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Abstract

The increasing complexity of mobility plus the growing population in cities, together with
the importance of privacy when sharing data from vehicles or any device, makes traffic
forecasting that uses data from infrastructure and citizens an open and challenging task.
In this paper, we introduce a novel approach to deal with predictions of volume, speed and
main traffic direction, in a new aggregated way of traffic data presented as videos. Our
approach leverages the continuity in a sequence of frames, learning to embed them into a
low dimensional space with an encoder and making predictions there using recurrent layers,
ensuring good performance through an embedded loss, and then, recovering back spatial
dimensions with a decoder using a second loss at a pixel level. Exogenous variables like
weather, time and calendar are also added in the model. Furthermore, we introduce a novel
sampling approach for sequences that ensures diversity when creating batches, running in
parallel to the optimization process.

Keywords: traffic forecasting, video prediction, recurrent autoencoder, exogenous vari-
ables, sequences’ sampling

1. Introduction

Traffic forecasting deals with both, the problem of regression and classification of road
states taking into account spatio-temporal features. Road states refers to traffic variables
(Respati et al., 2018) volume (number of cars in this location), speed (average speed of
cars at a specific location or area), and direction (the angle from 0 to 359 along which
vehicles move). This problem, consisting of assigning future road states at each location, is
particularly difficult mainly due to (i) the complexity and dynamic property of the traffic
environment in cities (Liao et al., 2018), (ii) high resolution of the data (iii) lack of up-to-
date road maps and data in some locations, (iv) external impacts of unknown agents to
traffic like weather or soccer games, and (v) errors in data collection from sensors.

The current complexity of mobility, the growing population in cities and the increas-
ing traffic-data collection (Respati et al., 2018) (Loop detectors, Bluetooth Mac Scanners,
Mobile Phones or Connected Cars), calls for more powerful models that allow better city
planning and calculating more precisely travel times. In this regard, Traffic4cast Chal-
lenge 2019 at NeurIPS (Dr Sepp Hochreiter, 2019) proposes a new representation of traffic
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data that deliberately ignores the underlying road network, mapping GPS trajectories to
spatio-temporal cells that do not depend on the lack of up-to-date road maps, which em-
powers the development of methods that can produce high-resolution traffic states even for
fast-evolving cities, like emerging economies.

Traffic forecasting is traditionally (Hong, 2011) treated as a time series problem faced
with methodologies like Arima, Sarima or Support Vector Regression while more recent
works use also Neural networks (Huang et al., 2014). However, these methods take into
account the state of streets independently while there is a strong correlation between streets
in real life. After the great success of Convolutional Neural Networks (CNN) in Computer
Vision with images, or with tasks related to Signal Processing or Natural Language, the
work in (Sun et al., 2017) translates traffic data into images and uses for the first time a
CNN to tackle this problem. We take inspiration from the work Hierarchical Long-term
Video Prediction without Supervision (Wichers et al., 2018), where the prediction of a future
frame is done using an autoencoder, with predictions occurring in the embedded space and
then gradually recovering back the original dimension with the decoder, all minimizing both
the output of the next frame and the prediction in the embedding space.

Our work presents a novel method to tackle the problem of traffic forecasting as a scene
completion task along time using the data provided by the Institute of Advanced Research in
Artificial Intelligence (IARAI) (Dr Sepp Hochreiter, 2019) together with Here Technologies
in the NeurIPS Traffic4cast challenge aforementioned. The proposed method is based on
(Wichers et al., 2018), using their proposed loss function but reshaping the network as a
sequence to sequence problem and using a U-Net (Respati et al., 2018) like architecture
together with exogenous data like time of the day, day of the week and weather, benefiting
from both the prediction in a lower dimensional space and the output of several future
frames within a single inference. We also present a data sampling technique that allows
for faster training and batch diversity, when the input is a continuous sequence that we
need to break in batches for training. Furthermore, we propose a multitask loss function to
minimize, taking into account that the regression for the heading channel for these data is
indeed a classification problem.

