullback-Leibler (KL) and Itakura-Saito (IS) divergence respectively [61].

dKL(X, Y ) =
∑
i,j

(Xij log(
Xij

Yij
)−Xij + Yij)

dIS(X, Y ) =
∑
i,j

(
Xij

Yij
− log(

Xij

Yij
)− 1)
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NMF with the Kullback–Leibler (KL) divergence cost function has been shown to

be equivalent to probabilistic latent semantic analysis [62, 63].

3.8 NMF Variants

3.8.1 Sparse NMF

Sparse NMF is a NMF variation which enforces sparseness in either the basis matrix

W or the encoding matrix H [47]. If sparseness is enforced on the left matrix W the

formulation is called SNMF/L and if spareness is enforced on the right matrix H then

its called SNMF/R. Those formulations minimize the `1 norm [47].

Depending on which matrix the sparseness is enforced in, we can encourage the

learning of local or global solutions. This allows to enforce the learning of localized

sparse parts-based representations, or the opposite, which would yield a global solution,

that is, learning prototypes of objects instead of parts.

3.8.2 Semi-NMF

Semi-NMF is a variation of NMF which does not restrict the signs of the data matrix

X and the encoding matrix H [64]. This extension is motivated from the perspective

of clustering for when the data matrix X has negative values.

3.8.3 Convex NMF

Convex NMF is a variation that, like Semi-NMF, does no restrict the signs of the data

matrix X but with the additional constraint that the matrix H has to be formed as a

convex linear combination of the data matrix X. So the factor matrix H has do be of

the form H = XG for some matrix G [64].

3.8.4 Separable NMF

Under the separability assumption (equivalent to the pure-pixel assumption), the result-

ing modified NMF formulation can be solved in polynomial time [65] and it is known as

Separable NMF. The pure-pixel assumption for images is the idea that for each feature,

there is a pixel that is exclusively used by that feature.
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3.8.5 Nonnegative Matrix Underapproximation

There is a NMF variant called Nonnegative Matrix Underapproximation (NMU) [66]

which extracts sequentially the sources. It has been shown to lead to sparse solutions

[67].

3.9 Other factorization methods

3.9.1 Independent Component Analysis

Independent Component Analysis (ICA) is another approach to matrix factorization

where the data instances are assumed to be independent and not Gaussian [68]. The

algorithm is usually used to separate a signal into additive components that maximize

statistical independence. It can also be used as a factorization method to learn a

decomposition with some sparsity. Since the formulation of ICA does not include a

noise term, whitening of the data is applied [69].

3.9.2 Singular value decomposition

In linear algebra, the Singular Value Decomposition (SVD) is a factorization of a matrix

into three matrices.

Given a matrix X of size n×m, SVD can be formulated as an optimization problem

as follows. Let U ∈ Rm×r, V ∈ Rn×r and Σ ∈ Rr×r a diagonal matrix.

min
U,V,Σ
||X − UΣV >||2F

subject to U>U = I, V >V = I and diag(Σ) ≥ 0.

If we center the data, then we are performing PCA on a co-variance (correlation if

data is standardized) matrix of the centered data X.

If we have missing values, the problem can solved as a weighted PCA, with the

missing values having weight zero. This approach is also called Robust PCA.

3.9.3 Vector Quantization

Vector Quantization (VQ) learns a basis consisting of prototypes, each of which is a

representative individual of the data. One typical algorithm to solve VQ is the k-means

clustering algorithm.
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3.10 Relationship between methods

The NMF objective is to find a product of matrices WH which minimizes the recon-

struction error of X. The most popular loss is the Frobenius norm || · ||F . This norm

is popular thanks to its properties, and equals to assuming the noise on the data to be

Gaussian [37].

Furthermore, the assumptions of the noise or structure of the matrices W and H,

yields different methods [70]. For example, if we solve the matrix factorization problem

constraining the basis W to be orthonormal and the encoding H to be orthogonal, the

optimization problem becomes equivalent to SVD [39]. If additionally we assume the

data to be centered then the problem is equivalent to the well known PCA.

Alos, when optimizing the Frobenius norm, the NMF, Semi-NMF and Convex NMF

can be seen as relaxations of k-means clustering, also called soft k-means [71, 72]. Thus,

NMF can be motivated and interpreted as a more flexible clustering algorithm.
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Chapter 4

Background concepts

In this chapter, we introduce several miscellaneous concepts from statistics, machine

learning (ML) and computer vision. Those concepts will help to understand some of

the methods and decisions of later chapters of this thesis. Namely, we explain concepts

related to training a model robustly, such as data partitioning and cross-validation. In

this chapter, we also explain some types of image transformations such as morphological

transformations and image filters. We close the chapter with a brief explanation of some

classification methods.

4.1 Data partitioning

A common theme in ML consists in partitioning the data in a training set and a test

set. Usually, the partitions are stratified, that is, the splits are done such that they

preserve (approximately) the same proportion of classes (of the target variable) in the

complete set. Simply put, stratifying means that the class proportions are maintained

in all partitions. It is strongly recommended to shuffle the data and do stratified sam-

pling to obtain a good partitioning.

This data partitioning scheme is used mainly to overcome a problem called over-

fitting. If a model with enough flexibility is trained on the complete data, it will end

learning too much of the particularities of that data sample, and therefore failing to

predict reliably future unseen observations. In this scenario, we would say the model

overfitted the data. Figure 4.1 displays a visually representative example.
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Figure 4.1: The green line is to dependant on the training data, therefore, being likely
to have a higher error rate on new unseen data, compared to the black line [73]

By fitting the model with the training data, we can then test it against the test set

which the model has yet never seen. With that, we estimate the generalization error

more reliably, so that we can get an honest estimate to the real performance of the

model.

Sometimes, the data partitioning is done in three sets, training, validation and test

set. When done like this the idea is usually to use the train-validation set to fine-tune

the hyper-parameters and the test split to estimate the generalization n error.

