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Abstract— This paper presents a sliding mode control strat-
egy for a dc-dc dual active bridge converter. The controller
is based on a truncated model obtained using the generalized
state space averaging method that transforms the mixed dc-
ac dynamics of the converter into a regulation problem. The
proposed controller, that uses a dynamic extension to overcome
the structural problem of the non-affine control input, provides
good results in terms of performance and robustness. Numerical
simulations are included to validate the proposed modelling
methodology and the control design.

I. INTRODUCTION

The dual active bridge (DAB) is an isolated dc-dc con-
verter made of two active bridges interconnected with a
high-frequency transformer. This converter can have a three-
phase [1] or single-phase topology [2] and the main features
are high power density, bidirectional power flow, galvanic
isolation, and the possibility of soft switching [3]. Due to
the mentioned characteristics, the DAB converter is used in
several applications such as microgrids [4], [5], electric ve-
hicles [6], energy storage systems [7], solid-state transformer
in medium-voltage and low-voltage distribution networks [8]
among others.

The DAB converter is a non-linear dynamical system that
mixes two dc stages (input and output) with an ac stage in
between due to the magnetic transformer. This makes not
possible to adopt the equivalent circuit model for designing
control strategies and requires of the modification the model.
The simplest way is to obtain first order nonlinear dynamics
based on the power flow, see [9] for a detailed discus-
sion on this behavioural modelling. Many papers propose
a linearization around the equilibrium point to obtain a
control-oriented model. Then, linear control techniques can
be applied such as PI controllers [10], phase compensators
[11], linear observers [12], or discrete-time linear controllers
[13]. Some other papers propose nonlinear control strategies,
including passivity-based techniques [14], [15], the feedback
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linearization approach [16], or a double integral sliding mode
control [17].

Alternatively, the generalized state space averaging
(GSSA) methodology was proposed for a DAB converter
in [18] and, later, extended in [19]. The GSSA expansion
was firstly presented in [20] with the aim of capturing
the fine detail of the state evolution by considering a full
Fourier series. See examples of applications in modelling
[21] and control [22], [23] of full-bridge rectifiers, and a
general overview of the GSSA technique applied to power
converters in [24]. With respect to the behavioural modelling,
the advantage of using the GSSA approximation is that
the resulting model provides more physical insight, but still
nonlinear. Several linear controllers have been designed using
the GSSA approximation of a DAB converter: PI-regulators
[8], [25], optimal Linear Quadratic Gaussian control [26] or
H∞ control [27]. Nonlinear control examples applied to a
GSSA model include passivity-based controllers [14], [15].
The aforementioned control techniques usually rely on the
knowledge of many parameter and variables that are used for
the linearization procedure or appear in the feedback control
law.

The contribution of this paper is a sliding mode controller
based on the GSSA model of DAB converter. The main
advantages with respect to the previous controllers is that
the response dynamics can be freely designed through the
switching manifold independently of the load and regulation
parameters. Compared with [17], the proposed control algo-
rithm does not require the exact values of the DAB converter
and results in a simpler implementation.

The remainder of the paper is organized as follows. In Sec-
tion II, after a brief introduction to the GSSA methodology,
the dynamical model of a DAB converter is presented and its
GSSA equivalent model is obtained. The control design is
presented in Section III, and Section IV includes an extensive
analysis of the ideal sliding dynamics. Then, some simulation
results are included in Section V and, finally, the conclusions
are stated in Section VI.

II. GSSA MODEL OF A DUAL ACTIVE BRIDGE

A. GSSA methodology

The GSSA expansion is an averaging technique for power
converters (or variable structure systems in general) and aims
to capture the fine detail of the state evolution by considering
a full Fourier series. Let us define the k-th index average (or
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Fig. 1: Dual Active Bridge converter.

the k-phasors) as

〈x〉k(t) =
1

T

∫ t

t−T
x(τ)e−jkωτdτ, (1)

where ω = 2π/T and k ∈ Z. Then, a state variable, x(τ)
during the interval τ ∈ [t − T, t], can be represented by its
Fourier series

x(τ) =

+∞∑
k=−∞

〈x〉k(t)ejkωt.

From [20], the time derivative of the k-th coefficient is
d
dt
〈x〉k = 〈 d

dt
x〉k − jkω〈x〉k,

and the k-th coefficient of the product of two variables,
x(t), y(t), is

〈xy〉k =

+∞∑
l=−∞

〈x〉k−l〈y〉l.