The rest of the paper is organized as follows. In Section 2, we describe the problem
to be solved and the data. Then, in section 3 we present the proposed methods for data
sampling and frames prediction. Section 4 discusses the experimental results and section 5
concludes the manuscript with remarks and future work.

2. Problem definition

Traffic4cast presents the problem of traffic forecasting as a scene completion task along
time for one year in three different cities: Berlin, Istanbul and Moscow. In particular,
trajectories of raw GPS positions for each city are projected to an image containing the
city with shape height = 495, width = 436, and channels = 3 (volume, speed and heading
in this order). Each pixel in the image contains the aggregated information for a square
region of 100m × 100m over a time bin of 5 minutes. As a day is composed of 288 time
bins of 5 minutes, for each city and day we can represent the data as a tensor T day

city [t, h, w, c]
with shape (288, 495, 436, 3), with channel domains volume, speed ∈ {0, 1, 2, ..., 255} ⊂ N,
and heading ∈ {0, 1, 85, 170, 255}. The aggregation of volume is the counting of vehicles in
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the interval and region (t, h, w), capped at a minimum and maximum level to remove noisy
readings. Then, capped numbers are mapped proportionally to the interval [1, 255] and
rounded to the nearest integer, where the value 0 means no data available at this time bin.
speed is similarly calculated, only differing in the aggregation being the average instead of
counting, and only capping the maximum speed and normalizing to the interval [0, 255].
Here speed = 0 means the vehicles are not moving, if volume in this location is greater
than zero. The computation of heading is different, each probe point records the heading
direction in degrees (from 0 to 359), which is binned in four heading directions; North-East
(from 0 to 90, represented as heading = 85), South-East (from 90 to 180, as heading = 255),
South-West (from 180 to 270, as heading = 170), and North-West (from 270 to 359, as
heading = 1). The selected value is the bin with the highest number of points, with the
possibility to assign 0 when all directions in this region have the same number of points,
being impossible to determine which is maximum. Note that there is no data if and only if
volume = 0.

For each city Traffic4cast dataset provides 285 days for training, 7 for validation and
72 for testing. The first two have information for each time bin, but the test set only
contains information in 5 blocks of 12 bins (1 hour of information each block). The goal
of the challenge is to predict 3 time bins after each of these 5 blocks. In other words, we
need to predict the traffic for 5, 10 and 15 minutes ahead, given the information about
the previous hour, a total of 5 times per day. In particular, the 5 blocks of 15 minutes to
predict start in Istanbul and Moscow at time bins (57, 114, 174, 222, 258), which correspond
in hours to (04:45h, 09:30h, 14:30h, 18:30h, 21:30h) respectively. In Berlin, time bins are
(30, 69, 126, 186, 234) that correspond to (02:30h, 05:45h, 10:30h, 15:30h, 19:30h).

Then, the problem can be formulated as follows. Given a city, find a function f such
that:

f = min
f̃∈Θ

L ( f̃ (T day
city [s−q : s, h, w, c] ), T day

city [s : s+3, h, w, c] ),∀ day, s, h, w, c (1)

where s−q ≥ 0, s+3 ≤ 288, q ∈ {1, 2, ..., 12} is the length of the input sequence, L (·, ·) is a
loss function that measures the error between the ground truth and the prediction, and Θ
is the parameter space. Note that time intervals s−q : s, and s : s+3, in eq. 1 are left-closed
and right-opened, meaning that the value in the right side of the interval is never taken.
Note also that if we aim to learn to predict other value than 3 future frames, we only need
to change this in the formulation.

3. Methodology

In this section, we present our twofold contribution; the sampling strategies when framing
a problem as a sequence to sequence, and our proposed models.

