
Final Master’s Degree Thesis

RGB to 3D garment reconstruction
using UV map representations

Master’s Degree in Artificial Intelligence

Author:
Albert Rial Farràs

Supervisors:
Sergio Escalera Guerrero

Meysam Madadi

June 2021

Albert Rial Farràs: RGB to 3D garment reconstruction using UV map representations.
©, June 2021.

A Final Master’s Degree Thesis submitted to the Facultat d’Informàtica de Barcelona
(FIB) - Universitat Politècnica de Catalunya (UPC) - Barcelona Tech, Facultat de
Matemàtiques de Barcelona - Universitat de Barcelona (UB) and Escola Tècnica Superior
d’Enginyeria - Universitat Rovira Virgili (URV) in partial fulfillment of the requirements
for the Master’s Degree in Artificial Intelligence.

Thesis produced under the supervision of Prof. Sergio Escalera Guerrero and Prof.
Meysam Madadi.

Author:
Albert Rial Farràs

Supervisors:
Sergio Escalera Guerrero
Meysam Madadi

Location:
Barcelona, Spain

Abstract

Predicting the geometry of a 3D object from just a single image or viewpoint is
an intrinsic human feature extremely challenging for machines. For years, in an
attempt to solve this problem, different computer vision approaches and techniques
have been investigated. One of the domains in which there has been more research
has been the 3D reconstruction and modelling of human bodies. However, the
greatest advances in this field have concentrated on the recovery of unclothed
human bodies, ignoring garments.

Garments are highly detailed, dynamic objects made up of particles that interact
with each other and with other objects, making the task of reconstruction even more
difficult. Therefore, having a lightweight 3D representation capable of modelling
fine details is of great importance.

This thesis presents a deep learning framework based on Generative Adversarial
Networks (GANs) to reconstruct 3D garment models from a single RGB image.
It has the peculiarity of using UV maps to represent 3D data, a lightweight
representation capable of dealing with high-resolution details and wrinkles.

With this model and kind of 3D representation, we achieve state-of-the-art results
on CLOTH3D [4] dataset, generating good quality and realistic reconstructions
regardless of the garment topology, human pose, occlusions and lightning, and thus
demonstrating the suitability of UV maps for 3D domains and tasks.

KeyWords: Garment Reconstruction · 3D Reconstruction · UV maps · GAN ·
LGGAN · CLOTH3D · Computer Vision · Deep Learning · Artificial Intelligence.

3

4

Acknowledgments

First of all, I would like to express my gratitude to my supervisors Meysam and
Sergio for the opportunity to work with their group. I am very grateful for the
supervision and expertise of Meysam Madadi, established researcher of the Human
Pose Recovery and Behavior Analysis (HuPBA) group. His implication, as well as
all the help and advice provided, have been key for the development of the project.
The results obtained are the fruit of countless meetings and discussions with him.
This master thesis would also not have been possible without the direction of
Sergio Escalera, expert in Computer Vision, especially in human pose recovery and
human behaviour analysis.

I would also like to thank the entire Human Pose Recovery and Behavior Analysis
(HuPBA) group and the Computer Vision Center (CVC) for providing me with
the computational resources necessary for developing the project.

In the Master in Artificial Intelligence (MAI), I have met wonderful people, good
friends and excellent professionals, who I am sure will achieve everything they
aspire to do. I want to thank them for all the support they have given me during
the development of this project and the whole master.

Finally, I cannot be more grateful to my family for their unconditional support in
everything I do. They are my rock.

5

6

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Contribution . 14
1.3 Overview . 14

2 Background 17
2.1 Generative Adversarial Network . 17

2.1.1 Conditional GAN . 19
2.2 3D data representations . 20

2.2.1 Voxel-based representations 20
2.2.2 Point clouds . 21
2.2.3 3D meshes and graphs . 21
2.2.4 UV maps . 21

3 Related work 23
3.1 3D reconstruction . 23

3.1.1 Learning-based approaches 24
3.2 Garment reconstruction . 26
3.3 UV map works . 28

4 Methodology 31
4.1 Our UV maps . 31

4.1.1 Normalise UV maps . 31
4.1.2 Inpainting . 32
4.1.3 Semantic map and SMPL body UV map 33

4.2 LGGAN for 3D garment reconstruction 33
4.2.1 Architecture . 34
4.2.2 3D loss functions . 40

5 Experiments and Results 43
5.1 Dataset . 43
5.2 Experimental setup . 45

5.2.1 Training details . 45
5.2.2 Evaluation metrics . 47

5.3 Results . 48
5.3.1 Normalisation techniques . 48
5.3.2 Inpainting UV maps . 49

7

8 CONTENTS

5.3.3 Semantic map vs Body UV map conditioning 50
5.3.4 Removing local generation branch 51
5.3.5 3D mesh losses . 52

5.4 Ablation study . 54
5.4.1 Quantitative analysis . 54
5.4.2 Qualitative analysis . 55

5.5 Comparison with SOTA . 58

6 Conclusions and future work 59

Bibliography 61

List of Figures

2.1 GAN architecture . 17

2.2 Conditional GAN architecture . 20

2.3 UV map example . 22

2.4 Cube UV mapping/unwrapping . 22

4.1 Original UV map vs Inpainted UV map 32

4.2 Semantic segmentation map and SMPL body UV map 33

4.3 LGGAN overview . 34

4.4 LGGAN overview - Conditioning on SMPL body UV map 35

4.5 Parameter-Sharing Encoder . 36

4.6 Class-Specific Local Generation Network 37

4.7 Deconvolutional and convolutional blocks architecture 38

4.8 Class-Specific Discriminative Feature Learning 39

5.1 CLOTH3D sequence example . 44

5.2 CLOTH3D garment type examples 44

5.3 CLOTH3D dress samples . 44

5.4 CLOTH3D subset garment type distribution 45

5.5 Original image vs Pre-processed image 46

5.6 Normalisation techniques reconstruction examples 49

5.7 Inpainting technique reconstruction example 50

5.8 Conditioning approaches reconstruction examples 51

5.9 Local generation network contribution example 52

5.10 Attention local weight map example 53

5.11 3D mesh losses contribution example 53

5.12 Ablation study on a T-shirt+Skirt sample 56

5.13 Ablation study on a Dress sample 57

5.14 Ablation study on a T-shirt+Trousers sample 57

5.15 Ablation study on a Top+Skirt sample 58

9

10 LIST OF TABLES

List of Tables

5.1 Normalisation experiment evaluation 49
5.2 Inpainting experiment evaluation 50
5.3 Conditioning map experiment evaluation 51
5.4 Local generation branch experiment evaluation 52
5.5 Mesh losses experiment evaluation 54
5.6 Ablation study . 55
5.7 S2S comparison against SOTA . 58

Glossary

CV: Computer Vision

DL: Deep Learning

AI: Artificial Intelligence

GAN: Generative Adversarial Network

CGAN: Conditional Generative Adversarial Network

LGGAN:
Local Class-Specific and Global Image-Level Generative Adversarial
Network

SMPL: Skinned Multi-Person Linear model

11

12

1. Introduction

This master thesis tries to find a proper system to learn garment dynamics and
reconstruct 3D garment models from single RGB images. We present a model
based on Generative Adversarial Networks (GANs) [16] that has the peculiarity
to use UV maps to represent 3D data. We study the feasibility of this type of
representations for 3D reconstruction and generation tasks.

The GAN model used is based on LGGAN (Local Class-Specific and Global
Image-Level Generative Adversarial Networks) [56], used previously on semantic-
guided scene generation tasks like cross-view image translation and semantic image
synthesis and characterised by combining two levels of generation, global image-level
and local class-specific.

1.1 Motivation

Inferring 3D shapes from a single viewpoint is an essential human vision feature
extremely difficult for computer vision machines. For this reason, there has always
been a great deal of research devoted to building 3D reconstruction models capable
of inferring the 3D geometry and structure of objects or scenes from a single or
multiple 2D pictures. Tasks in this field go from reconstructing objects like cars or
chairs to modelling entire cities. These models can be used for a wide variety of
applications such as 3D printing, simulation of buildings in the civil engineering
field, or generation of artificial objects, humans and scenes for videogames and
movies.

One field in which the research community and industry have been working for
years has been the study of human dynamics. Accurately tracking, capturing,
reconstructing and animating the human body, face and garments in 3D are
critical tasks for human-computer interaction, gaming, special effects and virtual
reality. Despite the advances in the field, most research has concentrated only on
reconstructing unclothed bodies and faces, but modelling and recovering garments
have remained notoriously tricky.

For this reason, our work plans to push the research on the specific domain of
garments, learning clothing dynamics and reconstructing clothed humans. As said,
this is still a quite new research area, but with also many potential applications and
benefits: allow virtual try-on experiences when buying clothes, reduce designers
and animators workload when creating avatars for games and movies, etc.

First-generation methods that tried to recover the lost dimension from just 2D
images were concentrated on understanding and formalising, mathematically, the 3D

13

14 CHAPTER 1. INTRODUCTION

to 2D projection process [20, 31]. However, this kind of solutions required multiple
images captured with well-calibrated cameras and, in some cases, accurately
segmented, which in many cases is not possible or practical.

Surprisingly, humans can easily estimate the approximate size and geometry of
objects and imagine how they would be from a different perspective with just one
image. We are able to do so because of all previously witnessed items and scenes,
which have allowed us to acquire prior knowledge and construct mental models
of how objects look like. The most recent 3D reconstruction systems developed
have attempted to leverage this prior knowledge by formulating the problem as
a recognition problem. Recent advances in Deep Learning (DL) algorithms, as
well as the increasing availability of large training datasets, have resulted in a new
generation of models that can recover 3D models from one or multiple RGB images
without the complex camera calibration process. In this project, we are interested
in these advantages, so we focus on developing a solution of this second category,
using and testing different Deep Learning techniques.

In contrast to other models, our solution has the peculiarity of using UV maps as
3D representation. Compared to other representations such as meshes, point clouds
or voxel-based representations, which are the ones commonly used in other 3D
Deep Learning models [11, 13,17, 19, 33,38,44,45, 47, 57,61–63,65], UV maps allow
us to use standard computer vision (CV) architectures, usually intended for images
and two-dimensional inputs/outputs. In addition, and even more important, UV
maps are lightweight and capable of modelling fine details, a feature necessary for
modelling challenging dynamic systems like garments.

1.2 Contribution

The main contribution of this thesis is the proposal of a system that can adequately
learn garment dynamics and reconstruct clothed humans from a single RGB image,
using UV maps to represent 3D data and achieving state-of-the-art results in
CLOTH3D [4] dataset.

In addition, this work also studies the feasibility and impact of using UV map
representations for 3D reconstruction tasks, demonstrating that it is an interesting
option that could be applied in many other tasks.

Finally, this project proposes and studies different strategies and techniques to
perform this kind of task, and analyses quantitatively and qualitatively their
contribution to our final solution.

1.3 Overview

Apart from this first chapter, where we introduced our work, the rest of the thesis
is split into five more parts.

In the next chapter, Chapter 2, we detail all the required theoretical background
needed to have a complete understanding of the project. In Chapter 3 we describe
the related work and present similar works done in the current state-of-the-art.

1.3. OVERVIEW 15

Following, in Chapter 4 we extensively detail and present our proposal. Chapter
5 describes the dataset used for training and testing our model and shows all
the experiments done and the results obtained, which are discussed and analysed
quantitatively and qualitatively. Finally, in Chapter 6 we present the conclusions
about this work and ideas for future work.

16 CHAPTER 1. INTRODUCTION

2. Background

This chapter presents the relevant background required to understand the followed
methodology. First, it introduces the GAN architecture in which our model is
based and then the different data representations usually used to represent 3D
data, with an emphasis on UV maps, the representation used in our project.