For sake of simplicity, when clear from the context, the
following notation is used xk = 〈x〉k.

B. The dual active bridge converter

Figure 1 shows a simplified scheme of the DAB converter.
It consists of a two-port high frequency transformer with
a two full-bridge switches connected to each transformer
winding and a dc-voltage source, E, and a capacitor in the
primary and secondary sides, ports A and B, respectively.

Neglecting the magnetizing current of the transformer and
assuming a transformer ratio of n = 1, the DAB dynamics
can be written as [19]

L
di
dt

=EβA − vβB − ri (2a)

C
dv
dt

=iβB − iL, (2b)

where iL represents a generic load, and control signals
βA, βB are, usually, square wave signals with the form

βA = sign(sin(ωt)) (3a)
βB = sign(sin(ωt− δ)). (3b)

C. GSSA model of a DAB converter

Applying the GSSA transformation to (2a)-(2b)

L
di1
dt

= −jωsLi1 + EβA1 − 〈vβB〉1 − ri1

C
dv0
dt

= 〈iβB〉0 − iL0,

where

〈vβB〉1 = v1βB0 + v0βB1 + v2β̄B1 + . . .

〈iβB〉0 = i0βB0 + ī1βB1 + i1β̄B1 + . . .

and x−k = x̄k has been used. Truncating for i1, v0 one gets

L
di1
dt

= −jωsLi1 + EβA1 − v0βB1 − ri1 (5a)

C
dv0
dt

= i0βB0 + ī1βB1 + i1β̄B1 − iL0, (5b)

By using the definition of the average phasors (1), the
zero-th and first indices of the control signals in (3a)-(3b)
results in

βA0 = 0, βA1 = −j 2

π

βB0 = 0, βB1 = −j 2

π
e−jδ,

that replaced in (5a)-(5b)

L
di1
dt

= −(r + jωsL)i1 − j
2

π
E + jv0

2

π
e−jδ (7a)

C
dv0
dt

= −j 2

π

(̄
i1e
−jδ − i1ejδ

)
− iL0, (7b)

resulting in a complex-valued second order nonlinear dynam-
ics. Since v0, iL0 ∈ R, the Equation (7b) can be written in a
more compact way as

C
dv0
dt

= −I1
4

π
sin(θ + δ)− iL0, (8)

yielding a real-valued nonlinear dynamics where I1 and θ
correspond to the modulus and argument of i1, respectively,
i.e., i1 = I1e

jθ.
The complex-valued dynamics in (7a) can be written in

polar coordinates, separating them into the real and imag-
inary parts. Then, combining (7a) and (8) the DAB model
results in

L
dI1
dt

= −rI1 −
2

π
E sin θ + v0

2

π
sin(θ + δ) (9a)

dθ
dt

= −ωs −
2

πLI1
E cos θ + v0

2

πLI1
cos(θ + δ) (9b)

C
dv0
dt

= −I1
4

π
sin(θ + δ)− iL0. (9c)

Usually, load currents are a mix of resistive and constant
power loads (CPLs),

iL0 =
v0
RL

+
PL
v0
, (10)

where RL and PL are load resistance and the constant power
load values, respectively.

III. SLIDING MODE CONTROLLER

A. Dynamic extension
Since the system is non-affine with the control input, a

standard sliding mode controller can not be applied. To skip
this structural problem, let us extend the dynamics with

dδ
dt

= u, (11)

where u is the new control input. Then, the overall dynamics
is defined by (9) with (11).
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B. Switching manifold

With the new control definition, the system is relative de-
gree two and requires a switching manifold with a derivative
term. The simplest choice is to select a first order dynamics
such as

σ =
dv0
dt

+ k1(v0 − v∗0), (12)

where k1 > 0, defines the time response of the controller
and v∗0 stands for the desired constant voltage value. Notice
that assigning this linear dynamics the system response is
unequivocally defined by selecting k1.

C. Sliding mode controller

The sliding mode controller is the control action required
to reach and keep on σ = 0. Differentiating (12) with respect
to time and using (9c) and (11) one gets

dσ
dt

= Ψ− 4I1
πC

cos(θ + δ)u, (13)

where, grouping terms,

Ψ =− 4

πC
sin(θ + δ)

(
k1I1 +

dI1
dt

)
− 4I1
πC

cos(θ + δ)
dθ
dt

− 1

C

(
k1iL0 +

diL0
dt

)
. (14)

The equivalent control, ueq , is defined as the control input
guaranteeing σ̇ = 0. Hence, from (13),

4I1
πC

cos(θ + δ)ueq = Ψ. (15)

Using (13) and (15) one can write

σ
dσ
dt

= σ
4I1
πC

cos(θ + δ)(ueq − u),

and the control law

u = k · sign (σ cos(θ + δ)) , (16)

with k > |ueq| guarantees σσ̇ < 0, and the sliding motion
on σ = 0 is ensured.

