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ABSTRACT 
 

This project is intended to understand how to best use latest academic models and knowledge in the 

practical logistics world.  

This is especially interesting in logistics, given the high level of objectivity of the problems’ nature 

(compared to for example marketing, which is much more subjective). Reducing network inefficiencies is 

today increasingly important given that companies’ success driver is currently swapping from demand to 

supply, and also considering the impact on planet’s sustainability.  

This thesis focuses on network design, a complex topic that today is optimized rather locally. The current 

general business trend here is to use simulation tools that provide best local alternatives assuming the rest 

of the network to be fixed. This approach fits in a stable environment where changes happen rather slowly 

and smoothly so that constantly reconsidering the full structure is not needed. Also, today’s still existing 

lack of consistent and solid complete database triggers a necessity to manually obtain and summarize the 

needed input, hindering the extraction of the end-to-end picture and making those local scenario analyses 

the only feasible ones.  

However, both trends are changing: proper digitalization is tackling the data bottleneck, while it is getting 

more and more clear that the VUCA (volatility, uncertainty, complexity and ambiguity) world we have 

experienced these last years is here to stay. Given those facts, we shall reconsider how to best pull data 

insights to provide powerful indications and help addressing management towards proper directions. In 

this regard, optimization models are proposed as a holistic complement of today’s used local simulation 

ones. 

The core of this project is the formulation of a linear integer program to optimally design a hub and spoke 

network to serve the Spanish customers from different EU origins (optimum balance between direct 

routing and shipment consolidation) and solve it on a small example data set. Given their high 

computational cost, exact integer programs are not suitable for real logistics problems of real scale. 

Therefore, the next steps would be to design an heuristic algorithm that, trading some controlled results 

precision for speed, could cope with the application of this model to real-life problems. 
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1. GLOSSARY 
 

- Destination Zone: the geographic area of large countries (i.e. Spain) is divided among different 

destination zones, based on destination zip codes. 

- EMEA: Europe, Middle East, and Africa. 

- FTL (truck): Full TruckLoad (see Freightos, 2021). Type of trucking transport mode in which the 

journey is reserved for only one load/shipper. The shipper pays the full cost of the FTL trip [€]. (See 

also LTL). 

- FTL route:  route defined by unique origin and destination nodes that can be linked via an FTL truck.  

- LTL (truck): Less Than Truckload (see Freightos, 2021). Type of trucking transport mode in which 

the journey is split into many loads/shippers. The shipper pays the allocated cost of the LTL trip 

[€/kg]. (See also FTL). 

- OCP: Origin Consolidation Point. Hub close to the factories that allows consolidating at origin. 

- PID = PackID: indivisible shipment. 

- SC: Supply Chain 

- VUCA: Volatile, Uncertain, Complex, and Ambiguous.  

- Waybill: group of shipments that travel together end-to-end (thus have same origin, destination, 

and routing). 
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2. INTRODUCTION 
 

With the trend towards globalization experienced during the last decades, supply chains have become 

highly distributed with many different activities happening in a broad range of faraway geographies. 

Extraction of raw materials, manufacturing the components, assemblage, packaging, and final usage of the 

product by final customer, are a set of tasks that can be easily spread among different continents. 

Therefore, a proper strategy in logistics is very important for the overall company’s competitiveness. This 

importance has been further exaggerated during 2020’s Covid pandemic, which has empowered those 

companies with strong and efficient supply chains while nearly killed the ones with low—visibility or 

inefficient networks.  

In order to improve the efficiency of a logistics network it can be very useful to have the right tools and 

techniques to deal with all data and extract from it insightful information that will help pointing company’s 

management towards the right directions of the logistics strategy. This project is focused on identifying 

opportunities where academic models could help in this regard. After some interviews with people with 

different profiles and from diverse companies, it has been identified that today the logistic networks are 

mainly designed/operated via simulation models. In this regard, a potential area of opportunity could be to 

include also optimization models. Those optimization models can be either exact or heuristic. While exact 

models provide the exact optimum, they need a very high amount of computational effort, which disables 

them from real life’s logistics applications. On the other side, heuristics provide only an approximated 

solution, but are much faster. The suggestion would therefore be to use heuristics models, but for their 

design and evaluation it is also needed to have first an exact one which will be used to frame the problem 

and also to tune the future heuristic program.  

This project will further develop the diagnosis of today’s company’s network designs and their potential 

areas of improvement; and then focus on the development of an exact algorithm that optimizes the design 

of a hub & spoke network. This analysis will be based on subproblem of a multinational company, with 

several factories across Europe and delivery to the Spanish market (many different final destination 

customers, spread through Spain). 
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2.1. BACKGROUND AND MOTIVATION 
After a solid period of academic studies, followed by several years of professional experience in logistics I 

have been surprised by how much potential but little leverage is there between the two worlds. Whilst any 

business will always fall into a very subjective environment, the same term “logistics” already indicates a 

discipline that after all derives from logics, very connected to algebra and the theoretical academic world. 

In this regard, it could be stated that this is an area where theoretical models may not have all answers, but 

for sure can strongly make use of data to provide proper directions, thus leading to better setups and 

reducing all type of costs: environmental, economic, time… 

It is therefore a bittersweet situation to see the many advances happening at an academic level, which are 

adopted by private companies very slowly. Overwhelmed by many other core tasks, they do not find the 

time or resources to rethink their approaches and engage with each other, leverage efforts, and heavily 

improve their performances. 

 

2.2. PURPOSE OF THE PROJECT 
The aim of this thesis is, therefore, to work towards the improvement of such lack of mutual awareness 

and try to partially bridge the gap between the academic and the logistics business world. This includes a 

bidirectional approach: From one side it is needed that business take the necessary time and resources to 

invest towards finding new ways to work with data. From the other side it would also be helpful if the 

academia could also take some of their time to better understand general business requirements and adapt 

some of their research to address those needs. As shown in Figure 1 both organizations could benefit from 

a larger alignment.  

 

Figure 1. Benefits of leveraging logistics business with academia. Source: self-elaboration. 
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This project focuses on logistics network design and optimization. As detailed in the following sections, it 

has been observed that most business already make use of simulation tools, which can be very useful when 

evaluating a limited set of scenarios (i.e. different alternatives for a given distribution pattern, assuming 

the rest of the network is fixed). This approach seems to make full sense in a stable environment where the 

optimal network design rarely changes in time, thus allowing it to be defined by years of continuous 

improvements. However, the future seems to be all but stable, with ambiguity, uncertainty and rapid 

changes being the new normal. 

Also, most companies still lack proper databases and instead have all their data scattered in many different 

places without consistency and end to end visibility. Input data is nowadays the main bottleneck, so model 

improvements would hardly bring any benefit. However, this data issue is currently being tackled with 

significant priority, hence the assumption is that this constraint will soon be solved and therefore open up 

the potential of investing towards more sophisticated data models that can provide better insights.  

Figure 2 represents the different capabilities and requirements of simulation versus optimization tools. 

 

Figure 2. Simulation vs Optimization capabilities. Source: self-elaboration. 

 

The first step right after setting up proper databases making all relevant data easily accessible is to develop 

new tools able to exploit these data and give quantitative support to decision making. This project is 

focused in this direction. 

 

2.3. SCOPE 
The major aim of this project is to explore optimization tools that can have real applications in logistics 

network design. In particular, in this project we have focused in the following activities: 
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1) Business framework: understand the current approach and identify potential upgrades. Simulation 

tools may not always be the best option, how about extending to optimization tools? What good 

would it do to know this optimal?  

 

2) Designing of an exact model to optimize the hub and spoke of the logistics network of the 

considered company within Spain: balance between direct routing and consolidation benefits. 

 

3) Providing guidelines on further developments to extrapolate the model to real life applications: 

heuristics, mix of continuous/integer programming, etc. This final section also includes a brief list 

of other existing initiatives that use academic models to improve logistics networks.  
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3. BUSSINESS FRAMEWORK - OPPORTUNITIES AND LIMITATIONS OF 

OPTIMIZATION MODELS  
 

To understand a generic trend of companies’ approach to logistics Network Design, I have conducted a 

series of interviews with logistics’ team members of different companies (including multinationals, freight 

carriers, Supply Chain consulting, and even smaller startups with local delivery services). All of them follow 

a similar pattern and although data is used to support decisions, it falls far short from its potential. For 

confidentiality reasons, no more detail on the identities of the interviewees can be given. 

In this project we focus in the particular case of a multinational with about 10 points of origin (factories and 

ports of entry from Asian factories); and thousands of customers all over EMEA (Europe, Middle East, and 

Africa).  

 

3.1. Current approach and its limitations: sequentially solving subproblems yields 

suboptimal solutions 
Although relying on computer tools, in practice, the logistics network optimization process is usually based 

on the human brain. There are a series of built-in simulation algorithms that are very useful when choosing 

among a few alternatives (you simulate each of them and keep the one that gives the best results according 

to your criteria). One can also extract information from data analysis and the simulation of "extreme" 

scenarios, which are useful to discard some options. 

But a holistic optimization of the entire EMEA logistics network results in an exponential number of possible 

scenarios, impossible to handle from a human point of view.  