2.1 Generative Adversarial Network

A Generative Adversarial Network (GAN) [16], designed in 2014 by Ian J. Good-
fellow et al ., is a deep neural network framework that, given a set of training data,
learns to generate new data with the same properties/statistics as the training
data.

Indeed GAN architecture (Figure 2.1) is composed of two deep networks, a generator
and a discriminator, which compete against each other.

• Generator: learns to generate realistic fake samples from a random seed. The
generated instances produced are used as negative training examples for the
discriminator.

• Discriminator: learns to distinguish real samples from fake ones (coming from
the generator).

Figure 2.1: Generative Adversarial Network architecture. Source: [70]

The competition between both parts in this two-player game drives the whole
model to improve until fake samples are good enough they cannot be distinguished

17

18 CHAPTER 2. BACKGROUND

from real ones. To have a good generative model, both networks must perform well.
If the generator is not good enough, it will not be able to fool the discriminator, and
the model will never converge. On the other hand, if the discriminator performance
is poor, then any sample will be labelled as real, even if it does not approximate
the training data distribution, which means the model will never learn.

In the beginning, the generator’s fake output is very easy for the discriminator to
differentiate from the real data. Over time, the generator’s output will become more
realistic, and the generator will get better at fooling the discriminator. Eventually,
the generator will generate such realistic outputs that the discriminator will be
unable to distinguish them. In fact, for a perfect generator, the discriminator
should have only 50% of accuracy, being completely random. Training the model
beyond this convergence point could cause the discriminator to give wrong feedback
to the generator, decreasing its performance.

To generate fake samples, the generator G receives as input some noise z, sampled
using a normal or uniform distribution. Conceptually, this z represents the latent
features of the samples generated, which are learned during the training process.
Latent features are those variables that cannot be observed directly but are
important for a domain. It can also be seen as a projection or compression of data
distribution, providing high-level concepts of the observed data. This generator
typically consists of multiple transposed convolutions that upsample vector z.

Once the synthetic samples G(z) are generated, they are mixed together with real
examples x coming from the training data and forwarded to the discriminator
D, who classifies them as fake or real. The loss function of the discriminator is
computed based on how accurate is its assessment and the hyperparameters are
adjusted in order to maximise its accuracy. This loss is described formally in
Equation 2.1, and it is composed of two terms: the first one rewards the recognition
of real samples (logD(x)), and the second one the recognition of generated samples
(log(1 − D(G(z)))). On the other hand, the generator is rewarded or penalised
based on how well or not the generated samples fool the discriminator. Its objective
function is shown in Equation 2.2, and it wants to optimise G so it can fool the
discriminator D the most, generating samples with the highest possible value of
D(G(z)). This two-player minimax game can also be formalised with just one
single value function V (G,D), shown in Equation 2.3, which the discriminator
wants to maximise and the generator minimise.

max
D

V (D) = Ex∼pdata(x) [logD (x)] + Ez∼pz(z) [log (1−D (G (z)))] (2.1)

min
G

V (G) = Ez∼pz(z) [log (1−D (G (z)))] (2.2)

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD (x)] + Ez∼pz(z) [log (1−D (G (z)))] (2.3)

being D(x) the estimated probability that an input example x is real, Ex∼pdata(x)
the expected value over all examples coming from training data, G(z) the fake
example produced by the generator for the random noise vector z, D(G(z)) the

2.1. GENERATIVE ADVERSARIAL NETWORK 19

estimate by the discriminator of the probability that a fake input example G(z) is
real, and Ez∼pz(z) the expected value over all random inputs to the generator.

These objective functions are learned jointly by the alternating gradient descent.
In each training iteration, we first fix the generator weights and perform k training
steps on the discriminator using generated samples, coming from the generator,
and the real ones, coming from the training set. Then, we fix the discriminator
parameters and we train the generator for a single iteration. We keep training
both networks in alternating steps until we think the model has converged and the
generator produces good quality samples. This training process can be formalised
with the following pseudocode Algorithm 2.1:

Algorithm 2.1 GAN training

1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m noise samples z(1), ..., z(m) from noise prior pg(z)
4: Sample minibatch of m examples x(1), ..., x(m) from data generating

distribution pdata(x)
5: Update the discriminator D by ascending its stochastic gradient:

∇θd
1
m

∑m
i=1

[
logD

(
x(i)
)

+ log
(
1−D

(
G
(
z(i)
)))]

6: end for
7: Sample minibatch of m noise samples z(1), ..., z(m) from noise prior pg(z)
8: Update the generator G by descending its stochastic gradient:

∇θg 1
m

∑m
i=1

[
log
(
1−D

(
G
(
z(i)
)))]

9: end for

As during early training, the discriminator D typically wins against the generator
G, the gradient of the generator tends to vanish and makes the gradient descent
optimisation to be very slow. To speed it up, the GAN authors proposed to, rather
than training G to minimise log(1−D(G(z))), train it to maximise logD(G(z))

2.1.1 Conditional GAN

Conditional Generative Adversarial Networks (CGANs) [39] are an extension of the
GANs in which the generator and discriminator are conditioned by some additional
input y. This new input can be of any kind (class labels or any other property) and
is usually feed into both the discriminator and generator as an additional input
layer, concatenating input noise z and condition value y, as can be seen in Figure
2.2.
With this modification, the objective function of the Conditional GAN can be
expressed as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD (x|y)] + Ez∼pz(z) [log (1−D (G (z|y)))]

(2.4)

The motivation behind the conditioning is to have a mechanism to request the
generator for a particular input. For example, suppose we train a GAN to generate

20 CHAPTER 2. BACKGROUND

Figure 2.2: Conditional Generative Adversarial Network architecture. Source: [70]

new MNIST images [32], which is a very well-known dataset of handwritten digits.
In that case, we will have no control over what specific digits will be produced by
the generator. However, if we input to a Conditonal GAN the handwritten digit
image together with its class label (number appearing in the image), the generator
will learn to generate numbers based on their class and we will be able to control
its output.

2.2 3D data representations

Computer Vision (CV) and Deep Learning (DL) research has typically focused on
working with 2D data, images and videos. Recently, with the availability of large
3D datasets and more computational power, the study and application of Deep
Learning techniques to solve tasks on 3D data has grown a lot. These tasks include
segmentation, recognition, generation and reconstruction, among others. However,
as there is no single way to represent 3D models, the 3D datasets available in
the current state-of-the-art are found in a wide variety of forms, varying in both
structure and properties.

In this section, we give an overview of the most common 3D representations used
in Deep Learning architectures (point clouds, 3D meshes, voxels and RGB-D data)
and the type of representation used and evaluated in this project (UV maps),
detailing their differences and the challenges of each one.

2.2.1 Voxel-based representations

One voxel is basically a 3D base cubical unit that, together with other voxels, form
a 3D object inside a regular grid in the 3D space. It can be seen as a 3D extension
of the concept of pixel.

The main limitation of voxels is their inefficiency to represent high-resolution data,
as they represent both occupied and non-occupied parts of the scene, needing an
enormous amount of memory for non-occupied parts. Using a more efficient 3D
volumetric representation such as octree-based, which consists basically of varying-
sized voxels, one can represent higher resolution objects with less computation

2.2. 3D DATA REPRESENTATIONS 21

consumption, thanks to their ability to share the same voxel for large regions of
space. Despite this, both voxels and octree representations do not preserve the
geometry of 3D objects, in terms of the shape and surface smoothness, and lack of
enough detail, reason why they are not adequate in all domains.

2.2.2 Point clouds

A 3D point cloud is a set of unstructured data points in a three-dimensional
coordinate system that approximates the geometry of 3D objects. These points
are defined using x, y, z coordinates and are usually obtained by 3D scanners like
LiDAR or photogrammetry [64].

Point-based representations are simple and efficient, but, as they are not regular
structures, they do not fit into convolutional architectures that exploit spatial
regularity. To get around this constraint, the following representations emerged:

• Point set representation, which treats a point cloud as a matrix of size N × 3,
being N the number of points.

• 3-channel grids of size H×W×3, encoding in each pixel the x, y, z coordinates
of a point.

• Depth maps from multiple viewpoints.

However, the lack of structure, caused by the absence of connectivity information
between point clouds, results in an ambiguity about the surface information. In
the domain of garments, this problem means that wrinkles cannot be handled
properly, even if the number of points is very high.

2.2.3 3D meshes and graphs

Meshes are one of the most popular representations used for modelling 3D objects
and shapes. A 3D mesh is a geometric data structure that allows the representation
of surface subdivisions by a set of polygons. These polygons are called faces and are
made up of vertices. The vertices describe how the mesh coordinates x, y, z exist in
the 3D space and connect to each other forming the faces. Most commonly, these
faces are triangles (triangular meshing), but there also exist quadrilateral meshes
and volumetric meshes, which connect the vertices by tetrahedrons, pyramids,
hexahedrons or prisms [64].

The challenge with this kind of representation is that Deep Learning algorithms
have not been readily extended to such irregular representations. For this reason,
it has become common to use graph-structured data to represent 3D meshes and
use Graph Convolutional Networks (GCN) to process them. In these graphs, the
nodes correspond to the vertices and the edges the connectivity between them.
Using these graphs, has opened the door to the creation and innovation of Deep
Learning models based on this kind of graph convolutions.

2.2.4 UV maps

A UV map is the flat representation of the surface of a 3D model, usually used to
wrap textures easily and efficiently. The letters U and V refer to the horizontal

22 CHAPTER 2. BACKGROUND

and vertical axes of the 2D space, as X, Y and Z are already used to denote the
axis of the 3D space. Basically, in a UV map, each of the 3D coordinates/vertices
of the object is mapped into a 2D flat surface.

Below, in Figure 2.3, we show an example of a 3D model (right) and its corre-
sponding unwrapped surface on a UV map (left).

Figure 2.3: Example of a 3D face model and its corresponding UV map. Source: [58]

The process of creating a UV map is called UV unwrapping and consists of assigning
to each 3D vertex (X, Y, Z) their corresponding UV coordinate. Thus, UV maps
act as marker points that determine which points (pixels) on the texture correspond
to which points (vertices) on the mesh. The inverse process, projecting the UV
map onto a 3D model’s surface, is called UV mapping.

Figure 2.4: Representation of the UV mapping/unwrapping of a cube. Source: [58]

The main benefit of it is that it is a flat representation (2D), so it can be used in
standard Computer Vision models thought for images or videos. Therefore one can
take advantage of all the advances already done in Computer Vision for 2D data,
which, as said before, is where there is more research and focus. Besides this, it is
also a lightweight representation and can handle fine details, suitable for dealing
with garment wrinkles.

3. Related work

After explaining and contextualising the necessary background, in this chapter
we describe the works that are most related to our approach. First, we explain
the leading works in the state-of-the-art of image-based 3D object reconstruction.
Then we go into the specific domain of garments, presenting different solutions
that reconstruct 3D garment models from single or multiple images. Finally, we
give an overview of other works that also use and study UV map representations.

3.1 3D reconstruction

Fast and automatic 3D object reconstruction from 2D images is an active research
area in Computer Vision with an increasing interest coming from many industries
and applications: e-commerce, architecture, game and movie industries, automotive
sector, 3D printing. For this reason, during the last decades, a large amount of
work has been carried out on this topic, from reconstructing objects like chairs,
cars or planes to modelling faces, scenes, or even entire cities.