The knowledge of the sign of cos(θ + δ) in (16) is
necessary to ensure the sliding motion. During the nu-
merical simulation stage has been observed that the value
of cos(θ + δ) remains positive all time. Additionally, this
control action defines an additional (and undesired) sliding
surface at θ + δ = ±π2 . In a practical implementation the
following control action will be adopted

u = k · sign (σ) . (17)

Figure 2 shows the resulting control scheme including: the
dynamic extension (11), the switching manifold (12), and the
switching control law (17).

IV. IDEAL SLIDING DYNAMICS

Ideal sliding dynamics occurs when σ̇ = σ = 0. For an
easy analysis, it is assumed a static load composed by a
resistor and a CPL, so the current load is assumed with the
form (10).

Sliding mode controller

v∗o
(12)

σ
(17)

u
(11)

δ
(3a)-(3b)

βA

βB

(2a)-(2b)
vo

vo

Phase
Modulation DAB

Fig. 2: Control scheme.

A. Voltage dynamics

From the switching manifold definitions in Section III-B
with σ = 0 the voltage dynamics is easily identified as

v0(s)

v∗0(s)
=

k1
s+ k1

,

that corresponds to a first order response with a constant time
τ = 1/k1.

B. Remaining sliding dynamics

On another hand, using u = ueq in (11) and assuming that
v0 reaches the desired value v∗0 as shown in Section IV-A,
one gets

dδ
dt

=
πC

4I1

Ψ

cos(θ + δ)
.

Replacing Ψ from (14), using (10) and after some algebra,

I1 cos(θ + δ)

(
dθ
dt

+
dδ
dt

)
= − sin(θ + δ)

(
k1I1 +

dI1
dt

)
− k1

π

4

(
v∗0
RL

+
PL
v∗0

)
. (18)

Let us define the auxiliary variable

z = I1 sin(θ + δ). (19)

Differentiating with respect to the time (19) together with
(18), the new variable z exhibits a first order dynamics

dz
dt

= −k1z − k1
π

4

(
v∗0
RL

+
PL
v∗0

)
, (20)

that is stable since k1 > 0, and stabilises at

z∗ = −π
4

(
v∗0
RL

+
PL
v∗0

)
. (21)

From (20), one knows that z asymptotically tends to z∗,
thus implying that the ideal sliding dynamics converge to
the manifold defined by

z∗ = I1 sin(θ + δ). (22)

Assuming that (22) is reached, and replacing it into the
dynamics (9a)-(9b) one gets

L
dI1
dt

= −rI1 −
2

π
E sin θ + v∗0

2

πI1
z∗ (23a)

dθ
dt

= −ωs −
2

πLI1
E cos θ + v∗0

2

πLI21

√
I21 − z∗2.

(23b)

Since this system is highly non-linear, the stability of
the small-signal model around an equilibrium point will
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be analyzed. After some algebra, the equilibrium points,
denoted by I∗1 , θ

∗ are the solutions of

E2−v∗20 +v∗0z
∗r =

π

4
(r2 +ω2

sL
2)I∗21 −v∗0ωsL

√
I∗21 − z∗2,

(24)
and

tan θ∗ =
−πrI∗21 + 2v∗0z

∗

−πωsLI∗21 + 2v∗0
√
I∗21 − z∗2

. (25)

Notice that the quadratic function (24) have four possible
solutions, but only positive values are admissible since I1 is
the modulus of i1. On another hand, from (23b), periodic
solutions for θ∗ are obtained.

The Jacobian of (23), evaluated at the equilibria yields

JISD =

 − r
L −

2v∗0z
∗

πI∗21 L
ωsI
∗
1 −

2v∗o
√
I∗21 −z∗2
πLI∗1

ωs

I∗1
− 2v∗0z

∗2

πI∗31 L
√
I∗21 −z∗2

− r
L +

2v∗0z
∗

πI∗21 L

 .

