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1.1 The practical importance of the Navier-Stokes equations 3

The gap between NS and practical fluid mechanics

1500 - Leonardo Da Vinci
1687 - Newton Principia
1707 - Euler equations
1752 - d’Alembert paradox: zero drag for potential flow
1822 - Navier Stokes equations
1895 - Reynolds average (RANS)
1903 - Wright Flyer (Aircraft+propellers)
1904 - Prandtl boundary layer (solves d’Alembert paradox)
1910 - Richardson, hand made CFD attempt; hierarchy of 
eddies
1969 - Saturn V rocket
1981 - F117 stealth first flight
1987 - Kim, Moin & Moser, DNS channel flow 

1500 - Da Vinci vortex

1903 - Wright Flyer

Aircraft + propellers !

1969 -Saturn V
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1.1 The practical importance of the Navier-Stokes equations 4

• The challenge of understanding complex and turbulent flows is at least 500 years old.
• Despite advances in computational fluid mechanics and the huge computing power available today, we can not say 

that we have fully solved the problem of turbulence yet.
• Actually, the first true solutions of turbulent flows are from 1980s
• However, many engineering problems involving very difficult fluid mechanics issues have been solved with 

experimental means or simplified methods
• Consider for instance 1903 Wright Brothers aircraft. It would have been designed exactly the same if Navier Stokes 

equations haven't existed  
• Nowadays, the gap between practical and theoretical approaches is closing and Aerospace engineers must master 

computational aspects and software development as well as theoretical fluid mechanics

1987 - Kim, Moin & Moser DNS channel flow1981 - F117 stealth
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1.1 An example of the application of NS equations to a challenging design 5
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• Using CFD, high fidelity numerical 
simulations can be carried out. Consider for 
instance the next generation anemometer 
for Mars can be carried out

• To do so, it is important to have a very good 
understanding of concepts such as the 
pressure-velocity coupling or the boundary 
conditions.

• In this course you will learn how to 
implement these concepts in your own 
code, as well as to verify the solutions 
obtained

Analyzing the performance of a miniature 3D wind sensor for Mars, 
Dominguez, M.; Kowalski, L.; Jimenez, V.; Rodriguez, I.; Soria, M.; Bermejo, S.; Pons, 

https://doi.org/10.3390/s20205912 

Fluid dynamics and heat transfer in the wake 
of a sphere

Rodriguez, I.; Lehmkuhl, O.; Soria, M.; Gómez, 
S.; Dominguez, M.; Kowalski, L. 

https://doi.org/10.1016/j.ijheatfluidflow.2019.0
2.004 
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Re=10^4, instantaneous Nusselt Re=10^4, time averaged Nusselt

1.1 An example of the application of NS equations to a challenging design 6

Re=10^4, instantaneous temperature field

With NS we can compute heat transfer and accurately 
predict the behavior at the detached zones
In Mars, despite the low density, continuous 
formulation is still valid for objects of about 10mm



Introduction to the Numerical Solution of the Navier-Stokes equations

1.2 Derivation of incompressible Navier-Stokes equations 7

Incompressible Navier-Stokes equations:

• Mass conservation equation (continuity equation)
• Momentum equations 
• Energy equation (not needed for incompressible flow)

They are obtained from:

• Mass conservation principle
• Newton’s law
• Substantial derivative
• Surface forces in a fluid element subject to a stress state
• Stress / strain relation for a Newtonian fluid

You have studied this in previous Degree and Master subjects but here we 
will do a quick review
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1.2 Derivation of incompressible Navier-Stokes equations 8

A few words about notation:

𝒖 - Velocity vector
𝑢!, 𝑢", 𝑢# - Velocity vector components
𝑢, 𝑣, 𝑤 - Velocity vector components 
𝑝 - Pressure field
𝑥, 𝑦, 𝑧 - Position
𝑡 - Time

(both notations will be used)

Recall:

Einstein summation convention that implies 
summation over a set of indexed terms in a formula

!"!
!#!

