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Abstract

Divisors whose Jacobian ideal is of linear type have received a lot of attention recently because of its connections with the

theory of D-modules. In this work we are interested on divisors of expected Jacobian type, that is, divisors whose gradient
ideal is of linear type and the relation type of its Jacobian ideal coincides with the reduction number with respect to the

gradient ideal plus one. We provide conditions in order to be able to describe precisely the equations of the Rees algebra

of the Jacobian ideal. We also relate the relation type of the Jacobian ideal to some D-module theoretic invariant given by
the degree of the Kashiwara operator.

1. Introduction

Let (X,O) be a germ of a smooth n-dimensional complex variety and OX,O the ring of germs of holo-
morphic functions in a neighbourhood of O, which we identify with R = C{x1, . . . , xn} by taking local
coordinates. Let DR[s] be the polynomial ring in an indeterminate s with coefficients in the ring of dif-
ferential operators DR = R〈∂1, . . . , ∂n〉 where ∂i are the partial derivatives with respect to the variables
xi. To any hypersurface defined by f ∈ R we may attach several invariants coming from the theory of
D-modules that measure its singularities. The goal of this work is to get more insight on the parametric
annihilator AnnDR[s](f

s) := {P (s) ∈ DR[s] | P (s)·fs = 0}, where we understand fs as a formal symbol
that takes the obvious meaning fr when specializing to any integer r ∈ Z. This is the defining ideal of
the DR[s]-modules generated by fs, that we denote as DR[s]fs, which plays a key role in the theory of
Bernstein-Sato polynomials as shown by Kashiwara [14]. Among the differential operators annihilating
fs there exists the so-called Kashiwara operator [14, Theorem 6.3] that has been used in some of the
first algorithmic approaches to the computation of Bernstein-Sato polynomials given by Yano [29] and
Briançon et al. [5]. Furthermore, the degree of the Kashiwara operator is an interesting analytic invariant
of the singularity, although it is much coarser than the Bernstein-Sato polynomial itself.

A common theme in the study of the parametric annihilator is whether it is generated by operators of
degree one. This and some related linearity properties have been used by several authors in a wide range
of different problems [7], [26], [20], [8] , [2], [21], [27], [28]. This linearity property of differential operators
can be checked using algebraic methods as it was proved by Calderón-Moreno and Narvéz-Macarro in
[7]. Namely, this property holds whenever the Jacobian ideal of the hypersurface f is of linear type, that
is the Rees algebra and the symmetric algebra of the Jacobian ideal coincide.

The aim of this paper is to get further connections between the Rees algebra of the Jacobian ideal and
the parametric annihilator. Building upon work of Muiños and the second author in [17], we introduce
in Definition 4.2 the notion of divisors of expected Jacobian type as those divisors whose gradient ideal
is of linear type and whose Jacobian ideal has relation type equal to its reduction number plus one (see
also Definition 3.3). In Remark 4.3, it is easily seen that this is a natural generalization of the divisors
of linear Jacobian type considered in [7] (see also [20]). For divisors of linear Jacobian type we can find
an equation that resembles the initial term or symbol of the Kashiwara operator with respect to a given
order, and indeed this is the case under some extra conditions.
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The organization of the paper is as follows: in Section 2 we review the basics on the equations of Rees
algebras and recover and extend some of the results of Muiños and the second author in [17]. Section 3
and 4 are devoted to introduce the notion of ideal of expected relation type and its specialization to the
case of the Jacobian ideal of a hypersurface. In Section 5 we describe the connection between divisors of
expected Jacobian type and the parametric annihilator. We relate the degree of the Kashiwara operator
with the relation type of the Jacobian ideal in Proposition 5.3. In Section 6 we present several examples
in which we explore the case in which the ideal has the expected relation type. We also study some cases
in which this condition is not satisfied.

Any unexplained notation or definition can be found in [6] or [25]. Throghout the paper, (R,m) is a
Noetherian local ring and b ⊆ a and J ⊆ I are ideals of R.

2. On the equations of Rees algebras

Let (R,m) be a Noetherian local ring and let a = (f1, . . . , fm) be an ideal of R, m ≥ 1. Let R(a) =
R[at] =

⊕
d≥0 a

dtd ⊂ R[t] be the Rees algebra of a. Let A = R[ξ1, . . . , ξm] be a polynomial ring in a

set of variables ξ1, . . . , ξm and coefficients in R. Consider the graded surjective morphism ϕ : A→ R(a)
sending ξi to fit, for i = 1, . . . , n+1. The kernel of this morphism is a graded ideal Q =

⊕
d≥1Qd, whose

elements will be referred to as the equations of R(a). Let Q〈d〉 be the ideal generated by the homogeneous
equations of degree at most d. We then have an increasing sequence Q〈1〉 ⊆ Q〈2〉 ⊆ · · · ⊆ Q that stabilizes
at some point. The smallest integer L ≥ 1 such that Q〈L〉 = Q is the relation type of R(a) and will be
denoted rt(a). We say that a is an ideal of linear type when rt(a) = 1.

Observe that the ideal Q depends on the polynomial presentation ϕ. Nevertheless, the quotients
(Q/Q〈d−1〉)d, for d ≥ 2, do not (see [23]). Indeed, let α : S(a)→ R(a) be the canonical graded surjective
morphism between the symmetric algebra S(a) of a and the Rees algebra R(a) of a. Given d ≥ 2, the d-th
module of effective relations of a is defined to be E(a)d = ker(αd)/a·ker(αd−1). One shows that, for d ≥ 2,
E(a)d ∼= (Q/Q〈d− 1〉)d. In particular, the relation type of a can be calculated as the least integer L ≥ 1,
such that E(a)d = 0, for all d ≥ L + 1. Moreover, it is known that E(a)d ∼= H1(f1t, . . . , fmt; R(a))d,
where the right-hand module stands for the degree d-component of the first Koszul homology module
associated to the sequence of degree one elements f1t, . . . , fmt of R(a) ([23, Theorem 2.4]).

The characterization of E(a)d in terms of the Koszul homology was used in [17] in order to obtain the
equations of R(a) for equimultiple ideals a of deviation one. Our purpose in this section is to rephrase,
and extend a little bit, some of those results, but doing more emphasis in the Koszul conditions than in
the “regular sequence type conditions”. These characterizations will be applied in the next sections to
the Jacobian ideal of a hypersurface. For the sake of completeness and self-containment, we outline parts
of the line of reasoning in [17]. Let us start by setting our general notations.

Setting 2.1. Let (R,m) be a Noetherian local ring, n ≥ 2. Let f1, . . . , fn ∈ m and f = fn+1 ∈ m. Let
J = (f1, . . . , fn) and I = (f1, . . . , fn, f) = (J, f) be ideals of R. For i = 1, . . . , n+ 1, let Ji = (f1, . . . , fi);
set J0 = 0 and observe that Jn = J and Jn+1 = I.

For i = 1, . . . , n+ 1 and d ≥ 2, set Ti,d =
(Ji−1I

d−1 : fi) ∩ Id−1

Ji−1Id−2
.

