
I

MASTER THESIS

TITLE: Manoeuvring Drone (Tello ans Tello EDU) Using Body

Poses or Gestures

MASTER DEGREE: Master's Degree in Applications

and Technologies for Unmanned Aircraft Systems (Drones) (MED)

AUTHOR: Tushar Saini

ACADEMIC ADVISORS: Dr. David Remondo

PROJECT MENTORS: Adrià Arnaste and Narcís Codina

DATE: 28 October 2021

II

Abstract

The project aims to use computer vision and machine learning to control Tello and

Tello Edu Drones.

The main use of this project is for educational and experimental purposes for

upcoming future uses. I got inspired by the developments in the field of computer

vision and pose estimation. As people are doing some much instructing and

innovative things using this Drone and combined it with AI, Computer Vision, and

Machine learning.

This project helps anyone who likes to learn from the beginning even they don’t

have any prior knowledge of programming or Computer Vision. They can able to

build a simple application and also provide the basic knowledge for the

development of a more complex application. As a final objective, the main

application is proposed, are consists of a drone that can be controlled using body

poses or the movement of the body i.e., following the person by maintaining a

constant safety distance and following the commands given by the instructor.

To start programming Tello or Tello EDU drone, it is based on a series of scripts

and functions which is already been developed. So, that SDK is used as a guide to

developing a new tello custom SDK to develop a complex and interactive

application.

By using this custom template, we can develop several basic mission

scripts/programs.

For the main application, different experiments were carried out to check which

method is better in extracting the body key points/Landmarks in real-time in which

low computing power is required or in other words no or less GPU power is

required. As a result, I come across the Google AI open source “MediaPipe

Machine Learning” platform, which provides a cross-platform, customizable ML

solution for live and streaming media. Which is used for advanced application in

this project.

III

CONTENTS

INTRODUCTION ... 1

CHAPTER 1: STATUS QUO .. 3

CHAPTER 2: TELLO DRONE .. 6

2.1. Technical Characteristics ... 6

2.2. Basic Requirement for programming .. 9

2.3. SDK 2.0 .. 9

2.3. Mobile Application .. 10

CHAPTER 3: POSE DETECTION .. 12

3.1 Overview .. 12

3.2 Model Architecture and Pipeline Design ... 13

3.2.1 Inference pipeline ... 13
3.2.2 Person detector .. 13
3.2.3 Topology ... 14
3.2.4 Neural network architecture .. 18

CHAPTER 4: DRONE & POSE FUSION .. 21

4.1. Introduction to Tello Programming... 21

4.1.1 Simple Maneuver .. 21
4.1.2 Simple Take Picture ... 22
4.1.3 Manual Control ... 23

4.2. Pose Class .. 24

4.2.1 Introduction to Class ... 24
4.2.2 Introduction to Functions .. 26

4.3. Implementation ... 34

4.3.1 Introduction State Machine Diagram .. 34
4.3.2 Explanation of State Machine ... 35

4.4. Main Application: Control the drone with Body Gestures 40

4.4.1 Material Required ... 40
4.4.2 Steps Required ... 40
4.4.3 Run and Play ... 41

CONCLUSIONS .. 42

IV

ACRONYMS ... 44

REFERENCES .. 45

Annexe A: Feature extraction network architecture .. 47

Annexe B: GitHub References ... 48

Annexe C: Pose Class and its functions ... 49

Annexe D: State Class and its functions ... 52

Annexe E: Main functions... 57

INTRODUCTION 1

INTRODUCTION

This project focus on the Tello and Tello EDU Drones. As both are being used for

experimental and educational purposes by several companies, institutes, and

universities. They provide an easy, simple, and reliable platform for beginners to

start learning.

As there are various other drones also available in the market, which are also

dedicated for educational and experimental purposes have been studied and how

the people and organizations used them. During this, it’s found that Tello and Tello

EDU Drones are best for this project. There is various GitHub repository available

online related to both drones. In addition, there is a forum called “Tellopilots” where

many people and different developers share doubts, problems, and progress,

which helps me and many other beginners to learn and to avoid future mistakes.

Besides that, on “YouTube” also there is lots of content and tutorials are available

which help me to learn during this project.

The initial objective of the project is to create a basic platform that allows anyone to

perform basic missions with or without using the Body Poses. These basic

missions consist of simple takeoff, landing, or any serious of movements. As we

proceed further in the project it also explains or elaborates to create more complex

applications. But the main objective of this project is to control the drone

movements through body poses, although it also includes tracking or following the

body/person by maintaining a safe distance. There will be many more applications

that can be developed by using this basic platform.

The drones to carry out this project are provided by the Universitat Politecnica de

Catalunya campus “Castelldefels School of Telecommunications and Aerospace

Engineering (EETAC)” and the “elarco design SL.” a consultancy company with

whom I proceed my Master’s Thesis. Moreover, they also provide the proper space

and controlled area to perform various tests throughout this project along with

proper mentoring.

To start this project, I used Tello SDK. It contains several packages, each with one

or more classes that present the data and methods used to control a Tello drone.

And, MediaPipe BlazePose GHUM & GHUML python API which provide a basic

platform to work on this project. It contains a lightweight convolutional neural

network architecture for human pose estimation that is tailored for real-time

inference on mobile and low-end devices. As MediaPipe also provides the same

API for other platforms like android, iOS, C++, and Java. Along with some other

basic python libraries.

This document is organized in various chapters for a better understanding of the

process of the project and the knowledge for those who want to start their new

INTRODUCTION 2

projects. Chapter 1 is discussed about the various drones which are available in

the market which can be customized and programmed according to the user for

this application. Chapter 2 is focused on the in-depth explanation of Tello Drone

i.e., technical characteristics, a concept before starting programing, accessories,

and more. Chapter 3 is focused on the explanation and the working pipeline of the

MediaPipe BlazePose. Chapter 4, is focused on the programming and integration,

the knowledge that I gained from the previous chapters to develop the main

application. Finally, a conclusion.

All the references and research which provide knowledge and motivation to make

this project are referred to below in references and annexure. Also, the material

related to this project is available online on GitHub [15].

CHAPTER 1: STATUS QUO 3

CHAPTER 1: STATUS QUO

An investigation or a search was carried out before starting this project to know

about the available platforms in the market, which can be adopted easily and have

versatility for an educational project.

