PrioRAT: Criticality-Driven Prioritization
Inside the On-Chip Memory Hierarchy

Vladimir Dimi¢!»2®)[0000-0002-9176-7674] \[iquel Moret-2[0000-0002—9848—8758]
Marc Casas!-2[0000-0003-4564-2093] a1, 4 Mateo Valero!:2[0000—0003—2917—2482]

! Barcelona Supercomputing Center (BSC), Barcelona, Spain
{vladimir .dimic,miquel.moreto,marc.casas,mateo. valero}@bsc .es
2 Universitat Politcnica de Catalunya (UPC), Barcelona, Spain

Abstract. The ever-increasing gap between the processor and main
memory speeds requires careful utilization of the limited memory link.
This is additionally emphasized for the case of memory-bound applications.
Prioritization of memory requests in the memory controller is one of the
approaches to improve performance of such codes. However, current
designs do not consider high-level information about parallel applications.
In this paper, we propose a holistic approach to this problem, where the
runtime system-level knowledge is made available in hardware. Processor
exploits this information to better prioritize memory requests, while
introducing negligible hardware cost. Our design is based on the notion
of critical path in the execution of a parallel code. The critical tasks
are accelerated by prioritizing their memory requests within the on-chip
memory hierarchy. As a result, we reduce the critical path and improve
the overall performance up to 1.19x compared to the baseline systems.

1 Introduction

The growing gap between the processor and memory speeds, often referred to as
the Memory Wall [39], has been one of the important factors driving the design
of modern computing systems. In the last decades, DRAM chips have become
more complex, introducing multiple levels of parallelism to allow for a higher
bandwidth between the processor and the memory. On the processor side, several
components, such as caches and prefetchers, serve to provide higher effective
bandwidth and reduced latency between the cores and the memory subsystem.
The interface between the processor and the main memory, the memory controller,
is also an important point for optimization.

Early memory controller designs adopted simple request ordering algorithms
from queuing theory, such as first come-first served, which was further improved to
take into account the row buffer locality [32]. Multi-core processors introduce new
challenges to memory request scheduling. It is necessary to take into account the
priority of threads, avoid starvation and ensure forward-progress of all co-running
threads [23, 25, 26, 27]. However, these proposals lack the awareness of the global
impact of prioritization decisions on the execution of parallel applications. The

Dimic, V. [et al.]. PrioRAT: criticality-driven prioritization inside the on-chip memory hierarchy. A: International European
Conference on Parallel and Distributed Computing. "Euro-Par 2021: Parallel Processing 27th International Conference on
Parallel and Distributed Computing: Lisbon, Portugal, September 1-3, 2021: proceedings”. Springer Nature, 2021, p. 599-615.
ISBN 978-3-030-85665-6. The final authenticated version is available online at https://doi.org/10.1007/978-3-030-85665-6_37

relatively short-term knowledge available by observing hardware-level behavior
is not always enough to achieve the best performance improvements.

Taking a look at the software level reveals that modern parallel computer
systems are becoming more difficult to program due to their increasing complexity.
Modern programming models aid a programmer in creating well-performing
parallel applications by offering simple ways to describe parallel constructs. For
example, task-based parallel programming models introduce the notion of a task
as a sequential part of the application that can run simultaneously with other
tasks [6, 16, 22]. A programmer specifies these tasks and their dependencies using
pre-defined annotations. The correct execution and synchronization of the tasks
are handled by the runtime system library. Thus, the runtime system contains
by design the information about the parallel code and the underlying hardware,
and therefore can serve as an interface between these two layers. The usefulness
of runtime system-level information in the context of HPC applications and
hardware has been extensively studied [1, 4, 5, 7, 10, 11, 19, 24, 38].

In this paper, we further explore the opportunities to exploit the high-level
information about a parallel application inside the hardware. In particular, we
focus on the notion of critical paths in the context of task-parallel codes. We
define critical tasks as the tasks belonging to the critical path of the execution.
Following the definition of the critical path, reducing the duration of these tasks
reduces the execution time of the whole parallel code. Previous works have
exploited task criticality to improve scheduling on heterogeneous systems [7]
as well as for power management [5]. These proposals, however, do not target
generic chip-multiprocessors as they depend on asymmetric processor design and
voltage-frequency scaling, respectively. In addition, they focus only on runtime
systems and core designs, without targeting the memory hierarchy.

To overcome these shortcomings, we design PrioRAT, a general solution
for all modern chip-multiprocessors. We follow a holistic approach where the
runtime system knowledge is used in hardware to drive the prioritization algorithm.
Specifically, we exploit the notion of task criticality, motivated by the discussion in
the previous paragraph. During the execution, the runtime system computes tasks
criticality and provides it to the underlying hardware. Then, on-chip hardware
resources make use of this information to prioritize the memory requests coming
from the critical tasks. As a result, the critical tasks have their memory requests
served faster, which reduces their duration and, thus, improves the performance
of the whole parallel application by reducing the length of the critical path.

)

This paper makes the following contributions:

— We extend scheduling algorithms inside the shared on-chip components to
consider memory request criticality. Task criticality is estimated by the
runtime system using existing methods and is forwarded to the hardware via
the well-supported memory mapped registers, which does not require changes
to the processor’s ISA.