= !""
!#"

+ !"#
!##

+ !"$
!#$
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1.2 Mass conservation equation 9

Also called continuity equation because it requires no assumptions except continuum media (and mass conservation principle)

Mass increment = mass inlet - mass outlet

Mass increment   +   Mas outlet - Mass inlet  = 0

mass 
outlet

mass inlet incompressible: 

Recall:

or

divergence of velocity vector is 0

incompressible 

$%!
$&!

= $%"
$&"

+ $%#
$&#

+ $%$
$&$

𝜕𝜌
𝜕𝑡

𝑑𝑥 𝑑𝑦 𝑑𝑧 +
𝜕
𝜕𝑥

𝜌𝑢! 𝑑𝑥 𝑑𝑦 𝑑𝑧 +
𝜕
𝜕𝑦

𝜌𝑢" 𝑑𝑥 𝑑𝑦 𝑑𝑧 +
𝜕
𝜕𝑧

𝜌𝑢# 𝑑𝑥 𝑑𝑦 𝑑𝑧

𝜕𝜌
𝜕𝑡 + 𝛻 ⋅ 𝜌𝒖 = 0

𝛻 ⋅ 𝒖 = 0
𝜕𝑢!
𝜕𝑥!

= 0
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1.2 Substantial derivative: the root of non-linearity (!) 10

Consider a generic property 𝜙 in a fluid field: 𝜙 =f(t,x,y,z) 

time: t1

time: t2

v1

v2

φ2

φ1

𝑢" 𝑢#

Time rate of change of φ, following a moving fluid element:

𝜙% = 𝜙& +
'(
')

𝑡% − 𝑡& + '(
'*

𝑥% − 𝑥&
'(
'+

𝑦% − 𝑦& + '(
',

𝑧% − 𝑧& + …

𝜙% − 𝜙&
𝑡% − 𝑡&

=
𝜕𝜙
𝜕𝑡

+
𝜕𝜙
𝜕𝑥

𝑥% − 𝑥&
𝑡% − 𝑡&

+
𝜕𝜙
𝜕𝑦

𝑦% − 𝑦&
𝑡% − 𝑡&

+
𝜕𝜙
𝜕𝑧

𝑧% − 𝑧&
𝑡% − 𝑡&

+ …

𝑢$
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1.2 Substantial derivative: the root of non-linearity (!) 11

Time rate of change of φ, following a moving fluid element:

in general:

Convection or advectionTime
derivative

Substantial
or total or 
material
derivative

velocity of the fluid element

If time increment tends to zero, we have:

When the property ϕ is one of the velocity components, the operator becomes non-linear

time: t1

time: t2

v1

v2

φ2

φ1
𝜙% − 𝜙&
𝑡% − 𝑡&

=
𝜕𝜙
𝜕𝑡

+
𝜕𝜙
𝜕𝑥

𝑥% − 𝑥&
𝑡% − 𝑡&

+
𝜕𝜙
𝜕𝑦

𝑦% − 𝑦&
𝑡% − 𝑡&

+
𝜕𝜙
𝜕𝑧

𝑧% − 𝑧&
𝑡% − 𝑡&

+ …

𝐿𝑖𝑚%$→ %%
𝑥" − 𝑥$
𝑡" − 𝑡$

= 𝑢

𝐷𝜙
𝐷𝑡

=
𝜕𝜙
𝜕𝑡

+ 𝑢+
𝜕𝜙
𝜕𝑥

+ 𝑢,
𝜕𝜙
𝜕𝑦

+ 𝑢-
𝜕𝜙
𝜕𝑧

𝐷
𝐷𝑡 :=

𝜕
𝜕𝑡 + 𝑢!