4.2 Cross-validation

The learning algorithms usually have some parameters that need to be provided by

the user and not estimated by the model. Those parameters provide the method with

enhanced modeling flexibility, allowing it to work for many different problems. Those

parameters are usually called hyper-parameters to differentiate them from the param-

eters which are those estimated by the model.

However, those hyper-parameters need to be optimized for the task at hand. The

usual way to do it is by trying several sensible values. Again, if this procedure was done

directly with all the data, we would overfit those parameters to the available data.

To robustly fine-tune the parameters and select the better performing ones in gen-

eral, a cross-validation (CV) scheme can be performed. The CV procedure consists in

shuffling the data and partitioning it into k splits (also called folds) F = {f1, f2, ..., fk}.
For that reason, it is often called k-fold CV. A typical value for the number of folds is

k = 10.
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For each of the k folds, the model is trained over the other k − 1 folds and its per-

formance is tested against the fold not used for training. There are
(
k
k−1

)
combinations

which result in k iterations. The obtained validation errors are usually averaged to get

the mean validation error. The idea is to select the value of a hyper-parameter that

gives the minimum mean validation error. Having robustly selected the best value for

a hyper-parameter, the model is then retrained over all the training data. The image

in Figure 4.2 illustrates the procedure.

Figure 4.2: Data partition in train-test and 5-fold CV [74]

If the folds are split in a stratified manner then the procedure is usually called

stratified k-fold CV. The drawback of CV is that it can be computationally expensive.

Nevertheless, it does not waste as many data as, for instance, when fixing an arbitrary

validation set.

Figure 4.3: Flowchart of typical cross-validation workflow in model training [74]
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4.3 Nested CV

Nested CV is an extension of the usual CV scheme. Nested CV allows the estimation of

the generalization error of the underlying model while also tuning its hyper-parameters.

In the usual partitioning of the dataset, one fixed split is arbitrary chosen as test

data. Nested CV generalizes the concept of the train-test partitioning. Instead of

choosing an arbitrary test partition, an outer CV loop splits the data in kouter folds.

Like in regular CV, in each iteration one fold is used for testing and the remaining

ones are used for training. However, in this case an inner CV is performed on the

training partition, further splitting it on kinner train-validation folds. For each train-

validation split, a model is fitted on the train fold for a set of hyper-parameters and

the performance estimated on the validation fold. The set of hyper-parameters that

maximizes the averaged validation score are selected. A model is re-trained for each

train-validation split with the best hyper-parameters and then tested on the outer CV

test fold to estimate the generalization error [74].

Inner loopOuter loop

Validation

Validation

Validation

Test

Test

Test

Test

Train

Test

Train
subset

Validation

Figure 4.4: Double cross-validation illustration with outer 5CV and inner 4CV

In essence, nested CV uses a series of train-validation-test set splits to tune the

hyper-parameters and at the same time get a robust estimation of the generalization

error.

In fact, nested CV can be seen as repeating the training of the model each time

with a different train-test split. In a way, it is kind of repeating “an experiment”. The

important invariant is that the test split is always unseen data for the trained model

so that it can be used for estimating the generalization error.

The drawback, again, is that it is computationally expensive (more than regular
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CV). Nevertheless, this way we can get a more robust honest estimation of the perfor-

mance of the model while also optimizing the hyper-parameters.

4.4 Image transformations

In this section, we review some basics of image transformations, such as image thresh-

olding, morphological transformations, or image filters.

4.4.1 Morphological transformations

Morphological transformations are simple operations applied usually on binary images

based on the image shape. The operation takes as input the image and a structuring

element (also called kernel). The kernel determines the neighborhood to be examined

around each pixel where the operation is applied [75].

The operation consists on sliding the kernel through the image (like a 2D convolution

would). Therefore, the shape of the kernel (structuring element) allows control over

which shapes we want to affect with the operation. The default kernel is usually a

square.

The two most basic operations are called Dilation and Erosion. Erosion decreases

the white boundaries of the image shape. In other words, the thickness of the white

region decreases in the image. Dilation in the opposite transformation, it increases the

white region in the image. If we apply erosion followed by dilation, then we remove

noise (white speckles) in the image. This operation is called opening. If we instead

apply dilation followed by erosion, the operation is called closing and it is useful in

closing small (dark) holes in white objects. In Figure 4.5, an example of each operation

is displayed.

Original Erosion Dilation Opening Closing

Figure 4.5: Examples of morphological operations taken from [75]

There are some other transformations, such as morphological gradient, top hat and

black hat. The OpenCV library provides a great guide on the topic [75].
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4.4.2 Image Thresholding

Image thresholding is the simplest method to segment an image and get a binary

mask. As the name implies, a threshold value is set, and all pixel values smaller

than the threshold are set to 0, and 1 otherwise. More sophisticated methods of image

thresholding exist. There are automatic methods to select the threshold value, being

Otsu’s method one of the most famous. Also localized methods exist, which use a

different threshold for each small region in the image. Moreover, the thresholding

methods can be generalized to output a grayscale gradient transition instead of a binary

mask [75].

4.4.3 Image Filters

There exist many several filters that can be applied to an image. One interesting

family of filters are the blurring methods to reduce noise in images. The image filters

can be viewed as applying a two-dimensional convolution to the image. By setting

the appropriate kernel and convolving it with the image, many types of filters can be

applied [75].

Averaging

The simplest blur filter consists on convolving the image with a square normalized

kernel. In essence, this operation averages the pixel values under the kernel area.

Gaussian Blur

One popular blurring method is Gaussian blur, which corresponds to applying a Gaus-

sian function to the pixels of the image. The method works well for removing Gaussian

noise on the image.

Median Blur

If, instead, we have salt-and-pepper noise, then a median filter is highly effective. Me-

dian blur works by taking the median of all the pixels under the kernel area and replacing

the central element with the median value.

Bilateral Filtering

Another interesting filter is bilateral filtering, which removes the noise while keeping

the edges sharp. The method combines the use of two Gaussian filters to achieve the
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result.

Gamma correction

Gamma correction can be used to adjust the brightness of an image by using a non-

linear transformation between the input values and the mapped output values. On

Figure 4.6 we can see the relationship of input and output value.