— We evaluate the performance of PrioRAT on a cycle-accurate microarchi-
tectural simulator using a set of characteristic workloads from the high

performance computing (HPC) domain. PrioRAT outperforms the baseline
system without prioritization by up to 1.19% in terms of execution time.

The remaining of this document is structured as follows. Section 2 provides
the context for our work and introduces the intuition behind memory request
prioritization. Section 3 explains our proposal in detail. Section 4 describes the
experimental setup, while Section 5 presents the results of the evaluation. Finally,
Section 6 describes related work and Section 7 concludes this paper.

2 Background and Motivation

Since the introduction of the first multi-core processor at the very beginning
of this century, the importance producing well-performing parallel codes has
been recognized. Many programming models have been designed to ease the
development process of parallel applications [6, 16, 17, 22, 28]. Some of these
programming models are based on task-based parallelization. A way to improve
the performance of a task-parallel application is to identify the critical path
in the execution and reduce its duration. There are many works devoted to
identification [3, 12, 20] and acceleration of the critical path [5, 7, 8, 9, 14, 36].

On the hardware level, the increasing gap between processor and memory
speeds warrants giving a special attention to improving the utilization of the main
memory resources. Some previous works propose reordering DRAM commands
to achieve higher throughput [29, 32, 37]. However, they do not target multi-core
processors. Other solutions focus on ensuring fair share of memory resources
among all the threads [25, 26, 27]. Another family of scheduling algorithms
considers the criticality of each memory request [15]. These proposals try to
improve the performance of each thread independently by accelerating requests
that have most negative impact on the execution time.

However, such designs do not consider the high-level notion of the critical
path at the application level. In certain parallel codes, it is possible to sacrifice
the performance of non-critical tasks by giving priority to critical tasks in order
to reduce the critical path and, thus, the overall execution time.

To illustrate the effects of critical task prioritization, we develop a synthetic
application that performs a strided access to an array. The stride is a configurable
parameter used to indirectly tune the pressure on the caches and main memory
by controlling the reuse of the accessed cache lines. The application is split into
tasks and each task accesses its portion of the input array. Tasks are split in two
groups: (i) critical tasks, which are artificially serialized to simulate a critical
path, and (ii) non-critical tasks, which can run in parallel with other tasks.

We configure the benchmark to run with 24 critical and 150 non-critical
tasks, each accessing an array of 256 KB with a stride of 16. This is equivalent
to one access per cache line and achieves the highest memory contention in
our simulated environment. We simulate two executions of the benchmark on a
cycle-accurate simulator modeling a 16-core processor with a three-level cache
hierarchy and main memory?®. The first run is performed on a baseline system

3 Section 4 describes the experimental setup in detail.

mmmmm critical task non-critical task

parallel phase serial phase ——>

1
2 1__________---------------
3

'1}';21'
r T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Thread

Prioritization = OFF T
1

(SR

1..........................

Thread

16 Prioritization = ON T
1

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1: Execution traces of the synthetic benchmark in the baseline configuration
(top) and prioritized configuration (bottom).

without prioritization, while in the second execution, we prioritize the memory
requests issued by the critical tasks. Figure 1 shows the traces of these two
executions. Each trace displays the tasks and their duration during the execution
(x-axis) and the thread where they execute (y-axis). Time is normalized to the
execution on the baseline configuration and both traces have the same time scale.
Critical and non-critical tasks are colored differently.

In the baseline configuration (see Figure 1, top), we observe the serialization
of critical tasks and its negative impact on the total execution time — more than
30% of the execution time is spent running only serial code. We also note that
during the parallel phase, the critical tasks execute slower compared to the last
third of execution. This is a result of the high memory contention caused by the
concurrent execution of many tasks in the parallel phase.

The bottom part of Figure 1 shows the trace when memory requests issued by
critical tasks are given priority in the shared on-chip resources. The effects of the
prioritization are clearly manifested through the reduced duration of the critical
tasks. The non-critical tasks execute slower than in the baseline configuration,
but the whole application finishes faster because the critical path is reduced.

This example clearly demonstrates the importance of having a high-level
notion of the application within the hardware as it enables better decisions at
hardware level. With these conclusions in mind, we develop PrioRAT, a solution
that exploits the runtime system information about a task-based parallel code to
guide prioritization of memory requests inside the on-chip memory hierarchy.

3 PrioRAT: Criticality-Driven Prioritization within the
On-Chip Memory Hierarchy

PrioRAT is a holistic approach to prioritization in the on-chip memory hierarchy
driven by the application-specific information available at the runtime system
level. The runtime system library detects a critical path in an execution of a
parallel application and marks the tasks belonging to the critical path as critical.

In hardware, we add a bit to each request to signal its criticality. The queues in
the on-chip memory hierarchy are extended to prioritize critical requests (also
called prioritized requests). Depending on the way the task criticality is exploited,
we define two PrioRAT configurations:

— PR.static is a configuration where certain cores are configured to always
issue prioritized memory requests. The runtime system is aware of the cores’
configuration and schedules critical tasks onto prioritized cores.

— PR.dynamic is an approach where the runtime system controls whether each
core issues prioritized requests depending on the criticality of a task scheduled
on a given core. This approach requires an interface between the processor
and the runtime system to enable switching of the configuration of the core.

In both configurations, the shared resources in the on-chip memory hierarchy,
i.e., the last-level cache (LLC) and the memory controller, and the interconnect
are extended to handle the prioritization of requests within their queues. In
the following sections, we explain in detail the modifications to all relevant
components necessary to implement PrioRAT.

