
ENGINYERIA 
AEROESPACIAL 

 
 

 Apunts 

 Introduction to the Numerical Solution of the Navier-Stokes equations.  

Module 12: Pressure recovery-schemes and energy visualization 

  Manel Soria 
 Assignatura:                                                                                                   Aerodinàmica, Mecànica Orbital I Mecànica de Vol 
 Titulació:                                                                                                                  Master d’Enginyeria Aeronàutica 
 Curs: 1r 
 Escola Superior d’Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa (ESEIAAT) 
 Idioma: Anglès 
 Novembre 2021 

 
 



Introduction to the Numerical Solution of 
the Navier-Stokes equations

Module 12. Pressure recovery-schemes and energy visualization

Manel Soria – manel.soria@upc.edu

MÀSTER UNIVERSITARI EN ENGINYERIA AERONÀUTICA
ESEIAAT



Introduction to the Numerical Solution of the Navier-Stokes equations

Module 12. Pressure recovery-schemes and 
energy visualization



Introduction to the Numerical Solution of the Navier-Stokes equations

13.1 Pressure recovery and comparison with analytic results 3

10x10, Re=100

Ve
lo

ci
ty

 a
t a

n 
ar

bi
tra

ry
 p

os
iti

on
 (m

/s
)

The numeric pressure should also be similar to the analytic 
result, but there is an important difference that we have to take 
into consideration: the incompressible flow equations leave the 
pressure under determined to a constant. 

If 𝑝 is the solution of the equations, then 𝑝 + 𝐶 also solve them. 
This under determination is inherited by the discrete Poisson 
equation as we saw in Module 9. 

Let's see how can we obtain the numeric pressure and 
compare it with the analytic solution. 

𝜕𝑢!
𝜕𝑥!

= 0
𝜕𝑢"
𝜕𝑡

+ 𝑢!
𝜕𝑢"
𝜕𝑥!

= −
1
𝜌
𝜕𝑝
𝜕𝑥"

+ 𝜈
𝜕#𝑢"
𝜕𝑥!𝜕𝑥!

In last module we compared analytic and numeric velocities but not pressure.



Introduction to the Numerical Solution of the Navier-Stokes equations

13.1 Pressure recovery and comparison with analytic results 4

𝑝$%& =
𝜌
Δ𝑡

.𝑝 (9.5)

Recall that the solution of the Poisson equation is not 
the pressure 𝑝 but a pseudo-pressure $𝑝.
The numeric pressure can be obtained from Eq. 9.5. Due to the indetermination, the numerical pressure has no relation 

with the thermodynamic pressure. For instance, it can be negative. 
Different codes can produce different pressure distributions, 
depending on how the Poisson equation has been solved. Moreover, 
the arbitrary constant can be different for each time step.

However, the difference between the pressure at two points has to be 
the same for all the codes and for the analytic solution. Thus, the best 
way to check our code is to compare the evolution of the pressure 
difference between two points.

In the plot, the pressure at an arbitrary mesh location (3,3) minus the 
pressure at an arbitrary reference location (13,7) has been represented, 
for both the numerical and the analytic solutions.

Recall that the analytic  pressure has to be obtained, as a function of 
the position and instant (Eq. 2.2).

As the mesh density increases, the difference has to tend to zero.
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CFD codes often give us different options for the "numeric scheme" to evaluate the convective term. 
The approximation selected can have a large influence on the results obtained, as we will see in next slides.
Recall the discretization of the integral of the convective term in Module 2.

We choose a second order approximation scheme where each 
face velocity is the average of the adjacent nodal values:

Now, we will implement an Upwind scheme where the face 
velocity is assigned to upstream value.  

/
'
𝛻 ⋅ 𝑢&𝒖 𝑑𝑉 ≈ 𝑢(𝐹( − 𝑢)𝐹) + 𝑢$𝐹$ − 𝑢*𝐹*

𝑢( =
𝑢"%&,! + 𝑢",!

2

𝑢$ =
𝑢",!%& + 𝑢",!

2
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In the upwind approximation, the face velocity is assumed 
to be equal to the nodal value located upstream.

For instance, if 𝐹! > 0 then 𝑢! = 𝑢(𝑖, 𝑗), but if 𝐹! ≤ 0
(meaning that the flow is directed to the left), then 𝑢! = 𝑢(𝑖
+ 1, 𝑗). The same holds for the velocities.