Several drones have similar characteristics and specifications which can be

suitable for this project. The most convenient comparisons that have been selected

are discussed below.

Parrot Mambo (Fig. 1.1) is a brilliant little mini drone which is developed by “Parrot”

[4]. This drone is the most stable and easiest to pilot for new drone flyers. The

great thing about this is that it comes with an array of sensors including a

gyroscope, air pressure sensor, ultrasonic sensor, and an Excel matter. This

means that the mambo fly can detect objects and conditions in the environment

which you can use as triggers for your programming language such as JavaScript,

Matlab, or Python.

Crazyflie (Fig. 1.2) is a small quadcopter, which is developed by “Bitcraze” [5]. This

drone is small with as few mechanical parts on a PCB and the main mechanical

frame with motors glued to the PCB. Which makes this the smallest quadcopter in

the world. It has a durable design with easy to assemble without any soldering

parts like Tello. It supports various platforms like iOS, Android, Windows, Mac,

OSX/Linux and is compatible with Python language.

Fig 1.1 Parrot mambo

CHAPTER 1: STATUS QUO 4

Codrone [Fig. 1.3], is also a small drone developed by “Robolink” [6]. This

programmable drone is specially focused on education purposes with an attractive

look to attract youngsters. It supports two programming platforms Arduino and

Python.

Flybrix [7] (Fig. 1.4), is a Lego Drone. Unlike the drones mentioned above and the

Tello, this drone is buildable, without having to need extra tools, which add a new

set of learning. This drone can be programmed through Arduino.

Fig 1.3 Codrone

Fig 1.2 Crazyflie

CHAPTER 1: STATUS QUO 5

Fig 1.4 Flybrix

Except for this drone, the above-mentioned have the option of block programming,

just like Tello.

The potential of Tello and Tello EDU for education purposes is very large, that’s

why several companies are using them. Among them we can highlight a few:

DrobotsCompany [8]: It is a company that operates in several states of the United

States. It is dedicated to courses for young people. Among its activities, it is worth

mentioning the realization of missions with the Tello and Tello EDU drone, which

makes young people have fun while they learn.

Campuse [9]: It is a company that operates in various parts of the world. They are

specialized in giving courses related to new technologies. Its courses include the

use of the Tello and Tello EDU drone to learn to program in Python and use

OpenCV.

Its easy programming has allowed developers to develop different applications:

DroneBlocks [10]: It is an application that allows programming in a very simple way

with blocks.

Tello FPV [11]: It is an alternative application for drone control but it offers many

more features than the application developed by RYZE. This application is not free.

CHAPTER 2: TELLO DRONE 6

CHAPTER 2: TELLO DRONE

Tello EDU and Tello (Fig. 2.1) is a perfect programmable drone for educational,

DIY, and hobby use. In this section, the drones, their characteristics, and other

information necessary for the development of applications will be known in more

depth.

Both are made by Shenzhen Ryze Technology and incorporate DJI flight control

technology and Intel processors.

Tello is the first drone that they put on the market and Tello EDU is the latest

version with a few more features and which allow swarm programming in a simple

way than the previous version.

This new version also has a new SDK which is more widespread than the previous

one [13] [14].

2.1. Technical Characteristics

The principal components of the drone are the following:

Fig. 2.1 TELLO EDU and TELLO Drone

CHAPTER 2: TELLO DRONE 7

Table 2.1 Description of components of the Tello EDU drone

Its dimensions and characteristics make it very manageable.

Table 2.2 Dimensions and characteristic

Weight 87 g

Dimensions 98×92.5×41 mm

Propeller 3 inches

 Telemetric sensor

Integrated Functions
Barometer

LED

 Vision System

 Wi-Fi 2.4 GHz 802.11n

 Real-time streaming 720p

Port USB battery charging port

Operating temperature range from 0º to 40º C

Operating frequency range from 2.4 to 2.4835 GHz

 20 dBm (FCC)

Transmitter (EIRP) 19 dBm (CE)

 19 dBm (SRRC)

1. Propellers 6. Antennas

2. Motors 7. Vision Positioning System

3. Drone Status Indicator 8. Battery

4. Camera 9. Micro USB port

5. Power Button 10. Propeller protectors

CHAPTER 2: TELLO DRONE 8

Being a drone for mainly indoor use, it can be used outdoors but in a controlled

environment like weather, wind speed, etc., that’s why the characteristics that

define its operations are quite limited.

Table 2.3 Detail in operation

Maximum distance of the flight 100 meters

Minimum speed 6.7 mph (10.8 kph)

Maximum speed 17.8 mph (28 kph)

Maximum flight time
13 min (0 wind at a consistent 9mph
(15kph))

Maximum flight height 30 meters

It has a very easy battery to change; it can be charged directly with a USB cable

with the battery inside the drone, or with a charging hub.

Table 2.4 Battery details

Removable Yes

Capacity 1100 mAh

Voltage 3.8 V

Type LiPo

Energy 4.18 Wh

Net Weight 25 ± 2 g

Temperature range when charging from 5º to 45º

Maximum Load Power 10 W

The camera allows us to obtain video with a good quality (HD), after the image

processing, it is possible to develop different applications.

Table 2.5 Camera details

Photo 5 MP (2592x1936)

Field of view 82.6°

Video HD: 1280 X 720 30 fps

Format
JPG (Photo)

MP4 (Video)

Electronic stabilization Yes

CHAPTER 2: TELLO DRONE 9

Vision Positioning System: Consisting of a camera, which is a grey-only 320x240

IR-sensitive and an infrared 3D module. This system is capable of working in a

range of 0.3 m to 30 m high, but its optimal working conditions are 0.3 m to 6 m

high.

Drone Status Indicator: It is a led that has the drone, and indicates in what state

the drone is in each moment.

Field of view: It is the open observable area that the drone camera can see.

Electronic stabilization: It is an image enhancement technique using electronic

processing.

2.2. Basic Requirement for programming

We can program the Drone by using a different platform, operating system, and

programing language.

The platform like Visual Code, PyCharm, Anaconda, etc.

An operating system like Windows, Linux, MAC, etc.

Programing languages like Java, C++, Python, Scratch, etc.