3.1 Programming Model and Runtime System Support

We build PrioRAT on top of the existing parallel task-based programming
model, OpenMP [28]. OpenMP is a directive-based programming model, where a
programmer defines units of parallelism, such as tasks and loop iterations and
defines dependencies between tasks. The runtime system library handles the
scheduling of the defined tasks and loops on a multi-threaded machine. Internally,
the runtime system tracks tasks using a Task Dependency Graph (TDG), which
is constructed following the programmer-provided dependency information and
implicit synchronization primitives. We use Nanos++ [2] as the runtime system
that supports OpenMP-compatible task-parallel applications.

Inside Nanos—++, we exploit an existing algorithm, called bottom-level, that
analyzes the TDG and identifies a critical path of the execution by observing
the distance of each task from the bottom of the TDG. This distance is updated
on every insertion of a new task into the TDG by traversing the TDG from the
bottom to the root. After the update, the root node stores the length of the
longest path to the bottom level. The algorithm determines the critical path by
following the longest path(s) along the way from the root to the bottom level.
There may be several paths that satisfy this condition. In that case, the runtime
system exposes to the user two configuration options: (i) choosing one random
such path as the critical path, or (ii) marking all such paths as critical. The
second option may result in more critical tasks compared to the first one.

The task criticality information is used by the runtime system to enable
memory request prioritization inside the hardware. Depending on the PrioRAT
configuration, the runtime system interacts differently with the processor, which
is illustrated at the bottom of Figure 2.

PR.static is a static configuration where each core is set up to either always
or never issue prioritized requests. The processor configuration is exposed to

Ll L3 bank 01 | H{Mem. Cul. | RAM |
@—|L1 L3 bank 11 Z Hem. Cul.H RAM |

C0.prio(ON) CO0.prio(OFF) MON) CO0.prio(OFF)
v v
C) mexmmm a4 CO =
Cl1 Cl =

Cl.prio(ON) C1.prio(OFF)

PR _static
PR.dyn

Legend mm critical task non-critical task 4 prioritized task

Fig.2: Top: Overview of a dual-core system implementing PrioRAT. Colored
components employ priority queues to prioritize memory requests. Bottom:
Examples of executions of two PrioRAT configurations.

the runtime system via command line arguments or environmental variables.
The scheduler within the runtime system assigns tasks to the cores taking into
account task’s criticality and whether a core issues prioritized requests. Critical
tasks are preferentially scheduled on prioritized cores, while non-critical tasks
can be scheduled on any core, depending on their availability.

In PR.dynamic, the task criticality information is provided to the processor
cores by the runtime system using memory-mapped registers. Before each task
begins execution, the runtime system signals to the core the criticality of that
task. A core that executes a critical task issues high priority memory requests.

3.2 Hardware Extensions

This section introduces the micro-architectural extensions necessary to implement
PrioRAT. The top of Figure 2 shows an overview of a system implementing
PrioRAT, consisting of a dual-core processor connected to main memory. The
hardware extensions for our proposal implement the following functionalities:
(i) indicate to a core whether to prioritize memory requests of the currently-
running task, (ii) flag memory requests as critical or non-critical and carry that
information through the memory hierarchy, and (iii) prioritize requests in the
memory hierarchy. We explain each feature in detail in the remaining of this
section. As mentioned before, both PrioRAT configurations rely on exactly the
same hardware extensions.

Awareness of Task Criticality in the Core. We add to each core a memory-
mapped register, called crit.reg, which designates the priority of the memory
requests issued by the currently-running task. In our implementation, the size
of this register is one bit. In PR.static, each core is configured to always issue
either high-priority or low-priority requests, i.e., the value of this register is
constant for the duration of the application. It is the responsibility of the runtime
system to carefully schedule tasks to utilize statically defined prioritization of
the corresponding memory requests. In PR.dynamic, the runtime system updates

On -Chip Interconnection Network LLC Bank Memory Controller

| mi g : 5 | [Refresh] [channeo
i s | 2} ' e

{}% il |[2]] »[g [+{Control.

: ; Sk

M

Routing

DIMM || DIMM

' |Cmnds. | H_channel 1

mput ports high- pr10r1ty queue

hew order order
> DDDDII -
oooo

low-priority queue

Fig. 3: Request prioritization inside shared on-chip components.

the value stored in crit.reg to hold the criticality of the task scheduled to run
on the corresponding core. This is illustrated in Figure 2 using runtime system
functions Ci.prio(0ON) and Ci.prio(OFF), which switch on and off the request
prioritization for a given core i, respectively.

Assigning a Priority to Memory Requests. When issuing a request to the
L1 cache, the core flags the request with criticality information stored in the
crit.reg. This information is carried with the request along its way through the
memory hierarchy. Since we model priority with two values, we require only one
bit of information to be attached to each request. This adds a negligible overhead
to the existing wires and logic in the on-chip memory hierarchy.

Memory Request Prioritization. To implement request prioritization within
the shared on-chip resources, we extend the queues that hold incoming requests
before they get processed. PrioRAT implements a double-queue design, where
each queue holds either high or low priority requests, as shown in Figure 3.
When selecting the next request for processing, the requests in the high-priority
queue are preferred over the request from the low-priority queue. In the case of
interconnection network and the LLC, the prioritization happens in the queue
that holds incoming requests.