The first works done approached the problem from a geometric perspective and
tried to understand and formalise the 3D projection process mathematically. It is
the case of techniques based on the multi-view geometry (MVG) [20], also known
as stereo-based techniques, that match features across the images from different
views and use the triangulation principle to recover 3D coordinates. Although
these solutions are very successful in some scenarios such as structure from motion
(SfM) [53] for large-scale high-quality reconstruction and simultaneous localisation
and mapping (SLAM) [9] for navigation, they are subject to several restrictions:
they need to have a great number of images from different viewpoints of the object,
and this cannot be non-lambertian (e.g . reflective or transparent) nor textureless.
If the number of images is not enough or they do not cover the entire object, MVG
will not reconstruct the unseen parts as it will not be able to establish feature
correspondences between images. The lack of textures and reflections also affect
this feature matching [5, 51].

With the aim of being able to reconstruct non-lambertian surfaces, shape-from-
silhouette, or shape-by-space-carving, methods [31] appeared and became popular.
However, these methods require the objects to be accurately segmented from the
background or well-calibrated cameras, which is not suitable in many applications.

All these restrictions and disadvantages lead the researchers to draw on learning-
based approaches, that consider single or few images and rely on the shape prior
knowledge learnt from previously seen objects. Early works date back to Hoiem

23

24 CHAPTER 3. RELATED WORK

et al . [22] and Saxena et al . [52]. Nevertheless, it was not until recently, with
the success of Deep Learning architectures, and more importantly, the release of
large-scale 3D datasets such as ShapeNet [10], that learning-based approaches
achieved great progress and very exciting and promising results.

This section provides an overview of some of the most important and well-known
3D reconstruction models belonging to this latter family.

3.1.1 Learning-based approaches

As explained in Chapter 2, unlike 2D images, which are always represented by
regular grids of pixels, 3D shapes have various possible representations, being voxels,
point clouds and 3D meshes the most common. This has led to 3D reconstruction
models that are very different from each other, as their architectures largely depend
on the representation used. For this reason, we review the most relevant works of
each of these types of representation, giving an overview of their architecture and
characteristics.

3.1.1.1 Voxel-based

Voxel-based representations were among the first representations used with Deep
Learning techniques to reconstruct 3D objects from images. This is probably due
to their 2D analogy, pixels, a data type that has been used in computer vision
for decades. Because of this, during the last few years, many different approaches
dealing with this representation have appeared, each one attempting to outperform
the preceding and pushing the state-of-the-art.

3D-R2N2 3D Recurrent Reconstruction Neural Network, usually called just 3D-
R2N2 [11] is a recurrent neural network architecture designed by Choy et al .
that unifies both single and multi-view 3D object reconstruction problems. The
framework takes in one or more images of an object from different perspectives to
learn a 3D reconstruction of it. The network can perform incremental refinements
and adapt as new viewpoints of the object become available. It is an encoder-
decoder architecture composed of mainly three modules: a 2D Convolutional
Neural Network (2D-CNN), a 3D Convolutional LSTM (3D-LSTM) and a 3D-
Deconvolutional Neural Network (3D-DCNN). The 2D-CNN is in charge of encoding
the input images into features. Then, given these encoded features, a set of 3D-
LSTM units selects either to update their cell states or retain them by closing the
input gate, allowing the network to update the memory with new images or retain
what it has already seen. Finally, the 3D-DCNN decodes the hidden states of the
3D-LSTM units, generating a 3D probabilistic voxel reconstruction.

3D-VAE-GAN With the success of GANs [16] and variational autoencoders
(VAEs) [27], Wu et al . [63] presented 3D-VAE-GAN, inspired by VAE-GAN [30].
This model applies GANs and VAEs in voxel data to generate 3D objects from
just one single-view image. It is composed of an encoder that infers a latent vector
z from the input 2D image and a 3D-GAN, which learns to generate the 3D object
from the latent space vector z by using volumetric convolutional networks.

3.1. 3D RECONSTRUCTION 25

Octree Generating Networks Due to the high computational cost of voxel-based
representations, the methods described before cannot cope with high-resolution
models. For this reason, Tatarchenko et al . [57] proposed the Octree Generating
Networks (OGN), a deep convolutional decoder architecture that can generate
volumetric 3D outputs in an efficient manner by using octree-based representations,
being able to manage relatively high-resolution outputs with a limited memory
budget. In OGN, the representation is gradually convolved with learnt filters and
up-sampled, as in a traditional up-convolutional decoder. However, the novelty
of it is that, starting from a certain layer in the network, dense regular grids
are replaced by octrees. As a result, the OGN network predicts large regions of
the output space early in the first decoding stages, saving computation for the
subsequent high-resolution layers.

Pix2Vox Recently, to overcome the limitations of solutions that use recurrent
neural networks (RNNs) like 3D-R2N2 [11], Xie et al . [65] introduced Pix2Vox
model. The main restrictions of models based on recurrent networks are the
time consumption, since input images cannot be processed in parallel, and the
inconsistency between predicted 3D shapes of two sets containing the same input
images but processed in a different order. For this reason, the authors of Pix2Vox
proposed a model composed of multiple encoder-decoder modules running in
parallel, each one predicting a coarse volumetric grid from its input image frame.
These different predicted coarse 3D modules are merged in a fused reconstruction
of the whole object by a multi-scale context-aware fusion model, which selects
high-quality reconstructions. Finally, a refiner corrects the wrongly recovered parts
generating the final reconstruction.

3.1.1.2 Point-based

Similar to the works using volumetric-based representations, models that use point-
based representations follow an encoder-decoder model. In fact, all of them use the
same architecture for the encoder but differ in the decoder part. The works that
use point sets to represent point clouds use fully connected layers on the decoder,
since point clouds are unordered, while the ones that use grids or depth maps use
up-convolutional networks.

Point Set Generation Network Fan et al . [13] presented a network that combines
both point set and grid representations, composed of a cascade of encoder-decoder
blocks. Each block takes the output of its previous block and encodes it into a
latent representation that is then decoded into a 3-channel image. The first block
takes as input the image. The last block has an encoder followed by a predictor
of two branches: a decoder that predicts a 3-channel image, being each pixel the
coordinates of a point, and a fully-connected network that predicts a matrix of size
N × 3, being each row a 3D point. To output the final prediction, the predictions
of both branches are merged using a set union.

DensePCR As the network mentioned above and its variants are only able to
recover low-resolution geometry, Mandikal et al . [38] presented DensePCR, a

26 CHAPTER 3. RELATED WORK

framework composed of a cascade of multiple networks capable of handling high
resolutions. The first network of the cascade predicts a low-resolution point cloud.
Then, each subsequent block receives as input the previously predicted point cloud
and computes global features, using a multi-layer perceptron architecture (MLP)
similar to PointNet [44] and PointNet++ [45], and local features, using MLPs in
balls surrounding each point. These global and local features are combined and
fed to another MLP, which predicts a dense point cloud. This procedure can be
repeated as many times as necessary until the desired resolution is achieved.

3.1.1.3 Mesh-based

The last most common used representation in 3D reconstruction models are 3D
meshes. Compared to point-based representations, meshes contain connectivity
information between neighbouring points, making them better for describing local
regions on surfaces.

Pixel2Mesh Wang et al . proposed Pixel2Mesh [61], an end-to-end Deep Learning
architecture designed to produce 3D triangular meshes of objects given just a single
RGB image. Their approach is based on the gradual deformation of an ellipsoid
mesh with a fixed size to the target geometry. To do so, they use Graph-based
Convolutional Networks (GCNs) and refine the predicted shape gradually using a
coarse-to-fine fashion, increasing the number of vertices as the mesh goes through
the different stages. This network outperforms 3D-R2N2 framework, as the latter
lacks of details due to the low resolution that voxel-based representations allow.

Wen et al . [62] extended Pixel2Mesh and proposed Pixel2Mesh++, which ba-
sically allows reconstructing the 3D shapes from multi-view images. To do so,
Pixel2Mesh++ presents a Multi-view Deformation Network (MDN) that incorpo-
rates the cross-view information into the process of mesh generation.

AtlasNet Another generative model for mesh-based representations is AtlasNet,
proposed by Groueix et al . [17], but with a totally different approach. AtlasNet
decomposes the surface of a 3D object into m patches and learns to convert 2D
square patches into 2-manifolds to cover the surface of the 3D shape (Papier-Mâché
approach) by using a simple Multi-Layer Perceptron (MLP). The designed decoder
is composed of m branches, and each branch is in charge of reconstructing a
different patch. Then, these reconstructed patches are merged together to form
the entire surface. Its main limitation is, however, that the number of patches m
is a parameter of the system and its optimal number depends on each surface and
object, making the model not general enough.

3.2 Garment reconstruction

If inferring 3D shapes of simple and static objects like chairs or cars from a single
image is already complicated, doing so for 3D cloth models is extremely challenging.
Garments are not only very dynamic objects but also belong to a domain where
there is a huge variety of topologies and types.

3.2. GARMENT RECONSTRUCTION 27

Early works focused on garment modelling from images approached the problem
from a geometric perspective [8,24,68]. Then, the advent of deep learning achieved
impressive progress in the task of reconstructing unclothed human shape and pose
from multiple or single images [7, 25, 28, 29, 42,43, 54, 66]. Nevertheless, recovering
clothed human 3D models did not progress in the same way, not only because
of the challenges mentioned before but also as a consequence of the lack of large
annotated training datasets available.

It is only recently, in the last few years, that new large datasets and deep learning
works focused on this domain started to emerge, trying to push its state-of-the-art.
A standard practice used in garment reconstruction frameworks is to represent
garments as an offset over the Skinned Multi-Person Linear model (SMPL) body
mesh [1, 6], which is a skinned vertex-based model that accurately represents a
wide variety of body shapes in natural human poses [34]. However, this type of
approach has the disadvantage that it may fail for loose-fitting garments, which have
significant displacements over the shape of the body. For this reason, there are works
that use non-parametric representations such as voxel-based representations [60],
visual hulls [40] or implicit functions [12,49,50]. Finally, there are also some works
that have combined both parametric and non-parametric representations [23,67,69].

Below, we analyse the characteristics and contributions of some of these deep
learning frameworks.

Multi-Garment Net Multi-Garment Network (MGN) [6] designed by Bhatnagar
et al . in 2019 is a network that reconstructs body shape and clothing, layered on
top of the SMPL model, from a few frames of a video. It was the first model that
was able to recover separate body shape and clothing from just images.

The model introduces class-specific garment networks, each one dealing with a
particular garment topology. Despite this, because of the very limited dataset used,
presented in the same work, with just a few hundreds of samples, each branch is
prone to overfitting issues. Furthermore, as MGN relies on pre-trained parametric
models, it is unable to handle out-of-scope deformations. Moreover, it typically
requires eight frames as input to generate good quality reconstructions.

Octopus Also, in 2019, Alldieck et al . [1] presented Octopus, a learning-based
approach to infer the personalised 3D shape of people, including hair and clothing,
from few frames of a video.

It is a CNN-based method that encodes the frames of the person (in different
poses) into latent codes that then are fused to obtain a single shape code. This
code is finally fed into two different networks, one that predicts the SMPL shape
parameters and other that predicts the 3D vertex offsets of the garment.

As the Multi-garment net framework [6], Octopus expresses the garment as an
offset over the SMPL body mesh of the human, approach that, as mentioned before,
fails in some types of garments that are not tight to the body, like dresses or skirts.

28 CHAPTER 3. RELATED WORK

PIFu To be able to handle these clothes that largely depart from the body
shape defined by the SMPL, Pixel-aligned Implicit Function (PIFu) [49] authors
presented a kind of representation based on implicit functions that locally aligns
pixels of 2D images with the global context of their corresponding 3D object.
This representation does not explicitly discretise the output space but instead
regresses a function that determines the occupancy for any given 3D location.
This approach can handle high-resolution 3D geometry without having to keep a
discretised representation in memory.

In this work, the authors also proposed an end-to-end deep learning method that
uses PIFu representation for digitising highly detailed clothed humans that can
infer both 3D surface and texture from one or multiple images.