For d = 1, set Ti,1 = Ji−1 : fi.

Note that for i = 1 (and any d ≥ 1), then T1,d = (0 : f1) ∩ Id−1. For i = n+ 1 and d ≥ 2, it was shown
in [17, Proof of Lemma 3.1] that:

Tn+1,d =
(JId−1 : f) ∩ Id−1

JId−2
∼=

JId−1 : fd

JId−1 : fd−1
. (2.1)

The isomorphism goes as follows. Given a ∈ (JId−1 : f) ∩ Id−1, since Id−1 = JId−1 + fd−1R, write
a = b + cfd−1 with b ∈ JId−1 and c ∈ R. The class of an element a ∈ (JId−1 : f) ∩ Id−1 is sent to the
class of c ∈ JId−1 : fd.
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Notation 2.2. A graded Koszul complex. Let us denote K(z1, . . . , zr;U) the Koszul complex
of a sequence of elements z1, . . . , zr of a ring U . Since U will always be the Rees algebra R(I) of
I, we just skip the letter U . For i = 1, . . . , n + 1, we consider the sequences fit := f1t, . . . , fit of
elements of degree one in R(I); we highlight the distinct notation with the length one sequence fit.
Set ft := fn+1t = f1t, . . . , fnt, ft. Thus K(fit) = K(f1t, . . . , fit; R(I)) stands for the Koszul complex
associated to fit = f1t, . . . , fit, with first nonzero zero terms:

K(fit) : · · · → K2(fit)
∂2−→ K1(fit)

∂1−→ K0(fit)→ 0.

Let Hj(fit) = Hj(K(fit)) be its j-th homology module. Note that, since R(I) is a graded algebra, K(fit),
and hence its homology, inherit a natural grading. The first nonzero terms of the degree d-component
K(fit)d, d ≥ 2, (omitting the powers of the variable t) are:

· · · → K2(fit)d = ∧2(Ri)⊗ Id−2 ∂2,d−2−→ K1(fit)d = ∧1(Ri)⊗ Id−1 ∂1,d−1−→ K0(fit)d = Id → 0.

The Koszul differentials are defined as follows: if e1, . . . , ei stands for the canonical basis of Ri and
u ∈ Id−2 and v ∈ Id−1, then

∂2,d−2(ej ∧ el ⊗ u) = el ⊗ fju− ej ⊗ flu and ∂1,d−1(ej ⊗ v) = fjv.

Note that, under the isomorphism ∧1(Ri) ⊗ Id−1 ∼= Id−1⊕
(i)
· · · ⊕Id−1, the differential ∂1,d−1 sends the

i-th tuple (a1, . . . , ai) ∈ (Id−1)⊕i to the element a1f1 + · · ·+aifi ∈ Id. In particular, for d = 1, H1(fit)1 =

{(a1, . . . , ai) ∈ Ri |
∑i
j ajfj = 0} = Z1(f1, . . . , fi), the first module of syzygies of Ji = (f1, . . . , fi).

Remark 2.3. Equations vs cycles. Let Q be the ideal of equations of R(I). As said before,

E(I)d ∼=
(

Q

Q〈d− 1〉

)
d

∼= H1(ft)d = H1(K(ft))d = H1(f1t, . . . , fnt, ft; R(I))d, (2.2)

i.e., the d-th module of effective relations E(I)d of I is isomorphic to the degree d-component of the first
Koszul homology module H1(ft) of ft, where d ≥ 2. This isomorphism sends the class of an equation

P ∈ Qd to the class of the cycle (P1(f), . . . , Pn(f), Pn+1(f)) ∈
⊕n+1

j=1 I
d−1, where f = f1, . . . , fn, f ,

P =
∑n+1
j=1 ξjPj , and Pj ∈ Ad−1 = R[ξ1, . . . , ξn+1]d−1. (See [17, Remark 2.1].)

The next two remarks are devoted to write more explicitly some complexes and morphisms that will
be used subsequently.

Remark 2.4. A short exact sequence of Koszul complexes. Let K(fit) be the Koszul complex
associated to the length one sequence fit ∈ R(I). So K0(fit) = R(I), K1(fit) = ∧1(R)⊗R(I) ∼= R(I),
and Kj(fit) = 0, for j 6= 0, 1. In degree d ≥ 1, K0(fit)d = Id, K1(fit) = (∧1(R) ⊗R(I))d ∼= Id−1 and,
for a ∈ Id−1, then ∂1,d−1(a) = afi.

There is an isomorphism of Koszul complexes K(fit) ∼= K(fi−1t)⊗K(fit). Concretely,

Kp(fit) ∼=
⊕
r+s=p

Kr(fi−1t)⊗Ks(fit) = Kp(fi−1t)⊗K0(fit)⊕Kp−1(fi−1t)⊗K1(fit) ∼=

Kp(fi−1t)⊗R(I)⊕Kp−1(fi−1t)⊗R(I) ∼= Kp(fi−1t)⊕Kp−1(fi−1t),

which induces a short exact sequence of Koszul complexes:

0→ K(fi−1t)→ K(fit)→ K(fi−1t)(−1)→ 0, (2.3)

where K(fi−1t)(−1) is the shifted complex by -1, i.e., Ks(fi−1t)(−1) = Ks−1(fi−1t). In particular, for
d ≥ 1, the degree d-component gives rise to the the short exact sequence of complexes:

0→ K(fi−1t)d → K(fit)d → K(fi−1t)(−1)d → 0.
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Displaying by columns the first nonzero terms of each complex, we get:

...

��

...

��

...

��
0 // ∧2(Ri−1)⊗ Id−2 //

��

∧2(Ri)⊗ Id−2 //

��

Ri−1 ⊗ Id−2 //

��

0

0 // Ri−1 ⊗ Id−1 //

��

Ri ⊗ Id−1 //

��

Id−1 //

��

0

0 // Id //

��

Id //

��

0 //

��

0

0 0 0 .

The middle row, 0→ K1(fi−1t)d → K1(fit)→ K1(fi−1t)(−1)d → 0, is nothing else than:

0→ Id−1⊕
(i−1)
· · · ⊕Id−1 −→ Id−1⊕

(i)
· · · ⊕Id−1 → Id−1 → 0,

where the first morphism sends (a1, . . . , ai−1) to (a1, . . . , ai−1, 0), the inclusion, and the second morphism
sends (a1, . . . , ai) to ai, the projection to the last component.

Remark 2.5. The long exact sequence in homology. In turn, the short exact sequence (2.3)
induces the long exact sequence in homology. We display its degree d-component, d ≥ 1.

· · · → H2(K(fi−1t)(−1))d
δ−→ H1(fi−1t)d → H1(fit)d → H1(K(fi−1t)(−1))d

δ−→
→ H0(fi−1t)d → H0(fit)→ H0(K(fi−1t)(−1))d → 0.