Thus, one ends up deciding on a first "layer" based on common sense, experience, and existing 

infrastructure, and then improving small sections separately. The result is a network that a first glance looks 

reasonable, but with no optimality guarantees. That is, there might be other choices that could be more 

efficient. In addition, there is the conditioning of  existing contracts and infrastructure that limit the number 

of alternatives and facilitate the decision. However, these trap decision makers in "temporary optima" (that 

keep changing as some contracts run out and new ones have to be set). Instead, it would be interesting to 

think about the global optimum, since it is well known that sequentially solving subproblems yields 

suboptimal solutions (see Darvish and Coelho, 2018): if there was a blank page, what would we do? 

https://www.linguee.es/ingles-espanol/traduccion/interviewee.html
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The complexity of devising such optimal solutions is heavily increased by the following aspects of the 

current business context: 

• VUCA world (volatility, uncertainty, complexity, and ambiguity): inputs vary constantly, with 

radical changes becoming more and more frequent. 

• Still very rigid systems (every small change needs an implementation time of at least 1-3 

months).  

• Currently, most companies also have a lack of a proper solid and consistent end-to-end 

databases. This is one of the most common and critical bottlenecks, however it is already being 

considered and treated with high priority. Hence, the assumption is that short term (quality) 

data should be a common asset.  

All these issues present very interesting challenges within the field of mathematical optimization, both in 

terms of the dimension of the posed problems, and in terms of the complexity associated with decision 

problems under uncertainty. This has motivated a great bunch of research in the last years (see, for 

example, Lekić et al., 2021  or Pires, Parreira and Frazzon, 2021). 

Clearly, the most common approaches to these problems are either the sequential optimization of different 

subproblems, which, as mentioned above, yields suboptimal solutions, and the use of heuristics and 

simulation (see, for instance, Tordecilla et al. 2021). 

 

3.2. On the value of identifying optimal solutions  
The main utility of knowing what is the optimal decision for a particular scenario is to have a basis for 

comparison.  That is, an optimal solution can be used as a reference, to understand what is the gap between 

the decisions that are made under the current company policies and the best possible ones. Given the 

context of volatility together with the hassle and slowness of implementing changes, knowing this optimum 

is a long way from being implementable. But the ability to quickly determine what the best design would 

be given a particular set of conditions, even if it serves only as a reference, can be very powerful.  

Knowledge about optimal solutions can also be useful to evaluate the benefits of possible new operating 

systems (dynamic optimization, autonomous decisions of digital twins, collaboration with other companies, 

...). 
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3.3. Closing the gap 
Based on those findings, it could be advisable for the companies to count on heuristic methods capable to 

deal with real instances (large sets of data). When developing them, it is convenient to first start with exact 

algorithms that help evaluating and calibrating the heuristic ones. Also, the initial construction of 

mathematical programs to model the situation helps to frame the problem and detail the questions that 

we would like to have answered. Considering the expected extension of this master project, we have 

stopped after the development of the mathematical program, and provided some guidelines on its 

limitations and potential further developments. So, the development of heuristic methods for the 

considered problem is left out of the scope of this project.  
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4.   THE STUDY CASE 
 

The particular optimization problem addressed in this project is a logistics network operation problem 

defined as follows: a list of shipments have to be distributed from a certain origin factory to a known set of 

destination customers given certain timing constraints. The goal is to do it using the best combination of 

the different shipment possibilities available in a hub and spoke network so that the total distribution cost 

is minimum. To simplify, in this project we have considered only the economic cost (€). However, it must 

be remarked that the cost can be any quantified parameter (Co2eq, €, km, or also even a subjective 

measure such as service quality to which different weights are assigned depending on business priorities). 

For evaluating the computational burden associated with the obtained formulation, we will evaluate it on 

the particular case of a fraction of the above-mentioned company that comprises some factories located 

around Europe, and customers in Spain. 

 

4.1. Study case description 
The main elements required to define a particular problem instance are the list of shipments that need to 

be made and all the alternative possible ways to perform the shipments. More detail is given next. 

The problem to solve is defined on an abstract network. The nodes of the network are divided into three 

subsets, one representing the set of factories where the goods are going to be shipped from, the second 

one representing the set of customers who have to receive the goods, and a third set of nodes representing 

possible hubs where shipments can be consolidated or reorganized. 

The shipment orders and their corresponding characteristics are described in Section 4.1.1. The links of the 

above network, and the available transportation modes are defined in Section 4.1.2. 

 

4.1.1. Input Data – Shipment orders 
For a fixed network, instances are basically defined by a list of shipments, identified by their Pack IDs (PIDs). 

Each PID is characterized by its origin factory and a destination customer. On top of its origin and 

destination, each PID has assigned a weight and available shipment date (departure from the factory). The 

PIDs are also indivisible. Whenever there are several PIDs that are to be shipped from the same origin 
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factory to the same destination customer on the same truck, those can be grouped in the so called 

“waybills”, which physically relate to one or more pallets full of PIDS that will travel together end to end.  

Also, as the list of customers is very large, they are grouped in different zones depending on their zip code. 

Hence, we have divided the area of Spain into 10 zones, which will determine different pricing rates. 

 

4.1.2. Input Parameters - Available Network description  
Next, we describe the costs and constraints of all potential route legs and nodes of the hub and spoke 

network considered in this study case. The proposed formulation could be easily extended to different 

network shapes, if the distribution constraints are kept. In this study case, on top of origins and 

destinations, we have considered four additional nodes: 

One origin consolidation hub (OCP = O), close to the origin factories.  

Three country destination hubs: in Barcelona (BCN), in Madrid (MAD), and in Zaragoza (ZAR).  

The resulting network, including the available arcs, is depicted in Figure 3. 

 

Figure 3. Graphic visualization of the modelled study case. Source: self-elaboration. 

 

Note that, formally, the network depicted in Figure 3 is a multigraph. This is because there are two 

different transportation options and, in some cases, they are both available for a given pair of nodes of 

the network. As it is usual in the company that served as a basis for defining this problem, two types of 

shipments are possible: full-truckload (FTL) shipments, for which a fixed cost per shipment is paid, and 

less-than-truckload (LTL) shipments whose costs depend on the shipped weight. 
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We next explain in detail all the costs involved in our distribution problem. 

• Handling costs (€/kg), only charged at the OCP: OO 

• FTL trucks: we pay a fixed amount per truck (€/truck), i.e. the full truck capacity is utilized by the 

company’s products. 

FTL route: defined by unique origin and destination nodes that can be linked with an FTL truck. The 

total number of arcs corresponding to FTL routes is Ni*Nj + 4Ni + Nj + 3, where Ni is the total number 

of origin factories and Nj the total number of destination customers.  

 Ni*Nj: FTL direct routes from each factory to each customer 

+ 

 4*Ni: from each factory to the 4 hubs (OCP, BCN, MAD, ZAR) 

+ 

 Nj: direct from OCP to each customer 

+ 

 3: from OCP to the 3 destination hubs (B, M, Z) 

The corresponding cost, Dip, depends on the origin i and destination zone, p. 

 

• LTL trucks: we pay per kg (€/kg), i.e. the truck is split among other companies, so we pay only for a 

certain allocation. This €/kg rate is a function of the waybill weight, with decreasing cost per kg as we 

increase the waybill weight. Moreover, there is a minimum cost for waybills up to a minimum weight 

and a maximum cost per shipment. Figure 4 shows an example of this cost function, which is piecewise 

linear: 

Min Cost 10 € 

0-30kg 1 €/kg 

30-200kg 0.8 €/kg 

…  

Max Cost 4000 € 

Figure 4. Common structure of LTL rates quotation. Source: self-elaboration. 

To include this quoting in the model the function has been linearized, as explained in section “4.2.1. 

Linearization of the LTL cost function”. 
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Constraints and other parameters to define the network operation: 

• Capacity of the trucks: The capacity of the trucks, C, indicates de maximum total weight a truck can 

hold, and is the same for all trucks. 

• Maximum time that shipments can wait at factory or at the OCP: Again, this maximum time is 

independent of the node where the waiting time takes place. We denote it by WF and WO. 

• Routing times from the factories to the OCP (to properly define continuity constraints on its inbound 

and outbound flow: Oi. 

Note: we establish time constraints involving a maximum waiting allowance at the origin factories or at the 

hubs. Therefore, the routing times past those points are not needed.  

 

4.1.3 Decision variables for the formulation 
The intent is to find the routing of each PackID (i.e. the set of arcs and nodes that will bring each PID from 

its origin to its destination) so that the overall cost is minimum. 

To do so, for each arc we have defined a set of binary routing variables that get activated (=1) if a certain 

PID (indiced by k) is using it with a certain truck (indiced by l), otherwise they have 0 value, i.e.:  

dkl = 1 if packid k travels from its origin factory directly to its destination customer on the l-th truck 

dkl = 0 otherwise 

Variables 𝑓𝑘𝑙, 𝑜𝑑𝑘𝑗, 𝑏𝑘𝑙, 𝑧𝑘𝑙, 𝑚𝑘𝑙, 𝑜𝑘𝑙, 𝑜𝑏𝑘𝑙, 𝑜𝑧𝑘𝑙 and 𝑜𝑚𝑘𝑙 are defined analogously, to represent 

shipments through the other arcs of the network, as represented in Figure 5.  