Memory controllers, on the other hand, already implement algorithms for
request prioritization in order to exploit parallelism offered by DRAM chips. In
order to take into account the request criticality in the memory controller, we
extend the existing request scheduling policy, First Ready-first come first served
(FR-FCFS). PrioRAT is independent of the baseline scheduling policy as it only
adds another sorting criterion. This policy schedules first the request that hit in
the already open rows in the DRAM chip. If no such request exists, the ordering
is done in first come - first served manner. We augment this policy with the task
criticality information. To preserve the performance benefits of exploiting row
hits, we consider the criticality only after there is no request satisfying the row
hit condition. For the requests of the same criticality we use the FCFS ordering.

To offer higher memory bandwidth to the cores, many modern processors
make use of multiple memory controllers. The PrioRAT design does not require

any synchronization between memory controllers as the prioritization is done
independently in each controller. Thus, PrioRAT can be directly applied to such
processors without any modification.

3.3 Discussion

Support for Simultaneous Multi-Threading (SMT). Modern processors
implement support for simultaneous multi-threading in order to better utilize
the resources of superscalar out-of-order cores. In such systems, one physical core
can execute two different threads. In the context of our work this means that
two tasks of different criticality can share the same core. To ensure the correct
prioritization of critical requests in an SMT processor, we would extend the input
queue of the L1 cache in the same way as described for the LLC earlier in this
section. The core would also be equipped with a crit.reg per thread.

Ensuring Fairness. PrioRAT’s mechanism for memory request prioritization
needs to ensure fair scheduling of tasks and applications. Within one application’s
tasks, it is the responsibility of the runtime system to ensure correct task and
request prioritization. Well-known mechanisms for preventing starvation of non-
prioritized requests can be employed in the shared resources’ queues. On multi-
programmed systems, it is necessary to ensure that one application does not
starve other applications. For example, a "rogue” runtime system could make all
tasks of a single application critical and therefore get an unfair share of hardware
resources. To solve this issue, the operating system could, for example, enforce
quotas for critical tasks or requests per application. Similar schemes are already
proposed in previous works, which we briefly describe in Section 6. An alternative
solution would be to integrate the algorithms for task prioritization within the
operating system and, therefore, guarantee the their integrity.

Alternative Algorithms for Task Priority Estimation. PrioRAT hardware
design is orthogonal to the algorithm to detect task criticality. We consider an
existing algorithm to calculate task criticality based on the application’s critical
path, as described in Section 3.1. The critical path is calculated by considering
the TDG’s structure and the tasks’ distance from the bottom of the TDG. An
alternative TDG-based approach could also consider the task duration when
calculating critical path. For example, it might be a better idea to prioritize a
single long-lasting task compared to several chained short tasks. However, such
approach requires a way to estimate task duration, which can be achieved via
profiling, a heuristic based on code analysis or given as a hint by a programmer.
Some proposals [5] employ static annotations of task priority introduced by a
programmer. However, this requires good a knowledge of the code structure and
potential previous profiling. While hand-tuned hints can provide better final
criticality estimation, they are less practical than dynamic solutions which are
able to adapt to different scenarios, input sets and platforms.

Table 1: Benchmark details.

Benchmark Abbrev. Input Parameters

Array scan Scan 174 arrays of 256 KB; total array size 68.5 MB
Blackscholes BS 16M options, 512K block size, 5 iterations

Conj. Grad. CG matrix qa8fm, 16 blocks, 97 iterations

Cholesky Chol 16x16 blocks of 256x256 elem. (matrix 4096x4096 elem.)
Fluidanimate Fluid native: 5 frames, 500,000 particles

Heat-Jacobi Heat 8192x8192 resolution, 2 heat sources, 10 iterations
Molec. Dyn. MD 2000 atoms, periodic space, stretch phase change
miniAMR AMR 64K max. blocks, 16x16x16 block, 2 objects, 40 variables
prk2-stencil PRK2 8192 elem. per dimension, 1024 block size, 5 iterations
LU Decomp. LU 12 blocks of 512x512 elem.

Specfem3D Spfm3D 147,645 pts., 2160-elem. mesh, 125 GLL int. pts. per elem.
Sym. Mat. Inv. SMI 8x8 blocks of 1024x1024 elem. (matrix 8192x8192 elem.)

Table 2: Parameters of the simulated system.

CPU 16 000 superscalar cores, 192-entry ROB, 2.2 GHz, issue width 4 ins/cycle

Caches 64B line, non-inclusive, write-back, write-allocate

L1 private, 32 KB, 8-way set-associative, 4-cycle latency, split I/D, 16-entry MSHR,
L2 private, 256 KB, 16-way set-associative, 13-cycle latency, 16-entry MSHR,
L3 shared, 16 MB, 16-way set-associative, 68-cycle latency, 256-entry MSHR

Memory 120ns latency; 2 channels, each with the effective bandwidth of 4.3 GB/s
128-entry buffer in the memory controller

4 Experimental Methodology

Benchmarks. To evaluate PrioRAT we use a set of benchmarks that covers
common applications running on HPC systems implemented in a task-based
programming model. The list of selected benchmarks with their corresponding
input parameters is shown in Table 1. The synthetic benchmark described in
Section 2, Scan, is also used in the evaluation.