The equilibrium point is locally stable if, and only if, all the
coefficients of the characteristic polynomial of JISD,

λ2 − tr(JISD)λ+ det(JISD),

have the same sign. Then, the two necessary and sufficient
conditions to assure stability around the equilibrium point
are tr(JISD) < 0 and det(JISD) > 0,

tr(JISD) = −2
r

L
< 0

det(JISD) = ω2
s +

r2

L2
− 2v∗0ωs

πL
√
I∗21 − z∗2

> 0.

The first condition is automatically achieved, since the sec-
ond condition defines a range of admissible values. Notice
that the stability does not depends on the control gains.

A numerical example of the obtained analysis is carried
out using the parameters of the DAB converter simulated in
Section V. With a load values RL = 100 Ω and PL = 100 W,
the auxiliary value (21)

z∗ = −2.277,

that, from (24) results in two possible current values

I∗1 = 2.282 A
I∗1 = 40.452 A,

with determinant values

det(JISD) = −3.563 · 1012

det(JISD) = 1.229 · 1010,

concluding that there exists two possible values for I∗1 , but
only I∗1 = 40.452 A is stable. With this current value in (25)

θ∗ = −3.076 + 2nπ, n ∈ Z,

and using (19)

δ∗ = 3.0194 + 2nπ, n ∈ Z.

Figure 3 shows the trajectories of (23) with the parameters
in Section V and RL = 100 Ω and PL = 100 W, for

0 10 20 30 40 50 60 70 80 90 100

-6

-5

-4

-3

-2

-

0

2

Fig. 3: Simulation results: ideal sliding dynamics in (23) for a batch of initial
conditions. Initial conditions are identified with a circle, and equilibrium
points with a cross.

different initial conditions. It can be observed how trajec-
tories stabilize at different equilibrium points with values
(I∗1 , θ

∗) = (40.452,−3.076 + 2nπ). The definition of the
region of attraction, if possible, is a more complicated task
and is left for future works.

V. SIMULATIONS RESULTS

Some numerical simulations using Matlab-Simulink have
been carried out to test the proposed controller. The param-
eters of the DAB converter were: C = 1500 µF, L = 8 µH,
r = 0.006 Ω, E = 40 V, and the switching frequency was
f = 25 kHz (then ωs = 2πf ).

The gain of the sliding mode controller, in (17), was set
to k = 103. The switching manifold in (12) is defined with
k1 = 2000 that corresponds to a settling time of ts = 2 ms.
The simulation has been run at a fixed step size of 5 ·10−8 s
with the ode4 (Runge-Kutta) solver.

A. Simulations with the GSSA model

As a first stage, the controller has been tested using the
GSSA model in (9). The desired voltage value was set to
v∗0 = 40 V, the load values were RL = 100 Ω and PL =
100 W. The voltage initial condition was v0(0) = 35 V.

Figure 4 (bottom) shows that the sliding motion is reached
after, approximately, 0.5 ms and, consequently, the output
voltage is regulated after 2 ms, following the design require-
ments. The simulation results shown in Figure 5 (top) also
show that the value of cos(θ + δ) remains positive and close
one. This confimrs removing that term in (16), so that, for
implementation purposes, the controller is turns to an output
feedback scheme. Finally, as expected, the equilibrium value
for the current variables, I1 and θ, are the ones obtained
in the numerical analysis of the ideal sliding dynamics in
Section IV.

B. Realistic simulations

In a second stage, the controller has been simulated using
the model (2), which implies that the control signals follow
the waveforms in (3). Additionally, since f = 25 kHz,
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Fig. 4: Simulation results with the GSSA model in (9): (top) the output
voltage, v0, (mid) the phase shift, δ and (bottom) the switching manifold,
σ.
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Fig. 5: Simulation results with the GSSA model in (9): (top) the value
of cos(θ + δ), (mid) the current modulus, I1 and (bottom) the current
argument, θ

the variable, δ, is sampled with T = 40 ns. With the
same control parameters from the previous Section, the test
consists in changing the voltage reference and the load values
as follows:

v∗0 =

{
39 V t < 5 ms
40 V t ≥ 5 ms

RL =

{
100 Ω t < 20 ms
6 Ω t ≥ 20 ms

PL =

 0 W t < 10 ms
100 W 10 ≤ t < 15 ms
200 W t ≥ 15 ms

Figure 6 shows the output voltage, the phase shift control
angle and the switching manifold. The voltage is regulated
at the desired value when changing the reference value and
in face of load changes, with the settling time of 2 ms.
With respect to the previous simulations, high-frequency
oscillations appear because of the switching signals of βA
and βB . The calculated GSSA variables are shown in Figure
7. On top, the extracted GSSA output voltage shows a

0 5 10 15 20 25
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Fig. 6: Simulation results with the original model in (2): (top) the output
voltage, v, (mid) the phase shift, δ and (bottom) the switching manifold, σ.
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Fig. 7: Simulation results with the original model in (2): (top) the output
GSSA voltage, v0, in red, (mid) the modulus of the GSSA current, I1 and
(bottom) the argument of the GSSA current, θ.

small steady state error, that is associated to all disregarded
harmonics. The GSSA current, in polar coordinates, is shown
in the mid and bottom plots.