But in this project windows have been used along with Python programming

language due to easily available python libraries

To run a script, it is necessary to connect the computer with the Drone Wi-Fi. The

name of the Wi-Fi network of the drone is set by default which is written on the

drone where we put the battery, but it is possible to change the name of the

network and also add a password to prevent any stranger from taking control of the

drone in the script.

2.3. SDK 2.0

The Tello drone has a software development kit, which helps to understand the

different commands that are accepted by the drone. This serves as the basic

structure for the development of an application. You can find more detail on the

internet in the user guide and git repository [12].

CHAPTER 2: TELLO DRONE 10

2.3. Mobile Application

Shenzhen RYZE Tech Co. Ltd. Has developed an application for the Tello, which

creates a platform to control the drone over Wi-Fi manually. This application

displays all the necessary information on the display of an Android or iOS mobile

(Fig. 2.2).

Fig. 2.2 Tello App Display

Fig. 2.3 Tello App advance option

CHAPTER 2: TELLO DRONE 11

This application also allows you to Calibrate and update the Firewall of the Tello

(Fig. 2.3).

Moreover, this app has various predefine flight modes which allow you to perform

various tasks and basic missions (Fig. 2.4 and Fig. 2.5).

Fig. 2.4 Flight Mode_1

Fig. 2.5 Flight Mode_2

CHAPTER 3: POSE DETECTION 12

CHAPTER 3: POSE DETECTION

In this chapter, we talk about Person/Pose detection, as we know there are various

2D and 3D open-source pose estimation models or frameworks are available in the

market, like OpenPose, CPN (Cascaded Pyramid Network), AlphaPose, and

HRNet (High-Resolution Net), Deep Pose, Pose Net, Dense Pose. Each model has

its pros and cons, and data output which can be used in various applications. For

this project, I do some research over the internet and also read some research

papers. After doing this intensive research I came across a new 2D & 3D real-time

lightweight pose estimation framework which was purposed by Google in CVPR

Workshop on Computer Vision for Augmented and Virtual Reality at Seattle USA in

June 2020. This framework is named “MediaPipe Pose”. It is also called

BlazePose. This lightweight 3D framework also supports cross-platform (i.e.,

Android, iOS, web, edge devices) compatibility.

In addition, the output of this model match my specification for this project, that’s

the reason I decided to use this Pose mode and we are going to know about this in

more detail as we proceed further in the chapter.

Moreover, MediaPipe also provides several other frameworks and ML models like

Face Detection, Multi-hand Tracking, Hair Segmentation, Object Detection, and

Tracking, Objectron: 3D Object Detection and Tracking, Auto Flip: Automatic video

cropping pipeline, Pose Detection and more.

3.1 BlazePose Overview

Human pose estimation plays a critical role in various applications such as physical

exercises, sign language recognition, and full-body gesture control. For example, it

can form the basis application platform for yoga, dance, and fitness. It can also

enable the overlay of digital content and information on top of the physical world in

augmented reality. That makes it challenging due to the wide variety of poses,

numerous degrees of freedom, and occlusions.

Recent work [18] [19] has shown significant progress on pose estimation. The

common approach in this work is to produce heatmaps for each joint along with

refining offsets for each coordinate. While this choice of heatmaps scales to

multiple people with minimal overhead, it makes the model for a single person

considerably larger than is suitable for real-time inference.

In contrast to heatmap-based techniques, regression-based approaches, while less

computationally demanding and more scalable, attempt to predict the mean

coordinate values, often failing to address the underlying ambiguity. Newell et al.

CHAPTER 3: POSE DETECTION 13

[20] have shown that the stacked hourglass architecture gives a significant boost to

the quality of the prediction, even with a smaller number of parameters.

MediaPipe Pose is the ML solution for high-fidelity body pose tracking, inferring 33

2D and 3D (Dimension) landmarks, and background segmentation mask on the

whole body from RGB video frames by utilizing the BlazePose. The current state-

of-the-art approach for Pose Detection and Tracking relies on powerful desktop

environments for processing, which consist of heavy GPUs and powerful CPUs.

Whereas this Pose Detection method achieves real-time performance on most

modern mobile phones, desktops/laptops, and even on the web only with CPU.

3.2 Model Architecture and Pipeline Design

3.2.1 Inference pipeline

For pose estimation, it utilizes a two-step detector-tracker ML pipeline. Using a

detector, this pipeline first locates the pose region-of-interest (ROI) within the

frame.

The tracker subsequently predicts all 33 pose key points from this ROI. Note that

for video use cases, the detector is run only on the first frame. For subsequent

frames, we derive the ROI from the previous frame’s pose key points as discussed

below (Fig. 3.5).

Fig. 3.5 Inference pipeline

3.2.2 Person detector

CHAPTER 3: POSE DETECTION 14

The majority of modern object detection solutions rely on the Non-Maximum

Suppression (NMS) algorithm for their last post-processing step. This works well

for rigid objects with few degrees of freedom. However, this algorithm breaks down

for scenarios that include highly articulated poses like those of humans, e.g. people

waving or hugging. This is because multiple, ambiguous boxes satisfy the

intersection over union (IoU) threshold for the NMS algorithm.

To overcome this problem, the lightweight BlazeFace model, as a proxy for a pose

detector. This model only detests the location of a person within the frame. It

explicitly also predicts two additional virtual key points which then combined with

Leonardo’s Vitruvian man to predict the midpoint of a person’s hips, the radius of a

circle circumscribing the whole person, and the incline angle of the line connecting

the shoulder and hip midpoints as shown below (Fig. 3.6).

Fig. 3.6 Vitruvian man aligned via two virtual keypoints with face bounding box.

3.2.3 Topology

The current standard for human body pose is the COCO topology, which consists
of 17 landmarks across the torso, arms, legs, and face. However, the COCO
keypoints only localize to the ankle and wrist points, lacking scale and orientation

https://arxiv.org/abs/1907.05047
https://en.wikipedia.org/wiki/Vitruvian_Man

CHAPTER 3: POSE DETECTION 15

information for hands and feet, which plays a vital role for practical applications like
fitness and dance.