The flow terms are evaluated as before. The same holds for 
the diffusive term.

The difference in the code is small, but the results obtained 
are very different:

• They are less accurate (as upwind is a first order 
approximation).

• They dissipate kinetic energy, making the code more 
stable.
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If the convergence error is analyzed as we did in M6, we see that the Upwind scheme is only first order accurate: 
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When the integration of the Navier-Stokes is carried out 
with upwind, we can see that the error respect to the 
analytic solution is larger. 

In this plot, both components of the velocity are compared 
with the analytic solution for N=60, at an arbitrary mesh 
position.

The numeric velocity decays faster than the analytic for 
both u and v and this is not a coincidence: the upwind 
scheme dissipates kinetic energy.
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𝑒 =
1
2
𝐮 # =

1
2
𝑢# + 𝑣#

The specific kinetic energy of the fluid (per mass unit) is: 

It is a function of the position and the time. We are interested in the time evolution 
of the total kinetic energy 𝐾

𝐾 = ∫'𝑒𝑑𝑉

It is only a function of time. For the Taylor solution (Eq. 2.2), the distribution of 
velocity as a function of time is known and thus we can obtain an expression for 𝐾.

𝐹 = e"
#$%&!
'!

𝑢 = 𝐹𝑈(cos
2𝜋𝑥
𝐿 sin

2𝜋𝑦
𝐿

𝑣 = −𝐹𝑈(sin
2𝜋𝑥
𝐿 cos

2𝜋𝑦
𝐿

[Eq. 2.2]

In our domain, 

𝐾 =
1
2∫(

'∫(
'𝑢) + 𝑣)𝑑𝑥𝑑𝑦
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The integral can be done by hand as in the old times or 
using a symbolic calculation tool. With Matlab, once u, 
v and F have been defined (see module 2), we write:  

% Let's find the total kinetic energy
e=(1/2)*(u^2+v^2);
K=int(int(e,x,0,L),y,0,L);

𝐾 =
𝐿)𝑈()e

"*+$&
!%

'!

4

And we get the result:

The total kinetic energy decreases with time, as 
expected. The larger the viscosity, the faster it decays.

If a more detailed analysis is carried out, it can be seen 
that only the diffusive term in the momentum equation 
dissipates kinetic energy, but not the convective nor the 
pressure gradient terms.
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uw

e

𝑒 =
1
2𝑉 𝑢!) + 𝑣,)

Where V is the volume of the control volume.

𝑒 =
1
2𝑉

𝑢! +𝑢-
2

)
+

𝑣, + 𝑣.
2

)

It can also be defined in terms of the interpolated velocity :

However, the first definition is better to study the properties 
of the numerical schemes.

Now, we will compute the numeric kinetic energy. For each 
main mesh control volume, it is usually evaluated as:
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As it can be seen in the plot, our original 2nd order numerical 
scheme yields a very accurate value for the total kinetic energy, 
even for very coarse meshes. Actually, it can be proved that the 
convective term does not add or dissipate kinetic energy at all.

On the other hand, the upwind discretization, even for a quite 
fine mesh, underestimates the total kinetic energy. It can also 
be proved that the upwind dissipates kinetic energy.

Of course, for a sufficiently fine mesh, both schemes would 
converge to the analytic solution.

From the previous plots it would seem that upwind is always a 
bad idea. This is not true, there are good reasons to use it in 
many cases. 

To conclude this section, keep in mind that there are many 
more numerical schemes for the convective term, and that this 
is a very important aspect of CFD.
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Let's see how can we generate a graphic representation of our velocity fields.

Usually, special software is used to do so, such as the code Paraview. Then, the 
CFD codes only have to generate a data file in a format that can be read by the 
visualization software.

However, in the spirit of this course (building everything from scratch) we will 
develop some simple tools to visualize the flow field.

We will cover two approaches:

Quiver plot - A plot of the velocity vectors in the form of arrows

Streamline plot - A streamline is a curve tangent to the instantaneous velocity 
vector in each point.
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The quiver plot is very simple: for each field position the 
velocity vector is plotted as an arrow. The scale of the 
arrows has to be adjusted to avoid them overlapping. 

Before doing the plot, both components of the velocity 
field (that are staggered) have to be interpolated to the 
center of the cells.