𝜕
𝜕𝑥 + 𝑢"

𝜕
𝜕𝑦 + 𝑢#

𝜕
𝜕𝑧

=
𝜕
𝜕𝑡

+ 𝒖 ⋅ 𝛻

=
𝜕
𝜕𝑡

+ 𝑢'
𝜕
𝜕𝑥'
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𝐹& = 𝐹! =

𝜎&& +
𝜕𝜎&&
𝜕𝑥

𝑑𝑥 − 𝜎&& 𝑑𝑦 𝑑𝑧

+ 𝜎(& +
𝜕𝜎(&
𝜕𝑦 𝑑𝑥 − 𝜎(& 𝑑𝑥 𝑑𝑧

+ 𝜎)& +
$*-.
$) 𝑑𝑥 − 𝜎)& 𝑑𝑥 𝑑𝑦 =

=
𝜕𝜎&&
𝜕𝑥

+
𝜕𝜎(&
𝜕𝑦

+
𝜕𝜎)&
𝜕𝑧

𝑑𝑥 𝑑𝑦 𝑑𝑧

1.2 Momentum. Surface forces in a fluid element subject to a stress state σ 12

Thus, it is not the stress but its gradient what causes 
the net force on the fluid element

Consider forces in x direction:

As an example, we collect all the forces in x direction:E.g., 𝜎!" :  face normal to z, 
force in x direction

Consider forces 
in x direction:
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1.2 Momentum. Conservation equation for a fluid element (x axis only) 13

Newton’s law on x axis, 
from previous slide:

Mass for an infinitesimal 
control volume

Substantial derivatives of velocity are non-linear !
Velocity field is transporting itself
This will have very important consequences

Acceleration for an infinitesimal control 
volume

Where:

𝑚𝑎& = 𝐹&

𝐹* =
𝜕𝜎**
𝜕𝑥

+
𝜕𝜎+*
𝜕𝑦

+
𝜕𝜎,*
𝜕𝑧

𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑚 = 𝜌 𝑑𝑥 𝑑𝑦 𝑑𝑧

𝑎1 =
𝐷𝑢1
𝐷𝑡

=
𝜕𝑢1
𝜕𝑡

+ 𝑢2
𝜕𝑢1
𝜕𝑥2
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𝜌
𝜕𝑢&
𝜕𝑡

+ 𝑢'
𝜕𝑢&
𝜕𝑥'

𝑑𝑥 𝑑𝑦 𝑑𝑧 =
𝜕𝜎&&
𝜕𝑥

+
𝜕𝜎(&
𝜕𝑦

+
𝜕𝜎)&
𝜕𝑧

𝑑𝑥 𝑑𝑦 𝑑𝑧

1.2 Momentum. Conservation equation for a fluid element (x axis only) 14

Now, we need to express the stress tensor σ as a function of u and p

With the previous expressions for the force and acceleration 𝑚𝑎' = 𝐹' becomes:

𝜌
𝜕𝑢&
𝜕𝑡 + 𝑢'

𝜕𝑢&
𝜕𝑥'

=
𝜕𝜎&&
𝜕𝑥 +

𝜕𝜎(&
𝜕𝑦 +

𝜕𝜎)&
𝜕𝑧
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1.2 Momentum. Particularization to Newtonian fluids 15

For Newtonian fluids, the viscous stresses can be 
expressed as a function of the velocity field as:

Bulk viscosity coefficient or second viscosity 
coefficient, not needed in incompressible flow

Stress tensor is due to hydrostatic pressure p 
plus viscous stresses 𝜏#$ due to motion with 
velocity gradients:

𝜎+' =
−𝑝 + 𝜏&& 𝜏(& 𝜏)&

𝜏&( −𝑝 + 𝜏(( 𝜏)(
𝜏&) 𝜏() −𝑝 + 𝜏))