More recently, the same authors presented PIFuHD [50], a multi-level framework
also based on PIFu representation, which can infer 3D geometry of clothed humans
at an unprecedentedly high 1k image resolution.

Deep Fashion3D In Deep Fashion3D work [69], the authors presented a novel
large dataset to push the research in the task of garment reconstruction from just one
single image. Apart from the dataset, the authors proposed a novel reconstruction
framework that takes advantage of both meshes and implicit functions by using a
hybrid representation.

As the methods based on implicit functions showed a great ability to manage
fine geometric details, authors proposed transferring the high-fidelity local details
learned from them to a template mesh, which adapts its topology to fit the input
image’s clothing category has robust global deformations.

By using this combined representation, the model is able to handle finer details
and out-of-scope deformations.

3.3 UV map works

Within the research of garment modelling, there are a few works that have already
used UV map representations in some way. For this reason, we briefly analyse their
approach, how they use UV maps and for what purpose.

DeepCloth DeepCloth [55] is a neural garment representation framework which
goal is to perform smooth and reasonable garment style transition between different
garment shapes and topologies.

To do so, they use a UV-position map with mask representation, in which the
mask denotes the topology and covering areas of the garments, while the UV map
denotes the geometry details, i.e. the coordinates of each vertex. DeepCloth maps
both the UV map and its mask information into a feature space using a CNN-based
encoder-decoder structure. Then, by changing and interpolating these features,
garment shape transition and editing can be performed.

3.3. UV MAP WORKS 29

Tex2Shape Alldieck et al . [2] presented Tex2Shape, a framework that aims to
reconstruct high-quality 3D geometry from an image by regressing displacements
in an unwrapped UV space.

In order to do so, the input image is transformed into a partial UV texture using
DensePose [18], mapping input pixels to the SMPL model, and then translated
by Tex2Shape network into normal and displacement UV maps. The normal map
contains surface normals, while the vector displacement map contains 3D vectors
that displace the underlying surface. Both normals and displacements are defined
on top of the body SMPL model.

With this workflow, the reconstruction problem is turned into an easier 3D pose-
independent image-to-image translation task.

SMPLicit SMPLicit [12], a concurrent work to ours, is a novel generative model
designed by Corona et al . to jointly represent body pose, shape and clothing geom-
etry for different garment topologies, while controlling other garment properties
like garment size.

Its flexibility builds upon an implicit model conditioned with the SMPL body
parameters and a latent space interpretable and aligned with the clothing attributes,
learned through occlusion UV maps.

The properties that the model aims to control are: clothing cut, clothing style, fit
(tightness/looseness) and the output representation. To learn the latent space of
the first two properties, clothing cut and style, the authors compute a UV body
occlusion map for each garment-body pair in the dataset, setting every pixel in
the SMPL body UV map to 1 if the body vertex is occluded by the garment, and
0 otherwise.

30 CHAPTER 3. RELATED WORK

4. Methodology

In this chapter, we present the methodology followed to build our system and
reconstruct 3D garment models. First, we explain how we use UV map represen-
tations in our approach, and the pre-processing techniques and pipeline carried
out to transform them into usable and suitable inputs for our model, a step that
has proven to be of enormous importance. After that, we detail our specific model,
explaining the architecture in which it is based and the modifications made to
support our task.

4.1 Our UV maps

As explained in Chapter 2, UV maps are the flat representation of the surface of
a 3D model. They are usually used to wrap textures, being able to project any
pixel from an image to a point on a mesh surface. Nevertheless, as seen in previous
Chapter 3, UV maps can also be used to denote other properties such as normal
coordinates or vertices coordinates, since they can assign any property encoded in
a pixel to any point on a surface.

In particular, in our approach, we use UV maps that encode garment mesh vertices,
storing 3D coordinates as if they were pixels of an RGB image, together with a mask
that denotes the topology and covering areas of the garment. In this way, we achieve
a kind of representation that can be used in standard computer vision frameworks,
usually thought for 2D data like images and videos, leveraging all progress done in
this field. Moreover, unlike other representations such as volumetric representations,
UV maps are perfectly capable of handling high-frequency cloth details efficiently.

This type of representation is also used in DeepCloth [55] and Tex2Shape [2]
frameworks, which refer to it as “UV-position map with mask” and “UV shape
image” respectively.

4.1.1 Normalise UV maps

As explained above, our UV maps contain 3D coordinate vectors x, y, z that are
mapped to the garment mesh vertices. These coordinates do not have a fixed range
and can be highly variable. For this reason, since large variability on the data can
be a problem during the training of networks, getting stuck in local minima, a
common practice is to normalise or standardise these values, helping the model to
have a more stable and efficient training.

To normalise our UV maps, we propose two different approaches:

31

32 CHAPTER 4. METHODOLOGY

1. Min-max normalization: the first proposal is to use the minimum and
maximum values of coordinates xmin, ymin, zmin and xmax, ymax, zmax within the
training dataset to apply a min-max normalization and normalise all values
between the range of 0 and 1.

2. Displacement UV maps: the other proposal is to do the same as other
approaches like [1, 2, 6] and represent garment vertices as an offset over the
estimated SMPL body vertices. Alldieck et al . [2] refer to this kind of UV
maps as displacement maps, because they displace the underlying body
surface. With this approach, we somehow standardise the values and obtain
a much lower variability.

4.1.2 Inpainting

A 3D mesh is a discrete representation, as it has a finite number of vertices.
Therefore, the UV maps we use are also discrete, as they are the 2D projection of
those vertices. For this reason, the UV maps have empty gaps between vertices, as
can be seen in Figure 4.1a.

To avoid these gaps and make the UV map image smoother, we use image inpainting
techniques to estimate the values of the empty spaces. Image inpainting is a form
of image restoration that is usually used to restore old and degraded photos or
repair images with missing areas. In particular, we use the Navier-Stokes based
method [3], which propagates the smoothness of the image via partial differential
equations and at the same time preserves the edges at the boundary [37]. With
this technique, we obtain a UV map like the one in Figure 4.1b.

In Chapter 5 we detail the results of an experiment that analyses the contribution
of this pre-processing step.

(a) Original UV map (b) Inpainted UV map

Figure 4.1: Comparison between the original UV map and the inpainted one, filling the empty
gaps between projected vertices.

4.2. LGGAN FOR 3D GARMENT RECONSTRUCTION 33

4.1.3 Semantic map and SMPL body UV map

Last but not least, as input, the LGGAN model expects not only an RGB image
but also a condition that guides and controls it through the generation. For this
purpose, for each UV map, we estimate a semantic segmentation map S that
contains the topology of the garments and segment them in different labels/classes,
one per garment type. An example is shown in Figure 4.2a.

Another option used to condition the model is the SMPL body UV map. This body
UV map is obtained in the same way we obtain garments UV maps, by projecting
the SMPL body mesh into the 2D UV space and applying the same pre-processing
techniques. Figure 4.2b shows an example of it. The SMPL body surface is inferred
by using SMPLR [36], a deep learning approach for body estimation.

With these conditions, the model can not only reconstruct 3D garments but also
transition between different body and garment shapes and topologies.

(a) Semantic segmentation map S (b) SMPL body UV map B

Figure 4.2: Examples of the semantic segmentation maps and the SMPL body UV maps used to
condition our model. In Figure 4.2a each color represents a different garment type.

4.2 LGGAN for 3D garment reconstruction

Investigating what solution we could propose to learn garment dynamics and
reconstruct 3D garment models from single RGB images through UV map rep-
resentations, we first thought that our task could be seen as an image-to-image
translation problem. The models used for this kind of tasks learn mappings from
input images to output images. This fits our case since our input is also an image
and, although our expected output is a UV map, this has the same dimensionality
as an RGB image: H ×W × 3.

However, in these image-to-image translation systems, the input and output have
pixel correspondence between them, while in our case pixels follow a very different
path from the RGB image (input) to the UV map (output). For this reason,
we searched for systems covering the cross-view image translation task proposed
in [46], where this pixel correspondence between input and output does not exist

34 CHAPTER 4. METHODOLOGY

either. This task’s main goal is to generate a ground-level/street-view image from
an image of the same scene but from an overhead/aerial view, and vice versa. It is
a very challenging task since the information from one view usually tells very little
about the other. For example, an aerial view of a building, i.e. the roof, does not
give much information about the colour and design of the building seen from the
street-view.

As standard image-to-image translation models do not perform well on this task,
recently, several specific models have emerged trying to solve this cross-view image
synthesis task. One of the best works on this topic is the one published in 2020 by
Tang et al . [56], in which the Local class-specific and Global image-level Generative
Adversarial Networks (LGGAN) model was presented, system in which we draw
from and adapt for our domain.

4.2.1 Architecture

The LGGAN proposed by Tang et al . [56] is based on GANs [16], more specifically
in CGANs [39], and is mainly composed of three parts/branches: a semantic-guided
class-specific generator modelling local context, an image-level generator modelling
the global layout, and a weight-map generator for joining the local and the global
generators. An overview of the whole framework is shown in Figure 4.3.

Figure 4.3: Overview of the proposed LGGAN. The symbol ⊕ denotes element-wise addition,
⊗ element-wise multiplication and s channel-wise softmax. Source: Own elaboration adapted
from [56].

Like the original GAN [16], LGGAN is composed of a generator G and a discrimina-
tor D. The generator G consists of a parameter-sharing encoder E, an image-level
global generator Gg, a class-level local generator Gl and a weight map generator
Gw. The encoder E shares parameters to all the three generation branches to
make a compact backbone network. Gradients from all the three generators Gg,

4.2. LGGAN FOR 3D GARMENT RECONSTRUCTION 35

Gl and Gw contribute together to the learning of the encoder. In the original

model, the input RGB image is concatenated with a semantic map and fed to
this backbone encoder E. This semantic map is a semantic segmentation of the
target image, with a class label for every type of object appearing on it. By adding
this map, the authors somehow guide the model to learn the correspondences
between the target and source views. As explained before, in our case, we present
two different options to guide the reconstruction. The first one is conditioning in
the same way they do in the original model, by concatenating to the input RGB
image a semantic segmentation map S of the target UV map, containing a different
label/class for each garment type. The other option proposed is to condition the
class-level local generator Gl on this UV map segmentation S, but use the SMPL
body UV map B of the person to condition the image-level global generator Gg

and the discriminator D. Figure 4.2 shows examples of these inputs. Figure 4.4
presents the same LGGAN overview shown before but when conditioning also on
the SMPL body UV map B.

Figure 4.4: Overview of the proposed LGGAN when conditioning also on SMPL body UV map B.
The symbol ⊕ denotes element-wise addition, ⊗ element-wise multiplication and s channel-wise
softmax. Source: Own elaboration adapted from [56].

LGGAN extends the standard GAN discriminator to a cross-domain structure
that receives as input two pairs, each one containing a UV map and the condition
of the model. Nevertheless, the goal of the discriminator D is the same, try to
distinguish the generated UV maps from the real ones.

Finally, apart from the generator and discriminator, there is also a novel classi-
fication module responsible for learning a more discriminative and class-specific
feature representation.

36 CHAPTER 4. METHODOLOGY

4.2.1.1 Generation branches

Parameter-Sharing Encoder The first module of the network is a backbone
encoder E. This module basically takes the input I and applies several convolutions
to encode it and obtain a latent representation E(I). Its architecture is presented
in 4.5. It is composed of three convolutional blocks and nine residual blocks
(ResBlocks) [21]. Both blocks are similar and consist of convolutional layers,
instance normalisation layers and ReLU activation functions. The only difference
is that ResBlocks contain also skip connections.

Figure 4.5: Parameter-Sharing Encoder architecture. Contains three convolution blocks and nine
residual blocks. Source: Own elaboration.