Figure 4.6: Relationship between input and output values for several gammas [76]

Assuming an input image of 8-bit unsigned depth (0 to 255), gamma correction

corresponds to applying Output =
(
Input
255

)γ × 255 for some γ value. As this relation is

non-linear, the effect will depend on the original pixel value and will not be the same

for all the pixels. When γ < 1, the original dark regions will be brighter whereas it will

be the opposite for γ > 1.

4.5 Classification Models

A ML method is any algorithm that builds a model learning from data which can

then be used on new unseen data to make predictions. Many types of models exist,

each one with its use cases. For a detailed, thorough and technical explanation to this

topic and other ones, we refer the reader to the book [77]. In this section, we glimpse

over some standard well known ML classification methods that will be used in the

experimentation. A classification problem consists on identifying which category an

observation belongs to.
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4.5.1 Logistic Regression

Logistic Regression is an ML/statistical supervised method that fits a logistic function

for classifying a set of given instances in usually two outcomes. The method models

the probability of an instance belonging to a class. Then, a threshold value (usually

0.5) defines the boundary between both classes. When the probability of an instance

surpasses the threshold value, the instance will be predicted as belonging to one class,

and otherwise belonging to the other class. The method can be extended to work with

multiple classes.

4.5.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised method that works by finding a

linear combination of the data features that maximizes the separability of the classes.

This separation is achieved by maximizing the distance of the means for each category

while minimizing the variation of the classes within a class. The new instances will be

predicted by computing the probability of being part of each of the defined classes.

4.5.3 Support Vector Machine

A Support Vector Machine (SVM) is a supervised ML model that finds a decision

boundary that splits the data with the highest margin possible. In the basic SVM

description, a linear decision boundary is learnt by defining a high dimensional hyper-

plane to split the data, and usually works well for linear binary classification problems.

Additionally, SVMs can also be used for non-linear binary classification problems. The

SVMs can learn non-linear decision boundaries using what is called the “kernel trick”,

implicitly mapping the input data into high-dimensional feature spaces. The mapping

is done through a “kernel function”, being the most famous the radial basis function

(RBF). This allows the SVM to work for non-linear binary classification problems.
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Chapter 5

Experiments

In this chapter, we report the experimental settings of the thesis. We explain the

methodology, the task of interest, and describe the dataset. Furthermore, we report

the model exploration and how we arrived to the final preprocessing of the images.

Finally, we present and discuss the results.

5.1 Methodology

A thorough explanation of the methodology is provided in this subsection. Also, the

methodology is summarized on the detailed diagram in Figure 5.1.

For each of the image modalities, we will execute the factorization methods to

learn an unsupervised representation of the data. There are three image modalities

in the dataset, namely FR, OCT and OCTA. For the OCTA images there are four

sub-modalities: 3× 3mm superficial, 3× 3mm deep, 6× 6mm superficial and 6× 6mm

deep.

The needed filtering, and basic data preprocessing will be carried out. Then, we

will start working with small standard NMF models to see how the learnt sources look

like and see what features are captured. If the features captured are not interesting, we

will try to preprocess the images to remove such non-informative features.

We seek a parts-based representation. With that, we mean a representation where

we combine in a additive way some features to build the original image. What this essen-

tially means is that the target image will be reconstructed through a linear combination

of some learnt relevant components. In this setting, we will prefer the components to

capture sparse localized features so that the parts-based representation is easier to un-

derstand.
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After the images are filtered and preprocessed, unsupervised LDR models will be

built for each of the six types of image. The models included are NMF, Sparse NMF,

Separable NMF, Convex NMF, SVD, PCA, Sparse PCA, Factor Analysis, ICA.

We run the models with two approaches: considering each image as an individual

and considering each pixel as an individual. For some of the models, the results and

interpretations can be different depending on the approach.

We will estimate the rank r (number of components) by looking at the decay of the

SVD eigenvalues. We will take a relatively large number of components so as to not

restrict too much the features the models can learn.

For each combination of image type, model and parametrizations, the decomposition

obtained is made of components (basis) and weights (encoding). Following the same

scheme as other works [21] that use NMF for classification, we will use the encoding

matrices (H of size r × n) as input variables for the classification models.

This approach has the benefit of making the combination of different models built

for each image type straightforward. If there is at least some patterns captured by

sources which discriminate to some degree our task of interest then their weights will

reflect that. Still, since there will be a huge amount of weight variables we will perform

feature selection prior to robustly training the classifiers.

The measure of interest used to evaluate the suitability of source extraction for the

retinal images is the ability to discriminate better than random in the following two

binary classification problems.

• Discriminate between the eyes of non-diabetics (controls) and diabetics.

• Discriminate between asymptomatic (no DR) and symptomatic (DR) eyes.

To compare the performance of the models, the Area Under Curve (AUC) metric

will be used. This is a common metric used for this type of problems. The AUC metric

is defined as the area under the Receiver Operating Characteristic (ROC) curve. The

ROC curve quantifies the performance of a binary classifier for all the classification

thresholds. A classifier which always predict the majority class would have only 1

threshold and an AUC of 0.5. Also, a classifier which predicts following the prior

distribution of the training data will average an AUC of 0.5.
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Figure 5.1: Diagram summarizing the project flow

5.2 Tools

For the development of this thesis we use Python 3. The most relevant libraries are the

following ones:

• For manipulating the data we use the libraries NumPy and Pandas.

• For manipulating the images we use OpenCV, scikit-image and Pillow libraries.

• For executing the models we use sklearn, nimfa and PyNMF.

• For plotting and diagrams we use matplotlib and seaborn.

Needless to say, other tools were used, such as LaTeX to write this thesis or dia-

grams.net to create some of the diagrams.
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5.3 Dataset description

The dataset differs from many other datasets of common use mainly in that it has only

patients with Type 1 diabetes. Furthermore, in the provided labeled dataset there is

an extra class which are the controls, healthy people which do not have diabetes who

volunteered to undergo the taking of the images and clinical data. Therefore, for our

dataset, the DR scale is redefined to include the controls. On Table 5.1 we can see the

redefined scale.