Clearly, Hj(K(fi−1t)(−1))d = Hj−1(fi−1t)d−1 and H0(K(fi−1t)(−1))d = 0. The connecting morphism is
known to be the multiplication by the element ±fit. Thus we get:

· · · → H1(fi−1t)d−1
·±fit−→ H1(fi−1t)d → H1(fit)d → H0(fi−1t)d−1

·±fit−→ H0(fi−1t)d → H0(fit)d → 0.

If d = 1, then H1(fi−1t)0 = 0, H0(fi−1t)0 = R and H0(fi−1t)1 = I/Ji−1. Hence

ker
(
H0(fi−1t)0

·±fit−→ H0(fi−1t)1

)
= (Ji−1 : fi) = Ti,1.

In particular, for i = 1, . . . , n+ 1 and d = 1, one deduces the exact sequence:

0→ H1(fi−1t)1 → H1(fit)1 → Ti,1 → 0, (2.4)

where H1(fi−1t)1 = Z1(f1, . . . , fi−1) and H1(fit)1 = Z1(f1, . . . , fi).

If d ≥ 2, one can check that H0(fi−1t)d−1 = Id−1/Ji−1I
d−2 and H0(fi−1t)d = Id/Ji−1I

d−1. Thus

ker
(
H0(fi−1t)d−1

·±fit−→ H0(fi−1t)d

)
= (Ji−1I

d−1 : fi) ∩ Id−1/Ji−1I
d−2 = Ti,d.

(See Setting 2.1.) In particular, for i = 1, . . . , n+ 1 and d ≥ 2, we deduce the exact sequence:

H1(fi−1t)d−1
·±fit−→ H1(fi−1t)d → H1(fit)d → Ti,d → 0. (2.5)

Note that the middle morphism in (2.5) is induced by the inclusion. Namely, the class of a cycle
(a1, . . . , ai−1), aj ∈ Id−1, maps to the class of the cycle (a1, . . . , ai−1, 0). Similarly, the right-hand
morphism is induced by the projection (a1, . . . , ai) 7→ ai.
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We recover [17, Lemma 3.1]. Keeping the notations as in Setting 2.1 and Notation 2.2:

Corollary 2.6. For d ≥ 2, the following sequence is exact.

0→
H1(fnt)d

ft ·H1(fnt)d−1
−→ E(I)d −→

JId−1 : fd

JId−1 : fd−1
→ 0. (2.6)

The right-hand morphism sends the class of an equation P ∈ Qd to the class of P (0, . . . , 0, 1).

Proof. Take i = n+ 1 and d ≥ 2 in (2.5). Then H1(fn+1t)d = H1(ft)d, which by (2.2), is isomorphic

to E(I)d. See also the definition of Tn+1,d and its isomorphic expression in (2.1). The second part follows
from the composition of the morpshims in (2.2), (2.5) and (2.1). Indeed, the class of P ∈ Qd is sent to the

class of (P1(f), . . . , Pn+1(f)) ∈
⊕n+1

j=1 I
d−1 through (2.2), where P =

∑n+1
j=1 ξjPj , Pj ∈ Ad−1. By (2.5),

(P1(f), . . . , Pn+1(f)) is sent to the class of Pn+1(f) ∈ (JId−1 : f)∩Id−1. Write Pn+1 =
∑n
j=1 ξjQj+cξd−1

n+1,

with Qj ∈ Ad−2 and c ∈ R. In particular, Pn+1(f) = b + cfd−1, with b =
∑n
j=1 fjQj(f) ∈ JId−2.

Then the isomorphism (2.1) sends the class of Pn+1(f) to the class of c ∈ JId−1 : fd. Observe that
P (0, . . . , 0, 1) = Pn+1(0, . . . , 0, 1) = c.

The first part of the following result is shown in [17, Lema 3.3]. Our proof here is a direct consequence
of Remarks 2.4 and 2.5, and the sequences (2.4) and (2.5). We keep the notations as in Setting 2.1 and
Notation 2.2.

Theorem 2.7. Fix d ≥ 1 and i = 1, . . . , n+ 1.

(a) The following two conditions are equivalent:
(i) H1(f1t)d = 0, H1(f2t)d = 0, . . . ,H1(fit)d = 0;

(ii) T1,d = 0, T2,d = 0, . . . , Ti,d = 0.
(b) Suppose that, for some i = 1, . . . , n, T1,d = 0, T2,d = 0, . . . , Ti,d = 0. Then

H1(fi+1t)d ∼= Ti+1,d.

(c) Fix now d ≥ 2. Suppose that, for some i = 1, . . . , n− 1,

T1,d = 0, T2,d = 0, . . . , Ti,d = 0 and that T1,d−1 = 0, T2,d−1 = 0, . . . , Ti,d−1 = 0.

Then the following sequence is exact.

0→ (JiI
d−1 : fi+1) ∩ Id−1

fi+2 · [(JiId−2 : fi+1) ∩ Id−2] + JiId−2
→ H1(fi+2t)d → Ti+2,d → 0. (2.7)

Proof. The implication (i) ⇒ (ii) follows directly from the exact sequences (2.4) and (2.5). Since
H1(f0t) = 0, then, by (2.4) and (2.5), H1(f1t)d ∼= T1,d and (ii) ⇒ (i) holds for i = 1. Suppose that
(ii) ⇒ (i) holds for i − 1 ≥ 1. By the induction hypothesis, H1(fi−1t)d = 0 and, by (2.4) and (2.5),

H1(fit)d ∼= Ti,d = 0. This proves (a).
Suppose now that, for some i = 1, . . . , n − 1, T1,d = 0, T2,d = 0, . . . , Ti,d = 0. In particular, since

(ii) ⇒ (i), H1(f1t)d = 0, H1(f2t)d = 0, . . . ,H1(fit)d = 0. Using (2.4) and (2.5), for the integer i + 1,
H1(fi+1t)d ∼= Ti+1,d. This proves (b).

Suppose now that the hypotheses in (c) hold. Then, by (b) applied to d−1, we obtain the isomorphism
H1(fi+1t)d−1

∼= Ti+1,d−1. Therefore,

H1(fi+1t)d−1
∼=

(JiI
d−2 : fi+1) ∩ Id−2

JiId−3
and H1(fi+1t)d ∼=

(JiI
d−1 : fi+1) ∩ Id−1

JiId−2
.

Through these isomorphisms,

H1(fi+1t)d

fi+2t ·H1(fi+1t)d−1

∼=
(JiI

d−1 : fi+1) ∩ Id−1

fi+2 · [(JiId−2 : fi+1) ∩ Id−2] + JiId−2
.

The rest follows from the exact sequence (2.5) applied to i+ 2.
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Next we specialise Theorem 2.7 (c), to the case n = 2.

Corollary 2.8. Let (R,m) be a Noetherian local ring, f1, f2, f ∈ m and let J = (f1, f2) and I =
(f1, f2, f). Fix d ≥ 2. Assume that (0 : f1) ∩ Id−2 = 0 and (0 : f1) ∩ Id−1 = 0. Then the following
sequence is exact.