3.1. Sampling strategies for sequences

We define three sampling strategies that depend on the desired sequence input length
q ∈ {1, 2, ..., 12}, while the output length is fixed to 3 frames. The first strategy (non
overlapping), consists in divide each day into Tq = ceil(288/(q + 3)) number of sequences
without overlapping, where ceil returns the smallest integer value greater than or equal to
its input. For instance, with q= 3, we can divide a day into T3 = 48 sequences of length 6,
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3 frames for training and 3 for testing. The second strategy (sliding window), makes use of
every possible sequence of length q+3 starting from frame 0, then starting from frame 1, and
so on until starting the last sequence from frame 288−(q+3−1). Note that with the example
of q=3, method non overlapping produces 285 days × 48 sequences = 13680 sequences to
train per city, whereas method sliding window produces 285× (288− (3 + 3− 1)) = 80655
sequences, which is almost 6 times more sequences to train. The third strategy (like-test),
only trains sequences with the output time bins being the same as in the test set. Hence,
in this procedure, we only have 285× 5 = 1425 sequences to train.

Each different strategy defines a set of time bins to train for each day in the traffic
movie. Note that selecting a day and a time bin we obtain a frame, hence, the input
sequence is created slicing the video of a day from the initial time bin specified up to 3
consecutive frames. In order to impose diversity when creating each training batch, our
dataset is defined as a list of pairs (day, time bin), that are shuffled at the beginning of each
epoch, and allow us to create batches that contain sequences of different days and time bins
together. This should lead to faster convergence since batches are always different after
each epoch, as explained by Yoshua Bengio in (Bengio, 2012). Furthermore, we perform
all batch preparation and preprocessing in parallel to the optimization, which makes our
training diverse and efficient. In preprocessing, we cast data to float numbers and normalize
all values into the interval [0, 1].

3.2. Proposed models

Our model builds upon the architecture proposed by Nevan Wichers et al. in (Wichers
et al., 2018), where the authors presented a neural network that can predict the next frame
(Ft+1) in a movie given the previous one (Ft). Given Ft, an encoder followed by a recurrent
layer predicts the embedding of the future frame, which is compared with Ft+1 applied
to the same encoder using an L2 loss. Then, the embedding is upsampled to the original
space by a decoder, which is compared to Ft+1 also with an L2 loss, using skip connections
between different layers in the encoder-decoder to refine the output.

Given that the nature of our problem is a sequence to sequence prediction, we adapted
the aforementioned architecture to take profit of the entire input sequence of length q Xq,
when predicting the three future frames Y3. To do so, we accept a sequence of any size
as input by iteratively using the encoder and concatenating its outputs. Then a recurrent
encoder accumulates the temporal information of the input sequence into a single represen-
tation, and a recurrent decoder gives us three embedded predictions ẽ3. Afterward, these
predictions are upsampled to the original space (Ỹ3) by a decoder that uses skip connections
from each layer of the encoder, but only from the last frame of the sequence including the
input video. As in the original model, we train both the predictions in the embedding and
in the original space using an L2 loss with weights α, β ∈ [0, 1]:

L = αL2 (Y3, Ỹ3) + βL2 (e3, ẽ3) (2)

Figure 1 illustrates our architecture. As can be seen, we further introduce exogenous
data to our model. In particular, for each frame in the sequence, we use its time of day, day of
the week, current weather and its prediction in the next 3 time bins, using data downloaded
from the website World Weather Online (Weather, 2019). In our implementation, the
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encoder is composed of 6 blocks of i) two sub-blocks of (convolution, Batch normalization,
and ReLu), ii) Max pooling, and iii) Dropout=0.5, with number of convolutions [16, 16x2,
16x4, 16x8, 16x8, 16x2] in this order for each block, and downsampling the image from 512
to 16 by powers of 2. The decoder is composed of 6 blocks of i) Transposed Convolutions
(Dumoulin and Visin, 2016), ii) Concatenation from its sibling layer in the encoder iii)
Dropout=0.5, and iv) same two sub-blocks than the encoder, with number of convolutions
[16x8, 16x8, 16x8, 16x4, 16x2, 16x1] consecutively. The recurrent encoder-decoder uses
layers of GRU with (2048, 256, 128) and (128, 256, 2048) units respectively. Frames are
upsampled using bilinear interpolation in the first place in the model to 512 × 512, and
cropping plus a convolution of size 3 with ReLu are used at the end of the model to match
the original size 495× 436.