0 Controls
1 No DR
2 Mild
3 Moderate
4 Severe
5 Proliferative DR

Table 5.1: DR scale rating when including controls

It should be noted that it would be difficult for a trained optometrist or ophthal-

mologist to discriminate between the retinal images of controls (class 0) and diabetics

with no DR (class 1). That is because diabetics with no DR (class 1) with a healthy

eye would not have any obvious signs on the FR and OCT images. Some recent devel-

opments show promising results for OCTA images [78].

The tasks of interest are to see if it is possible to discriminate better than random

the following two binary classification problems.

• Discriminate between the eyes of non-diabetics (controls) and of Type 1 diabetics

which correspond to class [0] versus class [1,2,3,4,5].

• Discriminate between asymptomatic (no DR) and symptomatic (DR) eyes which

corresponds to class [1] versus class [2,3,4,5].

The dataset includes 599 people in total. They have sequential numbered identifiers

from 1 to 599 both included. For each of the included people their medical record and

clinical history data is available (with missing values). Furthermore, the retinal images

acquired with the three imaging techniques (FR, OCT, OCTA) are available for both

the left and right eye (whenever possible). Note that this combination of modalities,

together with clinical data of the patients is an exceedingly rare combination to find in

existing research.
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Although the clinical data has interesting variables, they will not be used for clas-

sification, as this has already been explored by previous work [35] and because we aim

to focus on the use of source extraction.

Of course, for a variety of reasons some of the images (and clinical information) are

missing. Therefore, the data will need to be filtered and preprocessed. The first step is

to sort out all the nuances and errors in the data. Moreover, we need to make sure to

align the data in the excel sheet with the clinical information with the dataset images.

Sequential reading of the information will fail, given that there are some people with

missing images.

The process of aligning the folder IDs with their corresponding IDs in the Excel

sheet was carefully supervised by an expert ophtalmologist. This confirmation was

needed because, among other reasons, there is only clinical data for 596 people but 599

folders of information were available. Also, some of the persons have a missing value

on the target label variable in the Excel sheet.

Regarding the filter, we also have that some of the OCT or OCTA scans are cor-

rupted. Some examples can be seen in Figure 5.2.

Figure 5.2: Example of corrupted OCT and OCTA

Besides, some of the eyes on the dataset have other eye pathologies or previous

treatments. To avoid biasing the model performances, only people with good enough

quality OCT and OCTA were included. Also, those users that have been under treat-

ment or surgery that can affect the captured features were filtered out. Following the

advice of the ophthalmologist, the filter is implemented as specified on a previous study

[35]. The filter is based on variables found on the Excel data and it filters all OCT

and OCTA images. The FR images do not have any quality information and so all are

included. To be able to make use of all the image types in the dataset without having
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missing values, an eye is only included if and only if it is an included eye for all the

image types (FR, OCT, OCTA).

Total evaluated eyes

 

  Medical exclusion criteria

Macular edema
Previous ocular surgery
Previous ocular treatment
Previous macular laser
Concomitant ocular pathology

Glaucoma
Amblyopia
Myopia
Retinal Vein Occlusions
Uveitis
Others

Total included eyes

  Quality exclusion criteria
    • Artifacts
    • Signal Strength Index < 7
    • Incorrect FAZ

Figure 5.3: Diagram showing the exclusion criteria [35]

After applying the exclusion criteria, we are left with 771 eyes. There was a discus-

sion to consider if we should work with each eye as a individual or join the information

for each patient. In the end, the analysis unit was chosen to be each individual eye

to have a larger dataset. According to Dr. Zarranz-Ventura, there should not be a

bilaterality bias as in a clinical setting joining the information is only required when as-

sessments are done for systemic factors (i.e. age, duration of disease, blood parameters,

etc.).

DR
scale

No. eyes before
filter

No. eyes after
filter

0 228 136
1 610 445
2 245 162
3 42 25
4 5 2
5 44 1

Figure 5.4: DR class counts 0 1 2 3 4 5
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Figure 5.5: Distribution of labels

Looking at the distribution of the instances in the dataset, we noticed that there

are too few class 3, class 4 and class 5 eyes after filtering. Thus, it makes more sense

to aggregate them into three classes: class 0, class 1 and class [2,3,4,5].
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5.3.1 Quality of retinal images

The FR images have dimensions 2576× 1934 (Width × Height) and are saved in TIF

file format. The images are in RGB color space, and the metadata reports 24 bit depth

(8 bit per channel) which is saved uncompressed. The file size of each image is 14.2 MB.

The OCT images have resolution 506 × 338 (Width × Height) and are saved in

JPEG file format. The images are in RGB color space, and the metadata reports 24

bit depth (8 bit per channel). The file size of each image is around 65 KB. There is one

image (0062 Left Eye) which has size 508× 338.

The OCTA images have resolution 1024× 1024 (Width × Height) and are saved in

bitmap (BMP) file format. The images are gray-scale with 8 bit depth. The file size

of each image is 1.0 MB. There are 6 images (from people with identifiers 0179, 0364

and 0577) which have 32 bit depth (8 bit per channel) and weight 4.0 MB accordingly.

Inspecting those images and comparing their individual color channels revealed that

each image only has one channel but repeated.

There is a folder for each person named with their ID on the dataset. Inside each

folder, there are their corresponding images. The image filenames have clear patterns

that identify which eye and type of image is, being this the only way for reading them

automatically. However, there are some typos and errors. Therefore an analysis was

conducted to identify the problematic images. The analysis was done by counting how

many images each person has for each image type. Those who did not have the expected

counts were manually inspected.

• The folders with ID 0309 and 0593 are empty.

• The people with ID 0035, 0233, 0377, 0396 have a missing right eye.

• The folder with ID 0015 has the left eye missing.

• The folder 0062 has no OCTA 6× 6mm for the right eye.

• The folder 0102 has no right eye OCTA 3 × 3mm deep and no right eye OCTA

6× 6mm superficial.

• The folders 0102, 0103, 0106, and 0137 have wrong formatted filenames which

were fixed.