Note that the input I, as explained before, is the concatenation of the input RGB
image and the condition. This condition could be either the UV map semantic
guide S or the SMPL body UV map B.

Class-Specific Local Generation Network The authors propose a novel local
class-specific generation network Gl that separately constructs a generator for
each semantic class. Each sub-generation branch has independent parameters and
concentrates on a specific class, producing better generation quality for each class
and yielding richer local details. Its overview is shown in Figure 4.6.

This generator receives as input the output of the encoder, the encoded features
E(I). These are fed into two consecutive deconvolutional blocks to increase the
spatial size. These deconvolutional blocks consist of a transposed convolution
followed by an instance normalisation layer and a ReLU activation, as shown in
Figure 4.7a. The scaled feature map f ′ is then multiplied by the semantic mask of
each class Mi, obtained from the semantic map S. By doing this multiplication,
we obtain a filtered class-specific feature map for each one of the classes. This
mask-guided feature filtering can be expressed as:

Fi = Mi · f ′, i = 1, 2, . . . , c (4.1)

where c is the number of semantic classes (i.e. number of types of garment). After
computing these filtered feature maps, each feature map Fi is fed into a different
convolutional block, the one for the corresponding class i, which generates a class-
specific local UV map Uli . Each convolutional block is composed of a convolutional
layer and a Tanh activation function, as shown in Figure 4.7b. The loss used in

4.2. LGGAN FOR 3D GARMENT RECONSTRUCTION 37

Figure 4.6: Class-Specific Local Generation Network overview. The symbol ⊗ denotes element-
wise multiplication, and c channel-wise concatenation. Source: Own elaboration adapted
from [56].

this step is a semantic-mask guided pixel-wise L1 reconstruction loss:

Llocal
L1 =

c∑
i=1

EUr,Uli
[‖Ur ·Mi − Uli‖1] (4.2)

Finally, to generate the final output Ul of the local generator, an element-wise
addition of all the class-specific outputs is applied:

UL
l = Ul1 ⊕ Ul2 ⊕ · · · ⊕ Ulc (4.3)

Class-Specific Discriminative Feature Learning To have more diverse genera-
tion for the different semantic classes, the authors also propose a novel classification-
based feature learning module to learn more discriminative class-specific feature
representations. Its main architecture is presented in Figure 4.8.

38 CHAPTER 4. METHODOLOGY

(a) Deconvolutional Block (b) Convolutional Block

Figure 4.7: Architecture of the deconvolutional and convolutional blocks. Source: Own elabora-
tion.

This module receives as input a pack of feature maps produced from the different
local generation branches Fp = {F1, ..., Fc}. This packed feature map of dimension
c × n × h × w (being n, h, w, the number of feature map channels, height and
width, respectively) is fed into a semantic-guided averaging pooling layer, obtaining
a pooled feature map of dimension c× n× 1× 1. Then, this pooled feature map is
fed into a fully connected layer that predicts the classification probability of the c
classes of the image. The output after this layer Y ′ has a dimension of c× c, as for
each filtered feature map Fi, the network predicts a c× 1 one-hot vector with the
probabilities of the c classes.

As in the input image do not appear all garment types/classes, features from local
branches corresponding to the void classes should not contribute to the classification
loss. For this reason, the loss defined here is a Cross-Entropy (CE) loss but filtering
out the void classes by multiplying them with a void class indicator for each input
sample. The indicator is a one hot vector H = {Hi}ci=1, with Hi = 1 for a valid
class and Hi = 0 for a void one. The final CE loss is as follows:

LCE = −
c∑

m=1

Hm

c∑
i=1

1{Y (i) = i} log (f (Fi)) (4.4)

being 1{·} an indicator function that will return 1 if Y (i) = i, 0 otherwise, f(·)
the function that produces the predicted classification probability given an input
feature map F (i), and Y the label set of all the classes.

Image-Level Global Generation Network Apart from the local generator, LGGAN
contains a global generation network Gg that captures global structure information
or layout of the target images, in our case, UV maps. As in the local generator,
this module receives as input the encoded features E(I). The global result Ug
is obtained through a feed-forward computation Ug = Gg (E (I)). Gg is formed
by two deconvolutional blocks (Figure 4.7a) and one convolutional block (Figure
4.7b).

Pixel-Level Fusion Weight-Map Generation Network To combine local and
global generated outputs, Ul and Ug, the LGGAN contains a pixel-level weight map
generator Gw, which generates pixel-wise weights. This generator has the same
structure than the global generator Gg, composed of two deconvolutional blocks

4.2. LGGAN FOR 3D GARMENT RECONSTRUCTION 39

Figure 4.8: Class-Specific Discriminative Feature Learning architecture. Source: Own elaboration
adapted from [56].

(Figure 4.7a) and one convolutional block (Figure 4.7b). However, in this case, the
Tanh activation function of the convolutional block is replaced by a channel-wise
softmax function, used for normalisation. Thus, the final output, a two-channel
weight map Wf , is calculated as:

Wf = Softmax (Gw (E (S))) (4.5)

Finally, Wf is split to have a weight map Wl for the local generation and another
one Wg for the global. The fused final generated UV map is computed as follows:

Uf = Ug ⊗Wg + Ul ⊗Wl (4.6)

being ⊗ an element-wise multiplication operation.

4.2.1.2 Dual-Discriminator

The single domain vanilla discriminator from the original GAN [16] is extended to
a cross domain structure named semantic-guided discriminator. Its inputs are the

40 CHAPTER 4. METHODOLOGY

semantic map S, the final output of the generator module (fake UV map) Uf and
the ground truth output (real UV map) Ur.

LLGGAN (G,D) = ES,Ur [logD (S, Ur)] + ES,Uf
[log (1−D (S, Uf))] (4.7)

When the model is conditioned using the SMPL body of the person, the discrimina-
tor input is not the semantic guide S but the SMPL body UV map B. Therefore,
the loss is modified as follows:

LLGGAN (G,D) = EB,Ur [logD (B,Ur)] + EB,Uf
[log (1−D (B,Uf))] (4.8)

4.2.2 3D loss functions

Apart from the losses of the original LGGAN model, described above, we add to
our model four more types of 3D loss functions, which we apply on meshes. As most
of these added losses come from works that use mesh-based representations, to
apply them to our approach, we recover 3D meshes by unwrapping both generated
and real UV maps in each step.

These losses are responsible for not only regressing the generated vertices to the
ground truth, but also ensuring that the generated mesh converges to a smooth
and uniform shape. More specifically, two of the four losses are responsible for the
direct comparison between predicted and ground truth vertices and face normals
(LsmoothL1, Lnormal), while the other two are in charge of adding regularisation to
prevent the network of getting stuck into some local minimum (Llaplacian, Ledge).

Below we detail the contribution of each of the losses and how they are computed.
When formalising them, we use p for a vertex in the predicted mesh, q for a vertex
in the ground truth mesh and N (p) for the set containing the neighbours of p.

Smooth L1 loss This loss is a combination of L1 and L2 losses, and we used it
as a penalty to regress the predicted points p to its correct position, the ground
truth q. It basically uses squared term (L2 term) if the absolute element-wise error
falls below β and an L1 term otherwise. This makes it less sensitive to outliers
and, in some cases, prevents exploding gradients [14].

LsmoothL1 =

{
0.5 (p− q)2 /β, if |p− q| < β

|p− q| − 0.5β, otherwise
(4.9)

Surface normal loss This term forces the normal of the faces from the predicted
mesh to be consistent with the ground truth normals. Coming from Pixel2Mesh
work [61,62], this loss is defined as:

Lnormal =
∑
p

∑
q=argminq(‖p−q‖22)

∥∥(p− k)T · nq
∥∥2
2
, s.t. k ∈ N (p) (4.10)

being q the closest ground truth vertex to p found using chamfer distance, k a
neighbour of p, and nq the observed surface normal from ground truth at that
vertex.

4.2. LGGAN FOR 3D GARMENT RECONSTRUCTION 41

Laplacian smoothing regularisation This loss, from a work by Nelan et al . [41],
prevents the vertices from moving too freely, avoiding the output mesh from
deforming too much and ensuring that it has a smooth surface.

Llaplacian =
∑
p

∑
k∈N (p)

1

|N (p)|
(k − p) (4.11)

Edge length regularization To avoid having flying vertices, we penalise long
edges by adding one last loss, extracted also from [61,62].

Ledge =
∑
p

∑
k∈N (p)

‖p− k‖22 (4.12)

Finally, the overall mesh loss is computed as a weighted sum of all these four losses,
and contributes to all the three LGGAN generation branches, Gg, Gl and Gw, and
the encoder E:

Lmesh = λsLsmoothL1 + λnLnormal + λlLlaplacian + λeLedge (4.13)

42 CHAPTER 4. METHODOLOGY

5. Experiments and Results

In this chapter, we present and analyse the results of the most important experi-
ments and studies done in our work. We first present the concrete dataset used and
the experimental setup used for training. Finally, we review the results obtained
and discuss them quantitatively and qualitatively.

5.1 Dataset

The dataset used for training is CLOTH3D [4], which was introduced in 2020 as
the first large-scale synthetic dataset of 3D clothed human sequences. It has over
2 million 3D samples with a large variety of garment type, topology, shape, size,
tightness and fabric. Garments are simulated on top of thousands of different
human pose sequences and body shapes, generating realistic cloth dynamics.

The fact the authors generate synthetic data, allows them to create a huge dataset
that can be used in data-hungry deep learning approaches like ours, while having
a large variability of examples. This is because synthetic data is much easier to
generate than real data, usually coming from 3D scans, which are costly. Moreover,
synthetic data has demonstrated to be suitable for training deep learning models
to be used in real-life applications [48,59].

Each sequence contains multiple frames of a human body in 3D with different poses.
The human body is generated through SMPL [34] and animated through a valid
sequence of SMPL pose parameters, taken from the work of [59] and having from
around 2,600 sequences of 23 different actions (dancing, playing, running, walking,
jumping, climbing, etc.). To generate the garment samples, authors automatically
generate for each sequence garments with random shape, tightness, topology and
fabric, resizing them to the target human shape and yielding a unique outfit for
each sequence. In Figure 5.1 we can see an example of some frames belonging to a
sequence of the dataset.

To be more specific, the dataset used is an extension of CLOTH3D, which includes
the UV maps of the garments, that, as explained in previous chapters, are the
3D representation we use in this work. As the samples are layered, meaning each
garment and body are represented by different 3D meshes and UV maps, when we
have multiple garments in one sample we just join their UV maps in a single one.
If there is overlap between the multiple garments, in the region where it occurs we
keep just the upper-body garment vertices.

Due to the large number of samples in CLOTH3D dataset, the limited resources
available and the time frame and scope of the master thesis, we use a subset of

43

44 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.1: Some examples of a sequence of the CLOTH3D dataset.

CLOTH3D to train and test our work. This subset contains about 2,000 non-
overlapping sequences of 300 frames, resulting in a total of 600,000 samples. 1,396
of these sequences are used as training set, 139 as validation set and 438 as testing
set, resulting in 418,800 training samples, 41,700 validation samples and 131,400
test samples. Therefore, even though we use a subset, this is large and varied
enough to rely on the insights and conclusions of our experiments. Note that
the data split is done by sequences, which ensures no garment, shape or pose is
repeated in training and test.

The garment types included in the whole dataset and in our subset are the following:
Top, T-shirt, Trousers, Jumpsuit, Skirt and Dress. An example of each garment
type can be seen below, in Figure 5.2. All of these types vary in shape and topology,
thus forming a wide variety of garment models. In Figure 5.3 we show different
samples of dresses.