Simulation Setup. We use TaskSim, a trace-driven cycle-accurate architectural
simulator [30, 31]. TaskSim simulates in detail the execution of parallel applica-
tions with OpenMP pragma primitives [28] on parallel multi-core environments.
The simulated system mimics an Intel-based processor and consists of 16 cores
connected to main memory. We model a superscalar out-of-order cores with a
detailed three-level cache hierarchy. Each core has two private cache levels, L1
and L2, while the L3 is shared. We use a main memory model with an effective
bandwidth of 8.6 GB/s and latency of 120 ns. All relevant parameters of the
simulated system are shown in Table 2.

1.20 PRst.1 PRst2 WIPRstd MEPRst8 MEPRsti2

Q
.5 1.15 —— N
_’3@ 1.10 —#PRstbest NNPR.dyn
o S 1.05 N
5% 1.00 — [
0.95 —

BS MD Fluid Sp3D SMI Heat PRK2 AMR LU Chol CG Scangmean

Fig. 4: Speedup of PR.static and PR.dynamic compared to the baseline.

5 Evaluation

5.1 Performance Evaluation

This section presents the overall performance of the two PrioRAT configurations
for all evaluated benchmarks using the environment described in Section 4.
Figure 4 shows the speedup of various PrioRAT configurations per benchmark
compared to the execution on the baseline system. The following paragraphs
explain the results for all evaluated configurations.

PR.static. First, we observe speedups achieved by a range of PR.static
configurations. We consider configurations having 1, 2, 4, 8 and 12 prioritized
cores in a 16-core system. These configurations are denoted as PR.st. X, where X
is the number of prioritized cores. Some of the benchmarks, such as MD, Heat,
AMR and LU, perform better when running on systems with more prioritized
cores. In such configurations, there is a higher chance for all critical tasks to
be prioritized. Moreover, sometimes it is beneficial to also accelerate some non-
critical tasks, especially if that does not significantly penalize the performance
of other non-prioritized tasks. On the other hand, some benchmarks, such as
Fluid, SMI, Chol and Scan, achieve the best speedups when using less prioritized
cores, i.e., 2, 4 or 8 cores. These codes have long critical paths and, therefore, do
not benefit from prioritizing too many non-critical tasks. On average, the best
performing PR.static configuration is PR.st.8, which performs 4.6% faster than
the baseline. The best speedup of 1.19x is observed for Scan.

In addition, we define PR.st.best, which is the best-performing PR.static
configuration per benchmark. On average, this configuration is 5.9% faster than
the baseline. This shows that in scenarios where per-benchmark tuning is possible,
application specific PR.static configuration can achieve better performance than
a statically defined configuration.

PR.dynamic. Finally, we evaluate PR.dynamic, denoted PR.dyn in Figure 4.
On average, this configuration outperforms the baseline by 3.0%. With 8 out of 12
benchmarks, this configuration achieves similar speedup as PR.st.best. In Chol, it
achieves lower speedups due to scheduling artifacts that cause non-critical tasks
to be scheduled for execution shortly before a critical task starts executing. This
leads to a situation where all cores are busy executing non-critical tasks, while a
critical task is waiting in a ready queue.

To better understand the performance gains, we observe the behavior at the
microarchitectural level. The prioritization of critical requests reduces their round-

20 235 78.2 B critical M non-critical

0 —
20 3 T
0
20 | mﬂzﬁtr
—-60
—-80

-100 | | | | | | | | | | | | |
BS MD Fluid Sp3D SMI Heat PRK2 AMR LU Chol CG Scan amean

change [%]
|
S
S
|

task durationround-trip time

change [%]
|
S
S

Fig. 5: Impact of request prioritization on request round-trip time (top) and task
duration (bottom) for PR.dynamic

trip time from the core to the memory subsystem and back, at the expense of the
increased round-trip time for non-critical requests. This effect is demonstrated
on the upper plot in Figure 5, which shows the round-trip time only for requests
that arrive to the main memory (i.e., the LLC misses).

Since critical memory requests observe reduced round-trip time, the critical
tasks spend less time waiting for memory operations and therefore can execute
faster. This finally results in a shorter execution time of the critical path, which
may improve the overall performance of an application. These effects are shown
at the bottom of Figure 5, which shows change in the duration of critical and
non-critical tasks compared to the baseline configuration. We can observe that
the critical path is significantly reduced in many applications.

However, this does not result in drastic performance improvement, as shown
in Figure 4. The reason for such behavior is as follows. We use a critical path
detection algorithm based on the structure of a TDG. It does not consider the
duration of tasks, but rather the number of tasks on the path from the starting
to the ending node. In addition, when the critical path is accelerated in PrioRAT,
other non-critical tasks may become the new critical path (from the point of view
of execution, not the TDG). Nevertheless, even with an infinite reduction of the
critical path’s length and a perfect scheduling algoritm, the achieved speedup is
limited by the non-prioritized tasks. Only in the cases of LU and Chol, critical
tasks stay in the critical path after the prioritization, which makes the reduction
in critical path duration directly observable in overall performance gains.