 

Figure 5. Graphic visualization of the network, including the routing variables (9 different options). Source: self-elaboration. 
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A set of constraints will ensure continuity (everything entering a hub needs to exit it) and limits on capacity 

and waiting times. Those are detailed in the section “4.3. Model Formulation”. Note that the last LTL legs 

from country hubs to the customer do not have any routing variable assigned, as they are already defined 

by the inbound flow, i.e. all packids entering the BCN hub (bkl = 1 or obkl=1) will travel on the last LTL leg 

from the BCN hub to the customer. 

The solution of the problem is therefore determined by the 9 “routing” variables shown in Figure 5. 

However, for modelling purposes we have added two new sets of binary variables, the so called “prima” 

and the “departure” ones. Summarizing, we have: 

- Routing variables: determine whether a packid k travels through this route on the l–th truck. 

 

- Prima variables: determine if we get to use the lth truck of the route. This is the variable that will be 

used in the minimization function to calculate the total FTL cost.  

d’i=1, j=1, l=3 = 1 means we have used at least 3 FTL direct trucks from factory i=1 to customer j=1. 

ob’l=2  = 1 means we have used at least 2 trucks from the OCO to the BCN hub.  

 

- Departure variables: determine on which day trucks depart from their origin.   

dDepti=1,j=1,l=1,s=1 = 1 if the first (l=1) FTL direct truck from factory i=1 to customer j=1 departs the 

factory on the day s=1.  

obDeptl=1,s=1 = 1 if the first (l=1) truck from the OCP to the BCN hub departs the OCO on day 

s=1.  

 

4.1.4. Objective Function 
The goal of the model is to minimize the total cost: 

Min (total cost) = Min (cost of FTL trucks + cost of LTL + handling costs) 

Cost of the FTL trucks 

With the defined prima variables, we can calculate the total cost spent on FTL trucks: 

- FTLcost: cost of all FTL direct trucks from factory i to the customers in zone p. 

- FTXcost: cost of all FTL trucks from factory i to the country hubs (BCN, MAD, ZAR).  

- toOCPcost: cost of all FTL trucks from factory i to the origin consolidation hub (OCP). 
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- OFTLcost: cost of all FTL direct trucks from the OCP to the customers in zone p. 

- OFTXcost: cost of all FTL trucks from the OCP to the country hubs. 

Below a couple examples on the formulation of these costs are given, the rest can be found in section 

“4.3.3. Model formulation – Objective function”.  

𝐹𝑇𝐿𝑐𝑜𝑠𝑡 =  ∑ 𝐷𝑖𝑝 ∗ 𝑑𝑖𝑗𝑙
′

𝑖𝑗𝑝𝑙

𝑧𝑜𝑛𝑒(𝑗)=𝑝

(1)
 

 

𝑂𝐹𝑇𝑋𝑐𝑜𝑠𝑡 =  𝑂𝐵 ∗ ∑ 𝑜𝑏′
𝑙

𝑙

+  𝑂𝑀 ∗ ∑ 𝑜𝑚′
𝑙

𝑙

+  𝑂𝑍 ∗ ∑ 𝑜𝑧′
𝑙

𝑙

(2) 

 

Cost of the LTL trucks 

All the PIDS that are not routed on a FTL customer direct truck will have a last leg charged at a €/kg cost 

based on their waybill weight. Section “4.2.1. Linearization of the LTL cost function” provides detailed 

explanation of the calculation of this LTL cost: 

Minimum costs (applies if a waybill exists, i.e. has a weight >0).  

𝑚𝑖𝑛𝑐𝑜𝑠𝑡 = 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝒇 + 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝒃 + 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝒐𝒃 + 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝒎 + 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝒐𝒎 + 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝒛

+ 𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝒐𝒛 

Adder costs (difference between the min. cost and the actual waybill cost): 

ltldir = LTL adder from factory i to a customer in zone p. 

ltlbcn= LTL adder from the BCN hub to a customer in zone p. Considers those PIDS originally routed 

in FTL trucks from factory to BCN hub. 

ltlmad = LTL adder from the MAD hub to a customer in zone p. Considers those PIDS originally 

routed in FTL trucks from factory to MAD hub. 

ltlzar = LTL adder from the ZAR hub to a customer in zone p. Considers those PIDS originally routed 

in FTL trucks from factory to ZAR hub. 

ltlobcn = LTL adder from the BCN hub to a customer in zone p. Considers those PIDS originally 

routed in FTL trucks from factory to OCP and then to BCN hub. 
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ltlomad = LTL adder from the MAD hub to a customer in zone p. Considers those PIDS originally 

routed in FTL trucks from factory to OCP and then to MAD hub. 

ltlozar = LTL adder from the ZAR hub to a customer in zone p. Considers those PIDS originally routed 

in FTL trucks from factory to OCP and then to ZAR hub. 

 

Handling costs 

In this study case we have assumed there are only handling charges at the origin consolidation point (OCP): 

𝑂ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔𝑐𝑜𝑠𝑡 =  𝑂𝑂 ∗ ∑ 𝑤𝑘 ∗ 𝑜𝑘𝑙

𝑘𝑙

, (3) 

where OO are the handling costs [€/kg], and the sum covers the weight [kg] of all PIDs routed via the OCP.  

 

4.2. AUXILIARY VARIABLES TO SUPPORT FORMULATION 
Including non-linearities in a mathematical programming formulation results in formulations typically much 

harder to solve, since they require the use of more involved methods than those applicable to problems 

where all functions are linear. For this reason, it is a common practice to linearize any nonlinear parts in 

the problem, whenever possible, even if it is at the cost of introducing additional auxiliary variables that 

are not directly related to a decision. 

This section contains the details of the linearizations that have been used in the study case. 

4.2.1. Linearization of the LTL cost function 
As explained previously, the LTL rate structure consists on a range of unit costs (€/kg) depending on the bin 

range of the waybill weight. The structure of this cost function is represented in Figure 6. 

Waybill weight LTL Rate 

equivalent 

to → 

Wb weight 

[kg] 

Intervals [kg] 

(def. by upper 

bound) 

LTL Rate 

minimum cost 10 eur 0 – t0 tramn=0 raten=0 =min cost [€] 

0-30kg 1 eur/kg t0 – t1 tramn=1 raten=1 [€/kg] 

30-200kg 0.8 eur/kg t1 – t2 tramn=2 raten=2 [€/kg] 

…  … … … 

Max Cost 4000 eur tNn-1 – tNn tramn=Nn raten=Nn [€/kg] 

Figure 6. Structure of the LTL cost function. Source: self-elaboration. 
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Below, Figure 7 represents the associated LTL cost graph. Note that the row {ratesn} has a first value (raten=0) 

that represents an absolute value [€] equal to the minimum cost, while all the rest (raten=1, …, Nn) refer to the 

slope of the cost function [€/kg]. These slopes decrease as the waybill weight increases. Therefore, except 

for the initial segment of the minimum cost, the LTL cost function is concave. There is also a maximum cost 

[€], defined by the last point of the x-axis: tramn=Nn. 

A different set of LTL rates is defined for each: 

- Origin point of the LTL route: any of the three country hubs or the Ni origin factories. 

- Destination zone p. Spain is divided into 10 zones depending on the postal code of the customer. 

Therefore, as input parameters we will have all the following value sets, where i defines the origin factory, 

p the destination zone of the customer, and n the tram of the waybill weight bin range. Note that the tram 

value equals the upper bound of the waybill weight’s bin range: 

tramBBpn and rateBBpn 

tramMMpn and rateMMpn 

tramZZpn and rateZZpn 

tramFFipn and rateFFipn 

 

Figure 7 provides a visual example (from BCN hub) of the LTL linearized function logic. It also includes two-

point examples of alpha values, a new variable explained right below.  

 

Figure 7. Graphic visualization of the LTL function and the alpha variables. 
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To obtain the cost of each waybill based on its weight, we have defined two new sets of binary variables:  

- Alpha variables αijln: determine if the waybill weight exceeds  the upper limit of the n-th cost 

interval, tramn. They also contain the indices related to factory, customer, and truck. As defined 

previously, a waybill consists of all packIDs travelling together e2e (i.e. same factory, origin, and 

truck). 