• The folder 0456 has two extra duplicated left eye OCTA 3× 3mm images.

• Folder 0336 has its right eye OCT wrongly named and an exact copy of the left

eye OCT. The wrongly named right eye OCT was removed.
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• Folder 0140 has an extra left eye retinography image which was removed.

After all of the applicable changes were performed, we proceeded to convert the

dataset to compressed PNG format to save disk space without losing quality (original

dataset has size 21.4 GB). Also, to avoid the need to always apply pattern matching

on the names, it made sense to separate the dataset for each of the images types.

5.4 Exploration

The first exploration step consisted on experimenting with small models for each type

of image and then inspect the extracted components. This way, we can have a first

insight on what models learn and how they can be improved.

5.4.1 Retinography

With the FR photographs we built some small models extracting a few sources and

look at what the model is learning. We started by learning from the images in a RGB

(Red, Green, Blue) color space.

Figure 5.6: Six sources of the FR exploratory model

We can see that models are learning to separate the color channels, the shades

and illuminations, which is not what we are looking for. The goal is to normalise the

illumination, which can be achieved with local adaptive filters. Regarding the color

channel, we know that the vessels are mostly on the green channel [79]. Furthermore,

the winner of the Kaggle 2015 competition made public his preprocessing of the images,

so we will try to use a similar approach.
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5.4.2 OCT

Starting with the OCT scans we build small models using few sources and look at what

the model is learning. We started learning the images in a RGB (Red, Green, Blue)

color space.

Figure 5.7: Nine OCT sources of the exploratory model

Looking at the results on Figure 5.7, we can see that the model is actually learning

different translations and rotations of the OCT scans, which is not what we sought.

Moreover, the last source, which looks quite strange, it is actually due to some OCT

scans being in a grayscale color space instead of RGB.

In fact, it was confirmed with the ophthalmologist that the OCT scans were origi-

nally grayscale and that the color in the image is just an added color map for visual-

ization. Therefore, we converted all images to grayscale.

Furthermore, to be able to learn more intrinsic features, instead of the obvious ones

such as position and rotation, we need to develop a preprocessing step to isolate the

region of interest (ROI).

Another thing we noticed is that there is a legend and symbol on the left of the

OCT scan. This is recurrent in (almost) all of the OCT scans and it is isolated in its

own source by the model, as can be seen in the bottom left source of Figure 5.7.

In fact, for the OCT images in grayscale, NMF was executed with r = 1, 2, ..., 50

to inspect the behaviour of increasing the rank r. The pattern superimposed over the

OCT-scans (the magenta bar and the legend of the OCT-scan) which is placed almost

in the same place for all images, was not factorized until rank r = 13.
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Figure 5.8: Legend and lateral bar extracted by the NMF decomposition

5.4.3 OCTA

OCTA images are mostly fine as they stand and can be used as is. In Figure 5.9, some

of the learnt sources are displayed. Nevertheless, we will consider some noise reduction

filters such as a median filter, bilateral filter and different types of image thresholding.

Figure 5.9: OCTA deep sources on the above row and OCTA superficial sources on the
bottom row

Also, when learning, the model identified artifacts present in some of the images.

For example, one component helped identify six images which had the camera model

watermark on the bottom right of the image.

Figure 5.10: OCTA images with a watermark on the bottom right
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It also identified the eye of a patient with a very unusual path of the eye nerve

through the FAZ area. We can see it in Figure 5.11.

Figure 5.11: Eye with unusual vessel pathing

5.5 Preprocessing

5.5.1 Retinography

We consider here the preprocessing method proposed by Ben Graham, the winner

of 2015 DR Kaggle Competition [80]. He preprocessed the images according to the

following steps:

1. rescale the images to have the same radius (300 pixels or 500 pixels)

2. subtracted the local average color; the local average gets mapped to 50% gray

3. clipped the images to 90% size to remove the boundary effects

Those preprocessing steps are intended to remove some of the variation on the images

due to lighting conditions, exposure, etc. Graham provides an OpenCV implementation

in Python 2.7 [80]. In Figure 5.12, we see an example of Graham’s preprocessing.

Figure 5.12: Example of Graham’s data preprocessing
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It should be noted that Graham’s preprocessing procedure was designed to be used

for a sparse neural network [81]. Using the preprocess “as is” for NMF is not really

adequate. To make it easier for the NMF model, the background should remain dark

and the vessels should be bright. That encourages NMF to learn vessel patterns or sys-

tematic retinal defects. Also this way, the same component can be more easily re-used

to reconstruct several eyes.

To achieve such result, the subtraction of the local average color is mapped to white

and inverted after that. Moreover, the result is a RGB image for which the red channel

mostly captures the hemorrhages and lighting artifacts, the green channel captures the

vessels and the blue captures mostly nothing. We can see that in Figure 5.13.

Figure 5.13: Modified preprocessing result shown separately for each RGB channel

Gamma correction was applied on the red channel to leave only the brightest colours.

On the green channel, we do the opposite in order to emphasize the vessels.

We also tried to see the suitability of the polar transformation, given that the eye has

circular shape. Moreover, the Fast Fourier Transform was also explored. Preliminary

basic testing did not show promising results. Also, to make the learnt features more

robust, we tried splitting the image in small patches and learn from those. Although

promising, we did not pursue it because it would be better to have a model capable of

learning such localized transformation by itself.

5.5.2 OCT

For OCT, we need to normalize the position and rotation of the images. To do that we

crop the region of interest (ROI) and remove the legend and bar in the image.
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Overlay

Further inspection shows that all color images have the legend overlaid on the same

positions although the few images in grayscale do not. In some cases the overlay is on

the region of interest (ROI).

The overlay consists in a magenta vertical line and a white square indicating the

orientation of the scan. Since those are very different colors compared to the ones

present in the ROI we perform an analysis of a 3D scatterplot where we can look at

which range of values are those specific colors located an remove them. An example

can be seen on Figure 5.14.

