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Abstract—Energy storage systems (ESS) are being considered
to overcome issues in modern grids, caused by increasing
penetration of renewable generation. Nevertheless, integration
of ESS should also be supplemented with an optimal energy
management framework to ensure maximum benefits from ESS.
Conventional energy management of battery, used with PV
system, maximises self-consumption but does not mitigate grid
congestion or address battery degradation. Model predictive
control (MPC) can alleviate congestion and degradation while
ensuring maximum self-consumption. Studies will be carried
out to highlight the improvement with MPC based energy
management over conventional method using simulations of one-
year system behaviour. As MPC uses forecast information in
decision making, the impact of forecast uncertainties will be
assessed and a method to address them through a constraint
tightening will be presented.

I. INTRODUCTION

ENEWABLE sources (RES) in electric grids are en-

vironment friendly but tend to not be grid friendly.
The intermittent nature of this generation has led to grid
congestions , voltage regulation problems and instabilities
[1]. Energy storage systems (ESS) are increasingly utilised
to overcome these issues and facilitate the RES integration
[2]. However, they need to be managed optimally. The need
for optimal management is highlighted through a PV system
with battery energy storage system (BESS). As grid parity is
achieved in PV generation [3] economically consumer benefit
by maximising self consumption. The conventional methods
achieves the same by charging the BESS whenever surplus
PV power is available. In days of high PV generation this
leads to BESS being fully charged early in the day. As a result
when peak PV generation occur the surplus power is fed to
grid. This severely congest grid when multiple PV units do
the same and there is no sufficient load demand. As a result,
nowadays feed-in power limitations are being imposed in PV
systems to avoid congestions [3], which also limiting RES
power utilisation.

Another drawback with conventional maximising self con-
sumption strategy is the BESS degradation. The two major
ageing mechanism in BESS (Li-ion based) are the cyclic and
calender ageing. They are results of degradation arising from
excessive cycling of BESS and increased dwell time at high
SOC levels. In conventional scheme the early charging of
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Fig. 1: Typical BESS charging, SOC and grid feed-in profile
under maximising self consumption strategy. Early full charg-
ing of BESS and subsequent peak power feed-in observed.

BESS results in high SOC dwell periods (Fig.1) and increased
BESS degradation [4], [5].

Forecast based BESS management techniques can overcome
this issue and provide better performance. The knowledge of
future generation and load profiles allow energy management
(EM) systems to know the instance of peak PV generation.
This facilitates prevention of early full-charging by BESS and
ensures BESS capacity is available during peak PV generation.
This can limit the feed-in power to grid and address the
grid congestion. Therefore, forecast based energy schedul-
ing can handle multiple objectives while making decision
(typically addressed using optimisation problems) [6], [7]. In
forecast based energy scheduling for PV-BESS system, offline
approaches has been explored in [8], [9]. However, these
approaches tend to have increased dependencies on real-time
controllers to compensate for prediction error, resulting in sub-
optimal system behaviour.

Online forecast based scheduling using model predictive
control (MPC) can ensure better performance over the offline
techniques [10], [11]. MPC for optimal energy scheduling has
been explored [6], [12] with promising results, but mostly for
minimising operating costs in electric grids. An application
of the same to address issues like grid congestion, BESS
degradation or self consumption, as highlighted in the PV
BESS system, has not been carried out. Different techniques
have been developed to account for the uncertainty in pre-
diction [10], [13] but they result in conservative decision
making by the MPC. If not formulated properly, these methods
can over compensate for prediction errors, resulting in poor
performance.

In this work, the application of MPC in a PV-BESS sys-



2, JULY 2020

PV Array o]
PV Converter %L)
00 (o, 7
Ijlj _ﬂ:} Inverter
DD :’ DC bc 7 Grid
S EAC Filter
Battery Converter —
/) " Load
DC 7/ >
Q
13 Q .
. DC [a]
S

Battery

Fig. 2: Schematic of the test case microgrid .