𝜏'( = 𝜏(' = 𝜇
𝜕𝑣
𝜕𝑥 +

𝜕𝑢
𝜕𝑦

𝜏)( = 𝜏() = 𝜇
𝜕𝑤
𝜕𝑦 +

𝜕𝑣
𝜕𝑧

𝜏)' = 𝜏') = 𝜇
𝜕𝑢
𝜕𝑧 +

𝜕𝑤
𝜕𝑥

𝜏'' = 𝜆 𝛻 ⋅ 𝒖 + 2𝜇
𝜕𝑢
𝜕𝑥

𝜏(( = 𝜆 𝛻 ⋅ 𝒖 + 2𝜇
𝜕𝑣
𝜕𝑦

𝜏)) = 𝜆 𝛻 ⋅ 𝒖 + 2𝜇
𝜕𝑤
𝜕𝑧
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= −
𝜕𝑝
𝜕𝑥

+ 𝜇
𝜕
𝜕𝑥

𝜕𝑢!
𝜕𝑥

+
𝜕
𝜕𝑥

𝜕𝑢!
𝜕𝑥

+
𝜕
𝜕𝑦

𝜕𝑢"
𝜕𝑥

+
𝜕
𝜕𝑦

𝜕𝑢!
𝜕𝑦

+
𝜕
𝜕𝑧
𝜕𝑢!
𝜕𝑧

+
𝜕
𝜕𝑧
𝜕𝑢#
𝜕𝑥

𝜏** = 2𝜇
𝜕𝑢
𝜕𝑥

𝜎*! =
−𝑝 + 𝜏'' 𝜏(' 𝜏)'
𝜏'( −𝑝 + 𝜏(( 𝜏)(
𝜏') 𝜏() −𝑝 + 𝜏))

1.2 Momentum. Grouping terms 16

As:

𝜌 78*
79

+ 𝑢2
78*
71+

= 7:**
71

+ 7:,*
7;

+ 7:-*
7<

= 

𝜏'( = 𝜏(' = 𝜇
𝜕𝑣
𝜕𝑥 +

𝜕𝑢
𝜕𝑦

𝜏)( = 𝜏() = 𝜇
𝜕𝑤
𝜕𝑦 +

𝜕𝑣
𝜕𝑧

𝜏)' = 𝜏') = 𝜇
𝜕𝑢
𝜕𝑧 +

𝜕𝑤
𝜕𝑥
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= −
𝜕𝑝
𝜕𝑥

+ 𝜇
𝜕
𝜕𝑥

𝜕𝑢!
𝜕𝑥

+
𝜕
𝜕𝑥

𝜕𝑢!
𝜕𝑥

+
𝜕
𝜕𝑦

𝜕𝑢"
𝜕𝑥

+
𝜕
𝜕𝑦

𝜕𝑢!
𝜕𝑦

+
𝜕
𝜕𝑧
𝜕𝑢!
𝜕𝑧

+
𝜕
𝜕𝑧
𝜕𝑢#
𝜕𝑥

1.2 Momentum. Grouping terms 17

Changing the order of the derivatives, the three terms together become:

So the final incompressible momentum NS equation for 
each of the i=1,2,3 velocity components is:

Recall: 
μ dynamic viscosity
𝜈 = ,

-
kinematic viscosity

𝜕
𝜕𝑥

𝛻 ⋅ 𝒖 = 0

𝜕𝑢+
𝜕𝑡

+ 𝑢'
𝜕𝑢+
𝜕𝑥'

= −
1
𝜌
𝜕𝑝
𝜕𝑥+

+ 𝜈
𝜕"𝑢+
𝜕𝑥'𝜕𝑥'
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1.2 Momentum. Grouping terms 18

Diffusion / viscousPressure
gradient

We expand again the momentum equation and take a closer look:

Mass conservation “continuity”

Momentum

Time
derivative

Convection (or 
advection) non-linear

𝜕𝑢'
𝜕𝑥'

= 0

𝜕𝑢+
𝜕𝑡

+ 𝑢'
𝜕𝑢+
𝜕𝑥'