0→ (f1I
d−1 : f2) ∩ Id−1

f · [(f1Id−2 : f2) ∩ Id−2] + f1Id−2
−→ E(I)d −→

(JId−1 : fd)

(JId−2 : fd−1)
→ 0. (2.8)

Proof. Take n = 2, i = 1 and d ≥ 2 in Theorem 2.7 (c). Then T1,d−1 = (0 : f1) ∩ Id−2 and
T1,d = (0 : f1) ∩ Id−1, which are zero by hypothesis. The rest follows from the sequence (2.7).

Corollary 2.9. Let (R,m) be a Noetherian local ring, f1, f2, f ∈ m and let J = (f1, f2) and I =
(f1, f2, f). Fix L ≥ 2. Suppose that (0 : f1) ∩ Id−1 = 0, for all 1 ≤ d ≤ L, and that (f1 : f2) ⊆ (f1 : f).
Then the following two conditions are equivalent.

(a) T2,d = (f1I
d−1 : f2) ∩ Id−1/f1I

d−2 = 0, for all 2 ≤ d ≤ L;
(b) E(I)d ∼= (JId−1 : f2)/(JId−2 : fd−1), for all 2 ≤ d ≤ L.

Proof. The hypotheses (0 : f1)∩ Id−1 = 0, for all 1 ≤ d ≤ L, allows us to apply Corollary 2.8, for all
2 ≤ d ≤ L.

Suppose that (a) holds. The vanishing of T2,d ensures the vanishing of the left-hand side term in the
exact sequence (2.8). Thus (b) holds.

Conversely, assume that (b) holds. Let us prove T2,d = 0, by induction on d, 2 ≤ d ≤ L. So take d = 2.
Using (b) and (2.8), for d = 2, then (f1I : f2)∩ I = f · (f1 : f2). Using the hypothesis (f1 : f2) ⊆ (f1 : f),
we get

(f1I : f2) ∩ I = f · (f1 : f2) ⊆ f · (f1 : f) ⊆ (f1).

Thus T2,2 = 0. Take now d ≥ 3, d ≤ L. By the induction hypothesis T2,d−1 = 0, so

(f1I
d−2 : f2) ∩ Id−2 = f1I

d−3.

Using (b) and (2.8), for such d, then

(f1I
d−1 : f2) ∩ Id−1 = f · [(f1I

d−2 : f2) ∩ Id−2] + f1I
d−2 = f · [f1I

d−3 ∩ Id−2] + f1I
d−2 ⊆ f1I

d−2.

Hence T2,d = 0.

Remark 2.10. In the case that f1, f2 is a regular sequence, then clearly (0 : f1) ∩ Id−1 = 0 for all
1 ≤ d ≤ L and (f1 : f2) = f1R ⊆ (f1 : f). However the converse does not always hold as the next
example shows.

Example 2.11. Let R = k[[x, y]] be the formal power series ring in two variables over a field k of
characteristic zero. Take a, b ≥ 2 and consider the ideals J = (f1, f2) and I = (f1, f2, f) with f = xayb,

f1 = df
dx = axa−1yb and f2 = df

dy = bxayb−1. Then (f1 : f2) = yR ⊆ (f1 : f) = R, whereas f1, f2 is not a

regular sequence. We point out that J = I is an ideal of linear type.

3. Ideals with expected relation type

We recall now a central concept to our purposes.

Definition 3.1. Let (R,m) be a Noetherian local ring and let a and b be two ideals of R. The ideal b is
a reduction of a if b ⊆ a and there is an integer r ≥ 0 such that ar+1 = bar. From the definition it follows
that rad (b) = rad (a), Min(R/b) = Min(R/a) and height (b) = height (a) (see, e.g.,[25, Lemma 8.10]).
Note that the ideal a is always a reduction of itself. An ideal a which has no reduction other than itself
is called a basic ideal. The smallest integer r ≥ 0 satisfying the equality equality ar+1 = bar is called the
reduction number of a with respect to b and is denoted rnb(a). For b = a, rnb(a) = 0. (see [22]).
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The next result is shown in [17, Lemma 3.1]. We deduce it here from our previous remarks.

Proposition 3.2. Let (R,m) be Noetherian local ring, n ≥ 2, and let J = (f1, . . . , fn) be a reduction
of I = (f1, . . . , fn, f). Then

rnJ(I) + 1 ≤ rt(I).

Proof. Let rt(I) = L ≥ 1. Hence, E(I)d = 0, for all d ≥ L + 1. By the exact sequence (2.6),
Tn+1,d = 0, for all d ≥ n + 1. Therefore (JId−1 : fd) = (JId−2 : fd−1), for all d ≥ L + 1. Since J is a
reduction of I, then (JIm−1 : fm) = R, for m � 0 large enough. Thus fL ∈ JIL−1, IL = JIL−1 and
rnJ(I) ≤ L− 1.

Definition 3.3. Let (R,m) be a Noetherian local ring and let J = (f1, . . . , fn) be a reduction of
I = (f1, . . . , fn, f). We say that I has the expected relation type with respect to J if

rnJ(I) + 1 = rt(I).

When J is understood by the context, we will skip the locution “with respect to J”.

Example 3.4. Let (R,m, k) be a Noetherian local ring with k = R/m an infinite field. Let a be an
ideal of R.

(a) If a is of linear type, then a is basic and has the expected relation type.
(b) If a is a parametric ideal, that is, generated by a system of parameters, then a is basic, but it is

not necessarily of linear type, nor it has necessarily the expected relation type.

Proof. Let b be a reduction of a. By [22, 2. Theorem 1], there exists an ideal c ⊆ b ⊆ a, which is a
minimal reduction of a, that is, no ideal strictly contained in c is a reduction of a. By [22, 2. Lemma 3],
every minimal set of generators of c = (x1, . . . , xs) can be extended to a minimal set of generators of
a = (x1, . . . , xs, xs+1, . . . , xm), with µ(c) = s ≤ µ(a) = m, where µ(·) stands for the minimal number
of generators. If a is of linear type, then S(a) ∼= R(a). On tensoring by A/m, k[T1, . . . , Tm] ∼= F(a),
where F(a) = ⊕d≥0a

d/mad is the fiber cone of a. On taking Krull dimensions, we get µ(a) = m = l(a),
where l(a) = dim F(a) is the analytic spread of a. By [6, Proposition 4.5.8], l(a) ≤ µ(c). Thus s = m
and c = a. Therefore b = a and a is basic. In particular, rnb(a) = 0 and, since a is of linear type,
rt(a) = 1 = rnb(a) + 1. This proves (a).

If a is a parametric ideal, then height (a) = µ(a). By [22, 4. Theorem 5], a is basic. Take now
R = k[[x, y, z, w]], where w2 = wz = 0, and a = (xm−1y + zm, xm, ym), m ≥ 2. Then a is a parameter
ideal, hence a basic ideal, but its relation type is at least m (see [1, Example 2.1]).

The following result gives a characterization of ideals with expected relation type in terms of the
Koszul homology.

Proposition 3.5. Let (R,m) be a Noetherian local ring and let J = (f1, . . . , fn) be a reduction of
I = (f1, . . . , fn, f). The following conditions are equivalent.