N; nodes N, nodes

Output

Hidden |ayer

layer

Hidden
layer

(a)

b

node
X1 "
" ==~ —
X3 /wm/ Activation

Xm function
(b)

Fig. 3: (a) Feedforward neural network structure used in
forecasting unit, (b) node representation.

tem to address multiple objectives like maximising self con-
sumption, minimising grid congestion and BESS degradation
is considered. The proposed work will present a complete
predictive EM scheme which involves a forecasting unit and
MPC for BESS scheduling. This work also addresses the issue
of uncertainty in prediction through utilisation of a simple
constraint tightening approach. One of the objective will be
to quantify how performance objectives will be affected by
the uncertainty handling. The economic and electrical aspects
of PV BESS system operation will be considered, using
simulated results of one year energy scheduling. As far as the
authors’ knowledge goes such an application of MPC in PV-
BESS system and the assessment of the impact of decision
making accounting for prediction uncertainty have not been
carried out before.

The rest of the paper is organised as follows. Section II
introduces the predictive energy management scheme (PEMS)
with the forecasting stage and MPC based scheduling. Section
IIT presents the result of PV-BESS scheduling with the PEMS
and quantifies the improvements achieved with the same.
Finally the work is concluded in Section IV.

II. PREDICTIVE ENERGY MANAGEMENT SCHEME

The PV-BESS system considered in this work is shown in
Fig.2. The predictive EM scheme implemented comprises of

two stages, the Forecasting unit and the MPC based scheduling
unit.

A. Forecasting unit

This section will focus on how a forecasting system can
be integrated with a predictive energy management system
(PEMS). As such a neural network (NN) [14] based fore-
casting system will be considered in this work. Recent works
have demonstrated that NN based machine learning models
are capable of improved prediction of PV generation [15], load
demand [16] especially on localised load forecasting [17], as
considered in this work.

A typical NN framework is shown in Fig. 3(b). It consists
of an input layer, two hidden layers and an output layer. The
two hidden layers have N; and Ny nodes respectively. The
structure of each node is shown in Fig. 3(b). The NN shown
here is fully connected, meaning that each node receives input
from all the nodes in the previous layer scaled by a weighting
factor (wy,) along with a biasing factor b, as shown in Fig.3.
The activation function considered at each node is a rectified
linear unit ( ReLLU) as shown in Fig. 3(b). The ReLU is used
as it is considered to provide an improved performance [18].

In order to obtain highly accurate predictions on generation
or load profiles from the NN system, they need to be trained
using the previous sampled data of the same. The training
process can considered as a learning phase of the NN, wherein
the previous generation and load data is used by the NN to
study the underlying behavioural pattern. This knowledge will
then be used by the NN to define the optimal values for the
weighting and biasing factors, so that NN can start predicting
future generation and load behaviour with high accuracy. The
mathematical formulations involved in the training process and
the related algorithms [19] are beyond the scope of this work.

B. MPC based scheduling unit

MPC is a modern optimal control strategy which enables
handling of non linearities and constraints efficiently [10]. In
EM problems economic MPC is typically considered [10]. The
MPC uses predicted value of generation, load profiles and
an appropriate system model to predict evolution of system
states into a future predefined time period called the control
horizon. Using online optimization, MPC will modify the
manipulated inputs so that the system states will follow an
optimal trajectory in this horizon. This in-turn will guarantee
that the system behaviour is optimised w.r.t.o some predefined
performance parameters.

At any sampling instant, k, for a control horizon N, the
MPC generates N set-points (so|i, 51k, S2k-----SN—1|k) Where
ik = s(k+1) Vi=0,1,2..., N —1. The first set-point, so|,
will then be applied to the system. This process is repeated
at every sampling instant using the sampled value of system
states at that moment. This ensures that the control action
is generated using latest system states, thus giving a sense
of feedback [10], [13]. The formulation of the optimisation
problem used in MPC for EM of PV BESS system is discussed
next.
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1) Cost function: The cost function

k+N-—1
J(k) =min > (Jgia(i) + Jess(i)). (1)
i=k

defines the aspects of PV BESS system operation. There are
two parts to the above cost function. The first part Jgiq is
defined as

Jeria (i) = Ag - Pgria (i)’ )

where ), is a penalising weight. The above cost term penalises
the power interaction with the grid (pgrsq). As a result, if (1)
is to be minimised the EM scheme will try to keep the values
of pgriq as low as possible. This will ensure that grid feed-in
is reduced. By ensuring that grid feed-in minimised, the MPC
indirectly forces the generated PV power to be utilised, as far
as possible. This increases self consumption.
The second term in (1), given by