(a) Top (b) T-shirt (c) Trousers (d) Jumpsuit (e) Skirt (f) Dress

Figure 5.2: Examples of the different garment types in CLOTH3D dataset.

(a) (b) (c) (d) (e)

Figure 5.3: Examples of different dresses in CLOTH3D dataset.

Analysing the distribution of garment types in the CLOTH3D dataset, we observe
that it is not balanced, i.e. there are more samples of some types than others. In
our subset, it happens exactly the same thing. In Figure 5.4 we show the number

5.2. EXPERIMENTAL SETUP 45

of sequences per type of garment in our three set splits. The types of clothes
that appear in more sequences are jumpsuits, dresses and trousers, then tops and
T-shirts, and finally skirts.

Figure 5.4: Garment type distribution of the CLOTH3D subset used in this work.

Nevertheless, having this imbalanced distribution does not affect the performance
of our model, since its class-specific local generation network alleviates the influence
of imbalanced training data.

5.2 Experimental setup

Before presenting our main experiments and their discussion, we explain the
strategies followed to train our model and the hyperparameters fixed, as well as
the metrics used to evaluate the different models.

5.2.1 Training details

RGB images pre-processing In each sequence of our dataset, people move
through the 3D space doing actions, while the camera capturing the frames remains
static in its location. For this reason, in different frames of the same sequence, the
person can be seen in different positions, as they may have moved further to the
right or to the left (with respect to the camera), or be seen in various sizes, as they
may have moved away from or closer to the camera.

46 CHAPTER 5. EXPERIMENTS AND RESULTS

This is why we believe it is necessary to resize the image and crop/scale it so that
all the input images of the dataset have the human centred in the middle and with
the same proportion. To do so, we use the camera and human locations, and we
define a bounding box equal for all frames and sequences, with the human centred
on it. After that, all input images are resized to have the same size, 256 × 256,
which is equal to the size of the UV maps. In Figure 5.5 we can see an example of
an original frame of the dataset and its resized and scaled version.

(a) Original RGB image (b) Pre-processed RGB image

Figure 5.5: Example of an original image and its pre-processed version.

Parameter settings During the development of this work, we were able to extract
some insights from our preliminary experiments, that led us to fix some parameters
for the rest.

First of all, we defined the number of training epochs to 50, with a batch size of 4.
The fact that we used a batch of this size is basically because, due to the size of
our model and input data, and the computational resources available, we could
not increase it any further. The number of epochs in which we started training
was 100. However, we reduced it after observing that in every experiment the
model started to perform always worse, even on training set, at around epochs
30-35. For this reason, we decided to establish the maximum number of epochs to
50, and start reducing the learning rate from epoch 25 onwards, to try to have a
more stable training and avoid getting stuck in local minima. With this change,
we managed to keep the model improving for more iterations.

Finally, we also set a dropout of 0.5 to avoid overfitting on the training dataset, and
set the following weights to the 3D mesh losses defined in Section 4.2.2 (Equation
4.13): λs = 1.0, λn = 0.01, λl = 0.5 and λe = 0.5. These values were fixed after
performing several experiments trying to find a good balance between these four
losses and the losses of the original LGGAN model. Pixel2Mesh [62], work on
which some of our losses are based, uses smaller values for the weights of the normal
loss, the edge length regularisation and the laplacian regularisation. Nevertheless,
in our tests we found that there were flying vertices causing long edges and a dull
surface, reason why we increased the weights of all three losses, thus improving the
quality of the reconstructions. Last but not least, the β parameter of the LsmoothL1

loss is set to 1, as default (Equation 4.9).

5.2. EXPERIMENTAL SETUP 47

Optimisation and weight initialisation Our LGGAN model is trained and op-
timised in an end-to-end fashion. We follow the optimisation method in [16] to
optimise our LGGAN model, i.e. one gradient descent step on generators and
discriminator alternately. We first train the encoder E and the three generators
Gg, Gl and Gw with D fixed and then we train D with E, Gg, Gl and Gw fixed.
The solver used is Adam [26] with momentum terms β1 = 0.5 and β2 = 0.999,
as in the original LGGAN work [56]. The initial learning rate used for Adam is
0.0001, but, as explained before, from epoch 25 onwards, we start to decrease it
by 4e−6. The original LGGAN was trained with a learning rate of 0.0002, but in
our preliminary experiments we found that in our case it was too high, since the
observed training loss curves were unstable. Finally, network weights are initialised
with Xavier [15] strategy.

Environment The experiments were performed on an NVIDIA GeForce GTX
1080 Ti GPU, with 11GB of memory and CUDA Version 11.0.

5.2.2 Evaluation metrics

To evaluate our approach and the different experiments we use two metrics. Both
metrics evaluate the results based on mesh format, so during evaluation we trans-
form UV map representations into 3D meshes.

The first metric is the one used in the ChaLearn 3D+Texture garment reconstruction
competition1 (NeurIPS 2020), in which they also tried to solve the same image
to 3D garment reconstruction task on the same dataset, CLOTH3D. This metric
is called surface-to-surface (S2S) and it is an extension of the chamfer distance
(CD), a common metric to compute similarity between two point clouds. For each
point in each point cloud, CD finds the nearest point in the other point set, and
sums the square of distance up. The reason they used the S2S metric is because
CD does not take surface into account and may produce non-zero error for perfect
estimations. In contrast, S2S computes the distance based on the nearest face
rather than nearest vertex. Its formalisation is expressed as follows:

S2S (S1, S2) =
0.5

N1

∑
p∈S1

min
fq∈S2

dist (p, fq) +
0.5

N2

∑
q∈S2

min
fp∈S1

dist (q, fp) (5.1)

where p and q are 3D vertices and fp and fq triangulated vertices belonging to
surfaces S1 and S2, respectively, N1 and N2 are the number of vertices of S1 and
S2, respectively, and dist (p, f) is the distance between vertex p and face f .

The other metric used is the root-mean-square error (RMSE), which is one of the
most commonly used measures for evaluating the quality of predictions. It shows
how far these fall from true values using Euclidean distance. It is computed with
the equation below and used it to measure the differences between predicted and
ground truth 3D vertices.

RMSE (S1, S2) =

√√√√ 1

N

N∑
i=1

(Pi −Qi)
2 (5.2)

1http://chalearnlap.cvc.uab.es/challenge/40/description/

48 CHAPTER 5. EXPERIMENTS AND RESULTS

where P are the vertices of surface S1, Q the vertices of surface S2, and N the
number of vertices of the surfaces S1 and S2 (both must have the same number).

5.3 Results

In this section, we show in detail the results of the most relevant experiments of
our work and draw insights from them. In these experiments, we focus on studying
the viability of UV maps for RGB to 3D garment reconstruction, analysing the
pre-processing techniques proposed in Section 4.1. We also study how our extended
version of the LGGAN model, originally intended for cross-view image translation
task, performs on this task and the contribution of the 3D mesh losses added to it.

5.3.1 Normalisation techniques

As explained previously, UV maps contain 3D coordinates that store the vertices
of the garment model on a flat surface. Therefore, the values of UV maps can be
highly variable and do not have a fixed range. In fact, the values of one sample
tend to vary significantly from the values of another. So much so that, in our
first experiments, the model was unable to even overfit on the training dataset.
Generated reconstructions were very far from the ground truth.

For this reason, we implemented two ways of normalising these UV maps: by
performing min-max normalisation with the min and max values of the training
set, and by using displacement UV maps, which represent garment vertices as an
offset over the SMPL body vertices.

First approach, min-max normalisation, does not work very well as it fails to
predict the position of the garment with respect to the body and fails to detect
human movements. It also has a clear bias towards predicting the most common
body shapes in the dataset, being unable to reconstruct all body types well. These
drawbacks can be observed in Figure 5.6. The second normalisation proposal,
displacement UV maps, is the better of the two. As we can see in Figure 5.6, the
reconstruction of this model is very good and accurate, not having bias and being
able to capture human body shape and movement.

By looking into the error metrics of both approaches on the test set, we can also
clearly observe that using displacement UV maps is a much better option. The
disadvantage this approach has, encountered in previous works [1, 2, 6], is that the
model finds it more difficult to predict the types of garments that are not tight to
the body, like dresses or skirts. The metric values observed are in line with this
statement, as they are the garment types in which the error is higher, especially in
skirts.

Note that, as observed in previous Table 5.1, RMSE error is always higher than
S2S error. This is as expected and it is due to the fact that the S2S metric, and
also the chamfer distance (CD) metric in which it is based, compute the distance
between vertices by finding the nearest vertex or face in the other mesh. Instead,
RMSE is the exact error between vertices since it compares vertex pi with the
corresponding vertex qi of the other mesh.

5.3. RESULTS 49

Figure 5.6: Examples of reconstructions of the different normalisation techniques.

S2S error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Min-max normalisation 35.6 34.5 32.1 31.4 37.8 36.5 33.7

Displacement maps 8.8 10.9 10.0 8.5 24.1 15.9 11.4

RMSE error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Min-max normalisation 77.3 93.3 81.9 81.4 99.3 98.3 87.1

Displacement maps 25.1 39.1 32.1 30.2 63.6 46.4 36.2

Table 5.1: Error comparison between the experiments using different normalisation techniques.
Used S2S and RMSE errors (in mm) on test set. For both errors, small is better.

5.3.2 Inpainting UV maps

Inpainting of UV maps, i.e. filling the gaps between vertices to have a smoother
UV map image, is another pre-processing technique introduced in this work. While
there are many normalisation techniques used in the field of machine learning and
3D reconstruction, we are not aware that this technique has ever been used for this
kind of task.

That is why we run some experiments with and without applying this pre-processing
technique. In Figure 5.7 we can see the difference between applying or not this
pre-processing step. The 3D reconstruction when UV maps do not have empty
spaces in-between vertices is much smoother. The other generated mesh has far
more wrinkles and noticeable protrusions.

Although the most notable difference appears to be the degree of smoothness,
from the evaluation of the metrics in Table 5.2 we see that this technique also
gives a significant boost to the model’s performance, reducing its error by a few
millimetres (mm).

50 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.7: Example of a reconstruction when using the inpainting technique on UV maps and
when not.

S2S error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Without inpainting map 10.9 14.1 12.6 11.3 32.6 21.2 14.9

Inpainting map 8.8 10.9 10.0 8.5 24.1 15.9 11.4

RMSE error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Without inpainting map 29.0 46.4 38.1 36.7 83.3 61.7 44.9

Inpainting map 25.1 39.1 32.1 30.2 63.6 46.4 36.2

Table 5.2: Error comparison between the experiment performing the inpainting pre-processing
technique on UV maps and the one without doing it. Used S2S and RMSE errors (in mm) on
test set. For both errors, small is better.

5.3.3 Semantic map vs Body UV map conditioning

As explained in Section 4.2, the LGGAN model allows adding a condition to
guide and control the reconstruction. In our work, we make two proposals for
conditioning it: using a semantic segmentation map of the target UV map to
condition all generation branches and the discriminator, or using this semantic
map to condition only the local generation branch and use the estimated SMPL
body UV map of the person to condition the global generation branch and the
discriminator. Figure 4.3 shows the LGGAN architecture overview on the first
approach and Figure 4.4 shows it on the second.

Analysing the reconstructions of two executions, one conditioning on semantic maps
and the other on the body UV map, we observe that there is no clear difference
between the two options (Figure 5.8). Nevertheless, when taking a look at the
evaluation results, presented in Table 5.3, we do see that conditioning on the body
has a slightly lower error in all types of clothing. Even so, the difference is minimal,

5.3. RESULTS 51

so we consider both options to be good.

Figure 5.8: Examples of reconstructions of the different conditioning options.