In Matlab, the command quiver plots all the arrows 
together, but we have to be careful to order our data in 
the way it expects it. 

Here you have an example of the Taylor flow 
(Eq. 2.2) result obtained for N=25.
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A streamline is a curve tangent to the instantaneous velocity vector in 
each point. 

They should not to be confused with pathlines. A pathline is the 
trajectory that a very small particle inside the flow would follow. For a 
steady flow, pathlines are also streamlines.

To generate the streamlines or pathlines, the most general way is to use 
numerical integration. However, for the special case of a two-
dimensional flow, we can use the stream function to do so.
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𝜓 = ∫!
"𝑢𝑑𝑦 − 𝑣𝑑𝑥

Given two points A and P and a curve that joins them, the 
stream function is the volume flow through the curve, that 
can be calculated as the integral of the dot product 
between the velocity vector (𝑢, 𝑣) and the normal to the 
curve element (𝑑𝑥, 𝑑𝑦), that is (𝑑𝑦, −𝑑𝑥) :

x

y

A

P

Flux
If the curve is changed from the red line to the green 
line (or any other line), the stream function remains 
constant, as the flux that crosses both lines has to be 
the same (otherwise mass would accumulate in the 
area between the lines, and this is not allowed in an 
incompressible flow).

For a two-dimensional incompressible flow, the stream function 𝜓 is defined as follows 
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𝛿𝜓 = 𝑢𝛿𝑦 − 𝑣𝛿𝑥

If the point P is infinitesimally shifted (𝛿𝑥, 𝛿𝑦), this results in a change of the stream 
function. We can write this as:

𝛿𝜓 =
𝜕𝜓
𝜕𝑥

𝛿𝑥 +
𝜕𝜓
𝜕𝑦

𝛿𝑦

The differential of 𝜓 is:

Thus, 
𝑢 =

𝜕𝜓
𝜕𝑦

𝑣 = −
𝜕𝜓
𝜕𝑥

Note that as  ,
!-

,.,/
= ,!-

,/,.
(Schwarz's theorem), we recover the incompressibility condition ,0

,.
+ ,1

,/
= 0.

Recall that the stream function is only defined for incompressible flows.

These expressions will be used to find the stream function.
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The property of the stream function more relevant to us is the following:

The isovalue lines of the stream function are tangent to the flow velocity.

It is easy to see why: if the value of the stream function is 
the same at Q, Q', Q'', it means that the total flow crossing 
the red lines from A to Q, Q', Q'' is the same. 

To satisfy this condition, the velocity has to be tangent to 
the blue line that joins all the points with the same value of 
𝜓.

So, the streamlines (for a two-dimensional incompressible 
flow) are isovalues of the stream function and our method 
to represent them will be to evaluate first the stream 
functionx

y

A

P

P'

P''

Q

Q'

Q''
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Analytical evaluation of the stream function

Consider for instance a very simple case with a constant velocity field:

In the rare situations where an analytical distribution of velocities is available, the stream function can be obtained by 
direct integration. We will consider a couple of examples before proceeding to the numerical integration that is often 
used.

𝑢 = 1 𝑣 = 1

𝜓* = ∫𝑢𝑑𝑦 + 𝑓*(𝑥) + 𝐾* = 𝑦 + 𝑓*(𝑥) + 𝐾*𝑢 =
𝜕𝜓
𝜕𝑦

𝑣 = −
𝜕𝜓
𝜕𝑥 𝜓) = −∫ 𝑣𝑑𝑥 + 𝑓)(𝑦) + 𝐾) = −𝑥 + 𝑓)(𝑦) + 𝐾)

𝜓* = 𝜓) 𝜓 = 𝑦 − 𝑥

Thus, the isovalue line of 𝜓 = 𝐾 is 𝑦 = 𝑥 +𝐾

This is the first way to obtain the stream function, but there is another:

Of course, both have to be equal:
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Depending on the isovalue chosen, we get a different line. 