Jhess(1) = As - SOC(i)% + \g - ASOC (i)* 3)

minimises battery degradation. A, Ay are weighting factors.
As mentioned before, in Li-ion batteries, the calender, cycling
ageing are accelerated through high SOC dwell times and
excessive cycling respectively. These effects are minimised
through (3). In (3) SOC penalises high SOC values, thereby
minimising highly charged states in BESS for longer duration.
The ASOC in (3) penalises change in SOC and thereby
excessive cycling. The explicit equation defining the battery
degradation is not considered here as it is non-linear [4]. This
can lead to increased complexity in solving the optimisation
problem [20]. The quadratic functions, shown above provides
a reasonable approximation which can be efficiently solved

2) BESS model: MPC used ESS and grid models during
the optimization. The BESS model is based on the Coulomb
counting equation given by

SOC(i + 1) = SOC(i) — -
Cbess
where T is the sample period, ppess(i) is the power set point
and Chess is the capacity of BESS.
3) Grid model: The grid is modelled using the power
balance equation as follows:

pbess(i) +pgen(i) +pgm’d(i) - pload(i) =0 (5)

where pgriq(2) is the power exchanged with the grid,
Dgen (1), Dioad () are the power generated by the RES and load
demand respectively at time instant :.

4) Constraints: The problem constraints address physical
limits of ESS and power limits of the power converter. These
constraints are ensured by

pznin S Pbess (Z) S P:;mw (6)

* Pbess (Z) (4)

min max

where p**" and p*** are maximum power handling limits of
the bidirectional converters of BESS.
The physical limits of BESS are addressed through

SOC! < SOC(i) < SOC* (7

where SOC! is the lower bound and SOC* is the upper
bound on SOC of BESS. These bounds also protect from

degrading stress arising from high charged or deep discharged
states of BESS. Introducing hard constraints like (7) can cause
non-convergence of the optimisation problem. This can be
overcome by using soft constraints [21]. The soft constraints
allow some violation in the bounds on SOC, but improves the
convergence of the optimisation problem. The (7) represented
as soft constraints is given by

SOOl — €bess < SOC(Z) < S0C* + €bess (8)

where €55 are the slack variable which indicates the con-
straint violation. In order to ensure that the SOC limits are not
significantly violated, the slack variables are penalised using
a cost function like

Jsoft = )\e . 6%535~ (9)

Therefore, the final optimisation problem used for set-point
generation by MPC is summed up as

N—-1
J =min Z (Jgrid(ilk) T Jbat(ilk) T Jsoft(ilk)) (10)
i=0
subject to
ESS and Grid models (4), (5) (11

Constraints (8), (6).

The above represents a quadratic programming problem which
can easily be solved with solvers like Gurobi [22].

The optimal behaviour with predictive management unit
relies on the accuracy of the forecast.A proper training of
NN based forecasting unit can reduce, but not eradicate it.
Therefore to account the same, the optimisation problem in
MPC needs modification. In this context, a simple constraint
tightening approach can ensure this [23].

In PV-BESS system, the critical information that the MPC
needs from forecast is the total imbalance energy in a control
window and the instance of peak imbalance power (peak
generation). This enables decision on the degree of utilisation
of BESS and when to deploy BESS charging/discharging to
prevent grid congestion. The forecasting unit can give a fairly
accurate indication of the peak generation periods (highlighted
in the next section). However, errors exist in the predicted total
imbalance energy in a control window.

The forecast at any instant is not definitive but vary within
a certain bound d;;, defined as

for: =0

. (12)
fori=1,2.N — 1.

L

dijx =

[+A8;, —Ab;].
At the sampling instant k the actual value is known from
sampled data, hence d = 0 at ¢ = 0. As for the other
points in the control horizon, d;; should be accounted by
MPC in decision making. In constraint tightening, this is
achieved by modifying the bounds of the constraints, (11),
in the optimisation problem. In BESS this will modify the
SOC limits, thus ensuring that there is always some buffer
capacity to accommodate for the prediction error. Defining
Dgrid(ijk) — Pload(i]k) 88 Pdef(i|k), the predicted deficient power
in the system, (5) is rewritten under prediction uncertainty as