In the rest of the paper, we will call the proposed model: Recurrent Autoencoder All
(RAE all), which includes skip connections (including the input), weather and time infor-
mation. We also tried different versions of this model: i) one without using the input of the
last sequence in the skip connections for the decoder (RAE not In), ii) another one that
does not use exogenous variables (RAE not Exo), and iii) a third one, were we explore a
variant model (RAE Clf ) that outputs two regression channels for volume and speed, and
five other outputs for the classification of the heading channel, minimizing the first two with
an L2 loss and the classification with a softmax crossentropy. Then, we use all 7 outputs
to finally output the 3 original channels and minimizing again with an L2 loss. This way
we believe that outputs in the heading channel will be good for mse but more accurate in
the only 5 possible outputs thanks to the classification task.

We also define two baseline models. The first is called ConvLSTM and consists of three
layers of Convolutional LSTM (SHI et al., 2015) with 32, 64, 64 units followed by the tanh
activation, and a final ConvLSTM layer with 3 units and a ReLu activation, all minimized
with an L2 loss. Note that a final ReLu allows the model to predict the value of 1, which is
in the domain of the heading channel (see section 2), whereas tanh would not. The second
variant is called ConvLSTM+Clf, which adds an extra classification branch for the heading
channel making the model multitask, with a second loss being a softmax crossentropy.

4. Results

The results of our experiments use the validation set provided by the challenge (see section
2). Note that this set is actually used as a test, since the models never saw these data
before. Our own validation set was built with another 7 random days per city from the
given training set, which were used to select the snapshots of the epoch with the best
performance. In the challenge, the test set does not have the ground truth, so we can not
compute locally the performance. At the end of this section, we report the score provided
by the cloud system for the best of our models over.

Table 1 shows the results for baseline models in the three cities. We show the mean
square error (mse), and the accuracy (acc) for the heading channel, computed comparing
the only five possible values in the ground truth (see section 2) with the output of the
regression task. We can see that adding the classification task (column ConvLSTM+Clf in
Table 1) improves mse in Moscow significantly, whereas in Berlin gets only slightly better,
and in Istanbul gets worst. On the other hand, accuracy for the heading channel improves
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Figure 1: Recurrent Autoencoder with Skip Connections and Exogenous Variables. The
Embedding Loss allows the recurrent layer GRU together with the encoder to
produce better predictions in a low dimensional space. The Frames Loss and skip
connections from sibling layers in the encoder empowers the decoder to produce
outputs with high definition. Finally, the exogenous variables are concatenated
with the encoder output before a fully connected layer followed by recurrent
layers. Best seen in electronic form. Our method code is available at https:

//github.com/pherrusa7/Traffic4cast_NeurIPS_2019.

in two of the three cities, showing that the regression in this channel seems to benefit from
the multitask approach.

We also tried using the output of the classification branch in the model ConvLSTM+Clf,
as the output for the heading channel, by taking its argmax values. By doing so, acc
increases from 0.455 to 0.803, but mse also increases from 0.012037826 to 0.023907198,
making the important metric for the challenge worst. Our intuition is that the difference
between the wrong prediction heading values now is bigger than using the default prediction
minimized with mse, because softmax crossentropy does not lead to closer values when not
guessing the correct one (it does not take into account inter-class similarities), so we discard
this strategy for the challenge. We left the study of a classification loss with a distance for
similar classes for future work, which could help the model to at least predict the most
similar class when having a wrong prediction.

Baselines were only trained with the non overlapping sampling strategy, and input
sequence with length q= 3, since training time for 1 epoch took more than 7 hours at an
NVIDIA Titan RTX of 24GB. In comparison, 1 epoch of our proposed method needs only
35 minutes, mainly because recurrent layers act in a much lower dimensional space. Due to
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the time constraints of the challenge, the rest of our experiments focus only on improving
the performance for the city of Moscow, since baselines show the worst results there. Future
work will include comparisons also for the other cities.