S2S error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Semantic segmentation 8.9 12.9 11.0 9.7 24.4 16.3 12.4

SMPL body UV map 8.8 10.9 10.0 8.5 24.1 15.9 11.4

RMSE error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Semantic segmentation 24.8 42.1 33.2 32.1 62.7 46.9 37.5

SMPL body UV map 25.1 39.1 32.1 30.2 63.6 46.4 36.2

Table 5.3: Error comparison between the experiment conditioning on the semantic segmentation
map and the one conditioning with the body SMPL body UV map. Used S2S and RMSE errors
(in mm) on test set. For both errors, small is better.

5.3.4 Removing local generation branch

The LGGAN model is composed of three different branches: a semantic-guided
class-specific generator modelling local context, an image-level generator modelling
the global features, and a weight-map generator for fusing the local and the global
generators.

In this experiment, we evaluate what happens if we leave only one of these three
generation branches, the global generator. As we remove the local generation
branch, in this case we do not condition on body UV map but on the semantic
map, to still help the network with some class information.

As we can see in the reconstruction example below, in Figure 5.9, removing the
local generation branch produces very bad results at the edges where the front
and back of the garment model are joined, having a lot of flying vertices. The

52 CHAPTER 5. EXPERIMENTS AND RESULTS

quantitative evaluation, in Table 5.4, also shows that performance is significantly
worsened by removing this local branch from the model and leaving only the global
generator.

Figure 5.9: Example of a reconstruction of a model with the local generation branch and one
without it.

S2S error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Without local generator 14.2 15.4 14.9 14.0 35.7 26.3 17.6

Including all generators 8.8 10.9 10.0 8.5 24.1 15.9 11.4

RMSE error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Without local generator 43.3 45.0 44.8 43.7 87.7 77.2 56.3

Including all generators 25.1 39.1 32.1 30.2 63.6 46.4 36.2

Table 5.4: Error comparison between the experiment with the local generation branch and the
one without it. Used S2S and RMSE errors (in mm) on test set. For both errors, small is better.

These results make a lot of sense if we take a look at the attention weights generated
by the fusion weight-map generator (Figure 5.10) when the local branch is kept
in the model. The local weight map indicates that the local branch of the model
is mostly paying attention to the edges of the UV maps. For this reason, when
removing this branch, at the edges of the mesh where the front and back of the
garments (separated in the UV map) are joined, these artefacts are produced.

5.3.5 3D mesh losses

During the development of the project and in the experiments carried out, we saw
that the generated reconstructions were not very smooth, but had many lumps
and irregularities compared to the ground truth. For this reason, we decided to

5.3. RESULTS 53

Figure 5.10: Example of an attention local weight map.

add some 3D loss functions applied on meshes, as explained in Section 4.2.2, to try
to improve the quality of the reconstructions.

These losses are in charge of regressing the generated vertices to the ground truth,
as well as ensuring that the generated mesh converges to a smooth and uniform
shape, penalising flying vertices.

Therefore, the last experiment done is to analyse whether adding these 3D losses
really improves the performance of our model or not. To do so, we train two models:
one which computes and takes into account these losses, and another without it.
Below, in Figure 5.11, we see the comparison between the reconstructions of one
experiment and the other. We can observe that the meshes generated by the model
with the 3D losses are much more uniform and therefore more realistic, having
much fewer wrinkles.

Figure 5.11: Example of a reconstruction of a model computing 3D mesh losses and one without
doing it.

Despite this, if we evaluate the model in terms of the quantitative error between the

54 CHAPTER 5. EXPERIMENTS AND RESULTS

prediction and the ground truth, the difference is negligible, as seen in Table 5.5.
In fact, for skirts and dresses, the error in the model without these losses is even
smaller. As discussed in previous experiments, we know that our model already
struggles with such loose-fitting garments, which have significant displacements
over the body shape, because it represents garments as an offset over SMPL.
This gets even worse when we add these 3D losses and penalise flying vertices,
as the model has even less freedom to predict these large displacements. Still, as
mentioned above, the difference between the errors of one model and the other is
very small.

S2S error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Without 3D mesh losses 9.1 11.6 10.1 9.1 23.5 15.9 11.7

With 3D mesh losses 8.8 10.9 10.0 8.5 24.1 15.9 11.4

RMSE error (in mm)
Experiment

Top T-shirt Trousers Jumpsuit Skirt Dress All

Without 3D mesh losses 29.0 46.4 38.1 36.7 83.3 61.7 44.9

With 3D mesh losses 25.1 39.1 32.1 30.2 63.6 46.4 36.2

Table 5.5: Error comparison between the experiment including mesh losses and the one without
them. Used S2S and RMSE errors (in mm) on test set. For both errors, small is better.

5.4 Ablation study

In this section, we summarise the results and discussions presented before in the
form of an ablation study, analysing the contribution of each different idea/technique
designed and tested, in a qualitative and quantitative manner.

From our experiments, we conclude that our best model, from now on referred to as
full model, is the one that uses displacement UV maps and applies the inpainting
technique to them. It also conditions on SMPL body UV map and computes the
mesh losses. In this ablation study, we take apart one component of our system at
a time and show both S2S and RMSE error metrics on test set, as well as some 3D
reconstruction examples.

5.4.1 Quantitative analysis

The quantitative analysis summary is shown in Table 5.6. As we can observe, the
full model is the one with the best performance, having an average S2S error of 11.4
mm and an average RMSE error of 36.2 mm. The parts that seem to contribute
less to the performance of the model are the mesh losses and the conditioning on
the body UV map, since the errors remain practically unchanged.

On the other hand, the part that seems to contribute the most to the performance
of the model is using displacement UV maps as our 3D representation. When
we use the original UV maps, normalised using the min-max normalisation, the

5.4. ABLATION STUDY 55

performance in the test set decreases dramatically, having a much higher error
in all types of clothing. It is true that, for dresses and skirts, this error does not
increase to the same extent as in the rest of garment types.

The class-level local generator and the inpainting technique applied in the pre-
processing of the UV maps are also key to our model, helping it to decrease its
error significantly in most of the garment types. Of these two parts, the local
generator is the one that has the greatest impact.

S2S error (in mm)
Model

Top T-shirt Trousers Jumpsuit Skirt Dress All

Full model 8.8 10.9 10.0 8.5 24.1 15.9 11.4

-Mesh losses 9.1 11.6 10.1 9.1 23.5 15.9 11.7

-Condition on body 8.9 12.9 11.0 9.7 24.4 16.3 12.4

-Displacement maps 35.6 34.5 32.1 31.4 37.8 36.5 33.7

-Local generator 14.2 15.4 14.9 14.0 35.7 26.3 17.6

-Inpainting 10.9 14.1 12.6 11.3 32.6 21.2 14.9

RMSE error (in mm)
Model

Top T-shirt Trousers Jumpsuit Skirt Dress All

Full model 25.1 39.1 32.1 30.2 63.6 46.4 36.2

-Mesh losses 26.0 40.9 33.0 32.1 63.5 46.1 37.5

-Condition on body 24.8 42.1 33.2 32.1 62.7 46.9 37.5

-Displacement maps 77.3 93.3 81.9 81.4 99.3 98.3 87.1

-Local generator 43.3 45.0 44.8 43.7 87.7 77.2 56.3

-Inpainting 29.0 46.4 38.1 36.7 83.3 61.7 44.9

Table 5.6: Ablation study that evaluates the contribution of the different ideas designed and
tested to the performance of our model. We evaluate it computing S2S and RMSE errors (in
mm) per garment type on test set. For both errors, small is better.

5.4.2 Qualitative analysis

To conclude the ablation study, in Figures 5.12, 5.13, 5.14, and 5.15 we show a
qualitative analysis of the 3D reconstructions of different types of garment when
removing one component of our final system at a time, as done above.

As we can see, the full model is the one that has more realism and has the best
resemblance with the ground truth. Our model is capable of learning and modelling
the dynamics of garments, regardless of the action, pose, race, gender and shape of
the human. It is also able to accurately reconstruct garments regardless the image
point of view, recovering the garment parts that are visible, as well as those that
are occluded. However, the reconstructions of our best model are not perfect at
all. It is still not capable of generating garments as smooth as those of the ground
truth, and has difficulties on garments with large displacements over the body, as

56 CHAPTER 5. EXPERIMENTS AND RESULTS

can be seen in Figure 5.15, where the skirt of the prediction is much closer to the
body than the one of the ground truth.

In this analysis, we can see a much bigger difference between the full model and
the ones without mesh losses or without conditioning on the body, than the one
we saw by looking at the evaluation metrics, as the difference was minimal. In
both cases, the generated reconstructions are not as smooth as the reconstruction
of the full model. This was expected for the model without the mesh losses, but it
is surprising that it also happens when we condition only on the semantic map.
Even so, as we have already said, the predicted garment global shape is still very
good in both cases.

With these examples, we can confirm that the major contribution comes from
using displacement UV maps. Except for one of the examples, shown in Figure
5.13, we see that the model not using displacement UV maps has difficulties in
predicting the position of the garment with respect to the human and reconstructs
it far away from the body. Also, we observe that, although in Figure 5.13 the shape
and position of the garment may be acceptable, the model is not able to predict
the leg’s movement and reconstructs the garment as if the person were static.

Lastly, we observe that when not using the inpainting technique or removing the
local generator from the LGGAN model, reconstructions have lots of lumps and
wrinkles. Furthermore, the generated garments coming from the model without
the local generation branch, have quite significant artefacts at the edges where the
front and the back of the garment are joined.

Figure 5.12: Ablation study on a T-shirt+Skirt sample of the test set

5.4. ABLATION STUDY 57

Figure 5.13: Ablation study on a Dress sample of the test set

Figure 5.14: Ablation study on a T-shirt+Trousers sample of the test set

58 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.15: Ablation study on a Top+Skirt sample of the test set

5.5 Comparison with SOTA

After testing the different techniques and ideas proposed in this work, comparing
all of them and analysing their contribution, we believe it is very interesting to
compare also our model with some other state-of-the-art model in the field of 3D
garment reconstruction from images.

To the best of our knowledge, the best current state-of-the-art model in the task of
RGB to 3D garment reconstruction for the CLOTH3D [4] dataset is [35], a work
accepted and in the process of publication. We compare our model against it in
Table 5.7, using the S2S metric per garment type. It can be observed that our
model obtains a lower error across all garment types, with an average error of
about 20 mm less. The garment type in which we get the slightest difference is in
skirts, in which we already know our model has the worst performance.

S2S error (in mm)
Model

Top T-shirt Trousers Jumpsuit Skirt Dress All

Madadi et al . [35] 23.9 43.3 40.6 22.1 32.8 29.3 31.3

Ours 8.8 10.9 10.0 8.5 24.1 15.9 11.4

Table 5.7: S2S error (in mm) per garment type comparison against SOTA in CLOTH3D dataset.
Small is better.

6. Conclusions and future work

To sum up, in this thesis we have presented a system that learns garment dynamics
and reconstructs 3D garment models from a single RGB image, by using UV maps
to represent 3D data.

There are few precedents in the use of UV maps for 3D reconstruction tasks, so we
believe that the study carried out in this work and the proposed pre-processing
techniques can be of great value to the community.

The task of inferring the 3D geometry of garments with just a single image is not
easy at all, since models must deal with lighting, occlusions, viewpoint, dynamism,
etc. Nevertheless, our model achieves state-of-the-art results on the CLOTH3D
dataset, generating good quality and realistic reconstructions. In this way, it
demonstrates that it has the capacity to learn the dynamics of garments and infer
their shape regardless of their topology and the human’s action, pose, gender, race
and body shape. It is also able to reconstruct both visible and occluded parts of
garments accurately.

Furthermore, in this work, we have been able to reconstruct garments of different
topology and type with just a single system, thus avoiding having to train a
different network for each type as in other works. This is because our model allows
the generation to be conditioned and controlled, so we use a semantic map to
condition a local class-specific generation network that separately constructs a
generator for each garment type.