The inclusion of more key points is crucial for the subsequent application of
domain-specific pose estimation models, like those for hands, face, or feet. With
BlazePose, we can get 33 human body keypoints, which is a superset of
COCO, BlazeFace, and BlazePalm topologies. This allows us to determine body
semantics from pose prediction alone that is consistent with face and hand models
(Fig. 3.7).

Fig. 3.7 BlazePose 33 keypoints topology as COCO (coloured with green)
superset

In this project, the COCO (Common Object in Context) dataset is used which is

large-scale object detection, segmentation, and captioning dataset available

publically that also includes the dataset of 250,000 people with body Key-points as

shown in Fig(3.1). BlazePose used the COCO dataset as a base for further

development and improvement in pose estimation. In this pose estimation, COCO

is combined other two ML pipelines that are BlazeFace and BlazePalm to extend

its application.

CHAPTER 3: POSE DETECTION 16

BlazeFace

The BlazeFace [17] model architecture is built around four important designs,

which are following:

 Enlarging the receptive field size

 Feature extractor

 Anchor scheme

 Post-processing.

Enlarging the receptive field sizes: By modifying the convolutional neural network

architectures tend which favour 3×3 convolution kernels.

Fig. 3.8 BlazeBlock (left) and double BlazeBlock

For example, on an Apple iPhone X with the Metal Performance Shaders

implementation [16], a 3×3 depthwise convolution in 16-bit floating-point arithmetic

takes 0.07 ms for a 56×56×128 tensor, while the subsequent 1×1 convolution from

128 to 128 channels is 4.3 times slower at 0.3 ms. So increasing the kernel size of

the depthwise part is relatively cheap. By employing 5×5 kernels in model

architecture bottlenecks, trading the kernel size increase for the decrease in the

total amount of such bottlenecks required to reach a particular receptive field size

(Fig 3.8).

A MobileNetV2 bottleneck contains subsequent depth-increasing expansion and

depth-decreasing projection pointwise convolutions separated by a non-linearity.

To accommodate for the fewer number of channels in the intermediate tensors, by

swapping these stages so that the residual connections in bottlenecks operate in

the “expanded” (increased) channel resolution. This results in the low overhead of

a depthwise convolution that allows introducing another layer between these two

CHAPTER 3: POSE DETECTION 17

pointwise convolutions, accelerating the receptive field size progression even

further. This forms the essence of a double BlazeBlock that is used as the

bottleneck of choice for the higher abstraction level layers of BlazeFace (see Fig

3.8, right).

Feature extractor: For example, extracting the feature from the front-facing camera

model. Which contains smaller object scales and therefore has lower

computational demands. The extractor takes an RGB input of 128×128 pixels and

consists of a 2D convolution followed by 5 single BlazeBlocks and 6 double

BlazeBlocks (see Table in Annexer A for the full layout). The highest tensor depth

(channel resolution) is 96, while the lowest spatial resolution is 8×8 (in contrast to

SSD, which reduces the resolution down to 1×1).

Anchor scheme: A typical SSD model uses predictions from 1×1, 2×2, 4×4, 8×8,

and 16×16 feature map sizes (Fig 3.9). However, the success of the Pooling

Pyramid Network (PPN) architecture implies that additional computations could be

redundant after reaching a certain feature map resolution. Taking this into

consideration, by adopting an alternative anchor scheme that stops at the 8×8

feature map dimensions without further downsampling and replaced 2 anchors per

pixel in each of the 8×8, 4×4 and 2×2 resolutions by 6 anchors at 8×8. Due to the

limited variance in human face aspect ratios, limiting the anchors to the 1:1 aspect

ratio is sufficient for accurate face detection.

Fig. 3.9 Anchor computation: SSD (left) vs. BlazeFace

Post-processing: In this process, it increases the model accuracy and reduced the

jittering problems as the feature extractor is not reducing the resolution below 8×8,

the number of anchors overlapping a given object significantly increases with the

object size and When such a model is applied to subsequent video frames, the

predictions tend to fluctuate between different anchors and exhibit temporal jitter

(human perceptible noise).

CHAPTER 3: POSE DETECTION 18

BlazePalm

The hand tracking solution utilizes an ML pipeline consisting of several models

working together (Fig 3.10):

 A palm detector model operates on the full image and returns an oriented
hand bounding box.
 A hand landmark model operates on the cropped image region defined by
the palm detector and returns high fidelity 3D hand keypoints.

This architecture is similar to that employed face ML pipeline and that have used

for pose estimation. Providing the accurately cropped palm image to the hand

landmark model drastically reduces the need for data augmentation (e.g. rotations,

translation and scale) and instead allows the network to dedicate most of its

capacity towards coordinate prediction accuracy.

Fig. 3.10 Hand perception pipeline

3.2.4 Neural network architecture

The pose estimation component of the pipeline predicts the location of all 33 key

points of a person with three degrees of freedom each (x, y location and visibility)

plus the two virtual alignment key points described above.

https://sites.google.com/corp/view/perception-cv4arvr/facemesh
https://sites.google.com/corp/view/perception-cv4arvr/facemesh
https://arxiv.org/abs/1701.01779

CHAPTER 3: POSE DETECTION 19

Unlike current approaches that employ compute-intensive heatmap prediction to

detect or extract key points from an image or a video frame, whereas this model

uses a regression approach that is supervised by a combined heat map/offset

prediction of all key points, as shown below (Fig. 3.11).

Fig. 3.11 Network architecture: regression with heatmap supervision.

Specifically, during training first, employ a heatmap and offset the loss to train the

centre and left tower of the network. Then remove the heatmap output and train the

regression encoder (right tower), thus, effectively using the heatmap to supervise a

lightweight embedding.

The below table shows the result that is achieved by this process from different
training strategies. As an evaluation metric, use the Percent of Correct Points with
20% tolerance (PCK@0.2) if the 2D Euclidean error is smaller than 20% of the
corresponding person’s torso size.

https://www.adrianbulat.com/human-pose-estimation

CHAPTER 3: POSE DETECTION 20

Table 3.1 Model quality resulting

To cover a wide range of hardware compatibility, they provide three pose tracking
models: lite, full and heavy, which have different complexity differentiated in the
balance of speed versus quality. For performance evaluation on CPU, they use
XNNPACK which is a highly optimized library of floating-point neural network
inference operators for ARM, Web Assembly, and x86 platforms. It is not intended
for direct use by deep learning practitioners and researchers; instead, it provides
low-level performance primitives for accelerating high-level machine learning
frameworks, such as Tensor Flow Lite, TensorFlow.js, PyTorch, and MediaPipe.
And for mobile GPUs, we can use the TFLite GPU backend, which is specifically
designed for Mobile use and it use hardware accelerators provided by different
operating system such as Android (requires OpenCL or OpenGL ES 3.1 and
higher) and iOS (requires iOS 8 or later).