Dbess(i|k) T Pgen(ilk) t U(ik) + Pdet(ik) + k) = 0. (13)
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In the above equation additional term w;)y, is the control action
from the low-level controllers to counteract the uncertainty
in forecast d;). The predictive management unit bases its
decision on the forecast value pger(ijx) Which is the determin-
istic part of the imbalance forecast. Therefore (5) is split into
deterministic part catered by the PEMS

Dbess(ilk) T Pgen(ilk) T Pdet(i|k) = 0- (14)
and uncertain part catered by low-level controller.
Uiilk) = —dilk)- (15)

This requires that the bounds (8) and (6) be modified to
ensure sufficient margin is available for the low-level control
to counteract d;|x). The power bounds, (6), are modified using
(15) as

PR + ugij) < Phess(ilk) < Phesd — u(ijk)- (16)

leaving some margin for the low-level controller to modify the
power setpoints from predictive management unit to account
for d;|x) without exceeding power limits.

In order to modify the SOC bounds (8) the BESS model
(4) is represented using u;);, under uncertainty in forecast as

SOC(i + 1|k) = SOC(i|k)—
T, (17)
Chess (Pbess(ilk) T Uilk))

under assumption that d;) is always catered by BESS
until fully charged/discharged. This ensures maximum self
consumption as well. The above is rewritten in terms of
sampled SOC' value at instant k (SOChess(0k)) S

SOC(i + 1|k) = SOC(0]k)—
T, < (18)

Crs Z(pbess(llk') + uqk))-
eSS l:O

The deterministic part in the above equation is
i

: Z(pbess(ﬂk)) (19)

=0

T

bess

SOC(i + 1|k) = SOC(0|k)

and

T, <
. U =dx
Choss ; (Uk) (ilk)

(20)

forms the non deterministic part. Based on this, constraint
tightening of (8) is done as follows

SOC" — €pess + da iy < SOC(i)

< soct —dx; @b
> ~+ €bess dm(z|k)

Finally the optimisation problem can be reformulated as

N-1
min Z (Jgrid(ilk) + JIbat(ilk) + Jsoft(ilk)) (22)
i=0
subject to
ESS and Grid models (19),(14)
(23)

Constraints (21), (16)

ik
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i
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Fig. 4: Depiction of error propagation along forecast window.

Another important factor in defining the optimality of the
solution is the size of Af. A higher value of the same
causes higher tightening of constraints and more conservative
decision making. This prevents the BESS from charging or
discharging too much, leading tolow self consumption as
the PV power being sent to grid and low self-consumption.
In a site level system, like the PV-BESS of this work, the
intraday variations in the load/generation profile tends to be
high in comparison to an aggregated system. Forecasting the
behaviour of such systems is always a tough problem as
shown in [24]. In this scenario, defining Af; based on a mean
average error for every point in a prediction horizon leads to
larger bounds d ;). However, if the error is aggregated over
a forecast window there will be cancellation of error along
the prediction window. This can result in a less conservative
definition of error bounds if this mean absolute aggregate error,
€q, 18 taken to define d ;).

The distribution of e, along d;y) can be done based
on behaviour of forecasting unit. The initial values in any
prediction window is highly correlated with the previous
compared to latter values. As such the errors in forecast of
initial values will be lower. Therefore, distribution of e, in
an increasing manner along a prediction horizon, as shown in
Fig.4, to define d; ;) makes practical sense.

C. Grid feed in limitation

To mitigate grid congestion from high surplus PV power
feed-in restriction are imposed by utility operators. An ex-
ample, is the case in Germany where PV systems with a
power rating less than 30kW have to limit their feed in
at 70% of their nominal value [25]. This condition can be
easily implemented with MPC through constraints on pgq.
However, to ensure recursive feasibility an additional term
will be introduced in (14) to define the power curtailment.
This term will then have to be appropriately penalised in the
cost function (22) to ensure that sub-optimal results do not
occur. The additional decision variable for power curtailment
will increase the computational demand of MPC. Therefore to
overcome this issue, the optimisation problem will be solved
as in (22) with (23) and the low-level controllers will ensure
the power curtailment.

The entire PEMS for the PV-BESS with real-time control
unit is shown in Fig. 5. This presents a hierarchical control
scheme.

III. RESULTS AND DISCUSSION

The PV generation and load demand are emulated using
one year’s data from a test microgrid in Lindenberg, Germany
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Fig. 6: Result of one day’s PV generation forecast using NN
on testing data.The data from 12 October 2004.