5.2 Performance Sensitivity to Memory Latency

The evaluation presented so far is based on experiments using a memory latency
of 120 ns, as explained in Section 4. Since memory latency varies across different
systems, we explore how PrioRAT performs in systems with memory latencies
ranging from 60 ns to 140 ns. Figure 6 shows the performance of the two PrioRAT
configurations for the mentioned memory configurations. We do not show the
results for the three benchmarks achieving lowest speedups, i.e., BS, MD and

PrioRAT.static == PrioRAT.dynamic

1.3
i N

1.2 ~~

speedup vs
baseline

1.1
1.0] — —N, — _/-\ G — —
Sp3D SMI Heat PRK2 AMR LU Chol CG Scan gmean

Fig. 6: Impact of memory latency (60ns, 80ns, 100ns, 120ns and 140ns) on
PrioRAT’s performance. Benchmarks with low speedups are omitted for clarity.
Geometric mean includes the omitted benchmarks.

Fluid. The geometric mean is calculated taking into account all benchmarks,
including the omitted ones. The results show that, for some benchmarks, the
performance of PrioRAT varies across systems with different memory latencies.
This is pronounced for LU, Chol, CG and Scan. Chol and CG perform better
with PrioRAT in systems with higher memory latencies because prioritization
in these systems makes more impact compared to the low-latency systems. The
opposite behaviour is noticed for Scan. Due to a very high memory contention
in this benchmark, most of the request round-trip time is spent waiting for a
response from DRAM. Since prioritization only impacts the time requests spend
in the queue waiting to be served, we conclude that prioritization has less effect
in high-latency systems. We expect such behaviour to be rare in real codes. On
average, we notice that PrioRAT performs equally across systems with different
memory latencies.

5.3 Hardware Cost of PrioRAT Implementation

PrioRAT requires minor extensions in the core, the shared caches, the interconnect
and the memory controllers, as explained in Section 3.2. The size of the crit.reg
is one bit per core. In case of SMT support (see Section 3.3), PrioRAT requires
one one-bit register per hardware thread. Inside the shared components, i.e., the
caches, the interconnect and the memory controllers, we use double-queue to
prioritize requests, which we design to be the same total size as the corresponding
queue in the baseline system. Therefore, only added cost is a simple logic for
scheduling requests into the two queues based on the request criticality. Finally,
to enable passing criticality information with request, the structures that hold
requests and corresponding communication lines are extended with one bit.
All described extensions introduce negligible overhead in area compared to the
baseline system.

6 Related Work

Acceleration of the Critical Path. In the context of fork-join programming
models, the notion of a critical path applies to the slowest thread in a parallel

region. Accelerating such threads has been studied for heterogeneous chip multi-
processors [21, 35]. In the context of task-based programming models, critical
path is often defined as the longest path from the starting until the final node
in a task-dependency graph. The critical path detection has been extensively
researched [3, 12, 20]. CATS [7] and CATA [5] are methods to accelerate critical
paths targeting task-based programming models. CATS and CATA can only
be implemented in heterogeneous systems or systems with support for dynamic
voltage scaling, respectively. PrioRAT does not have these shortcomings and is
applicable to any modern multi-core processor.

Scheduling in the Memory Controller. FCFS (First Come — First Served)
is the simplest memory controller scheduling algorithm that considers only request
arrival time. FR-FCFS (First Ready FCFS) [32] improves the FCFS algorithm by
taking into account the locality of the row buffers inside DRAM chips to reduce
costly activate and precharge actions. Many other previous works optimize the
ordering of DRAM commands in order to improve memory bandwidth [29, 37].

Multi-core processors introduce new challenges, such as avoiding unfairness
and starvation. FQM [27], STFM [26], PAR-BS [25] and ATLAS [23] are some of
the many techniques that try to achieve fairness among threads by prioritizing
requests inside memory controllers. Since these static schemes do not always
achieve the best performance for a wide range of applications, researchers have
proposed many adaptive scheduling algorithms. BLISS [34] prioritizes applications
that are more sensitive to memory interference. Ipek et al. [18] propose an adaptive
memory controller scheduling scheme based on reinforced learning. Hashemi
et al. [15] identify that, so called, dependent cache misses are an important
contributor to performance degradation when on-chip contention is present. This
scenario occurs when an instruction causing a cache miss also depends on another
instruction that results in a miss. Prioritizing such misses results in a reduced
waiting time for the second miss.

However, the mentioned proposals focus only on the information visible to
the core, which is generally observed on relatively short time intervals of several
thousands of CPU cycles. Such fine-grained observations cannot capture the
macro trends in the whole application as well as the impact of prioritization on
the overall performance. Our scheme is driven by the runtime-provided knowledge
on task criticality. Such approach significantly simplifies the hardware and enables
better long-term decisions inside the on-chip resources.

Exploiting Criticality in Hardware. Subramaniam et al. [33] evaluate
the impact of criticality information in the optimizations of on-chip components,
such as the L1 data cache and the store queue. Ghose et al. [13] utilize the load
criticality to augment the FR-FCFS scheduling policy in the memory controller.
Both of these solutions observe criticality on the instruction level, contrary to our
approach that uses task-level criticality. Moreover, they require precise predictors
of criticality which comes with additional hardware cost in each processor core.
PrioRAT utilizes runtime-provided information and does not introduce complex
and expensive hardware predictors.

7 Conclusions

In this paper we present PrioRAT, a runtime-assisted approach for prioritization
of memory requests in the processor. PrioRAT exploits the high-level information
about the application, contrary to many state-of-the-art proposals. Our approach
relies on the runtime system library to detect the critical path in a task-parallel
application and forward task criticality information to the underlying hardware.
The processor uses the knowledge of the task criticality to guide the prioritization
of the memory requests inside the shared on-chip memory hierarchy.