(a) I has the expected relation type;
(b) H1(fnt)d = ft ·H1(fnt)d−1, for all d ≥ rnJ(I) + 2.

In particular, if Ti,d = (Ji−1I
d−1 : fi) ∩ Id−1/Ji−1I

d−1 = 0, for all d ≥ rnJ(I) + 2 and all i = 1, . . . , n,
then I has the expected relation type.

Proof. Set r = rnJ(I). If I has the expected relation type, then E(I)d = 0, for all d ≥ r + 2.
In particular, using the exact sequence (2.6), we deduce H1(fnt)d = ft · H1(fnt)d−1, for all d ≥ r + 2.

Conversely, if H1(fnt)d = ft ·H1(fnt)d−1, for all d ≥ r + 2, then by (2.6), E(I)d ∼= (JId−1 : fd)/(JId−1 :

fd−1). However, if d ≥ r + 2, then fd−1 ∈ JId−2, so (JId−1 : fd−1) = R and E(I)d = 0. Therefore,
rt(I) ≤ r+1 = rnJ(I)+1. The other inequality follows from Proposition 3.2. This shows the equivalence
(a)⇔ (b).

If T1,d =, T2,d = 0, . . . , Tn,d = 0, for all d ≥ rnJ(I) + 2, by Theorem 2.7, H1(fnt)d = 0, for all
d ≥ rnJ(I) + 2, and, by (b)⇒ (a), I has the expected relation type.
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The main result of Muiños and the second author in [17], gives an instance of ideals of expected relation
type. We rephrased it here in terms of our Ti,d.

Corollary 3.6. Let (R,m) be a Noetherian local ring, n ≥ 2. Let f1, . . . , fn ∈ m and f ∈ m. Let
J = (f1, . . . , fn) and I = (f1, . . . , fn, f) be ideals of R. Assume that for all d ≥ 2 and all i = 1, . . . , n,

Ti,d = (Ji−1I
d−1 : fi) ∩ Id−1/Ji−1I

d−2 = 0.

Then, for all d ≥ 2,

E(I)d ∼=
(JId−1 : fd)

(JId−2 : fd−1)
.

In particular, if J is a reduction of I, then I has the expected relation type with respect to J .

Proof. If T1,d = 0, T2,d = 0, . . . , Tn,d = 0, for all d ≥ 2, then, by Theorem 2.7 (a), H1(fnt)d = 0,

for all d ≥ 2. By the exact sequence (2.6), E(I)d ∼= (JId−1 : fd)/(JId−2 : fd−1). The second assertion
follows directly from Proposition 3.5.

4. Divisors of expected Jacobian type

Let (X,O) be a germ of a smooth n-dimensional complex variety and OX,O the ring of germs of holo-
morphic functions in a neighbourhood of O, which we identify with R = C{x1, . . . , xn} by taking local

coordinates. Let (D,O) be a germ of divisor defined locally by f ∈ R and set fi = df
dxi

for i = 1 . . . , n.
From now on, until the end of the paper, we consider the following notations.

Setting 4.1. Let R = C{x1, . . . , xn} be the convergent power series ring, which is a Noetherian regular

local ring (see, e.g., [25, Lemma 7.1]). Let f ∈ m. Set fi = df
dxi

, for i = 1 . . . , n. Let J = (f1, . . . , fn)

and I = (f1, . . . , fn, f) = (J, f). Note that if f ∈ m2, then fi ∈ m and J ⊆ I ⊆ m. The ideals J and
I are called the gradient ideal of f and the Jacobian ideal of f , respectively. It is known that, when
f ∈ m, then f ∈ (x1f1, . . . , xnfn) ⊆ J , where H stands for the integral closure of the ideal H (see [25,
Corollary 7.1.4]). In particular, J is a reduction of I (see, e.g., [25, Proposition 1.1.7]).

Definition 4.2. A germ of divisor (D,O), with reduced equation given by f , is of linear Jacobian
type if I is an ideal of linear type ([8, Definition 1.11]); f will be said of expected Jacobian type, if J is of
linear type and I has the expected relation type with respect to J .

Remark 4.3. Divisors of linear Jacobian type are divisors of expected Jacobian type. Indeed, by
Example 3.4, (a), if f is of linear Jacobian type, then I is basic, thus J = I is of linear type and I has
the expected relation type since rt(I) = 1 and rnJ(I) = 0.

Example 4.4. Let R = C{x, y} be the convergent power series ring in two variables x, y. Let f ∈
C[x, y] be a polynomial such that f 6∈ C[λx+ y],C[x+ µy], for all λ, µ ∈ C. Then J is an ideal of linear
type minimally generated by two elements.

Proof. Since R is local and J = (f1, f2), to see that J is minimally generated by two elements it
is enough to prove that f1 6∈ (f2) or f2 6∈ (f1). Let us see that if f1 ∈ (f2), then f is either in C[y],
or else in C[x + µy], for some µ ∈ C (similarly, one would do the same if f2 ∈ (f1)). Since f 6∈ C[y],
degx(f) = r ≥ 1. Write f =

∑r
i=0 x

rgi(y) and suppose that f1 = pf2, for some element p ∈ C{x, y}.
Since f1 and f2 are polynomials, then p ∈ C[x, y] must be a polynomial too. Equating the highest degree
terms in x in the expression f1 = pf2, one deduces that either p = 0, or else g′r(y) = 0. However, if
p = 0, then f1 = 0 and f ∈ C[y], a contradiction. Thus g′r(y) = 0 and gr(y) = ar ∈ C, ar 6= 0, because
degx(f) = r ≥ 1. Substituting gr(y) = ar in f and equating again the highest degree term in x in
the equality f1 = pf2, one gets pg′r−1(y) = rar 6= 0. Thus p ∈ C, p 6= 0. Setting µ = 1/p, we have
gr−1(y) = rarµy + ar−1. Again, substituting this expression in f and equating the r− 2 degree terms in
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the equality f1 = (1/µ)f2, one gets gr−2(y) = ar
(
r
2

)
(µy)2 + ar−1µy + ar−2. Proceeding recursively, one

would get the equality f =
∑r
i=0 ai(x+µy)i and so f would be an element of C[x+µy], a contradiction.

Therefore, J is minimally generated by two elements. Now apply [13, Proposition 1.5]. Thus J can
be generated by two elements which form a d-sequence. In particular J is of linear type (see, e.g., [25,
Corollary 5.5.5]).

Example 4.5. Suppose that J = (f1, . . . , fn) is generated by an R-regular sequence, for instance, if
f has an isolated singularity at O (see, e.g., [24, IV, Remark 2.5]). In particular, J is of linear type ([25,
Corollary 5.5.5]). There are three possibilities according to the previous definition. If I is of linear type,
then f is a divisor of linear Jacobian type. Suppose that I is not of linear type. Recall that, by the
argument in Setting 4.1, J is a reduction of I and, by Proposition 3.2, rnJ(I) + 1 ≤ rt(I). If the equality
holds, then f is of expected Jacobian type. The third and last case occurs when J is of linear type, but
rnJ(I) + 1 < rt(I), i.e., f is not of expected Jacobian type.