Table 3.2 FPS Results

Mean 2D Euclidean error,
normalized by torso size

PCK@0.2

Heatmaps 16.2 83.6

Regression without Heatmap loss 15.9 79.9

Regression with Heatmap
regularization

14.4 84.1

Pixel 3 CPU FPS
using XNNPACK

Pixel 3 CPU FPS
using TFLite GPU

Ryzen 7 CPU
using XNNPACK

BlazePose lite 44 49 35

BlazePose full 18 40 21

BlazePose heavy 4 19 7

https://github.com/google/XNNPACK
https://www.tensorflow.org/lite/performance/gpu

CHAPTER 4: DRONE & POSE FUSION 21

CHAPTER 4: DRONE & POSE FUSION

In this section, we are going to implement all the knowledge that we gain in the

above chapters to develop the main application. Moreover, this section also helps

or allows anybody who doesn’t have any prior knowledge of the Tello drone, to

perform simple missions by using Python script.

After that, we move further to integrate Pose recognition to control the drone and to

perform various by using body movements.

4.1. Introduction to Tello Programming

Tello Python script which has been used in this project is provided on GitHub [1].

But you can use DjiTellopy [2] SDK also.

4.1.1 Simple Maneuver

The first step is importing all the classes, then connecting the drone Wi-Fi with a

computer to provide commands through a Python script. We will initialize a few

objects and parameters, then commands are sent to the drone. In this simple flight,

first, we take off then move left, rotate clockwise, move forward and land.

Fig. 4.1 Simple Python Script.

In the above script when we create the object of Command class names as

“tello_command”, but you can use any name you want and initialize the command

function. Then we sent takeoff, move and land commands by using their function.

CHAPTER 4: DRONE & POSE FUSION 22

4.1.2 Simple Take Picture

Now, in the second script, we will initialize the Drone cam and capture a picture

and save it in the drive.

Fig. 4.2 Take Picture Python Script.

So, the initialization is the same. But this time we import the cv2 and Stream class

and initialize the steaming address. Then we take off and enable the stream. After,

that we read the frame from the live feed of the drone camera and save the frame

as “frame.jpg” into the drive and land the drone.

CHAPTER 4: DRONE & POSE FUSION 23

4.1.3 Manual Control

This python script is a simple demonstration to control the Tell drone using

Keyboard.

Fig. 4.3 Manual control Python Script.

CHAPTER 4: DRONE & POSE FUSION 24

We use W, S, A, D keys for moving Forward, Backward, Left, Right; E, Q keys for

rotation and R, F keys for moving Up and Down; To stop movement press the

spacebar. When the script starts Tello will take off automatically and for landing

and to terminate the script press ESC (Escape) key. To know more commands

regarding Tello download its SDK [1]. And these and some more examples are

also available in the example folder of Tello SDK [2].

4.2. Pose Class

I have created a custom object-oriented Pose Class for this project in python

language, which include all the necessary functions that we are going to use in this

project. Those who have little knowledge of coding can be able to under the

programming easily as everything is commented on and explained well. In this

section, we will learn in more depth about Pose Detection.

4.2.1 Introduction to Class

The Pose Class contain various function like find_body, find angle, centroid,

distance b/w two points and pose classification which we discuss in brief in this

section one by one.

First of all, we need to import MediaPipe and some other python libraries to start

with like python OpenCV, math etc. Then we create an object-oriented Pose

Detector class, in which we create some Constructors. Constructors are used to

initializing the object's state and the task of constructors is to initialize (assign

values) to the data members of the class when an object of a class is created and

it's run as soon as an object of a class is instantiated.

Fig. 4.4 Pose Detector class constructor.

CHAPTER 4: DRONE & POSE FUSION 25

Here we use the __init__ function as a constructor, or initializer and is

automatically called when we create a new instance of a class. Within that function,

the newly created object is assigned to the parameter ‘self.’ and their default

values (Fig 4.4).

The notation “self.static_image_mode” (Fig 4.5) are an attribute called

Static_image_mode of the object in the variable self. In this function we initialize

the MediaPipe Pose objects as shown below:

Fig. 4.5 Pose Detector class objects.

Where Arguments used in the MediaPipe are explained below:

STATIC_IMAGE_MODE

If set to false, the solution treats the input images as a video stream. It will try to

detect the most prominent person in the very first images, and upon a successful

detection further localizes the pose landmarks. In subsequent images, it then

simply tracks those landmarks without invoking another detection until it loses

track, reducing computation and latency. If set to true, person detection runs every

input image, ideal for processing a batch of static, possibly unrelated, images.

Default to false.

MODEL_COMPLEXITY

The complexity of the pose landmark model: 0, 1 or 2. Landmark accuracy, as well

as inference latency, generally go up with the model complexity. Default to 1.

SMOOTH_LANDMARKS

If set to true, the solution filters pose landmarks across different input images to

reduce jitter but ignored if static_image_mode is also set to true. Default to true.

CHAPTER 4: DRONE & POSE FUSION 26

ENABLE_SEGMENTATION

If set to true, in addition to the pose landmarks the solution also generates the

segmentation mask. Default to false.

SMOOTH_SEGMENTATION

If set to true, the solution filters segmentation masks across different input images

to reduce jitter. Ignored if enable_segmentation is false or static_image_mode is

true. Default to true.

MIN_DETECTION_CONFIDENCE

Minimum confidence value ([0.0, 1.0]) from the person-detection model for the

detection to be considered successful. Default to 0.5.

MIN_TRACKING_CONFIDENCE

Minimum confidence value ([0.0, 1.0]) from the landmark-tracking model for the

pose landmarks to be considered tracked successfully, or otherwise person

detection will be invoked automatically on the next input image. Setting it to a

higher value can increase the robustness of the solution, at the expense of higher

latency. Ignored if static_image_mode is true, where person detection simply runs

on every image. Default to 0.5.