We evaluate PrioRAT on a set of representative HPC codes. The extensive
evaluation shows that PrioRAT outperforms the baseline system by up to 1.19x
in terms of the execution time. Further analysis demonstrates a high impact of
the prioritization on the request service time and task duration. Therefore, we
demonstrate the importance of the availability of application-level knowledge
inside the on-chip components.

Acknowledgements. This work has been partially supported by the Spanish
Ministry of Science and Innovation (PID2019-107255GB-C21/AEI/10.13039/
501100011033), by the Generalitat de Catalunya (contracts 2017-SGR-1414 and
2017-SGR-1328), by the European Unions Horizon 2020 research and innovation
program under the Mont-Blanc 2020 project (grant agreement 779877) and by
the RoMoLL ERC Advanced Grant (GA 321253). V. Dimi¢ has been partially
supported by the Agency for Management of University and Research Grants
(AGAUR) of the Government of Catalonia under Ajuts per a la contractacié de
personal investigador novell fellowship number 2017 FI_B 00855. M. Moret6 and
M. Casas have been partially supported by the Spanish Ministry of Economy,
Industry and Competitiveness under Ramon y Cajal fellowship numbers RYC-
2016-21104 and RYC-2017-23269, respectively.

References

1. Alvarez, L., Vilanova, L., Moreto, M., Casas, M., Gonzlez, M., et al.: Coherence
protocol for transparent management of scratchpad memories in shared memory
manycore architectures. In: ISCA’15. pp. 720-732 (2015). https://doi.org/10.
1145/2749469.2750411

2. Barcelona Supercomputing Center: Nanos++ Runtime Library (May 2014), http:
//pm.bsc.es/nanox

3. Cai, Q., Gonzdlez, J., Rakvic, R., Magklis, G., Chaparro, P., Gonzélez, A.: Meeting
points: Using thread criticality to adapt multicore hardware to parallel regions. In:
PACT’08. pp. 240-249 (2008). https://doi.org/10.1145/1454115.1454149

4. Casas, M., Moreté, M., Alvarez, L., Castillo, E., Chasapis, D., Hayes, T., et al.:
Runtime-aware architectures. In: Euro-Par’15. pp. 16-27 (2015). https://doi.org/
10.1007/978-3-662-48096-0_2

5. Castillo, E., Moreto, M., Casas, M., Alvarez, L., Vallejo, E., Chronaki, K., et al.:
CATA: Criticality Aware Task Acceleration for Multicore Processors. In: IPDPS’16.
pp. 413-422 (2016). https://doi.org/10.1109/IPDPS.2016.49

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.

20.

21.

22.

23.

Chamberlain, B., Callahan, D., Zima, H.: Parallel Programmability and the Chapel
Language. The International Journal of High Performance Computing Applications
21(3), 291-312 (Aug 2007). https://doi.org/10.1177/1094342007078442
Chronaki, K., Rico, A., Badia, R.M., Ayguad, E., Labarta, J., Valero, M.: Criticality-
Aware Dynamic Task Scheduling for Heterogeneous Architectures. In: ICS’15. pp.
329-338 (2015). https://doi.org/10.1145/2751205.2751235

Chun-Hsien Liu, Chia-Feng Li, Kuan-Chou Lai, Chao-Chin Wu: A Dynamic
Critical Path Duplication Task Scheduling Algorithm for Distributed Hetero-
geneous Computing Systems. In: ICPADS’06. vol. 1, pp. 8 pp.— (2006). https:
//doi.org/10.1109/ICPADS.2006.37

Daoud, M., Kharma, N.: Efficient Compile-Time Task scheduling for Heterogeneous
Distributed Computing Systems. In: ICPADS’06. vol. 1, pp. 11-22 (Jan 2006).
https://doi.org/10.1109/ICPADS.2006 .40

Dimié¢, V., Moretd, M., Casas, M., Ciesko, J., Valero, M.: Rich: Implementing
reductions in the cache hierarchy. In: ICS’20. p. 13 pages (2020). https://doi.org/
10.1145/3392717.3392736, https://doi.org/10.1145/3392717.3392736

Dimié, V., Moreté, M., Casas, M., Valero, M.: Runtime-assisted shared cache
insertion policies based on re-reference intervals. In: Euro-Par’17. vol. 10417, pp.
2477259(2017).https://doi.org/lo.1007/978—3-319—64203—1_18

Du Bois, K., Eyerman, S., Sartor, J.B., Eeckhout, L.: Criticality Stacks: Identifying
Critical Threads in Parallel Programs Using Synchronization Behavior. In: ISCA’13.
pp- 511-522 (2013). https://doi.org/10.1145/2485922.2485966

Ghose, S., Lee, H., Martinez, J.F.: Improving Memory Scheduling via Processor-Side
Load Criticality Information. In: ISCA’13. p. 8495 (2013). https://doi.org/10.
1145/2485922.2485930

Hakem, M., Butelle, F.: Dynamic Critical Path Scheduling Parallel Programs
onto Multiprocessors. In: IPDPS’05. pp. 7 pp.— (2005). https://doi.org/10.1109/
IPDPS.2005.175

Hashemi, M., Khubaib, Ebrahimi, E., Mutlu, O., Patt, Y.N.: Accelerating dependent
cache misses with an enhanced memory controller. In: ISCA’16. pp. 444-455 (2016).
https://doi.org/10.1109/ISCA.2016.46