[26]. The load represents a four person household with annual
demand of 4.5 MWh. The data was obtained using a sampling
frequency of 5 minutes resulting in 288 samples a day.
The sizing of the BESS system is done using the method
highlighted in [3].

In this work, considering the daily cyclic behaviour of the
PV-BESS system, the control horizon in MPC (N) was chosen
as 24 hours. Therefore, objective of the forecasting unit at any
instant will be to predict the next 24 hours.

A. Forecasting unit results

The NN was realised in Python using the Keras package
[27]. Training was done with the ADAM solver [28]. In order
to avoid overfitting of data cross validation and early stopping
[29] was ensured during the NN training. One year’s data was
available of which 70% was used for training and remaining
for testing in both PV and load forecast.

The NN input, used in PV forecast, was the last 72 hours
of actual generation data. The 72 hour window was utilised
considering the correlation of the PV generation to previous
values. The 72 hour data also gives an indication of any exist-
ing weather conditions like, consecutive rainy days. Explicit
weather data was not available and hence was not used as
input to NN. This resulted in a NN with input layer size of

72
864 (288 —). The hidden layer size, N1 and N5, was chosen
as 300 through multiple trials.
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Fig. 7: Result of load demand forecast using NN.

The PV generation forecast with NN for a 24 hour period is
provided in Fig.6. The forecast shown here is during autumn
where, the solar irradiation and hence the generation tends to
be lower. The usage of previous’ days data as input for NN
allows it to predict the low generation from seasonal effect.
Nevertheless, it should be noted that the PV forecast is able
to predict the time period where high generation occurs which
is vital for the predictive management unit decision making.

The NN for the load forecasting used the last 168 hours (1
week) measured load demand as input. Unlike PV forecast, the
one week data was used since the load demand on any day
had high correlation with last weeks load demand on same
day. This resulted in an input layer size of 2016 (288 - 7) for
NN forecasting load demand. The size of N; and N, was 300
chosen through multiple trials with trade off between accuracy
and computational requirement. The results using the same for
load forecast for a 24 hours period is shown in Fig. 7.

The PV and load forecast results highlight the difficulty in
site level prediction (small systems), as discussed before. As
shown in Fig.6 and Fig.7, the real data has sudden variations
and the forecasting units could not entirely reproduce them.
This justifies the importance of using mean aggregate absolute
error to define d;x) as discussed before. In the PV data
the average energy in a prediction window (moving window
considered for MPC) was 13.56 kWh. The mean aggregate
absolute error in the prediction window for the same is 3.28
kWh which was 23% the average energy value. Similarly, for
the load prediction average energy in a prediction window was
10.81 kWh whereas the mean aggregate absolute error for the
same was 1.015 kWh which was 9.3% the average energy
value. The higher error with PV forecast is mainly due to lack
of weather data.

The power deficiency profile (pge(ijx)), used in MPC, was
obtained from PV and load forecast. The individual aggregated
error of PV and load forecast was also used to detremine e,.

B. Predictive energy management

The EM in the PV-BESS system will be carried for one year.
The results from annual scheduling enables quantification of
the long-term improvements that can be achieved with PEMS.
The parameters used in the optimisation of the PEMS is shown
in Table. I. Prior to presenting the results some performance
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TABLE I: System parameters and their values used for the
energy management strategy.

Parameter Value
Chess 9.375 kWh
Sampling time 5 min
MPC horizon (N) 24 hours
P pet et 3 kW
SOC*,SOH!___ 0.9, 0.1
Ags As, Ad 500, 3, 200
6 PV power
Load demand
5F Max self consump
Ideal MPC
Practical MPC

PV power predicted

Power (kW)

0 50 100 150 200 250 300
Samples (5 min)

Fig. 8: Typical daily BESS power profiles with the different
energy management strategies The early full charging of BESS
with the conventional method is overcome with PEMS.

measures will be introduced. An important measure that will
be analysed is the self consumption ratio (SCR). SCR defines
the percentage of total PV generation used by the microgrid
system to meet its load demand (including energy storage in
BESS). This is defined as