4.2.2 Introduction to Functions

This section is dedicated to various functions in the class and their explanation.

FIND_BODY FUNCTION

This function is the main function that finds the Person/Pose in the frame and

draws the pose. The input for the function is only the image or frames of the video

for which we want to find the pose and you also can enable/disable the draw option

by the Boolean input by setting up the draw True/False.

CHAPTER 4: DRONE & POSE FUSION 27

Fig. 4.6 Find body function.

The outputs or return value of this function are:

Landmarks list:

A list of pose landmarks. Each landmark consists of the following:

 x and y: Landmark coordinates normalized to [0.0, 1.0] by the image width

and height respectively.1

1 Converted into Pixel Co-ordinates

CHAPTER 4: DRONE & POSE FUSION 28

 z: Represents the landmark depth with the depth at the midpoint of hips

being the origin, and the smaller the value the closer the landmark is to the

camera. The magnitude of z uses roughly the same scale as x.

World landmarks list:

Another list of pose landmarks in world coordinates. Each landmark consists of the
following:

 x, y and z: Real-world 3D coordinates in centimetres with the origin at the

centre between hips.

To draw the plot, we need to call the internal function of MediaPipe class. You can

find the code for this in my GitHub repository [3], under the example folder in

simple_example.py I put in the comment but if you want to plot or see the result

you can uncomment this line as shown below (Fig. 4.7).

Fig. 4.7 Plot function.

An example of a landmarks list and world landmarks list is plotted in Real-world 3D

coordinates is shown in the figure below (Fig 4.8), this plots which shown in figure

(Fig 4.8) are the plots of a static image, but it can also be plotted for video in real-

time. In the figure (Fig 4.8) the plots of the world landmark list from the different

viewing angles and the scale of the plots in X, Y, Z axis are in meters.

CHAPTER 4: DRONE & POSE FUSION 29

Fig. 4.8 Real-world 3D coordinates.

FIND ANGLE FUNCTION

This function uses the world coordinates to calculate the angle between any three

body landmarks and the returns value is measured according to the position of the

person; if the person standing in front facing towards the camera then it takes the

outer angle clockwise otherwise takes the inner angle. Function python script (Fig.

4.9).

CHAPTER 4: DRONE & POSE FUSION 30

Fig. 4.9 Angle between Pose Points.

CENTROID FUNCTION

This function calculates the centre of the upper body, which is four predefine points

of the body i.e., left shoulder, right shoulder, left hip & right hip. The python script of

the function is shown below (Fig. 4.10). You can also draw the centroid over the

input image by just enabling or disabling the draw input value to True/False. This

function further can be used for many other applications besides this project.

Fig. 4.9 Centroid Function

CHAPTER 4: DRONE & POSE FUSION 31

DISTANCE B/W TWO POINTS FUNCTION

This is a simple function that calculates the distance between two landmarks points

and the distance in centimetres (Fig. 4.11).

Fig. 4.11 Distance Function

ANGLE B/W TWO POINTS FUNCTION

This function calculates the angle between two points in which the endpoint can be

a landmark/body/pose point or it can be any manually defined point. This function

allows extending the capability of the function to calculate the angle and increase

the application pose class.

Fig. 4.12 Angle between Pose and World points

CHAPTER 4: DRONE & POSE FUSION 32

POSE CLASSIFICATION FUNCTION

This is the function that recognized the body pose with the help of previously

defined functions. This means this function call the above-defined functions and

then check the return value with previously defined bounds and classified the pose.

The list of landmarks that I used to define pose, seen below (Fig. 4.13)

Fig. 4.13 Pose Landmarks

Fig. 4.14 Angle and Distance b/w Pose

CHAPTER 4: DRONE & POSE FUSION 33

By using the previously defined function we calculated and define various

parameters, as shown above (Fig. 4.14). Now, by using values from these

variables

We can define various poses as shown below (Table 4.1)

Table 4.1 Poses

CHAPTER 4: DRONE & POSE FUSION 34

4.3. Implementation

In this section, we are going to talk about the merging of our both classes. So, for

merging both the Pose and Tello classes we are going to create a State Machine

program that consists of different state functions and the main program to control

all the processes of the state machine.

4.3.1 Introduction State Machine Diagram

This State machine diagram is typically used to explain our classes work. There

are different states, objects and functions in our classes that act and behave

differently depending on their current state. This state diagram will simply explain

how everything is working in the first place. So, this state machine consists of 7

states with few conditions as shown below (Fig. 4.16).

CHAPTER 4: DRONE & POSE FUSION 35

Fig. 4.15 State Machine

4.3.2 Explanation of State Machine

START

The “Start” state initiates the Tello takeoff command if the Tello system is

connected and enabled. Then move to the next state as shown below (Fig. 4.16).

Fig. 4.16 Start state

CHAPTER 4: DRONE & POSE FUSION 36

IDLE

The “Idle” state fetches the Tello sensor data and displays the output image.

Moreover, it also checks whether Tello is in a safe condition to fly or not by

checking its battery temperature and how much battery percentage is left, as

shown below (Fig. 4.17). If not then, its moves to the “Exit” state and initiate the

landing command for Tello otherwise it moves to the next state “Img_Process”.

Fig. 4.17 Idle state

IMAGE PROCESS

The “Img_Process” state is used to read the video input frame by frame, the input

video source can be streamed directly from a Tello cam or a webcam or

prerecorded video. If the Tello system enables it will automatically read the Tello

feed else the webcam or prerecorded video, and then it will proceed to the next

state as shown below (Fig. 4.18).

CHAPTER 4: DRONE & POSE FUSION 37

Fig. 4.18 Img_Process state

Now, we talk about the Pose Recognition and the Navigation States. These two

states are the most important state of the program, as they do most of the process

and work in the program. The code related to these two state functions is in Annex

B below.

POSE RECOGNITION

The “pose_recognition” state as it is referred to by name it recognized the pose of

the Human/Person. In this state function, two command modes, that helps to

navigate the drone, depending upon a mode.