Taking as an example the PIDS routed from factory to BCN hub with an FTL, and then from BCN 

hub to the customer with the LTL for which we need to define the cost function: 

α𝐵𝐵𝑖𝑗𝑙𝑛 = 1 ⇔ ∑ (𝑤𝑘 ∗ 𝑏𝑘𝑙)
𝑘 𝑡𝑞

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

> 𝑡𝑟𝑎𝑚𝐵𝐵𝑝𝑛      ∀ 𝑝, 𝑙, 𝑛   𝑧𝑜𝑛𝑒𝑗 = 𝑝 (4)

 

which is equivalent to the combination of the following two inequalities, 

𝑡𝑟𝑎𝑚𝐵𝐵𝑝𝑛 + (𝐶 − 𝑡𝑟𝑎𝑚𝐵𝐵𝑝𝑛) ∗ 𝛼𝐵𝐵𝑖𝑗𝑙𝑛 ≥ ∑ 𝑤𝑘 ∗ 𝑏𝑘𝑙             ∀𝑖, 𝑗, 𝑝, 𝑙, 𝑛   𝑠𝑡.   𝑧𝑜𝑛𝑒𝑗 = 𝑝
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

(5)
 

 

∑ (w𝑘 ∗ 𝑏𝑘𝑙)
𝑘 

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

≥ (tramBB𝑝𝑛 + ε ) ∗ αBB𝑖𝑗𝑙𝑛∀ 𝑖, 𝑗, 𝑝, 𝑙, 𝑛  𝑧𝑜𝑛𝑒𝑗 = 𝑝 (6)
 

being C the truck capacity defined in the input parameters and ε an auxiliary small value.  

 

Note that equation (6) should be a strict inequality. However, standard optimization methods do 

not allow them. Therefore, it has been converted to a non-strict inequality by adding this small 

enough value ε. (To fix its value, it is enough to use any value a bit below the accuracy of the weights 

of the different orders). 

 

We assume no consolidation capabilities in the hubs: the only place where we allow to consolidate 

PackIds into bigger waybills is at the origin factory, so if two PIDS originating from different factories 

and traveling to the same customer meet in a hub, they would not be consolidated together. This 

means that the last LTL leg would still consider two fully different shipments, resulting in a higher 

cost: 

 

https://www.google.com/search?q=alpha+%CE%B1+%CE%B1+alfa&sa=X&ved=2ahUKEwjx8Mqlpu_wAhWRo3EKHRkPCAIQ6BMoADAsegQIIhAC
https://www.google.com/search?q=alpha+%CE%B1+%CE%B1+alfa&sa=X&ved=2ahUKEwjx8Mqlpu_wAhWRo3EKHRkPCAIQ6BMoADAsegQIIhAC
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LTL cost (shipment 1) + LTL cost (shipment 2) ≥ LTL cost (shipment 1 + shipment 2) 

 

- Waybill variables WVijl: determine if a waybill uses a certain LTL route (=1 if yes, =0 if no). Going 

back to the BCN example (defined by the routing variable bkl that will force an LTL leg out of the 

Barcelona hub): 

 

∑(w𝑘 ∗ 𝑏𝑘𝑙)

𝑘

 ≥ 0 ⇒ 𝑊𝑉𝑏𝑖𝑗𝑙 = 1       ∀𝑖, 𝑗, 𝑙    𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖   𝑎𝑛𝑑   𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 (7) 

 

Note that a restriction on the other direction (⇐) is not needed as we are addressing a minimization 

problem, and it will never pay to set 𝑊𝑉𝐵𝑖𝑗𝑙  to 1 if it is not really necessary. 

Equation (7) can be expressed as the following constraint: 

 

𝑊𝑉𝑏𝑖𝑗𝑙  ∗  ∑(w𝑘 ∗ 𝑏𝑘𝑙)

𝑘

 ≥ ∑(w𝑘 ∗ 𝑏𝑘𝑙)

𝑘

   ∀𝑖, 𝑗, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖   𝑎𝑛𝑑   𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 (8) 

 

 

However, this has a product of variables, so it has been linearized by creating a new binary variable: 

 

𝐿𝑊𝑉𝑏𝑏 𝑘𝑙
= 𝑊𝑉𝑏𝑖𝑗𝑙  ∗  𝑏𝑘𝑙        ∀𝑖, 𝑗, 𝑘, 𝑙 𝑠𝑡. 𝑓𝑎𝑐𝑡𝑘 = 𝑖  𝑎𝑛𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 (9) 

 

 

More details in section “4.2.2. Linearization of binary variables products”. Finally, we can now write: 

 

∑ (w𝑘  ∗  LWVbb 𝑘𝑙
 )

𝑘

 ≥ ∑(w𝑘 ∗ 𝑏𝑘𝑙)

𝑘

      ∀𝑙 (10) 

 

Summarizing, for each waybill (fixed indices i,j,l) the WV variable determines whether we apply the 

minimum LTL cost, while the row of alphas {αn} is used to calculate the cost increase through the n intervals 

based on the waybill weight. With those variables we can define a piecewise function to calculate the LTL 

costs. 
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Taking as an example the LTL costs related to all PIDS that went from the factory to the BCN hub in a FTL 

truck, and then from BCN to customer via LTL trucking: 

 

Minimum cost: 

𝑚𝑖𝑛𝑐𝑜𝑠𝑡𝑏 =  ∑ [𝑟𝑎𝑡𝑒𝐵𝐵𝑝,𝑛=0 ∗ 𝑊𝑉𝑏𝑖𝑗𝑙  ]
𝑖𝑗𝑝𝑙

𝑧𝑜𝑛𝑒𝑗=𝑝

(11)
 

 

Adding the cost increase based on waybill weight: 

𝑙𝑡𝑙𝑏𝑐𝑛 =  ∑ [𝛼𝐵𝐵𝑖𝑗𝑙𝑛 ∗ 𝑟𝑎𝑡𝑒𝐵𝐵𝑝𝑛 ∗ (𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛 − 𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛−1)
𝑖𝑗𝑝𝑙𝑛

𝑧𝑜𝑛𝑒𝑗=𝑝

𝑛>0

+ 𝑟𝑎𝑡𝑒𝐵𝐵𝑝𝑛 ∗ (𝛼𝐵𝐵𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝐵𝐵𝑖𝑗𝑙𝑛) ∗ ( ∑ (𝑏𝑘𝑙 ∗
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 𝑤𝑘) − 𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛−1)]              (12) 

 

First line of equation (12) calculates the cost adder of all the intervals that the waybill weight has fully 

completed. It activates for all the n intervals with αn=1 (meaning the waybill weight exceeds them), and 

then does:  rate * (tramn-tramn-1 ) = slope * distance in the x-axis = [€/kg *kg] = [€]. 

Second line of the equation (12) calculates the cost of the remaining weight. It activates when the weight 

has surpassed the n-1 interval, but has not achieved the upper limit of the n-th interval (i.e. αn-1 =1 and αn 

=0). Then: rate * (current weight – upbound of last surpassed interval) = slope * distance in the x-axis = 

[€/kg * kg] = [€]. 

To facilitate the understanding, Figure 8 provides a graphic visualization of the equation (12).  

Note that equation (12) has again multiplication of variables, for which we have defined a new variable: 

𝐿𝑎𝑙𝑝ℎ𝑎𝑠𝑏𝑘𝑙
= 𝑏𝑘𝑙 ∗ (𝛼𝐵𝐵𝑖𝑗𝑙𝑛−1 − 𝛼𝐵𝐵𝑖𝑗𝑙𝑛)    ∀ 𝑖, 𝑗, 𝑘, 𝑙, 𝑛 𝑠. 𝑡. 𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 1 (13) 

 

Finally, we can now write the linear equation: 
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𝑙𝑡𝑙𝑏𝑐𝑛 =  ∑ [𝛼𝐵𝐵𝑖𝑗𝑙𝑛 ∗ 𝑟𝑎𝑡𝑒𝐵𝐵𝑝𝑛 ∗ (𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛 − 𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛−1)
𝑖𝑗𝑝𝑙𝑛

𝑧𝑜𝑛𝑒𝑗=𝑝

𝑛>0

+ 𝑟𝑎𝑡𝑒𝐵𝐵𝑝𝑛 ∗ ( ∑ (𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑏𝑘𝑙𝑛 ∗
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 𝑤𝑘) − (𝛼𝐵𝐵𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝐵𝐵𝑖𝑗𝑙𝑛) ∗ 𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛−1)]       (14) 

 

 

 

Figure 8. Graphic visualization of the LTL cost function. 
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4.2.2. Linearization of binary variables product 
The objective is to derive a mixed integer linear formulation. Therefore, products of variables should be 

avoided or, if necessary, linearized. In this section we show how we do it.  

Being a and b two of the model binary variables, in all those cases where they appear multiplying each 

other we have defined a third binary variable 𝐿𝑎𝑏 = 𝑎 ∗ 𝑏. To ensure that the value of this new variable is 

consistent with the values of a and b, we need some extra constrains as, for instance, the following set, 

known as Fortet inequalities:  

𝐿𝑎𝑏 ≤ 𝑎 

𝐿𝑎𝑏 ≤ 𝑏 𝐿𝑎𝑏 ≥ 𝑎 + 𝑏 − 1 

a,b,c ∈ [0,1] 
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4.3. MODEL FORMULATION 

4.3.1. Input: shipment data and parameters 
- Indices: 

 k = {1,2,…, Nk} is the PackID index 

 i = {1,2,…, Ni} is the origin factory index 

 j = {1,2,…, Nj} is the destination customer index 

 p = {1,2,…, Np} is the destination zone index 

 s = {1,2,…, Ns} is the day index 

l = {1,2,…, Nl} is the truck index. The truck number (l) is tied to each FTL route. I.e. there will be so 

many trucks with l=1 as number of different FTL routes.   

n = {0,1,2,…, Nn} is the interval index (of the linearized LTL cost function).   