Moreover, we have analysed the contribution of each of the proposals and techniques
designed, learning the importance of applying the correct pre-processing techniques
to the UV maps before starting the model training. We have also learned how
a model, originally designed for a specific task, can be adapted for a completely
different domain and still make it work.

As limitations, we have observed that our model has a much higher error than the
average in dresses and skirts, and that the garment predictions are not as smooth
as the real ones, having quite a few more wrinkles, especially when the poses of
the human are strange.

As future work, we propose different lines of work that could be interesting:

• First, we suggest adding a pre-processing technique for the skirt and dress
UV maps, to try to mitigate the problems we currently have in these two
garment types.

59

60 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• We also believe that it would be interesting to test the task of garment
shape transition and editing in our model, by conditioning it on a different
garment type and topology than the one in the input image, and see if it is
able to change the garment of the human in the generated reconstruction,
maintaining the same pose.

• Since the CLOTH3D dataset is composed of 3D clothed human sequences, a
possible line of work could be to take advantage of the multiple frames in a
unique sequence and learn the temporal data to improve the model’s current
performance.

• Finally, our last suggestion is to somehow predict not only the garment shape
and topology but also the garment texture, which makes the task much more
difficult.

Personally, I am very satisfied with the work done in this thesis, as I had never
worked on a task involving 3D data before, and it has been a completely new
world for me. Even so, applying many of the techniques and knowledge learned
during the Master in Artificial Intelligence, I have developed a solution that has
achieved the proposed objectives. In addition, during this development, I have
learned many things that I did not know and that I believe will be of value for the
future development of my career.

Bibliography

[1] Thiemo Alldieck, Marcus Magnor, Bharat Lal Bhatnagar, Christian Theobalt,
and Gerard Pons-Moll. Learning to reconstruct people in clothing from a
single rgb camera, 2019.

[2] Thiemo Alldieck, Gerard Pons-Moll, Christian Theobalt, and Marcus Magnor.
Tex2shape: Detailed full human body geometry from a single image, 2019.

[3] M. Bertalmio, Andrea Bertozzi, and G. Sapiro. Navier-stokes, fluid dynamics,
and image and video inpainting. volume 1, pages I–355, 02 2001.

[4] Hugo Bertiche, Meysam Madadi, and Sergio Escalera. Cloth3d: Clothed 3d
humans, 2020.

[5] D.N. Bhat and S.K. Nayar. Ordinal Measures for Image Correspondence. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(4):415–423,
Apr 1998.

[6] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-
Moll. Multi-garment net: Learning to dress 3d people from images, 2019.

[7] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier
Romero, and Michael J. Black. Keep it smpl: Automatic estimation of 3d
human pose and shape from a single image, 2016.

[8] Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy
Boubekeur. Markerless garment capture. ACM Trans. Graphics (Proc. SIG-
GRAPH), 27(3):99, 2008.

[9] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
Jose Neira, Ian Reid, and John J. Leonard. Past, present, and future of
simultaneous localization and mapping: Toward the robust-perception age.
IEEE Transactions on Robotics, 32(6):1309–1332, Dec 2016.

[10] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich 3d
model repository, 2015.

[11] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio
Savarese. 3d-r2n2: A unified approach for single and multi-view 3d object
reconstruction, 2016.

61

62 BIBLIOGRAPHY

[12] Enric Corona, Albert Pumarola, Guillem Alenyà, Gerard Pons-Moll, and
Francesc Moreno-Noguer. Smplicit: Topology-aware generative model for
clothed people, 2021.

[13] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set generation network
for 3d object reconstruction from a single image, 2016.

[14] Ross Girshick. Fast r-cnn, 2015.

[15] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS, 2010.

[16] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial networks, 2014.

[17] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and
Mathieu Aubry. Atlasnet: A papier-mâché approach to learning 3d surface
generation, 2018.

[18] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. Densepose: Dense
human pose estimation in the wild, 2018.

[19] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and
Daniel Cohen-Or. Meshcnn. ACM Transactions on Graphics, 38(4):1–12, Jul
2019.

[20] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2 edition, 2004.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[22] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Recovering surface layout
from an image. Int. J. Comput. Vision, 75(1):151–172, October 2007.

[23] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and Tony Tung. Arch:
Animatable reconstruction of clothed humans, 2020.

[24] Moon-Hwan Jeong, Dong-Hoon Han, and Hyeong-Seok Ko. Garment capture
from a photograph. Comput. Animat. Virtual Worlds, 26(3–4):291–300, May
2015.

[25] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik.
End-to-end recovery of human shape and pose, 2018.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2017.

[27] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

[28] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and Kostas Daniilidis.
Learning to reconstruct 3d human pose and shape via model-fitting in the
loop, 2019.

BIBLIOGRAPHY 63

[29] Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. Convolutional
mesh regression for single-image human shape reconstruction, 2019.

[30] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and
Ole Winther. Autoencoding beyond pixels using a learned similarity metric,
2016.

[31] Aldo Laurentini. The visual hull concept for silhouette-based image under-
standing. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
16:150–162, 03 1994.

[32] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[33] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.
Pointcnn: Convolution on X -transformed points, 2018.

[34] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. SMPL: A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, October 2015.

[35] Meysam Madadi, Hugo Bertiche, Wafa Bouzouita, Isabelle Guyon, and Sergio
Escalera. Learning cloth dynamics: 3d + texture garment reconstruction
benchmark, 2021.

[36] Meysam Madadi, Hugo Bertiche, and Sergio Escalera. Smplr: Deep smpl
reverse for 3d human pose and shape recovery, 2019.

[37] Deepti Maduskar and Nitant Dube. Navier–stokes-based image inpainting for
restoration of missing data due to clouds. In Manoj Kumar Sharma, Vijay-
pal Singh Dhaka, Thinagaran Perumal, Nilanjan Dey, and João Manuel R. S.
Tavares, editors, Innovations in Computational Intelligence and Computer
Vision, pages 497–505, Singapore, 2021. Springer Singapore.

[38] Priyanka Mandikal and R. Venkatesh Babu. Dense 3d point cloud reconstruc-
tion using a deep pyramid network, 2019.

[39] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets,
2014.

[40] Ryota Natsume, Shunsuke Saito, Zeng Huang, Weikai Chen, Chongyang Ma,
Hao Li, and Shigeo Morishima. Siclope: Silhouette-based clothed people, 2019.

[41] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian
mesh optimization. GRAPHITE ’06, page 381–389, New York, NY, USA,
2006. Association for Computing Machinery.

[42] Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Peter V. Gehler, and
Bernt Schiele. Neural body fitting: Unifying deep learning and model-based
human pose and shape estimation, 2018.

[43] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed
A. A. Osman, Dimitrios Tzionas, and Michael J. Black. Expressive body
capture: 3d hands, face, and body from a single image, 2019.

64 BIBLIOGRAPHY

[44] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation, 2017.

[45] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space, 2017.

[46] Krishna Regmi and Ali Borji. Cross-view image synthesis using conditional
gans, 2018.

[47] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning
deep 3d representations at high resolutions, 2017.

[48] German Ros, Laura Sellart, Joanna Materzynska, David Vázquez, and Antonio
López. The synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes. pages 3234–3243, 06 2016.

[49] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo
Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit function for high-resolution
clothed human digitization, 2019.

[50] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo. Pifuhd: Multi-
level pixel-aligned implicit function for high-resolution 3d human digitization,
2020.

[51] Philip Saponaro, Scott Sorensen, Stephen Rhein, Andrew R. Mahoney, and
Chandra Kambhamettu. Reconstruction of textureless regions using structure
from motion and image-based interpolation. In 2014 IEEE International
Conference on Image Processing (ICIP), pages 1847–1851, 2014.

[52] Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3d: Learning 3d scene
structure from a single still image. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(5):824–840, 2009.

[53] Johannes L. Schonberger and Jan-Michael Frahm. Structure-from-motion
revisited. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[54] David Smith, Matthew Loper, Xiaochen Hu, Paris Mavroidis, and Javier
Romero. Facsimile: Fast and accurate scans from an image in less than a
second, 2019.

[55] Zhaoqi Su, Tao Yu, Yangang Wang, Yipeng Li, and Yebin Liu. Deepcloth:
Neural garment representation for shape and style editing, 2020.

[56] Hao Tang, Dan Xu, Yan Yan, Philip H. S. Torr, and Nicu Sebe. Local class-
specific and global image-level generative adversarial networks for semantic-
guided scene generation, 2020.

[57] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating
networks: Efficient convolutional architectures for high-resolution 3d outputs,
2017.

[58] Uv mapping. Uv mapping — Wikipedia, the free encyclopedia, 2021.

BIBLIOGRAPHY 65

[59] Gul Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J.
Black, Ivan Laptev, and Cordelia Schmid. Learning from synthetic humans.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jul 2017.

[60] Gül Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin Yumer, Ivan
Laptev, and Cordelia Schmid. Bodynet: Volumetric inference of 3d human
body shapes, 2018.

[61] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang
Jiang. Pixel2mesh: Generating 3d mesh models from single rgb images, 2018.

[62] Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu. Pixel2mesh++: Multi-
view 3d mesh generation via deformation, 2019.

[63] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B.
Tenenbaum. Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling, 2017.

[64] Yun-Peng Xiao, Yu-Kun Lai, Fang-Lue Zhang, Chunpeng Li, and Lin Gao. A
survey on deep geometry learning: From a representation perspective, 2020.

[65] Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, and Shengping
Zhang. Pix2vox: Context-aware 3d reconstruction from single and multi-
view images. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), Oct 2019.

[66] Xiangyu Xu, Hao Chen, Francesc Moreno-Noguer, Laszlo A. Jeni, and Fer-
nando De la Torre. 3d human shape and pose from a single low-resolution
image with self-supervised learning, 2020.

[67] Zerong Zheng, Tao Yu, Yixuan Wei, Qionghai Dai, and Yebin Liu. Deephuman:
3d human reconstruction from a single image, 2019.

[68] B. Zhou, Xiaowu Chen, Qiang Fu, K. Guo, and P. Tan. Garment modeling
from a single image. Comput. Graph. Forum, 32:85–91, 2013.

[69] Heming Zhu, Yu Cao, Hang Jin, Weikai Chen, Dong Du, Zhangye Wang,
Shuguang Cui, and Xiaoguang Han. Deep fashion3d: A dataset and benchmark
for 3d garment reconstruction from single images, 2020.

[70] Cihan Öngün and Alptekin Temizel. Paired 3d model generation with condi-
tional generative adversarial networks, 2019.

66 BIBLIOGRAPHY

	Preamble
	Abstract
	Acknowledgments

	Contents
	Table of Contents
	List of Figures
	List of Tables
	Glossary

	Introduction
	Motivation
	Contribution
	Overview

	Background
	Generative Adversarial Network
	Conditional GAN

	3D data representations
	Voxel-based representations
	Point clouds
	3D meshes and graphs
	UV maps

	Related work
	3D reconstruction
	Learning-based approaches

	Garment reconstruction
	UV map works

	Methodology
	Our UV maps
	Normalise UV maps
	Inpainting
	Semantic map and SMPL body UV map

	LGGAN for 3D garment reconstruction
	Architecture
	3D loss functions

	Experiments and Results
	Dataset
	Experimental setup
	Training details
	Evaluation metrics

	Results
	Normalisation techniques
	Inpainting UV maps
	Semantic map vs Body UV map conditioning
	Removing local generation branch
	3D mesh losses

	Ablation study
	Quantitative analysis
	Qualitative analysis

	Comparison with SOTA

	Conclusions and future work
	Bibliography