Table 1: Baseline comparison for all three cities. We show global mse and accuracy of the
heading channel together with epochs (’+’ means that ConvLSTM+Clf started
from last epoch in ConvLSTM with random weights in the classification branch).

mse (acc heading), #epochs ConvLSTM ConvLSTM+Clf

Moscow 0.012643729 (0.265), 3 0.012037826 (0.455), +3

Istanbul 0.009066001 (0.657), 3 0.0096280435 (0.686), +3

Berlin 0.0071446532 (0.536), 5 0.007143738 (0.418), +1

mean 0.0096181277 (0.4860) 0.0096032025 (0.5196)

In Table 2 we show the performance of the proposed method and its variants for Moscow.
Note that the weights for the two terms in the loss function of eq. 2 were found through
a small grid search, due to to time constraints, in the set {0, 0.5, 0.9, 1}, with best results
achieved for α = 1 and β = 0.9. The best model, in bold, is RAE all (see Table 3 for more
details), which was fine-tuned from RAE not In with a new skip connection from the last
frame in the input sequence to the decoder, possibly allowing the model to further refine
static regions. It is worth to mention that model RAE Clf is really learning to be more
accurate with the heading channel while preserving a mse of ∼ 0.0144, which is better than
∼ 0.0239, the score achieved by the similar approach in the baseline. Future work will
focus more on this model since we desire that heading outputs belong only to one of the
five possible values in the domain, taking into account a metric for the inter-class similarity
(Hou et al., 2016).

Table 2: Comparison of results for our proposed method and its variations against the
baseline in Moscow city. We show global mse and the accuracy of the heading
channel. Epochs are also shown with the particularity that if they are shown with
format 10+5, it means that it is a fine-tuned model trained 5 epochs with loaded
weights of the model at its left, that was trained 10 epochs already.

ConvLSTM+Clf RAE not Exo RAE not In RAE all RAE Clf
mse 0.012037826 0.011873306 0.011875369 0.011816756 0.014442413
heading acc 0.455 0.469 0.453 0.437 0.508
epochs 4 10 10+5 15+3 44

Our proposed architecture for the city of Moscow together with the best baseline for
Istanbul and Berlin achieved a mse score of 0.0098134960517874 in the challenge. We believe
that using our method well trained for all cities will lead to much more better performance,
which could not be tried due to time constraints and hardware limitations.
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Table 3: Complete mse results in Moscow city for our best model RAE all. As expected,
the closer the time bin ahead to predict, the better the result is.

Moscow (mse: 0.011816756)

speed volume heading

5 minutes 0.000095909214 0.005128963 0.029793534
10 minutes 0.000102340266 0.0051734922 0.030223647
15 minutes 0.00010444787 0.0052143666 0.03051411

5. Conclusions

In this paper, a Recurrent Autoencoder with Skip Connections and Exogenous Variables has
been proposed for Traffic Forecasting under a novel representation of traffic data, introduced
by the Traffic4cast Challenge at NeurIPS 2019, that aggregated traffic data for cities into
images, generating videos of traffic behavior. Our proposed method leverages the fact
that the input is a sequence of frames, aggregating the spatio-temporal information in a
lower-dimensional space and generating the output sequence in a single inference. The
model uses two loss functions ensuring good predictions in the embedding space and high
definition images in the original space. Exogenous variables like the day of the week, time of
the day and weather have been also included. Furthermore, we propose a sampling method
for sequences that run in parallel to the optimization process, producing rich batches in
terms of diversity at each epoch. The result reported on the Traffic4cast Challenge is a mse
of 0.0098134960517874 in the test set.

In future work, we will apply our method to Berlin and Istanbul and focus on the
multitask method that uses the results of the classification of the heading channel taking
into account the inter-class similarity as an input for the real regressive prediction. We
will also work on the understanding of the intrinsic properties of geospatial models, in
order to determine which deep learning architectures work better given the underlying rules
characterizing the data (Jonietz and Kopp, 2019).
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