 

- Shipments data: 

wk = weight of the PID k [kg] 

factk = i-origin factory of the PID k 

customerk = j-destination customer of the PID k 

rk = r requested factory ship date of the PID k 

zonej = p-destination zone of the j customer 

 

- FTL Trucking costs: 

Dip = FTL direct cost from the origin factory i to a customer in zone p [€/truck]. 

Bi = FTL truck cost from the origin factory i to the Barcelona hub [€/truck]. 

Mi = FTL truck cost from the origin factory i to the Madrid hub [€/truck]. 

Zi = FTL truck cost from the origin factory i to the Zaragoza hub [€/truck]. 

Oi = FTL truck cost from the origin factory i to the Origin consolidation hub [€/truck]. 

ODp = FTL direct cost from the OCP to a customer in zone p [€/truck]. 

OB = FTL truck cost from the OCP to the Barcelona hub [€/truck]. 

OM = FTL truck cost from the OCP to the Madrid hub [€/truck]. 

OZ = FTL truck cost from the OCP to the Zaragoza hub [€/truck]. 
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- LTL Trucking costs: 

tramBBpn = upbound waybill weight of the interval n of the LTL linearized cost function from the 

BCN hub to a customer in zone p.  

tramMMpn = upbound waybill weight of the interval n of the LTL linearized cost function from the 

MAD hub to a customer in zone p.  

tramZZpn = upbound waybill weight of the interval n of the LTL linearized cost function from the 

ZAR hub to a customer in zone p. 

tramFFipn = upbound waybill weight of the interval n of the LTL linearized cost function from the 

factory i to a customer in zone p. 

 

rateBBpn = cost of the interval n of the LTL linearized function, from the BCN hub to a customer in 

zone p. n=0 contains the minimum cost [€], while the rest (n=1, 2, …, Nn) contain the slope [€/kg]. 

rateMMpn = cost of the interval n of the LTL linearized function, from the MAD hub to a customer 

in zone p. n=0 contains the minimum cost [€], while the rest (n=1, 2, …, Nn) contain the slope [€/kg]. 

rateZZpn = cost of the interval n of the LTL linearized function, from the ZAR hub to a customer in 

zone p. n=0 contains the minimum cost [€], while the rest (n=1, 2, …, Nn) contain the slope [€/kg]. 

rateFFipn = cost of the interval n of the LTL linearized function, from the factory i to a customer in 

zone p. n=0 contains the minimum cost [€], while the rest (n=1, 2, …, Nn) contain the slope [€/kg]. 

 

- Other parameters: 

C = truck capacity [kg]. 

OO = handling cost at the origin consolidation hub (OCP) [€/kg]. 

WF = maximum waiting time at any origin factory; between PID requested and actual shipment 

date [days]. 

WO = maximum waiting time at the OCP; between arrival and departure from OCP [days]. 

TimeOi = travel time from factory i to the OCP [days]. 
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4.3.2. Decision variables 
- Routing variables: determine the routing of each PID, i.e. the problem’s solution. 

 ∀k,l : 

dkl =1 if packID k goes from the factory direct to the customer on the l FTL truck. 

 =0 otherwise. 

fkl =1 if packID k goes from the factory direct to the customer on the l LTL truck. 

 =0 otherwise. 

bkl =1 if packID k goes from the factory to the BCN hub on the l FTL truck. 

 =0 otherwise. 

mkl =1 if packID k goes from the factory to the MAD hub on the l FTL truck. 

 =0 otherwise. 

zkl =1 if packID k goes from the factory to the ZAR hub on the l FTL truck. 

 =0 otherwise. 

odkl =1 if packID k goes from the OCP direct to the customer on the l FTL truck. 

 =0 otherwise. 

obkl =1 if packID k goes from the OCP to the BCN hub on the l FTL truck. 

 =0 otherwise. 

omkl =1 if packID k goes from the OCP to the MAD hub on the l FTL truck. 

 =0 otherwise. 

ozkl =1 if packID k goes from the OCP to the ZAR hub on the l FTL truck. 

 =0 otherwise. 

 

- Auxiliary routing variable: 

 ∀k,l : 

okl =1 if packID k goes via OCP (either OCP +direct/+BCN/+MAD/+ZAR), on the l FTL truck from 

factory to the OCP. 

  =0 otherwise. 
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- Prima variables: determine whether FTL trucks are used. 

 ∀i,j,l : 

d’ijl  =1 if we use the l direct truck from factory i to customer j.  

 =0 otherwise. 

b’il  =1 if we use the l truck from factory i to the Barcelona hub.  

 =0 otherwise. 

m’il  =1 if we use the l truck from factory i to the Madrid hub.  

 =0 otherwise. 

z’il  =1 if we use the l truck from factory i to the Zaragoza hub.  

 =0 otherwise. 

o’il  =1 if we use the l truck from factory i to the OCP.  

 =0 otherwise. 

od’jl =1 if we use the l direct truck from the OCP to the customer j.  

 =0 otherwise. 

ob’l =1 if we use the l truck from the OCP to the Barcelona hub.  

 =0 otherwise. 

om’l =1 if we use the l truck from the OCP to the Madrid hub.  

 =0 otherwise. 

oz’l  =1 if we use the l truck from the OCP to the Zaragoza hub.  

 =0 otherwise. 

 

- Departure variables: determine the truck’s departure day from its origin.  

 ∀i,j,l,s : 

dDeptijls =1 if the l direct truck (FTL) from factory i to customer j departs the factory on day s. 

  =0 otherwise. 

fDeptijls =1 if the l direct truck (LTL) from factory i to customer j departs the factory on day s. 

  =0 otherwise. 

bDeptils =1 if the l truck from the factory i to the BCN hub departs the factory on day s. 

  =0 otherwise. 
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mDeptils=1 if the l truck from the factory i to the MAD hub departs the factory on day s. 

  =0 otherwise. 

zDeptils =1 if the l truck from the factory i to the ZAR hub departs the factory on day s. 

  =0 otherwise. 

oDeptils =1 if the l truck from the factory i to the OCP departs the factory on day s. 

  =0 otherwise.  

odDeptjls=1 if the l direct truck from the OCP to customer j departs the OCP on day s. 

  =0 otherwise.  

obDeptls=1 if the l truck from the OCP to the BCN hub departs the OCP on day s. 

  =0 otherwise.  

omDeptls=1 if the l truck from the OCP to the MAD hub departs the OCP on day s. 

  =0 otherwise.  

ozDeptls=1 if the l truck from the OCP to the ZAR hub departs the OCP on day s. 

  =0 otherwise.  

 

- WV variables: determine whether a minimum LTL cost applies to a waybill. 

 ∀i,j,l : 

WVfijl =1 if there is a waybill from factory i to customer j travelling on the l LTL truck from factory 

direct to customer. 

  =0 otherwise. 

WVbijl =1 if there is a waybill from factory i to customer j travelling on the l truck from the factory 

to the BCN hub (meaning it will go on LTL from BCN hub to customer). 

  =0 otherwise. 

WVmijl =1 if there is a waybill from factory i to customer j travelling on the l truck from the factory 

to the MAD hub (meaning it will go on LTL from MAD hub to customer). 

  =0 otherwise. 

WVzijl =1 if there is a waybill from factory i to customer j travelling on the l truck from the factory 

to the ZAR hub (meaning it will go on LTL from ZAR hub to customer). 

  =0 otherwise. 
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WVobijl =1 if there is a waybill from factory i to customer j travelling on the l truck from the OCP to 

the BCN hub (meaning it will go on LTL from BCN hub to customer). 

  =0 otherwise. 

WVomijl =1 if there is a waybill from factory i to customer j travelling on the l truck from the OCP to 

the MAD hub (meaning it will go on LTL from MAD hub to customer). 

  =0 otherwise. 

WVozijl =1 if there is a waybill from factory i to customer j travelling on the l truck from the OCP to 

the ZAR hub (meaning it will go on LTL from ZAR hub to customer). 

  =0 otherwise. 

 

- Alpha variables: determine the interval of the LTL cost function based on the waybill weight. 

 ∀i,j,l,n : 

αFFijln =1 if the weight of the waybill (defined by factory i to customer j travelling on the l LTL 

truck from factory direct to customer) exceeds interval n. 

  =0 otherwise. 

αBBijln =1 if the weight of the waybill (defined by factory i to customer j travelling on the l truck 

from the factory to the BCN hub) exceeds interval n. 

  =0 otherwise. 

αMMijln =1 if the weight of the waybill (defined by factory i to customer j travelling on the l truck 

from the factory to the MAD hub) exceeds interval n. 

  =0 otherwise. 

αZZijln =1 if the weight of the waybill (defined by factory i to customer j travelling on the l truck 

from the factory to the ZAR hub) exceeds interval n. 

  =0 otherwise. 

αOBBijln =1 if the weight of the waybill (defined by factory i to customer j travelling on the l truck 

from OCP to the BCN hub) exceeds interval n. 

  =0 otherwise. 