VI. CONCLUSIONS

A sliding based control algorithm is proposed for a DAB.
The control design is based on the GSSA approximation and
includes a dynamics extension to solve the problem of having
the input with a non-affine form.

Thanks to the sliding motion, the obtained controller
allows to freely design the output dynamics, independently
of the load changes. Additionally, it has been observed that
the dependence on the term cos(θ + δ) can be removed,
resulting in an output feedback scheme (compared with the
state feedback algorithm in [17]). In overall, the controller
offers good performance and robustness results .

Future works include the implementation of the controller
in a real plant.
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[9] R. Griñó and A. Dòria-Cerezo, “Modelling and simulation of a
magnetically coupled multiport dc-dc converter,” in Proc. 24th Int.
Conf. on Emerging Technologies and Factory Automation, 2019.

[10] B. P. Baddipadiga and M. Ferdowsi, “Dual loop control for eliminating
dc-bias in a dc-dc dual active bridge converter,” in Proc. 3rd Interna-
tional Conference on Renewable Energy Research and Applications,
2014.

[11] D. Das, S. Mishra, and B. Singh, “Design architecture for continu-
ous time control of dual active bridge converter,” IEEE Journal of
Emerging and Selected Topics in Power Electronics, Early Access.

[12] D.-D. Nguyen, D.-H. Nguyen, M. Ta, and G. Fujita, “Sensorless
feedforward current control of dual-active-bridge dc/dc converter for
micro-grid applications,” IFAC-PapersOnLine, vol. 51, no. 28, pp.
333–338, 2018.

[13] I. Askarian, S. Bagawade, M. Pahlevani, A. M. Knight, and
A. Bakhshai, “Robust digital nonlinear control system for dual active
bridge (DAB) dc/dc converters with asymmetric half-cycle modula-
tion,” IEEE Journal of Emerging and Selected Topics in Industrial
Electronics, vol. 1, no. 2, pp. 123–132, 2020.

[14] M. Cupelli, S. K. Gurumurthy, S. K. Bhanderi, Z. Yang, P. Joebges,
A. Monti, and R. W. De Doncker, “Port controlled Hamiltonian
modeling and IDA-PBC control of dual active bridge converters for
dc microgrids,” IEEE Trans. on Industrial Electronics, vol. 66, no. 11,
pp. 9065–9074, 2019.

[15] R. V. Meshram, M. Bhagwat, S. Khade, S. R. Wagh, A. M. Stankovic,
and N. M. Singh, “Port-controlled phasor Hamiltonian modeling and
IDA-PBC control of solid-state transformer,” IEEE Trans. on Control
Systems Technology, vol. 27, no. 1, pp. 161–173, 2019.

[16] E. L. S. da Silva, A. L. Kirsten, and D. J. Pagano, “Discrete sps control
of a dab converter using partial feedback linearization,” in Proc. IEEE
15th Brazilian Power Electronics Conference and 5th IEEE Southern
Power Electronics Conference, 2019.

[17] Y. Jeung and D. Lee, “Voltage and current regulations of bidirectional
isolated dual-active-bridge dc–dc converters based on a double-integral
sliding mode control,” IEEE Trans. on Power Electronics, vol. 34,
no. 7, pp. 6937–6946, 2019.

[18] H. Qin and J. W. Kimball, “Generalized average modeling of dual
active bridge dc–dc converter,” IEEE Trans. on Power Electronics,
vol. 27, no. 4, pp. 2078–2084, 2012.

[19] J. A. Mueller and J. W. Kimball, “An improved generalized average
model of dc–dc dual active bridge converters,” IEEE Trans. on Power
Electronics, vol. 33, no. 11, pp. 9975–9988, 2018.

[20] S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese,
“Generalized averaging method for power conversion circuits,” IEEE
Trans. on Power Electronics, vol. 6, no. 2, pp. 251–259, 1991.
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