All them are parallel to the velocity vector (1,1).

x

y

K=
0

K=
1

K=
-1
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Consider now our initial conditions (Taylor solution for t=0, Eq. 2.2):

𝑢 = 𝑈2cos
2𝜋𝑥
𝐿

sin
2𝜋𝑦
𝐿

𝑣 = −𝑈2sin
2𝜋𝑥
𝐿

cos
2𝜋𝑦
𝐿

𝜓& = ∫ 𝑢𝑑𝑦 + 𝑓&(𝑥) + 𝐾& = −
𝐿𝑈2cos

2𝜋𝑥
𝐿 cos 2𝜋𝑦

𝐿
2𝜋

+ 𝑓&(𝑥) + 𝐾&𝑢 =
𝜕𝜓
𝜕𝑦

From the previous expressions :

𝑣 = −
𝜕𝜓
𝜕𝑥

𝜓# = −∫ 𝑣𝑑𝑥 + 𝑓#(𝑦) + 𝐾# = −
𝐿𝑈2cos

2𝜋𝑥
𝐿 cos 2𝜋𝑦

𝐿
2𝜋

+ 𝑓#(𝑦) + 𝐾#



Introduction to the Numerical Solution of the Navier-Stokes equations

13.3  Visualization. Streamline 21

𝜓# = 𝜓$

−
𝐿𝑈%cos

2𝜋𝑥
𝐿 cos 2𝜋𝑦

𝐿
2𝜋 + 𝑓#(𝑥) + 𝐾# = −

𝐿𝑈%cos
2𝜋𝑥
𝐿 cos 2𝜋𝑦

𝐿
2𝜋 + 𝑓$(𝑦) + 𝐾$

So, in this particular case, the functions are null and  

𝜓 = −
𝐿𝑈%cos

2𝜋𝑥
𝐿 cos 2𝜋𝑦

𝐿
2𝜋 + 𝐾

In order to plot isovalues of this function, we will use Matlab
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clear
close all
% First, we will find the stream function
% using symbolic integration
syms x y t u v p F nu r L U0

u=U0*cos(2*pi*x/L)*sin(2*pi*y/L) ;
v=-U0*cos(2*pi*y/L)*sin(2*pi*x/L);

psi1 = int(u,y); % We integrate u respect x
psi2 = int(-v,x);

simplify(psi1-psi2) % We check that IN THIS 
% PARTICULAR CASE, both are equal

psi=psi1;

% Now, we will evaluate numerically psi

N=40; % Mesh size for the isolines plot
cx=linspace(0,1,N);
cy=linspace(0,1,N);
[X,Y]=meshgrid(cx,cy); 

% The function meshgrid generates two matrices with x and 
y coordinates
% For instance:
% [CX,CY]=meshgrid( [1,2],[3,4])
% CX =
%     1     2
%     1     2
% CY =
%     3     3
%     4     4

% define particular values for L and U0
psi = subs(psi,{L,U0},{1,1}); 

% find the numerical function
psiNumerical=matlabFunction(psi,'Vars',[x,y]) 

Z=psiNumerical(X,Y); % evaluate Z for each X,Y pair

contour(X,Y,Z,10,'LineWidth',2); % and finally, plot 10 
% isocontour values

set(gca,'FontSize',18) % choose a larger font 

axis('equal')

...

...
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Usually, we don't have the analytic expression of our field and we have to compute the stream function numerically. 
To do so, we select a convenient integration path from an arbitrary point A where the stream function will be forced 
to be zero to point P (where P will be each of the nodes of the domain). 

We chose A to be at the bottom left of the domain. Recall that due to the incompressibility condition, the path is 
arbitrary. First, we integrate along a horizontal line (1) and then along a vertical line (2) until we reach P:

𝜓 = ∫3
4
𝑢𝑑𝑦 − 𝑣𝑑𝑥

𝜓 = ∫5
4
𝑢𝑑𝑦And in part 2, 

In part 1, the second term is zero: 𝜓 = ∫3
5
− 𝑣𝑑𝑥

x

y

A

P
Flux

1

2

B
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v(i,j)

u(i,2)

Δ

sf=zeros(size(u));
j=2;
for i=2:N+1

sf(i,j)=sf(i-1,j)-delta*v(i,j);
end

Part 1, the value of each column at the bottom row (j=2) is initialized:

Part 2, all the nodes along each column are updated:

for i=2:N+1
for j=3:N+1

sf(i,j)=sf(i,j-1)+delta*u(i,j);
end

end
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Finally, the stream function isovalues are plotted as before. Note that we have neglected the fact 
that each component of the velocity is in a different geometric position. The stream function has 
been assigned to the centred grid.