αOMMijln=1 if the weight of the waybill (defined by factory i to customer j travelling on the l truck 

from OCP to the MAD hub) exceeds interval n. 

  =0 otherwise. 

αOZZijln =1 if the weight of the waybill (defined by factory i to customer j travelling on the l truck 

from OCP to the ZAR hub) exceeds interval n. 
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  =0 otherwise. 

 

- Linearized variables to avoid products of variables: L_a_b=a*b={0,1}. As all model variables are 

binary {0,1}, all those linearized variables L_a_b have value 1 if both variables a=1 and b=1. More 

info in section “4.2.2. Linearization of binary variables products”. 

 ∀k,i,j,l,s,n>0 : 

L_WVf_fkl = WVfijl * fkl 

L_WVb_bkl = WVbijl * bkl 

L_WVm_mkl = WVmijl * mkl 

L_WVz_zkl = WVzijl * zkl 

L_WVob_obkl = WVobijl * obkl 

L_WVom_omkl = WVomijl * omkl 

L_WVoz_ozkl = WVozijl * ozkl 

L_oDept_okls = oDeptils * okl 

L_odDept_odkls = odDeptjls * odkl 

L_obDept_obkls = obDeptls * obkl 

L_omDept_omkls = omDeptls * omkl 

L_ozDept_ozkls = ozDeptls * ozkl 

L_alphas_fkln = [αFFi,j,l,n-1 - αFFi,j,l,n] * fk,l 

L_alphas_bkln = [αBBi,j,l,n-1 - αBBi,j,l,n] * bk,l 

L_alphas_mkln = [αMMi,j,l,n-1 - αMMi,j,l,n] * mk,l 

L_alphas_zkln = [αZZi,j,l,n-1 - αZZi,j,l,n] * zk,l 

L_alphas_obkln = [αOBBi,j,l,n-1 - αOBBi,j,l,n] * obk,l 

L_alphas_omkln = [αOMMi,j,l,n-1 - αOMMi,j,l,n] * omk,l 

L_alphas_ozkln = [αOZZi,j,l,n-1 - αOZZi,j,l,n] * ozk,l 
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4.3.3. Objective function 
 

𝑀𝑖𝑛(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡) 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 =  𝐹𝑇𝐿𝑐𝑜𝑠𝑡 + 𝐹𝑇𝑋𝑐𝑜𝑠𝑡 + 𝑡𝑜𝑂𝐶𝑃𝑐𝑜𝑠𝑡 + 𝑂𝐹𝑇𝐿𝑐𝑜𝑠𝑡 + 𝑂𝐹𝑇𝑋𝑐𝑜𝑠𝑡 + 𝑂ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔𝑐𝑜𝑠𝑡

+ 𝑚𝑖𝑛𝑐𝑜𝑠𝑡 + 𝑙𝑡𝑙𝑑𝑖𝑟 + 𝑙𝑡𝑙𝑏𝑐𝑛 + 𝑙𝑡𝑙𝑚𝑎𝑑 + 𝑙𝑡𝑙𝑧𝑎𝑟 + 𝑙𝑡𝑙𝑜𝑏𝑐𝑛 + 𝑙𝑡𝑙𝑜𝑚𝑎𝑑 + 𝑙𝑡𝑙𝑜𝑧𝑎𝑟 

with: 

𝐹𝑇𝐿𝑐𝑜𝑠𝑡 =  ∑ 𝐷𝑖𝑝

𝑖𝑗𝑝𝑙
𝑧𝑜𝑛𝑒𝑗=𝑝

∗ 𝑑𝑖𝑗𝑙
′  

 

𝐹𝑇𝑋𝑐𝑜𝑠𝑡 = ∑     [𝐵𝑖

𝑖

 ∗ ∑ 𝑏′
𝑖𝑙

𝑙

+ 𝑀𝑖 ∗ ∑ 𝑚′
𝑖𝑙

𝑙

+  𝑍𝑖 ∗ ∑ 𝑧′
𝑖𝑙

𝑙

] 

 

𝑡𝑜𝑂𝐶𝑃𝑐𝑜𝑠𝑡 =  ∑    [𝑂𝑖

𝑖

∗ ∑ 𝑜′𝑖𝑙]

𝑙

 

 

𝑂𝐹𝑇𝐿𝑐𝑜𝑠𝑡 =  ∑ [𝑂𝐷𝑝

𝑗𝑝𝑙
𝑧𝑜𝑛𝑒𝑗=𝑝

∗ 𝑜𝑑𝑗𝑙
′ ] 

 

𝑂𝐹𝑇𝑋𝑐𝑜𝑠𝑡 =  𝑂𝐵 ∗ ∑ 𝑜𝑏′
𝑙

𝑙

+  𝑂𝑀 ∗ ∑ 𝑜𝑚′
𝑙

𝑙

+  𝑂𝑍 ∗ ∑ 𝑜𝑧′𝑙

𝑙

 

 

𝑂ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔𝑐𝑜𝑠𝑡 = 𝑂𝑂 ∗ ∑ 𝑤𝑘 ∗ 𝑜𝑘𝑙

𝑘𝑙

 

 

𝑚𝑖𝑛𝑐𝑜𝑠𝑡 =  ∑ [𝑟𝑎𝑡𝑒𝐹𝐹𝑖,𝑝,𝑛=0 ∗ 𝑊𝑉𝑓𝑖𝑗𝑙 + 𝑟𝑎𝑡𝑒𝐵𝐵𝑝,𝑛=0 ∗ (𝑊𝑉𝑏𝑖𝑗𝑙 + 𝑊𝑉𝑜𝑏𝑖𝑗𝑙)  
𝑖𝑗𝑝𝑙

𝑧𝑜𝑛𝑒𝑗=𝑝

+ 𝑟𝑎𝑡𝑒𝑀𝑀𝑝,𝑛=0 ∗ (𝑊𝑉𝑚𝑖𝑗𝑙 + 𝑊𝑉𝑜𝑚𝑖𝑗𝑙) + 𝑟𝑎𝑡𝑒𝑍𝑍𝑝,𝑛=0 ∗ (𝑊𝑉𝑧𝑖𝑗𝑙 + 𝑊𝑉𝑜𝑧𝑖𝑗𝑙)] 
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𝑙𝑡𝑙𝑑𝑖𝑟 =  ∑ [𝛼𝐹𝐹𝑖𝑗𝑙𝑛 ∗ 𝑟𝑎𝑡𝑒𝐹𝐹𝑖𝑝𝑛 ∗ (𝑡𝑟𝑎𝑚𝐹𝐹𝑖𝑝𝑛 − 𝑡𝑟𝑎𝑚𝐹𝐹𝑖,𝑝,𝑛−1)
𝑖𝑗𝑝𝑙𝑛

𝑧𝑜𝑛𝑒𝑗=𝑝

𝑛>0

+ 𝑟𝑎𝑡𝑒𝐹𝐹𝑖𝑝𝑛 ∗ ( ∑ (𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑓𝑘𝑙𝑛 ∗
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 𝑤𝑘) − (𝛼𝐹𝐹𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝐹𝐹𝑖𝑗𝑙𝑛) ∗ 𝑡𝑟𝑎𝑚𝐹𝐹𝑖,𝑝,𝑛−1)] 

 

𝑙𝑡𝑙𝑏𝑐𝑛 =  ∑ [𝛼𝐵𝐵𝑖𝑗𝑙𝑛 ∗ 𝑟𝑎𝑡𝑒𝐵𝐵𝑝𝑛 ∗ (𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛 − 𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛−1)
𝑖𝑗𝑝𝑙𝑛

𝑧𝑜𝑛𝑒𝑗=𝑝

𝑛>0

+ 𝑟𝑎𝑡𝑒𝐵𝐵𝑝𝑛 ∗ ( ∑ (𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑏𝑘𝑙𝑛 ∗
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 𝑤𝑘) − (𝛼𝐵𝐵𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝐵𝐵𝑖𝑗𝑙𝑛) ∗ 𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛−1)] 

 

𝑙𝑡𝑙𝑚𝑎𝑑 =  ∑ [𝛼𝑀𝑀𝑖𝑗𝑙𝑛 ∗ 𝑟𝑎𝑡𝑒𝑀𝑀𝑝𝑛 ∗ (𝑡𝑟𝑎𝑚𝑀𝑀𝑝,𝑛 − 𝑡𝑟𝑎𝑚𝑀𝑀𝑝,𝑛−1)
𝑖𝑗𝑝𝑙𝑛

𝑧𝑜𝑛𝑒𝑗=𝑝

𝑛>0

+ 𝑟𝑎𝑡𝑒𝑀𝑀𝑝𝑛 ∗ ( ∑ (𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑚𝑘𝑙𝑛 ∗
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 𝑤𝑘) − (𝛼𝑀𝑀𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑀𝑀𝑖𝑗𝑙𝑛) ∗ 𝑡𝑟𝑎𝑚𝑀𝑀𝑝,𝑛−1)] 

 