Remark 4.6. The linear type condition for the Jacobian ideal was investigated by Calderón-Moreno
and Narváez-Macarro in [7, 8] (see also [20]). They proved that divisors of linear Jacobian type are Euler
homogeneous. Recall that a divisor D is Euler homogeneous if there is a vector field χ at O such that
χ(f) = f , or in other words, f ∈ J . In particular, J = I and rnJ(I) = 0.

For divisors satisfying the conditions Ti,d = 0 we can explicitly describe the equations of the Rees
algebra of the Jacobian ideal which corresponds to describe the blow-up at the singular locus of the
divisor. More precisely, and summarizing several results in a unique statement:

Theorem 4.7. Let R = C{x1, . . . , xn} be the convergent power series ring Let f ∈ m2, J and I be as
in Setting 4.1. Suppose that Ti,d = 0, for all d ≥ 1 and all i = 1, . . . , n. Set ξi+1 = s. Let

ϕ : R[ξ1, . . . , xn, s] = C{x1, . . . , xn}[ξ1, . . . , xn, s]→ R(I) (4.1)

be a polynomial presentation of R(I), sending ξi to fit and s to ft. Let Q =
⊕

d≥1Qd the ideal of

equations of R(I). The following conditions hold.

(a) f1, . . . , fn is an R-regular sequence and J is of linear type.
(b) J is a reduction of I and rt(I) = rnJ(I) + 1. If f ∈ J , then f is a divisor of linear Jacobian type;

otherwise, f is a divisor of expected Jacobian type.
(c) For all d ≥ 2,

E(I)d ∼= (Q/Q〈d− 1〉)d ∼=
(JId−1 : fd)

(JId−2 : fd−1)
; (4.2)

the class of P (ξ1, . . . , ξn, s) ∈ Qd is sent to the class of P (0, . . . , 0, 1) ∈ (JId−1 : fd).
(d) Set L = rt(I). A minimal generating set of equations of R(I) can be obtanied from a minimal

generating set of Q1, the first syzygies of I, and representatives of inverse images of a minimal
generating set of (JId−1 : fd)/(JId−2 : fd−1), for all 2 ≤ d ≤ L.

(e) There exists a unique top-degree equation of degree L, which is of the form

sL + p1s
L−1 + · · ·+ pL, (4.3)

where pj ∈ R[ξ1, . . . , ξn] are either zero, or else, polynomials of degree j.

Proof. Since f ∈ m2, then fi ∈ m and so J ⊆ I ⊆ m. Recall that Ti,1 = (Ji−1 : fi). Therefore,
Ti,1 = 0, for all i = 1, . . . , n is equivalent to f1, . . . , fn being an R-regular sequence. In particular, I is
of linear type. This proves (a); (b) is done in Setting 4.1; (c) and (d) are shown in Corollaries 3.6 and
2.6. Finally, since L = rt(I) = rnJ(I) + 1, then IL = JIL−1 and fL ∈ JIL−1, which defines an equation
of the desired form, namely, P =

∑n
j=1 ξjPj + sL, with Pj ∈ R[ξ1, . . . , ξn, s]L−1. The image of the class

of this equation through the isomorphism (4.2) is precisely the class of P (0, . . . , 0, 1) = 1. Note that, for
d = L, then (JIL−1 : fL) = R, and the isomorphism (4.2) is given by E(I)L ∼= R/(JId−2 : fd−1), which
says, in particular, that there exists a unique top-degree equation.
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Remark 4.8. Whenever the conditions Ti,d = 0, for all d ≥ 1 and all i = 1, . . . , n, do not hold, we
need to be more careful when trying to describe the equations of the Rees algebra of the Jacobian ideal
of I. Our guide here will be Corollary 2.6. Note that we may have non-zero terms on both sides of the
short exact sequence (2.6). In particular, it may happen that rnJ(I) + 1 < rt(I). However, even in this
case, we will have an equation of the form 4.3, with L = rnJ(I) + 1. The rest of the equations of R(I)
will have degree in s smaller than L, although they may have total degree much bigger.

5. An application to D-module theory

Let X be a smooth n-dimensional complex variety and let DX be the sheaf of linear differential operators
on X with holomorphic coefficients. Taking local coordinates at O ∈ X we will simply consider R =
C{x1, . . . , xn} and its associated ring of differential operators DR = C{x1, . . . , xn}〈∂1, . . . , ∂n〉 where
∂i := d

dxi
are the partial derivatives with respect to the variable xi, i = 1, . . . , n. Notice that ∂ixi−xi∂i = 1

so this is a non-commutative Noetherian ring whose elements can be expressed in its normal form as

P := P (x, ∂) =
∑

α=(α1,...,αn)∈Zn
≥0

aα(x1, . . . , xn)∂α1
1 · · · ∂αn

n ,

with finitely many aα(x1, . . . , xn) ∈ R different from zero. The order of such a differential operator is
ord(P ) = max{|α| | aα 6= 0} and its symbol is the element in C{x1, . . . , xn}[ξ1, . . . , ξn]

σ(P ) =
∑

|α|=ord(P )

aα(x1, . . . , xn)ξα1
1 · · · ξαn

n .

Indeed, we have a filtration F := {Fi}i∈Z≥0
of DR given by the order, or equivalently setting deg(xi) = 0

and deg(∂i) = 1, whose associated graded ring is

grF (DR) ∼= C{x1, . . . , xn}[ξ1, . . . , ξn],

with the isomorphism given by sending P ∈ grF (DR) to the symbol σ(P ).
More generally we may consider the polynomial ring DR[s] with coefficients in DR whose elements are

P (s) := P (x, ∂, s) = P0s
L + P1s

L−1 + · · ·+ PL,

with Pi ∈ DR. The total order of P (s) is ordT (P (s)) = max{ord(Pi) + i | i = 0, . . . , L} and its total
symbol is

σT (P (s)) =
∑

|α|+i=ordT (P (s))

aα(x1, . . . , xn)ξα1
1 · · · ξαn

n si ∈ C{x1, . . . , xn}[ξ1, . . . , ξn, s].

In this case, the filtration FT := {FTi }i∈Z≥0
of DR[s] given by the total order, or equivalently setting

deg(xi) = 0, deg(∂i) = 1 and deg(s) = 1, provides an isomorphism

grFT (DR[s]) ∼= C{x1, . . . , xn}[ξ1, . . . , ξn, s].

Given f ∈ R, there exist P (s) ∈ DR[s] and a nonzero polynomial b(s) ∈ Q[s] such that

P (s) · ffs = b(s)fs.