Figure 5.14: 3D scatterplot of an OCT image in HSV
color space with highlighted white and magenta colors

We could do that in the RGB space but it was a bit better to perform the operation

in HSV (hue, saturation, value) color space. We can see the result of the separation in

Figure 5.15.

Figure 5.15: Original image, filtered image and mask respectively

50



Segmentation

After removing the overlay, we explored segmentation methods. We started with Chan-

Vese automatic segmentation as seen in Figure 5.16. Although it works very well in

most cases, sometimes it crops half of the image. Furthermore, it is a rather slow

method.

Figure 5.16: Example of Chan-Vese automatic segmentation

Subsequently we proceeded to develop a custom automatic pipeline to extract the

region of interest (ROI). We experimented many different methods and ways, by trial

and error. In the following section, we explain the final result, skipping most of the

failed transformations.

To fix the rotation of the image, we extract an approximation of the shape of the

image. To efficiently obtain the shape in a reliable way, we apply a median blur filter

followed by a bilateral filter to reduce the noise. The reason is that OCT scans have a

significant peak signal-to-noise ratio. To the result, we apply a morphological opening

with an horizontal line kernel which has the effect of reducing the vertical lines (while

preserving the horizontal). Then the resulting shape is dilated with a vertical line

kernel. This procedure extracts the shape of the OCT scan as a binary mask.

Rotation

Once we have the shape of the ROI, we explore how to fix the rotation. PCA was

used to find the orientation of the shape. Having the two first principal components

of the mask, we can compute the angle between the x-axis and the first component

eigenvector with some basic geometry. Given an eigenvector (x, y), we compute the

angle as arctan( y
x
). The angle is adjusted such that the minimum needed rotation is

performed (clockwise or counterclockwise).

Although PCA works well, we found a more efficient way. We can estimate a

best fitting ellipse (using the second order moments) and use its properties to get the

orientation. This turns out to be more efficient and was done with the regionprops

function of the scikit-image library.
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Figure 5.17: From left to right: minAreaRect, PCA, regionprops

In the end, though, for both rotating and cropping the area of interest, it ended

being better to find the best fitting rotated rectangle using the OpenCV library func-

tion minAreaRect. After getting the coordinates of the rotated rectangle, we mapped

it using a perspective transform to a non-rotated rectangle.

Curvature

For people with a bit of myopia, the acquired OCTs are curved. According to Dr.

Zarranz-Ventura, the curvature is related to the “Axial Length” variable. People with

too large curvature are excluded, but that still leaves eyes with some non-negligible

curvature.

To straighten the image, we made again use of the mask shape of the image. We

know that the curvature will be either convex or concave. Therefore, we fitted a

parabola (polynomial of degree 2 or also known as quadratic polynomial) to the mask

in order to estimate its curvature. Then, we shifted (also called roll) the columns so

that they align with the fitted parabola. An example can be seen in Figure 5.18.

Figure 5.18: Procedure of straightening the OCT scan
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Skewness

This perspective transform of the minAreaRect rectangle adds skewness to the image.

The larger the required rotation, the more skewed is the resulting image. We can see

an example on Figure 5.19.

Figure 5.19: Left: the skewed OCT. Right: skewed OCT mask.

To fix the skewness, we obtained a binary mask and used (for efficiency) the second

order moments to compute the skewness of the image in the vertical axis. The binary

mask can be seen in Figure 5.19.

The skew is computed using the second order moments of the image as µ11
µ02

and a

perspective transform (shear matrix) is applied. In Figure 5.20 we can see the result

after deskewing and the final result after cropping the black borders.

Figure 5.20: Left: the deskewed OCT. Right: final cropped OCT.

As a final step, we applied a non-aggressive bilateral filter to reduce the noise.

Since after cropping and transforming, we end up with images with slightly different

dimensions, we looked at the mean and median sizes of all the cropped images and used

it to make an informed decision to resize the image to size. The results showed that

resizing to dimensions 500× 100 worked well.

5.5.3 OCTA

The OCTA images are good enough as they are. Nevertheless, for the superficial images,

we tried some vesselness known image filters such as frangi, meijering and sato [82].

Those filters can be used to detect continuous ridges such as vessels. An example is

provided in Figure 5.21.
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Figure 5.21: Example of applying frangi filter to an OCTA 3× 3mm superficial

5.6 Learning unsupervised representation

After having performed all the filtering and preprocessing of the data, we executed a

final definitive run for all the models. Each NMF and NMF variant model was run with

different initializations. Namely, we ran them with random, NNDSVD and NNDSVDa

initializations. The other factorization models (SVD, PCA, etc) were run with the

default parameters.

Regarding the number of components to extract in the factorization models, since

the task at hand is a classification problem, we could use a CV scheme. However, we

would have to tune it for each model and initialization. This is a rather cumbersome

procedure and, therefore, we used a different strategy. We decide a sensible range of

values to try by looking at the decay to the SVD eigenvalues. This is essentially the

same as looking at the retained variance of PCA. We will choose a large enough range

and execute for several values of components. We will leave it up to the feature selection

to decide which decomposition is the best.

We tried to use the images at full resolution, but it ended being better to reduce

the sizes. Therefore, to make to make it more feasible for the factorization models, the

size of FR images was reduced to 256×256, OCT to 100×500 and OCTA to 256×256.

With this data, we analyze the SVD explained variance, which can be seen on Figure

5.22.

Something interesting to notice is that OCT images have a better curve than the

rest. One possible reason could be that the factorization method does not agree well

with the vessel variability present on the FR and OCTA images.

Based on the plot, we decided to run the models for r ∈ {64, 128, 256, 384}. Going

beyond that for most models would result in learning specific individuals, instead of

features. For the sparse models though, it could make sense to have even larger number

of features, but we do not expect to have huge amount of relevant sparse and localized

features in the data.
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Figure 5.22: SVD cumulative percentage of variance explained

After having learnt the unsupervised representation, the encoding matrices will be

used as features. Then a feature selection and double cross-validation scheme will be

performed to train and test the models.