EPVconsumed
EPVgenerated

where E PV, onsumed 1S the annual PV energy utilised by the
consumer and EPVgenerateq 18 the total annual PV energy
generated. Another measure of interest will be the annual
BESS degradation resulting from the EM strategy. The BESS
profile generated from the EM strategy will be used in a BESS
degradation model defined in [4] to assess the degradation.
The Fig.8 shows BESS charging profile in a 24 hours period
with different strategies namely: the conventional maximising
self consumption method, an ideal predictive management
(ideal MPC) where perfect forecast of generation, load profile
exists and the PEMS with constraint tightening (Practical
MPC). The penalising weights weights Ay, As, Aq was chosen
such that the SCR is the highest possible with minimum
degradation. Unlike conventional method, in PEMS, BESS
does not undergo early charging as shown in Fig.8. The
charging of the BESS is shifted to period of higher generation.
Comparing the ideal and practical MPC performance it can be
observed that the BESS charging profile is shifted to an earlier
instance when uncertainty exist. In the result shown in Fig.§,
the predicted generation was lower than that of the actual

SCR = - 100(%) (24)

Max self consum Ideal MPC

S

Power(kW)
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Power(kW)
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Fig. 9: Grid power feed-in profiles with different energy
management schemes.
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Fig. 10: Dwell times of power levels exchanged with the main
grid under the different energy management schemes.

generation. This forced the practical PEMS to charge the BESS
earlier than in the ideal case. Despite this the BESS charging
was closer to the peak generation period in the practical case,
in comparison to the conventional scheduling strategy.

The grid feed-in profiles are shown in Fig.9. The results
shown here is after grid power feed-in curtailment (70%
of the nominal value). In the conventional maximising self
consumption method the early BESS charging results in peak
power injection to grid as expected. The feed-in curtailment
minimises the impact of this injection but at the cost of lesser
utilisation RES generation. In the ideal MPC, as shown in
Fig.9 this is completely mitigated with the prefect knowledge
of future generation and load demand. In the case of practical
MPC, the BESS reached full charge earlier than ideal MPC
as shown in Fig.8. This leads to a small period of peak power
injection to grid as shown in Fig.9. It should be noted that even
with forecast errors the time duration of peak power injection
in PEMS is significantly smaller than the conventional method

This is further highlighted in Fig.10 which shows the dwell
times at different grid feed-in power levels. The PEMS with
uncertainty in prediction shows lower dwell time at high
feed-in power levels (> 3kW) compared to conventional
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TABLE II: Comparison of SCR, BESS degradation and annual
power curtailment for the different scheduling methods.

Scheduling Annual Annual BESS | Annual PV power
method SCR (%) degradation (%) | curtailed (kW)
Conventional 54.6 3.94 542.5 kW

method

Ideal MPC 54.3 3.71 0

Practical MPC 52.71 3.73 3591 kW

MPC  without | 52.73 3.65 37.83 kW
correction

maximising self consumption scheme.

1) Self-consumption ratio assessment: The assessment of
PV power self consumption is shown in Table.Il, where
annual SCR with different scheduling methods are compared.
Considering a particular BESS sizing, the maximum SCR of
54.6% was observed in conventional maximising self con-
sumption method. The SCR with ideal MPC is 54.32% which
is 99.5% of the conventional scheme. The slight drop in self
consumption is attributed to the EM objective of lower BESS
degradation. The behaviour of SCR and BESS degradation
tend to be complementary. In the practical scenario SCR
falls lower than the ideal predictive management unit. This is
expected due to the errors in prediction, which results in some
usable power from the PV generation not utilised and being
send to the grid. Nevertheless, it should be noted that the SCR
in the practical scenario is still not very low in comparison
to the conventional scheme at 52.71% which is 96.5% the
maximum possible value. This value was achieved despite
higher error in PV prediction due to absence of weather data.
The availability of this data will only improve the prediction
accuracy and improve SCR. This highlights the economic
suitability of predictive management in practical scenarios
where uncertainty in forecast exists.

2) Feed-in power limitation assessment: The Table.Il also
shows the annual PV power curtailment (due to high grid feed-
in power) with each management scheme. The conventional
method due to early BESS full charging requires has maximum
annual power curtailment of 542.5kW. In contrast the ideal
MPC, with perfect forecast, manages PV BESS operation
with zero curtailment. In event of forecast error, as shown
in Fig.9 peak power feed-in occurs and as such the need for
curtailment. Nevertheless, as shown in Table.Il the PV power
curtailed is only 34.91 kW which is almost 94% lesser than
conventional method. This highlights increased utilisation of
PV power with PEMS.