The unique monic polynomial of smallest degree satisfying this functional equation is called the Bernstein-
Sato polynomial of f . This is an important invariant in the theory of singularities (see [11], for further
details). The Bernstein-Sato should be understood as an equation in Rf [s]fs, which is the free rank-one
Rf [s]-module generated by the formal symbol fs. Moreover, Rf [s]fs has a DR[s]-module structure given
by the action of the partial derivatives as follows: for h ∈ Rf [s] we have

∂i · hfs =

(
dh

dxi
+ shf−1 df

dxi

)
fs.
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Let DR[s]fs ⊂ Rf [s]fs be the DR[s]-submodule generated by fs. This module has a presentation as

DR[s]fs ∼=
DR[s]

AnnDR[s](f
s)
,

where AnnDR[s](f
s) := {P (s) ∈ DR[s] | P (s) · fs = 0}. The Bernstein-Sato polynomial is the minimal

polynomial of the action of s on

DR[s]fs

DR[s]ffs
∼=

DR[s]

AnnDR[s](f
s) + (f)

.

In order to study these annihilators we may filter them by the order of the corresponding differential
operators

Ann
(1)
DR[s](f

s) ⊆ Ann
(2)
DR[s](f

s) ⊆ · · · ⊆ AnnDR[s](f
s).

A lot of attention has been paid to the case that this chain stabilizes at the first step.

Definition 5.1. A germ of divisor (D,O), with reduced equation given by f ∈ R, is of linear differen-

tial type if Ann
(1)
DR[s](f

s) = AnnDR[s](f
s), that is AnnDR[s](f

s) is generated by total order one differential
operators.

Divisors of linear differential type have been considered in relation to several different problems in
D-module theory as we mentioned in the Introduction. In [7, Proposition 3.2] the authors proved that
divisors of linear Jacobian type are of linear differential type.

Of course, being a divisor of linear differential type is a very restrictive condition since, in general, we
will have differential operators of higher total order annihilating fs. Among these higher order operators
there exists a monic one of the form

P (s) = sL + P1s
L−1 + · · ·+ PL,

with ord(Pi) ≤ i, which we refer to as the Kashiwara operator (cf. [14, Theorem 6.3]). This fact prompted
Yano to introduce the following invariants of f (see [29], [30]).

Notation 5.2. The Kashiwara number of f is

L(f) := min{L | P (s) = sL + P1s
L−1 + · · ·+ PL ∈ AnnDR[s](f

s) , ord(Pi) ≤ i}.
Moreover, set

• r(f) := min{ r ≥ 1 | fr ∈ J},
• id(f) := min{ r ≥ 1 | fr ∈ JIr−1} = integral dependence of f .

Clearly, id(f) = rnJ(I) + 1. Yano proved that

r(f) ≤ id(f) ≤ L(f). (5.1)

Furthermore, if f is quasi-homogeneous we have that L(f) = 1.

Yano [29] was able to compute the Bernstein-Sato polynomial of f , when L(f) = 2, 3 by giving an
explicit free resolution of AnnDR[s](f

s). This invariant also plays a prominent role in the algorithm
presented in [5] to compute Bernstein-Sato polynomials of isolated singularities that are nondegenerate
with respect to its Newton polygon.

Notice that the symbol of the Kashiwara operator resembles the equation of the Rees algebra of the
Jacobian ideal of top degree in s. So we would like to get deeper insight into this relation. First, since
grFT (DR[s]) ∼= C{x1, . . . , xn}[ξ1, . . . , ξn, s], we may interpret the presentation of the Rees algebra of the
Jacobian ideal given in Equation 4.1 as a surjective morphism

ϕ : grFT (DR[s]) −→ R(I).

A key result that can be found in [29, §I] (see [8, Lemma 1.9], for more details) states that

σT (AnnDR[s](f
s)) ⊆ kerϕ,
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where σT (AnnDR[s](f
s)) = 〈σT (P (s)) | P (s) ∈ AnnDR[s](f

s)〉. Indeed, it follows from [14, §5] and [29,
Proposition 2.3] that

rad (σT (AnnDR[s](f
s))) = kerϕ.

Therefore there exists some non-negative integer ` ∈ Z≥0 such that (kerϕ)` ⊆ σT (AnnDR[s](f
s)). We

also point out that kerϕ is a prime ideal since R(I) ⊂ R[t] is a domain.

Proposition 5.3. Let (D,O) be a germ of a divisor of expected Jacobian type, with reduced equation
given by f ∈ R. Let ` ∈ Z≥0 be the smallest non-negative integer such that (kerϕ)` is contained in
σT (AnnDR[s](f

s)). Then

rt(I) ≤ L(f) ≤ ` · rt(I). (5.2)

In particular, if σT (AnnDR[s](f
s)) = kerϕ, then rt(I) = L(f).

Proof. It is readily seen that id(f) = rnJ(I) + 1. Moreover, since f is of expected Jacobian type,
then rt(I) = rnJ(I) + 1, and so, rt(I) = id(f) ≤ L(f) (see (5.1)). Furthermore, the ideal of equations of
the Rees algebra of I contains an element of the form

sr+1 + p1s
r + · · ·+ pr+1 ∈ kerϕ,

where r+ 1 = rt(I) = id(f), and where each pj is either zero, or else a polynomial of degree j. Therefore,
we have that

(sr+1 + p1s
r + · · ·+ pr+1)` ∈ (kerϕ)` ⊆ σT (AnnDR[s](f

s)),

so there exists a Kashiwara operator of degree at most ` · rt(I).

The upper bound in (5.2) is far from being sharp as we will see in the examples of Section 6. The
issue here is how to lift an equation of the Rees algebra to a differential operator that annihilates fs. We
would like to mention that necessary conditions for the existence of such a lifting were already given in
[29].

6. Examples

Let R = C{x1, . . . , xn} be the ring of convergent series with coefficients in C and, for a given f ∈ m, let
I = (f1, . . . , fn, f) and J = (f1, . . . , fn) be the Jacobian and gradient ideal of f . We know that J is a
reduction of I. If moreover J is generated by a regular sequence, then J is of linear type (see Setting 4.1
and Example 4.5).

The aim of this section is to illustrate with some examples the condition of having the expected
relation type and compare the relation type of I with the invariant L(f). In order to do so we will use
the mathematical software packages Macaulay2 [12], Magma [4], and Singular [10], to test the sufficient
conditions

Ti,d = (Ji−1I
d−1 : fi) ∩ Id−1/Ji−1I

d−2 = 0

considered in Theorem 4.7. Of course, T1,d = 0 is always satisfied since f1 is a nonzero divisor. In the
case of plane curves we will only have to check whether the conditions T2,d = 0 hold for d ≥ 2.

Warning: Notice that we have to deal with an infinite set of conditions, namely, the vanishing of the
modules Ti,d. Up to now, we do not know how to solve this difficulty. In the examples we present we
could compute Ti,d for all values of d up to a positive integer much larger than the reduction number of
I. This suggests that the examples we deal with are of the expected Jacobian type but, in no case, our
computations should be considered as formal proofs. We should also point out that the calculations of
these colon ideals tend to be extremely costly from the computational point of view.