Intel Copropration: Intel®) Cilk™ Plus Language Extension Specification (2013)
Intel Copropration: Intel® Thread Bulding Blocks (March 2020)

Ipek, E., Mutlu, O., Martnez, J.F., Caruana, R.: Self-Optimizing Memory Con-
trollers: A Reinforcement Learning Approach. In: ISCA’08. pp. 39-50 (2008).
https://doi.org/10.1109/ISCA.2008.21

Jaulmes, L., Casas, M., Moreté, M., Ayguadé, E., Labarta, J., Valero, M.: Exploiting
asynchrony from exact forward recovery for due in iterative solvers. In: SC’15 (2015).
https://doi.org/10.1145/2807591.2807599

Joao, J.A., Suleman, M.A., Mutlu, O., Patt, Y.N.: Bottleneck Identification and
Scheduling in Multithreaded Applications. In: ASPLOS’12. pp. 223-234 (2012).
https://doi.org/10.1145/2150976.2151001

Joao, J.A., Suleman, M.A., Mutlu, O., Patt, Y.N.: Utility-Based Acceleration of
Multithreaded Applications on Asymmetric CMPs. In: ISCA’13. pp. 154-165 (2013).
https://doi.org/10.1145/2485922.2485936

Kale, L.V., Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented
System Based on C++. In: OOPSLA’93. pp. 91-108 (1993). https://doi.org/10.
1145/165854.165874

Kim, Y., Han, D., Mutlu, O., Harchol-Balter, M.: ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers. In: HPCA’10.
pp. 1-12 (2010). https://doi.org/10.1109/HPCA.2010.5416658

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Manivannan, M., Papaefstathiou, V., Pericas, M., Stenstrom, P.: RADAR: Runtime-
Assisted Dead Region Management for Last-Level Caches. In: HPCA’2016. pp.
644-656 (2016). https://doi.org/10.1109/HPCA.2016.7446101

Mutlu, O., Moscibroda, T.: Parallelism-Aware Batch Scheduling: Enabling High-
Performance and Fair Shared Memory Controllers. IEEE Micro 29(1), 22-32 (2009).
https://doi.org/10.1109/MM.2009.12

Mutlu, O., Moscibroda, T.: Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors. In: MICRO’07. pp. 146-160 (2007). https://doi.org/10.1109/
MICRO.2007.40

Nesbit, K.J., et al.: Fair Queuing Memory Systems. In: MICRO’06. pp. 208—222
(2006). https://doi.org/10.1109/MICRO.2006.24

OpenMP Architecture Review Board: OpenMP Technical Report 4 Version 5.0
Preview 1 (November 2016)

Peiron, M., Valero, M., Ayguadé, E., Lang, T.: Vector Multiprocessors with Ar-
bitrated Memory Access. In: ISCA’95. pp. 243-252 (1995). https://doi.org/10.
1145/223982.224435

Rico, A., Cabarcas, F., Villavieja, C., Pavlovic, M., Vega, A., Etsion, Y., et al.: On
the Simulation of Large-scale Architectures Using Multiple Application Abstraction
Levels. ACM Trans. Archit. Code Optim. 8(4), 36:1-36:20 (2012). https://doi.
org/10.1145/2086696.2086715

Rico, A., Duran, A., Cabarcas, F., Etsion, Y., Ramirez, A., Valero, M.: Trace-
driven simulation of multithreaded applications. In: ISPASS’11. pp. 87-96 (2011).
https://doi.org/10.1109/ISPASS.2011.5762718

Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D.: Memory access
scheduling. In: ISCA’00. pp. 128-138 (2000). https://doi.org/10.1145/339647.
339668

Subramaniam, S., Bracy, A., Wang, H., Loh, G.H.: Criticality-Based Optimizations
for Efficient Load Processing. In: HPCA’09. pp. 419-430 (2009). https://doi.org/
10.1109/HPCA.2009.4798280

Subramanian, L., Lee, D., Seshadri, V., Rastogi, H., Mutlu, O.: The Blacklist-
ing Memory Scheduler: Achieving high performance and fairness at low cost. In:
ICCD’14. pp. 8-15 (2014). https://doi.org/10.1109/ICCD.2014.6974655
Suleman, M.A., Mutlu, O., Qureshi, M.K., Patt, Y.N.: Accelerating Critical Section
Execution with Asymmetric Multi-Core Architectures. In: ASPLOS’09. pp. 253-264
(2009). https://doi.org/10.1145/1508244.1508274

Topcuoglu, H., Hariri, S., Min-You Wu: Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260-274 (2002). https://doi.org/10.1109/71.993206
Valero, M., Lang, T., Llaberia, J.M., Peiron, M., Ayguadé, E., Navarra, J.J.:
Increasing the Number of Strides for Conflict-Free Vector Access. In: ISCA’92. pp.
372-381 (1992). https://doi.org/10.1145/139669.140400

Valero, M., Moreté, M., Casas, M., Ayguade, E., Labarta, J.: Runtime-Aware
Architectures: A First Approach. Supercomputing frontiers and innovations 1(1)
(2014). https://doi.org/10.14529/js£i140102

Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the obvious.
ACM SIGARCH Computer Architecture News 23(1), 20-24 (Mar 1995). https:
//doi.org/10.1145/216585.216588