3) Battery degradation assessment: The BESS degradation
with different strategies is shown in Table.Il. The degradation
can be better explained with Fig.11, Fig.12 which shows the
cycling and SOC dwell times of the BESS respectively. The
plot in Fig.11 was generated from BESS SOC profile using
rainflow algorithm. The x-axis of Fig.11 indicate half of the
cycle magnitude whereas the y-axis indicates the mean SOC
value of a cycle. For example, if BESS cycles between 10-90%
SOC, the x and y-axis values will be 45.

The conventional strategy exhibits the highest BESS degra-
dation while predictive strategies (ideal and practical case)
show almost a 6% reduction in annual BESS degradation.
The early BESS charging in the conventional scheme results
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Fig. 11: BESS cycling undergone with different energy man-
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Fig. 12: BESS cycling undergone with different energy man-
agement schemes.

in increased dwell times at high SOC levels as shown in
Fig.12, causing calender ageing. However high SOC dwell
times and calender ageing is significantly reduced in predictive
strategies, due to shifting of the BESS charging to peak gener-
ation period. The predictive strategies however exhibit higher
cycling (Fig.11) and therefore should have higher cycling
ageing in comparison to conventional scheme. Nevertheless,
the improvement in calender ageing outweighs this effect.
The annual degradation in BESS for the ideal and practical
case is very similar. Assessing the cycling plot in Fig.11
it can be observed that the ideal MPC case undergoes a
higher number of large magnitude cycles in comparison to
the practical case. In comparison, the practical case has larger
dwell times at high SOC levels due to earlier charging of BESS
compared to ideal case. Therefore the combined effect of the
both leads to similar degradation in both cases of PEMS.
Finally, an analysis of constraint tightening’s effect on
the objectives considered in the PEMS is carried out. The
performance of PEMS without the tightening (but with imper-
fect forecast) is shown in Fig.9,10, 11, 12, as MPC without
correction. Based on Fig.10 the grid feed-in performance in
MPC with and without constraint tightening appears similar.
However assessing Table.Il it can be seen that, without con-
straint tightening, the annual grid feed-in curtailment tend to
be higher whereas the SCR tends to be better. This is due
to the conservative nature of decision making of PEMS due
to constraint tightening. The PEMS expects a deviation in
forecast value and as such prevents the BESS from charging or



2, JULY 2020

T T T T
375 1
€ Increassing d“k

w %) w

» o o

v 3] o
L L L

Feed in power curtailed (kW)

w

«

&
L

325 1
I I I I
52.3 52.4 52.6 52.7

52.5
Self consum (%)

Fig. 13: Variation of feed in curtailment and self consumption
with increasing uncertainty bound (d;;) on forecast values.

discharging excessively. This leads to some usable PV power
being send to grid, thus lowering SCR. This also results in
BESS from not being fully charged at peak generation time
thereby limiting grid feed-in curtailment. Therefore increas-
ing the bounds on uncertainty and the resulting increase in
constraint tightening always reduces the feed-in curtailment
but at the cost of lower SCR as shown in Fig.13. The annual
BESS degradation is also lesser without constraint tightening
as shown in Table.Il. This is also a result of the conservative
decision making of PEMS which results in the BESS having
a increased dwell times at higher SOC levels as evident from
Fig.12. These results also justify the use of mean absolute
aggregated error in the prediction window for defining the
bounds d;;, instead of utilising the mean aggregated error at
every point in the prediction window. This is because utilising
the point wise error would have resulted in higher bounds in
d;|k. considering the bigger error in PV forecast, leading to
very conservative decision making.

IV. CONCLUSION

The PEMS in PV-BESS is capable of improving the grid
congestion and BESS degradation performance in comparison
to the conventional scheme. However it is achieved at a cost
of slight reduction of SCR. The error in predicted generation
and load profiles are always going to reduce the SCR when
using forecast based methods, unless a perfect forecast can be
achieved. Nevertheless, as shown in this work online schedul-
ing using MPC with good forecasting does not significantly
reduce the SCR. It should also be noted even though forecast
of PV generation was done without the weather data the online
nature of MPC allowed better decision making.
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