When computing the invariant L(f) we will use the Kashiwara.m2 package [3].
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6.1. Some examples of plane curves
Let f ∈ R = C{x1, x2} be the equation of a germ of plane curve. It is proved in [20, Proposition 2.3.1]
that f is a divisor of linear Jacobian type if and only if f is quasi-homogeneous, so this is a very restrictive
assumption. Indeed, for irreducible plane curves, this corresponds to the case where f = xa + yb, with
gcd(a, b) = 1, a particular case of irreducible curve with one characteristic exponent. It is well known
that the Bernstein-Sato polynomial varies within a deformation with constant Milnor number. We are
going to test the behaviour of the expected relation type property with some examples of irreducible
plane curves with an isolated singularity at the origin.

• Reiffen curves: We consider f = xa + yb + xyb−1 with b ≥ a+ 1, a ≥ 4. This family of irreducible
plane curves with one characteristic exponent has been a recurrent example in the theory of D-modules.
In the case a = 4, Nakamura [18, 19] gave a a description of AnnDR[s](f

s) and showed that L(f) = 2.

We have tested many examples of Reiffen curves varying the values of a and b. In all the cases we
checked that T2,d = 0, for all d ≥ 2. Thus, by e.g., Corollary 3.6, I has the expected relation type with
respect to J , in particular, f is a divisor of expected Jacobian type (see Definition 4.2). By Corollary 2.9
and Remark 2.10, we have E(I)d ∼= (JId−1 : fd)/(JId−2 : fd−1) and, further computations suggest that
(JId−1 : fd) = ((b − 1)x + by, ya−1−2d), for all d ≤ ba/2c − 1, and (JId−1 : fd) = R, for d ≥ ba/2c. In
particular, rt(I) = rnJ(I) + 1 = ba/2c.

• Irreducible curves with one characteristic exponent: More generally we consider deformations
with constant Milnor number of irreducible curves with one characteristic exponent which have the form

f = xa + yb −
∑

ti,j x
iyj ,

where gcd(a, b) = 1 and the sum is taken over the monomials xiyj such that 0 ≤ i ≤ a− 2, 0 ≤ j ≤ b− 2
and bi + aj > ab. It is well known that these curves belong to the same equisingularity class but their
analytic type varies depending of the parameters ti,j . In particular, the Bernstein-Sato polynomial also
varies and there exists a stratification of the space of parameters with a specific Bernstein-Sato polynomial
at each strata (see [15, 16] and [9]).

We take for example the following case considered by Kato [15]

· Let f = x7+y5−t3,3x3y3−t5,2x5y2−t4,3x4y3−t5,3x5y3. The stratification given by the Bernstein-Sato
polynomial with its corresponding L(f) invariant is:

{t5,2 6= 0, 6t5,2 + 175t43,3 = 0}. We have L(f) = 2.

{t5,2 6= 0, 6t5,2 + 175t43,3 6= 0}. We have L(f) = 3.

{t3,3 = 0, t5,2t4,3 6= 0}. We have L(f) = 3.
{t3,3 = 0, t5,2 6= 0, t4,3 = 0}. We have L(f) = 2.
{t3,3 = 0, t5,2 = 0, t4,3 6= 0}. We have L(f) = 2.
{t3,3 = 0, t5,2 = 0, t4,3 = 0, t5,3 6= 0}. We have L(f) = 2.
{t3,3 = 0, t5,2 = 0, t4,3 = 0, t5,3 = 0}. We have L(f) = 1.

For any representative in each strata that we considered we checked out that T2,d = 0 for all the values
of d that we could compute. Moreover, the relation type is always rt(I) = 2 except for the last case
which obviously corresponds to the homogeneous case. In particular, there are strata in which we have
an strict inequality rt(I) < L(f).

We have tested several other examples of irreducible plane curves with one characteristic exponent
and all of them satisfied the conditions T2,d = 0. This suggests that this class of plane curves have the
expected relation type and we can describe the module of effective relations using Corollary 3.6.

• Irreducible curves with two characteristic exponents: We start considering the simplest
example of such a plane curve which is:



14 J. ÀLVAREZ MONTANER and F. PLANAS-VILANOVA

· Let f = (y2 − x3)2 − x5y. We have L(f) = 2. We checked out that condition T2,d = 0 is satisfied for
all the values of d that we could compute and that the relation type is rt(I) = 2 so it seems to have the
expected relation type.

However we can find examples with two characteristic exponents not satisfying T2,d = 0. For example,

· Let f = (y2 − x3)5 − x3y10. The reduction number of I with respect to J is rnJ(I) = 4. We checked
that T2,2 = 0, T2,3 6= 0, T2,4 6= 0 and T2,5 6= 0 but T2,d = 0 for all the values d ≥ 6 that we could compute.
According to Corollary 2.8 we have

0→ (f1I
d−1 : f2) ∩ Id−1

f · [(f1Id−2 : f2) ∩ Id−2] + f1Id−2
−→ E(I)d −→

(JId−1 : fd)

(JId−2 : fd−1)
→ 0.

and the right term is zero for d ≥ 6. Even though the conditions T2,d = 0 are not satisfied for all d ≥ 2
we have that the left term of the short exact sequence is zero for d ≥ 6. Therefore the relation type is
rt(I) = 5 so f has the expected relation type. Notice that the modules of effective relations are not as
easy to describe as in Corollary 2.9.

Our computer runs out of memory before computing the invariant L(f).

6.2. Some examples which have not the expected relation type

Narváez-Macarro [20] considered some examples of non-isolated singularities which are not of linear
Jacobian type. We will revisit them from our own perspective. We point out that these examples satisfy
J = I so the effective relations for d ≥ 2 are characterized by Corollary 2.6. All these examples satisfy
L(f) = 1 but the relation type is strictly bigger than one.

· f = xy(x+ y)(x+ yz).

We have that T2,d = 0 for all the values of d that we could compute. On the other hand, T3,2 6= 0 but
T3,d = 0 for all the values of d ≥ 3 that we could compute. Notice that we are in the situation where

E(I)d ∼=
H1(f1t, f2t, f3t; R(I))d

ftH1(f1t, f2t, f3t; R(I))d−1
,

but in this case E(I)d = 0 for all d ≥ 3, i.e. rt(I) = 2, as it was described in [20].

· f = (xz + y)(xk − yk).

We have that T2,d = 0 for all the values of d that we could compute. However:

· k = 4 : T3,2 6= 0, but T3,d = 0 for d ≥ 3. This suggests that rt(I) = 2.

· k = 7 : T3,2 6= 0, T3,3 6= 0 and T3,4 6= 0 but T3,d = 0 for d ≥ 5. Thus rt(I) = 4.

Here we also have

E(I)d ∼=
H1(f1t, f2t, f3t; R(I))d

ftH1(f1t, f2t, f3t; R(I))d−1
.

For k = 4 we have H1(f1t, f2t, f3t; R(I))d = 0 if d ≥ 3 and, in the case that k = 7, we have
H1(f1t, f2t, f3t; R(I))d = 0 if d ≥ 5. This also follows from the computations done in [20].
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this work was done during a research stay of the first author at CIMAT, Guanajuato with a Salvador de
Maradiaga grant (ref. PRX 19/00405) from the Ministerio de Ciencia, Innovación y Universidades.



DIVISORS OF EXPECTED JACOBIAN TYPE 15

References
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