𝑙𝑡𝑙𝑧𝑎𝑟 =  ∑ [𝛼𝑍𝑍𝑖𝑗𝑙𝑛 ∗ 𝑟𝑎𝑡𝑒𝑍𝑍𝑝𝑛 ∗ (𝑡𝑟𝑎𝑚𝑍𝑍𝑝,𝑛 − 𝑡𝑟𝑎𝑚𝑍𝑍𝑝,𝑛−1)
𝑖𝑗𝑝𝑙𝑛

𝑧𝑜𝑛𝑒𝑗=𝑝

𝑛>0

+ 𝑟𝑎𝑡𝑒𝑍𝑍𝑝𝑛 ∗ ( ∑ (𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑧𝑘𝑙𝑛 ∗
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 𝑤𝑘) − (𝛼𝑍𝑍𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑍𝑍𝑖𝑗𝑙𝑛) ∗ 𝑡𝑟𝑎𝑚𝑍𝑍𝑝,𝑛−1)] 

 

𝑙𝑡𝑙𝑜𝑏𝑐𝑛 =  ∑ [𝛼𝑂𝐵𝐵𝑖𝑗𝑙𝑛 ∗ 𝑟𝑎𝑡𝑒𝐵𝐵𝑝𝑛 ∗ (𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛 − 𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛−1)
𝑖𝑗𝑝𝑙𝑛

𝑧𝑜𝑛𝑒𝑗=𝑝

𝑛>0

+ 𝑟𝑎𝑡𝑒𝐵𝐵𝑝𝑛 ∗ ( ∑ (𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑏𝑘𝑙𝑛 ∗
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 𝑤𝑘) − (𝛼𝑂𝐵𝐵𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑂𝐵𝐵𝑖𝑗𝑙𝑛) ∗ 𝑡𝑟𝑎𝑚𝐵𝐵𝑝,𝑛−1)] 
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𝑙𝑡𝑙𝑜𝑚𝑎𝑑 =  ∑ [𝛼𝑂𝑀𝑀𝑖𝑗𝑙𝑛 ∗ 𝑟𝑎𝑡𝑒𝑀𝑀𝑝𝑛 ∗ (𝑡𝑟𝑎𝑚𝑀𝑀𝑝,𝑛 − 𝑡𝑟𝑎𝑚𝑀𝑀𝑝,𝑛−1)
𝑖𝑗𝑝𝑙𝑛

𝑧𝑜𝑛𝑒𝑗=𝑝

𝑛>0

+ 𝑟𝑎𝑡𝑒𝑀𝑀𝑝𝑛 ∗ ( ∑ (𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑚𝑘𝑙𝑛 ∗
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 𝑤𝑘) − (𝛼𝑂𝑀𝑀𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑂𝑀𝑀𝑖𝑗𝑙𝑛) ∗ 𝑡𝑟𝑎𝑚𝑀𝑀𝑝,𝑛−1)] 

 

𝑙𝑡𝑙𝑜𝑧𝑎𝑟 =  ∑ [𝛼𝑂𝑍𝑍𝑖𝑗𝑙𝑛 ∗ 𝑟𝑎𝑡𝑒𝑍𝑍𝑝𝑛 ∗ (𝑡𝑟𝑎𝑚𝑍𝑍𝑝,𝑛 − 𝑡𝑟𝑎𝑚𝑍𝑍𝑝,𝑛−1)
𝑖𝑗𝑝𝑙𝑛

𝑧𝑜𝑛𝑒𝑗=𝑝

𝑛>0

+ 𝑟𝑎𝑡𝑒𝑍𝑍𝑝𝑛 ∗ ( ∑ (𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑧𝑘𝑙𝑛 ∗
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 𝑤𝑘) − (𝛼𝑂𝑍𝑍𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑂𝑍𝑍𝑖𝑗𝑙𝑛) ∗ 𝑡𝑟𝑎𝑚𝑍𝑍𝑝,𝑛−1)] 
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4.3.4. Constraints 
 

R1. Each PackID must use one (and only one) route/truck. 

∑ 𝑑𝑘𝑙 + 𝑓𝑘𝑙 + 𝑏𝑘𝑙 + 𝑚𝑘𝑙 + 𝑧𝑘𝑙 + 𝑜𝑘𝑙 = 1       ∀𝑘

𝑙

 

 

R2. Constraints to limit trucks’ capacity. 

∑ 𝑤𝑘 ∗ 𝑑𝑘𝑙 ≤ 𝐶   ∀𝑖, 𝑗, 𝑙
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

∑ 𝑤𝑘 ∗ 𝑓𝑘𝑙 ≤ 𝐶   ∀𝑖, 𝑗, 𝑙
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

∑ 𝑤𝑘 ∗ 𝑏𝑘𝑙 ≤ 𝐶   ∀𝑖, 𝑙
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

 

 

∑ 𝑤𝑘 ∗ 𝑚𝑘𝑙 ≤ 𝐶   ∀𝑖, 𝑙
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

 

 

∑ 𝑤𝑘 ∗ 𝑧𝑘𝑙 ≤ 𝐶   ∀𝑖, 𝑙
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

 

 

∑ 𝑤𝑘 ∗ 𝑜𝑘𝑙 ≤ 𝐶   ∀𝑖, 𝑙
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

 

 

∑ 𝑤𝑘 ∗ 𝑜𝑑𝑘𝑙 ≤ 𝐶   ∀𝑗, 𝑙
𝑘

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

∑ 𝑤𝑘 ∗ 𝑜𝑏𝑘𝑙 ≤ 𝐶   ∀𝑙

𝑘

 

∑ 𝑤𝑘 ∗ 𝑜𝑚𝑘𝑙 ≤ 𝐶   ∀𝑙

𝑘
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∑ 𝑤𝑘 ∗ 𝑜𝑧𝑘𝑙 ≤ 𝐶   ∀𝑙

𝑘

 

 

R3. Define prima variables: force their activation if we use the l truck of the FTL route. 

𝑑𝑘𝑙 ≤ 𝑑𝑖𝑗𝑙
′        ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝑏𝑘𝑙 ≤ 𝑏𝑖𝑙
′        ∀𝑖, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖 

𝑚𝑘𝑙 ≤ 𝑚𝑖𝑙
′        ∀𝑖, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖 

𝑧𝑘𝑙 ≤ 𝑧𝑖𝑙
′        ∀𝑖, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖 

𝑜𝑘𝑙 ≤ 𝑜𝑖𝑙
′        ∀𝑖, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖 

𝑜𝑑𝑘𝑙 ≤ 𝑜𝑑𝑗𝑙
′        ∀𝑗, 𝑘, 𝑙   𝑠𝑡.  𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝑜𝑏𝑘𝑙 ≤ 𝑜𝑏𝑙
′       ∀𝑘, 𝑙 

𝑜𝑚𝑘𝑙 ≤ 𝑜𝑚𝑙
′       ∀𝑘, 𝑙 

𝑜𝑧𝑘𝑙 ≤ 𝑜𝑧𝑙
′       ∀𝑘, 𝑙 

 

R4. Define prima variables: allow its activation only if the l truck of the FTL route is used (not needed 

because we are minimizing, however it helps the algorithm). 

 

∑ 𝑑𝑘𝑙 ≥ 𝑑𝑖𝑗𝑙
′       ∀𝑖, 𝑗, 𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 
 

 

∑ 𝑏𝑘𝑙 ≥ 𝑏𝑖𝑙
′       ∀𝑖, 𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

 

 

∑ 𝑚𝑘𝑙 ≥ 𝑚𝑖𝑙
′       ∀𝑖, 𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

 

 
 

∑ 𝑧𝑘𝑙 ≥ 𝑧𝑖𝑙
′       ∀𝑖, 𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

 

 

∑ 𝑜𝑘𝑙 ≥ 𝑜𝑖𝑙
′       ∀𝑖, 𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖
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∑ 𝑜𝑑𝑘𝑙 ≥ 𝑜𝑑𝑗𝑙
′       ∀𝑗, 𝑙

𝑘
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

∑ 𝑜𝑏𝑘𝑙 ≥ 𝑜𝑏𝑙
′      ∀𝑙

𝑘

 

 

∑ 𝑜𝑚𝑘𝑙 ≥ 𝑜𝑚𝑙
′      ∀𝑙

𝑘

 

 

∑ 𝑜𝑧𝑘𝑙 ≥ 𝑜𝑧𝑙
′      ∀𝑙

𝑘

 

 

R5. Define prima variables: avoid symmetries, otherwise different index orders would be read by the 

algorithm as different solutions, drastically increasing the computational time.  