The first mode is tracking mode, which is an auto mode. When this mode is

activated drone start tracking the person/human by maintaining a safe distance of

approx. 3.5 meters and its move forward, backward, left and right as the person

moves. It also manoeuvres forward, backward by the movement of the shoulders.

For example, if you rotate/move your shoulder in the X-axis then the drone move

forward and when your shoulder is parallel to the X-axis the drone goes to its

position back.

The second Mode is the Command mode. In mode you can control the drone

manually with the help of body gestures (as shown in Table 4.1), with different

gestures drone can do different manoeuvres like up, down, left, right, forward and

backward. You can also add more pose gestures according to your convenience.

CHAPTER 4: DRONE & POSE FUSION 38

NAVIGATION

The “navigation”, as you know from its name this state function is responsible for

the navigation of the drone in three dimensions space.

In this state function, we navigate the drone by calculating the PID for auto mode

and taking commands for manual mode. But, before that drone is raised directly up

to a certain height so that it can see or detect the whole body or person to

recognize the pose. If it does not detect any for 20 seconds it will automatically

land.

Auto Mode: Drone can be enabled in this Mode by using the

“BOTH_ARM_WIDE_OPEN” pose (as shown in Table 4.2). After this mode

enabled the drone to start aligning with the person centroid and when the

alignment is completed, it starts following the person. If it does not detect any

person in the frame then it starts searching the person by rotating on its axis, if it is

still not able to detect the person then it will automatically go to the landing

command for safety purposes.

This mode can be deactivated/disabled by using the “ARM_CROSSED” pose (as

shown in Table 4.2). It will come out of the auto mode and ready to accept another

command.

Table 4.2 Pose Gestures for Auto Mode

Auto Mode

Tracking Start

Tracking Stop

Manual Mode: This mode can be activated by the “COMMAND_MODE_START”

pose (as shown in Table 4.3). After that drone is ready to accept commands for the

manoeuvre in three-dimensional space. Commands to control the drone manually

are shown below in the table (Table 4.3).

CHAPTER 4: DRONE & POSE FUSION 39

Table 4.3 Different Pose Gestures Manual Mode

Manual Command Mode

Command Mode On

Command Mode Off Landing

Forward

Backwards

Right

Left

Up

Down

Stay at one position

EXIT

This state function is used to come out from the state function for safety purposes

and for landing the drone. This function is called several times during the

programing for safety purposes or to execute the landing command. After this

function, all function is terminated and STOP the code from executing further.

CHAPTER 4: DRONE & POSE FUSION 40

4.4. Main Application: Control the drone with Body Gestures

In this section, we want to continue with the progress made in the above sections,

and import everything step by step.

4.4.1 Material Required

The component is used to perform all the tasks or manoeuvres:

 1 X Tello or Tello EDU

 1 X Laptop

 Wi-Fi Adapter or a Hotspot

4.4.2 Steps Required

1. Get the repository from Github.

i) By cloning for Ubuntu in Terminal (command line)

Syntex:

git clone {repository URL}

ii) By downloading the Zip file

CHAPTER 4: DRONE & POSE FUSION 41

2. Connect the laptop and the Drone to the same Wi-Fi Adapter or a Hotspot,

to perform this application as shown in the figure below (Fig. 4.19).

Fig. 4.19 Environmental Setup

3. Now check all the things are imported properly.

4. Now make the TELLO_SYSTEM_ENABLE = True, in the state.py to test the

real-time application.

OR

Keep it False and test the program before running with the webcam.

4.4.3 Run and Play

After setting up the setup, you can run the program and enjoy the main application
of the Body Gestures controlling Drone. All the codes related to this project is
available on GitHub, you can access it on the request and the link is below in the
annexure.

CONCLUSIONS 42

CONCLUSIONS

The tests related to this project have been performed in an open environment and

a few are in a closed controlled environment, at different locations at the university

campus and Elarco Design laboratory. The machine/laptop/ Notebook is used for

this test is ASUS ROG STRIX, which equipped with a Ryzen processor (Ryzen 7

4800H, 8 core) and 16GB RAM, no GPU is used for the computing process, which

makes it more versatile and adaptable. Because a lot of the pose recognition

frameworks which are available in the market are mostly required a powerful

computer with GPU, but this framework can be used in low-end devices without

GPU power.

First, an investigation was carried out to view what were the other possible drones

available in the market which offers the same functionality as Tello and Tello EDU.

And, by doing that investigation it observed that there were a lot of other drones

present in the market. But Tello played a noticeable role in the field of education,

which is why it was decided to use that in this project along with that it also

provides some base for future developers who wanted to start programming with

the drone for fun and other applications.

Second, another research was carried out regarding the pose estimation, as we

already discussed in our Pose Detection chapter, where I mentioned the different

types of pose recognition models and ML frameworks available and can be used to

create a project, but I choose the one which is more versatility and required only

CPU.

In addition, I go through many content and paperwork which consists of controlling

a drone through body movements or gestures or pose. During the research, I found

a lot of scripts that can also control a drone through body movements, but these

scripts were more complicated and required a lot of processing power for both

CPU & GPU. Although, these scripts were provided me with the basic knowledge

for programming this project.

Third, my objective of this project is to make the script more versatile, easy and

adaptable, so that it can be used on any platform which is capable to run the

python script. In my project, I used Windows 11 OS along with PyCharm as a

Python IDE. The purpose of using PyCharm because it provides smart code

completion, code inspections, on-the-fly error highlighting and quick-fixes, along

with automated code refactoring and rich navigation capabilities and its good for

beginners using Windows OS instead of Linux OS or Mac OS as people are more

familiar with is OS which also motivates new coders to learn more. However, users

can use any other Python IDE and OS according to their convenience.

In the beginning, this project seems to be so simple and easy but as I make

progress and start working on the project to achieve my main application, I faced a

CONCLUSIONS 43

lot of errors and failures while testing the drone flight and the code. However, from

these mistakes and problems, I learned a lot of things and keep me motivated to

pursue further in this project.

In this project, I have also created a few test programs to test the functionality of

every function before applying them to the main application. These test codes can

help others to understand the programming topology and its works. The testing

codes can be used as building blocks for further developments in the application.

You can easily access these testing codes and test them. These codes contain

some basic manoeuvres of the Drone and the testing of Pose class along with

another miscellaneous test like camera working or not, test flight take-off and

landing, and testing other functions of the class.