5.7 Feature selection and classifier training

The feature selection will be performed using a similar approach as carried out in recent

unpublished work with radiomics by student Laura Carrera Escalé under supervison

of Dr. Enrique Romero Merino and Dr. Alfredo Vellido Alcacena. A feature selection

approach based on mutual information (MI) will be applied and a stratified double-cross

CV scheme will be used to robustly train and test the classification models.

The MI between two random variables is a measure of the dependency between the

variables. It equals zero if and only if the two random variables are independent, with

higher values representing a higher dependency [82, 83].

The feature selection is carried for each of the classification tasks (diabetic or non-

diabetic and presence of DR) and for each subset of features (FR, OCT, OCTA and

all of them). The following ML/statistical classification methods were used: LR, LDA,

Linear SVM and RBF SVM.

Each selected subset of features is ordered from highest to lowest MI with the target

class and the first 32 features are selected (the 32 with the highest MI). To do this in a

robust way, this procedure is carried out using a 10-fold CV. The MI of each variable

is computed for each split. This provides us with 10 MI estimates for each variable,
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which are then averaged.

Then, using a double CV scheme, the hyper-parameters of the models are optimized

and the generalization error estimated. Specifically, the inner CV is used to select the

best hyper-parameters according to the averaged validation AUC metric. Once the

parameters of the models have been defined, a (optional) backward elimination wrapper

method is applied to remove the irrelevant or less useful features for the model. To check

if a feature can be safely removed, the hyper-parameters are re-optimized on the same

corresponding inner CV to see if there is a decrease on the averaged AUC metric. Once

the features and hyper-parameters are selected, a model is re-trained for each inner CV

train split and are tested on the corresponding outer test CV fold.

The stratified double CV is defined with 5 splits on the outer CV and 4 splits of

the inner CV. This gives us a total of 20 iterations. Using the explained double CV

scheme, we get 20 test estimates that will be shown as a boxplot. We would get 5 test

estimates (instead of 20) if we re-train on the outer CV train split.

The grid search for the hyper-parameters of the classification methods is shown in

Table 5.2.

Method Hyper-parameters
Logistic Regression C = 10−3:3

LDA None
Linear SVM C = 101:4

RBF SVM C = 101:4, γ = 10−4:1

Table 5.2: Grid search values for the hyper-parameters of the classification methods.
The notation x : y denotes all the integers in the range [x, y].

5.8 Results

5.8.1 Useful sources learnt

After executing the models, we take a look at the learnt components. We show some of

the relevant learnt NMF sources for each type of image when initialized with NNDSVD.

We do not show the non-NMF components because those are difficult to interpret.

In Figure 5.23, we can see some of the sources learnt by NMF for OCT images. We

can see the sources are a localized parts-based representation.
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Figure 5.23: Some NMF sources from OCT retinal images (initialized with NNDSVD)

Looking at the learnt NMF components for the deep OCTA images (Figure 5.24),

we can see that they capture the different patterns around the FAZ area.

Figure 5.24: Some NMF sources from OCTA deep images (initialized with NNDSVD)

The learnt NMF features for the superficial OCTA images can bee seen in Figure

5.25. A sparse representation is learnt. We notice that the bottom vessel is being

captured by different components depending of its position.

Figure 5.25: Some NMF sources from OCTA superficial (initialized with NNDSVD)

Some of the learnt NMF components for the FR images can be seen in Figure 5.26.

The sources mostly seem to capture the thickest vessels. Like in the OCTA sources,

there is variability on the positioning of the vessels which ends captured in different

sources.

Figure 5.26: Some NMF sources from FR images when initialized with NNDSVD
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5.8.2 Classification results

We include a Dummy Classifier that generates predictions by respecting the training

set class distribution. This classifier will have an average of AUC of 0.5. We note that

a classifier which always predicts the class that maximizes the class prior (the most

frequent label in the training set) will have an AUC of exactly 0.5.

We tried two approaches, using all the learnt features and using only the NMF and

NMF variants features. Even when using all the learnt features, the feature selection

procedure ended selecting many of the NMF features as the most useful ones. Thus,

the results were pretty much the same in both settings (within a small margin of error).

Because of that, the results we present in the following section are those using only

the NMF and NMF variants features. This way, we can make better use of the easy

interpretability of the parts-based learnt decomposition of the NMF sources.

Discriminating DR

The binary classification task of discriminating between the asymptomatic (no DR) and

symptomatic people (DR) corresponds to class 1 versus class [2,3,4,5]. We name this

classification task 1-2. For this task, we obtain the results shown in Figure 5.27.
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Figure 5.27: Resulting boxplot when discriminating for DR
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We can see that OCT features are the ones with best results. The FR and OCTA

features yield more or less similar results. The best results are obtained for logistic

regression and LDA. We think the reason the SVM classifiers works worse is because

the hyper-parameter search was not exhaustive enough, but this should be further

investigated.

Discriminating DM

The binary classification task of discriminating if the eye is from a diabetic or not (class

0 vs the others). We name this classification task 0-12. We obtain the results shown

at the left plot in Figure 5.28. We can see that, again, the OCT features produce the

best performance. The FR features work better than random, while the OCTA features

are all over the place. Again, we see that the SVM has worse results than the simple

classifiers, which further supports the idea of lack of fine tuning of the hyper-parameters.
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Boxplot of task 0-12
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Figure 5.28: Boxplots of the results when discriminating DM from controls

At this point, we inspected the sources which gave the best results and we found a

bias in the data. Specifically, we found that the range of images from 388 to 420 have

OCT scans with different noise and level of gray. In Figure 5.29, we can observe some

examples.
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Figure 5.29: Example of the possible bias in the data

Figure 5.30: Example of the possible bias on the original images

This, in itself, would not be necessarily a problem if it was not because that range

of images has more controls than the other classes. In the filtered data, those are 32

individuals of class 0, 4 of class 1 and 1 of class 2. In the non-filtered data those are 55

of class 0, 6 of class 1 and 4 of class 2.

According to the expert, that could be because the lens of the camera equipment was

dirty when those images were taken, or something to do with how they were exported

from the camera equipment software. In order to progress with this work, we decided

to test how the model performs removing those instances. This change means going

from having 136 class 0 eyes to have to have 104.