= −
1
𝜌
𝜕𝑝
𝜕𝑥+

+ 𝜈
𝜕"𝑢+
𝜕𝑥'𝜕𝑥'

𝜕𝑢&
𝜕𝑡

+ 𝑢&
𝜕𝑢&
𝜕𝑥&

+ 𝑢%
𝜕𝑢&
𝜕𝑥%

+ 𝑢/
𝜕𝑢&
𝜕𝑥/

= −
1
𝜌
𝜕𝑝
𝜕𝑥&

+ 𝜈
𝜕%𝑢&
𝜕𝑥&%

+
𝜕%𝑢&
𝜕𝑥%%

+
𝜕%𝑢&
𝜕𝑥/%

𝜕𝑢%
𝜕𝑡

+ 𝑢&
𝜕𝑢%
𝜕𝑥&

+ 𝑢%
𝜕𝑢%
𝜕𝑥%

+ 𝑢/
𝜕𝑢%
𝜕𝑥/

= −
1
𝜌
𝜕𝑝
𝜕𝑥%

+ 𝜈
𝜕%𝑢%
𝜕𝑥&%

+
𝜕%𝑢%
𝜕𝑥%%

+
𝜕%𝑢%
𝜕𝑥/%

𝜕𝑢/
𝜕𝑡

+ 𝑢&
𝜕𝑢/
𝜕𝑥&

+ 𝑢%
𝜕𝑢/
𝜕𝑥%

+ 𝑢/
𝜕𝑢/
𝜕𝑥/

= −
1
𝜌
𝜕𝑝
𝜕𝑥/

+ 𝜈
𝜕%𝑢/
𝜕𝑥&%

+
𝜕%𝑢/
𝜕𝑥%%

+
𝜕%𝑢/
𝜕𝑥/%
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1.2 Trivia: Navier-Stokes & Millennium Prize Problems 19

C4 - Introduction to the Numerical Solution of the Navier-Stokes equations

1M$ prize

This apparently rather simple equation 
has attracted a huge interest in the last 
almost 200 years. 

. . . 

[1] - http://www.esi2.us.es/~mbilbao/pdffiles/navier_stokes.pdf

[1] 
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1.3 The Navier-Stokes equations challenges 20

Why are they so difficult even to solve numerically ?

• Non-linear. The origin of the non-linearity is the advective term 
(Velocity field is transporting itself)

• Three-dimensional and unsteady (even with 2D steady boundary 
conditions)

• Strongly coupled. One variable affects all the others. Note that the 
viscous term doesn’t couple the velocity components, only 
advection (and indirectly, the pressure gradient as we will see)

• Chaotic
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1.3 The N-S equations challenges: Three-dimensional and unsteady  21

Martín, R.; Soria, M.; Lehmkuhl, O.; Duben, A.; 
Gorobets, A. 
https://doi.org/10.1177/1475472X19871534 

A developed boundary layer profile is 
imposed as inlet conditions (homogeneous 
in the spanwise direction)

However, the flow becomes 
unsteady and three-dimensional

2D/3D: Even in a 2D situation (such as this gap infinitely wide) the equations have to be treated as 3D
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1.3 The N-S equations challenges: Three-dimensional and unsteady  22

2D

On the other hand, if the equations are rewritten to assume 
the flow to be 2D, the result is totally different. 
An important mechanism known as vortex stretching is only 
captured by the full 3D equations
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1.3 The N-S equations challenges: Chaotic 23

Turbulent flows are Chaos. 
Lorenz 1961 

Butterfly effect

clear
close all

% Lorentz system
a=10;
c=8/3;
b=28;

dydt=@(t,y) [ a*(y(2)-y(1)) ; y(1)*(b-y(3))-y(2); …
y(1)*y(2)-c*y(3) ];

y01=[-4.9,-3.81,24.63];
y02=y01 + [0.002,0,0]; % small perturbation

[T1,Y1]=ode45(dydt,[0 30],y01);

plot(T1,Y1(:,3),'r');
hold on
[T2,Y2]=ode45(dydt,[0 30],y02);
plot(T2,Y2(:,3),'b');

xlabel('t'); ylabel('z');