Finally, this document can provide all the basic and advanced knowledge which

allow for future developers to develop more complicated applications without any

hustle and also save the time to do extensive research on the internet, since this

Pose class is new in the open-source world, so there are only a few

documentations present in this field as this Open Pose class still in the

development phase and people are contributing more and more, and anxious to

learn more in the same field.

ACRONYMS 44

ACRONYMS

GHUM /

GHUML
Generative 3D Human Shape and Articulated Pose Models

API Application Programming Interface

SDK Software Development Kit

PCB Printed Circuit Board

LED Light Emitting Diode

EIRP Effective Isotropic Radiated Power

mph/MPH Miles Per Hour

kph/KPH Kilometre Per Hour

mAh Milliamp Hours

LiPo Lithium-Ion Polymer Battery

Wh Watt-hour

W Watt

HD High Definition

MP Mega Pixels

IR Infrared

ML Machine Learning

ROI Region of Interest

PCK Percent of Correct Keypoints

FPS Frame Per Second

GPU Graphics Processing Unit

IDE Integrated Development Environment

OS Operating Software

GB Gigabyte

RAM Random-access memory

REFERENCES 45

REFERENCES

[1] (2021) Tello-Python GitHub. [online] Available: https://github.com/Tushki-

007/tello_sdk.git

[2] DJITelloPy: DJI Tello drone python interface using the official Tello SDK.

Feel free to contribute! (github.com)

[3] (2018) MediaPipe GitHub. [online] Available: Pose - MediaPipe

(google.github.io)

[4] (2021) OpenCV website. [online] Available: https://opencv.org/

[5] (2021) Parrot website. [online] Available: https://www.parrot.com

[6] (2021) Crazyflie. [online] Available: https://www.bitcraze.io/

[7] (2021) Robolink website. [online] Available: https://www.robolink.com

[8] (2021) Flybrix website. [online] Available: https://flybrix.com

[9] (2021) Drobots website. [online] Available: https://drobotscompany.com/

[10] (2021) Campuse website. [online] Available: https://campuse.ro/

[11] (2021) DroneBlocks website. [online] Available:

https://www.droneblocks.io/

[12] (2021) Tello FPV [online] Available:

https://play.google.com/store/apps/details?id=com.volatello.tellofpv&hl=en

&gl=US

[13] (2021) SDK 2.0 User Guide. [online] Available: https://dl-

cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20

Guide.pdf

[14] (2021) Tello spec. [online] Available: Tello (ryzerobotics.com)

[15] (2021) Tello EDU spec. [online] Available: Página Oficial de Tello -

Shenzhen Ryze Technology Co., Ltd (ryzerobotics.com)

[16] (2021) Project Files at GitHub [online] Available: https://github.com/Tushki-

007/Controlling-Tello_drone-using-Pose-Master-s-Project-.git

[17] Metal performance shaders.

https://developer.apple.com/documentation/metalperformanceshaders.

[Online; accessed since April 19, 2019].

https://github.com/Tushki-007/tello_sdk.git
https://github.com/Tushki-007/tello_sdk.git
https://github.com/damiafuentes/DJITelloPy
https://github.com/damiafuentes/DJITelloPy
https://google.github.io/mediapipe/solutions/pose.html
https://google.github.io/mediapipe/solutions/pose.html
https://opencv.org/
https://www.parrot.com/
https://www.bitcraze.io/
https://www.robolink.com/
https://flybrix.com/
https://drobotscompany.com/
https://campuse.ro/
https://www.droneblocks.io/
https://play.google.com/store/apps/details?id=com.volatello.tellofpv&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.volatello.tellofpv&hl=en&gl=US
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20SDK%202.0%20User%20Guide.pdf
https://www.ryzerobotics.com/es/tello/specs
https://www.ryzerobotics.com/es/tello-edu/specs
https://www.ryzerobotics.com/es/tello-edu/specs
https://github.com/Tushki-007/Controlling-Tello_drone-using-Pose-Master-s-Project-.git
https://github.com/Tushki-007/Controlling-Tello_drone-using-Pose-Master-s-Project-.git
https://developer.apple.com/documentation/metalperformanceshaders

REFERENCES 46

[18] [1907.05047] BlazeFace: Sub-millisecond Neural Face Detection on

Mobile GPUs (arxiv.org) 12

[19] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Pifpaf: Composite

fields for human pose estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 11977–11986, 2019.

[20] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution

representation learning for human pose estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages

5693–5703, 2019.

[21] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks

for human pose estimation. In European conference on computer vision,

pages 483–499. Springer, 2016.

https://arxiv.org/abs/1907.05047
https://arxiv.org/abs/1907.05047
https://openaccess.thecvf.com/content_CVPR_2019/papers/Kreiss_PifPaf_Composite_Fields_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Kreiss_PifPaf_Composite_Fields_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Kreiss_PifPaf_Composite_Fields_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://arxiv.org/abs/1603.06937
https://arxiv.org/abs/1603.06937
https://arxiv.org/abs/1603.06937

Annexe A: Feature extraction network architecture 47

Annexe A: Feature extraction network architecture

Annexe B: GitHub References 48

Annexe B: GitHub References

https://github.com/geaxgx/tello-openpose

https://github.com/hanyazou/TelloPy

https://github.com/CMU-Perceptual-Computing-Lab/openpose

https://github.com/Ubotica/telloCV/

https://github.com/cvzone/cvzone

https://github.com/murtazahassan/Tello-Object-Tracking

https://github.com/geaxgx/tello-openpose
https://github.com/hanyazou/TelloPy
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/Ubotica/telloCV/
https://github.com/cvzone/cvzone
https://github.com/murtazahassan/Tello-Object-Tracking

Annexe C: Pose Class and its functions 49

Annexe C: Pose Class and its functions

Annexe C: Pose Class and its functions 50

Annexe C: Pose Class and its functions 51

Annexe D: State Class and its functions 52

Annexe D: State Class and its functions

Annexe D: State Class and its functions 53

Annexe D: State Class and its functions 54

Annexe D: State Class and its functions 55

Annexe D: State Class and its functions 56

Annexe E: Main functions 57

Annexe E: Main functions