If we re-execute the models after this change we obtain the results shown on the

right plot of Figure 5.28. The results of the OCT worsened a bit and have more vari-

ance. Oddly enough, the retinography images improved a bit. Since there is no quality

filter for the FR images, it could be that the removed instances were difficult instances

where the models failed previously. Also, we notice that although the OCTA results

worsened a bit on average, they stabilized, exhibiting less variance.

As an extra (improvised) task, we also tried to classify class 0 from class 1 when

removing the allegedly easier cases of classes 2,3,4,5. We name this task 0-1. The

results are in fact a bit worse, with the mean being around 0.65 AUC with bias and

0.60 without for the best performing model (LR with OCT features). The results are

still better than the dummy classifier in both cases, albeit only by a small margin.
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Discriminating controls from DR

For completeness, we perform the classification task class 0 versus [2,3,4,5]. Hence,

we remove the class 1 which is the majority class. This way, we will emphasize the

importance of the bias of the class 0. We call this classification task 0-2. The reason to

not have done a three class classification problem is because the problem was originally

defined as two binary tasks. Also, given the found bias in the aforementioned range of

images, we execute the models with and without the bias. The results can be seen in

Figure 5.31.
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Figure 5.31: Boxplots of the results when separating controls from DR

It is clear that the results are consistently better and with less variability when

including the range with the bias. In fact, in this case all the models perform similarly,

even the SVM which gave worse results in the other tasks. Removing the biased range

decreases the performance and increases the variability of the results, but it is still

better than the dummy classifier. A noticeable detail is that in this classification task,

using all the features (FR, OCT, OCTA) gives consistently the best results with and

without bias.

Summary

We provide a summary plot for each main classification task side by side, showing only

the logistic regression model and dummy classifier results (Figure 5.32).
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Figure 5.32: Boxplots of the classification tasks side by side

The easiest problem and the one that performs the best is the task 0-2. As for the

results of the other two problems 1-2 and 0-12, they are pretty much the same. We

also tried an improvised modification of the task 0-12 which we named task 0-1 which

is a harder problem, and as expected, the performance was indeed worse. Overall it

seems like for some reason, the class 0 is easier to discriminate than it should even after

taking the found bias into account. The results of the problem 1-2 are not impressive

in comparison to other works in the state of the art. In the other classification tasks

though, we obtain promising results which warrant further exploration.
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Chapter 6

Conclusions

The results, specially for the OCT images, are promising. Furthermore, by using in-

terpretable models we were able to discover a bias in the data and correct for it. Even

after taking the bias into account, promising results were obtained which merit further

exploration.

The preprocessing of the images was thorough and satisfactory, and the models

learned a parts-based representation. With those, we were able to get results that are

fairly comparable to the radiomics approach.

As a overall trend though, we could see that the FR and specially OCTA images

lagged behind. The most likely reason being that the vessels exhibit too much variabil-

ity for a linear factorization method. Manual inspection of the sources supports this

hypothesis. Therefore, for those type of images, we conclude that factorization models

may not be the best choice and thus other approaches should be explored.

As for the set of objectives of this thesis, we believe to have achieved all of them

successfully, albeit with varying levels of success.

• We reviewed the imaging techniques and the NMF literature.

• We explored the retinal image dataset and fixed several data problems.

• We filtered the dataset based on a previous study and implemented the needed

preprocessing for the unsupervised factorization models to work.

• We implemented and applied a feature selection and double CV scheme to robustly

estimate the performance of the resulting decompositions.

Nevertheless, there are some limitations that must be acknowledged. Regarding

the classifier training, there was a possible lack of exhaustive fine-tuning of the SVM

classifiers. Also, due to the limited amount of data, we were no able to do a double
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CV with more folds. Besides, and perhaps more importantly, even if the results are

promising for the given dataset, the unknown that remains is how reproducible would

be this approach for other datasets of Type 1 DM.

6.1 Some extensions: Neural Network

Based in a previous work [84], we exploratorily tried to apply transfer learning to the

OCTA 6 × 6mm superficial images. Authors in that study show good results using

transfer learning on a VGG-16 neural network architecture with ImageNet weights.

They freeze the neural network layer weights except for the last network layers. We

tried to reproduce this setting using the same number of frozen network layers and

several others. However, we were not able to obtain any relevant results in our dataset.

This could be due to many reasons, including on how the implementation of the transfer

learning was done, or because of the dataset.

6.2 Future work

Future work could include a non-linear variant of NMF such as kernelized NMF. If

non-linear encodings are pursued, perhaps an auto-encoder may be also a good idea,

especially if the model explainability is addressed with, for instance, a SHAP (SHapley

Additive exPlanations) approach.

Needless to say, ad-hoc defined features based on the medical knowledge of the

retinal images might lead to improved results.

The limited number of instances could be mitigated by using transfer learning

scheme, which would enable the use of deep neural networks, or even deep NMF. Still,

if this approach is to be pursued, as shown in the literature, precautions would need to

be in place to avoid overfitting.

Also, (semi-)supervised matrix factorization could be used to improve the results.

Nevertheless, we would only expect a slight improvement over the non-supervised mod-

els. One example would be Discriminant NMF. In this direction, another interesting

approach could be factorization machines.
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[12] Werner, J. U., Böhm, F., Lang, G. E., Dreyhaupt, J., Lang, G. K., & Enders,

C. (2019). Comparison of foveal avascular zone between optical coherence to-

mography angiography and fluorescein angiography in patients with retinal vein

occlusion. PLoS ONE, 14 (6), e0217849.

[13] Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy,

A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J. et al. (2016). De-

velopment and validation of a deep learning algorithm for detection of diabetic

retinopathy in retinal fundus photographs. Jama, 316 (22), 2402–2410.

[14] Lynch, S. K., Shah, A., Folk, J. C., Wu, X., & Abramoff, M. D. (2017). Catas-

trophic failure in image-based convolutional neural network algorithms for de-

tecting diabetic retinopathy. Investigative Ophthalmology & Visual Science, 58 (8),

3776–3776.
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