On some dynamic systems (NS, in turbulent conditions among them), even very small 
perturbations grow. 
This means the behavior of such systems can not be predicted even if their 
governing laws are known.
However, the statistic properties of the flow (e.g., mean drag and lift can be predicted)
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1.3 Additional phenomena not included in our model 24

Compressibility effects are obviously not described by this incompressible model.
There are many other issues, such as properties that depend on the composition and temperature (e.g., viscosity)

• In aerodynamics, turbulence of the incoming fluid can have a significant effect,    
but all these can be included in our model.

• Otherwise, the incompressible NS equations describe very well the fluid flow (laminar and turbulent)

Also humidity in some cases !
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1.4 Dimensionless forms of the Navier-Stokes equations 25

Recall the momentum equation:

Now we need to express the derivatives in dimensionless terms. For each expression φ we will use: 

By simple substitution we express momentum eq. as:

The generic dimensionless momentum equation is now:

Suitable reference values (V,L,P and T0) must be chosen for each situation.

We introduce generic reference values for length, time, velocity and pressure

@𝜑 − dimensionless variable

𝜕𝑢+
𝜕𝑡

+ 𝑢'
𝜕𝑢+
𝜕𝑥'

= −
1
𝜌
𝜕𝑝
𝜕𝑥+

+ 𝜈
𝜕"𝑢+
𝜕𝑥'𝜕𝑥'

𝑉
𝜕@𝑢*
𝜕𝑡 + 𝑉" @𝑢!

𝜕@𝑢*
𝜕𝑥!

= −
𝑃
𝜌
𝜕 @𝑝
𝜕𝑥*

+ 𝜈 𝑉
𝜕" @𝑢*
𝜕𝑥!𝜕𝑥!

𝑥 = A𝑥𝐿 𝑡 = �̃�𝑇0 𝑢 = A𝑢𝑉 𝑝 = A𝑝𝑃

𝜕𝜙
𝜕𝑥

=
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For a flow around a solid body, the usual selection for the references is:
- L is a characteristic body length (such as the chord)
- V is the velocity of the body (or the unperturbed flow in a wind tunnel)
- There are no external candidates for the pressure and time, so we form reference pressure and time as:

We introduce the Reynolds number:

Re is the only dimensionless 
parameter in external flows, no 
additional numbers arise from the 
continuity equation
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• In other subjects of this course you will see that a different set of equations is 
used to model turbulent flows. 

• Actually, time-accurate three-dimensional incompressible Navier-Stokes 
equations describe both laminar and incompressible flows.

• However, turbulent flows are very complex, and the number of mesh nodes 
needed to describe them is very large. Hence, the computational cost 
involved is usually too large.

• In order to reduce this computational cost, turbulence models are used. You 
can learn more about this in the subject “Advanced Aerodynamics”.
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As with any other set of PDEs, different numerical methods can be used to obtain 
their solution. Some of them are:

Finite differences - The main idea is to replace the derivatives appearing in the 
differential equation by finite differences that approximate them. 

Finite volumes - The equations are integrated over finite volumes and then the 
equation terms that contain a divergence are transformed to surface integrals. 
Historically, this is the method preferred for fluid mechanic problems and our 
choice for this course. It can be used in unstructured meshes and used for 
complex geometries. Open Foam, for instance, is based on finite volumes.

Finite elements - As in finite volumes, the domain is divided into small (but finite-
sized) elements but then applies variational formulations to derive the discrete 
equations that are eventually solved. Recently, many CFD codes have been based 
on finite elements and perhaps it will be the dominant approach in the future. You 
have more information about finite element methods in other Master subjects.