𝑑′𝑖𝑗𝑙 ≤ 𝑑𝑖,𝑗,𝑙−1
′         ∀𝑖, 𝑗, 𝑙   𝑠𝑡.  𝑙 > 1 

𝑏′𝑖𝑙 ≤ 𝑏𝑖,𝑙−1
′        ∀𝑖, 𝑙   𝑠𝑡.  𝑙 > 1 

𝑚′𝑖𝑙 ≤ 𝑚𝑖,𝑙−1
′        ∀𝑖, 𝑙   𝑠𝑡.  𝑙 > 1 

𝑧′𝑖𝑙 ≤ 𝑧𝑖,𝑙−1
′        ∀𝑖, 𝑙   𝑠𝑡.  𝑙 > 1 

𝑜′𝑖𝑙 ≤ 𝑜𝑖,𝑙−1
′        ∀𝑖, 𝑙   𝑠𝑡.  𝑙 > 1 

𝑜𝑑′𝑗𝑙 ≤ 𝑜𝑑𝑗𝑙−1
′        ∀𝑗, 𝑙   𝑠𝑡.  𝑙 > 1 

𝑜𝑏′𝑙 ≤ 𝑜𝑏𝑙−1
′        ∀𝑙   𝑠𝑡.  𝑙 > 1 

𝑜𝑚′𝑙 ≤ 𝑜𝑚𝑙−1
′        ∀𝑙   𝑠𝑡.  𝑙 > 1 

𝑜𝑧′𝑙 ≤ 𝑜𝑧𝑙−1
′        ∀𝑙   𝑠𝑡.  𝑙 > 1 

 

R6. Constraints on truck shipping date: if truck l has PIDs assigned, it has to depart on a day that aligns 

with the requirements of all its assigned PIDs. 

𝑑𝑘𝑙 ≤ ∑ 𝑑𝐷𝑒𝑝𝑡𝑖𝑗𝑙𝑠
𝑠

𝑟𝑘≤𝑠
𝑠≤𝑟𝑘+𝑊𝐹

       ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

𝑓𝑘𝑙 ≤ ∑ 𝑓𝐷𝑒𝑝𝑡𝑖𝑗𝑙𝑠
𝑠

𝑟𝑘≤𝑠
𝑠≤𝑟𝑘+𝑊𝐹

       ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 
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𝑏𝑘𝑙 ≤ ∑ 𝑏𝐷𝑒𝑝𝑡𝑖𝑙𝑠
𝑠

𝑟𝑘≤𝑠
𝑠≤𝑟𝑘+𝑊𝐹

       ∀𝑖, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖 

 

𝑚𝑘𝑙 ≤ ∑ 𝑚𝐷𝑒𝑝𝑡𝑖𝑙𝑠
𝑠

𝑟𝑘≤𝑠
𝑠≤𝑟𝑘+𝑊𝐹

       ∀𝑖, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖 

 

𝑧𝑘𝑙 ≤ ∑ 𝑧𝐷𝑒𝑝𝑡𝑖𝑙𝑠
𝑠

𝑟𝑘≤𝑠
𝑠≤𝑟𝑘+𝑊𝐹

       ∀𝑖, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖 

 

𝑜𝑘𝑙 ≤ ∑ 𝑜𝐷𝑒𝑝𝑡𝑖𝑙𝑠       ∀𝑖, 𝑘, 𝑙   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖
𝑠

𝑟𝑘≤𝑠
𝑠≤𝑟𝑘+𝑊𝐹

 

 

 

R7. Constraints on truck shipping date: force that Departure variables are only activated when the truck 

has at least one PID assigned. Not needed in a minimization problem but helps the algorithm. 

𝑑𝐷𝑒𝑝𝑡𝑖𝑗𝑙𝑠 ≤ ∑ 𝑑𝑘𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

       ∀𝑖, 𝑗, 𝑙, 𝑠 

 

𝑓𝐷𝑒𝑝𝑡𝑖𝑗𝑙𝑠 ≤ ∑ 𝑓𝑘𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

       ∀𝑖, 𝑗, 𝑙, 𝑠 

 

𝑏𝐷𝑒𝑝𝑡𝑖𝑙𝑠 ≤ ∑ 𝑏𝑘𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

       ∀𝑖, 𝑙, 𝑠 

 

𝑚𝐷𝑒𝑝𝑡𝑖𝑙𝑠 ≤ ∑ 𝑚𝑘𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

       ∀𝑖, 𝑙, 𝑠 

 

𝑧𝐷𝑒𝑝𝑡𝑖𝑙𝑠 ≤ ∑ 𝑧𝑘𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

       ∀𝑖, 𝑙, 𝑠 

𝑜𝐷𝑒𝑝𝑡𝑖𝑙𝑠 ≤ ∑ 𝑜𝑘𝑙

𝑘
𝑓𝑎𝑐𝑡𝑘=𝑖

       ∀𝑖, 𝑙, 𝑠 
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𝑜𝑑𝐷𝑒𝑝𝑡𝑗𝑙𝑠 ≤ ∑ 𝑜𝑑𝑘𝑙

𝑘
𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

       ∀𝑗, 𝑙, 𝑠 

𝑜𝑏𝐷𝑒𝑝𝑡𝑙𝑠 ≤ ∑ 𝑜𝑏𝑘𝑙

𝑘

       ∀𝑙, 𝑠 

𝑜𝑚𝐷𝑒𝑝𝑡𝑙𝑠 ≤ ∑ 𝑜𝑚𝑘𝑙

𝑘

       ∀𝑙, 𝑠 

𝑜𝑧𝐷𝑒𝑝𝑡𝑙𝑠 ≤ ∑ 𝑜𝑧𝑘𝑙

𝑘

       ∀𝑙, 𝑠 

 

R8. Constraints on truck shipping date: a given truck can only go one day. 

 

∑ 𝑑𝐷𝑒𝑝𝑡𝑖𝑗𝑙𝑠 ≤ 1       ∀𝑖, 𝑗, 𝑙

𝑠

 

∑ 𝑓𝐷𝑒𝑝𝑡𝑖𝑗𝑙𝑠 ≤ 1       ∀𝑖, 𝑗, 𝑙

𝑠

 

∑ 𝑏𝐷𝑒𝑝𝑡𝑖𝑙𝑠 ≤ 1       ∀𝑖, 𝑙

𝑠

 

∑ 𝑚𝐷𝑒𝑝𝑡𝑖𝑙𝑠 ≤ 1       ∀𝑖, 𝑙

𝑠

 

∑ 𝑧𝐷𝑒𝑝𝑡𝑖𝑙𝑠 ≤ 1       ∀𝑖, 𝑙

𝑠

 

∑ 𝑜𝐷𝑒𝑝𝑡𝑖𝑙𝑠 ≤ 1       ∀𝑖, 𝑙

𝑠

 

∑ 𝑜𝑑𝐷𝑒𝑝𝑡𝑗𝑙𝑠 ≤ 1       ∀𝑗, 𝑙

𝑠

 

∑ 𝑜𝑏𝐷𝑒𝑝𝑡𝑙𝑠 ≤ 1       ∀𝑙

𝑠

 

∑ 𝑜𝑚𝐷𝑒𝑝𝑡𝑙𝑠 ≤ 1       ∀𝑙

𝑠

 

∑ 𝑜𝑧𝐷𝑒𝑝𝑡𝑙𝑠 ≤ 1       ∀𝑙

𝑠

 

 

 

R9. Constraints to define the auxiliary OCP variables. 

∑ 𝑜𝑘𝑙 = ∑ 𝑜𝑑𝑘𝑙 + 𝑜𝑏𝑘𝑙 + 𝑜𝑚𝑘𝑙 + 𝑜𝑧𝑘𝑙        ∀𝑘

𝑙𝑙
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∑ 𝐿_𝑜𝐷𝑒𝑝𝑡_𝑜𝑘𝑙𝑠 ≤ ∑ 𝐿_𝑜𝑑𝐷𝑒𝑝𝑡_𝑜𝑑𝑘𝑙𝑠′ +   𝐿_𝑜𝑏𝐷𝑒𝑝𝑡_𝑜𝑏𝑘𝑙𝑠′ + 𝐿_𝑜𝑚𝐷𝑒𝑝𝑡_𝑜𝑚𝑘𝑙𝑠′

𝑙,𝑠′

𝑠′≥𝑠+𝑇𝑖𝑚𝑒𝑂𝑖

𝑠′≤𝑠+𝑇𝑖𝑚𝑒𝑂𝑖+𝑊𝑂

𝑙

+ 𝐿_𝑜𝑧𝐷𝑒𝑝𝑡_𝑜𝑧𝑘𝑙𝑠′  ∀𝑖, 𝑗, 𝑘, 𝑠  𝑠𝑡. 𝑓𝑎𝑐𝑡𝑘 = 𝑖 , 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

 

 

R10. Constraints to define the alpha variables: if the waybill weight surpasses interval n, the alpha 

variable gets activated. A waybill is defined by all PIDS that travel end to end together (from same 

factory i to same customer j in same truck l).  

𝑡𝑟𝑎𝑚𝐹𝐹𝑖𝑝𝑛 + (𝐶 − 𝑡𝑟𝑎𝑚𝐹𝐹𝑖𝑝𝑛) ∗ 𝛼𝐹𝐹𝑖𝑗𝑙𝑛 ≥ ∑ 𝑤𝑘 ∗ 𝑓𝑘𝑙             ∀𝑖, 𝑗, 𝑝, 𝑙, 𝑛   𝑠𝑡.   𝑧𝑜𝑛𝑒𝑗 = 𝑝
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

𝑡𝑟𝑎𝑚𝐵𝐵𝑝𝑛 + (𝐶 − 𝑡𝑟𝑎𝑚𝐵𝐵𝑝𝑛) ∗ 𝛼𝐵𝐵𝑖𝑗𝑙𝑛 ≥ ∑ 𝑤𝑘 ∗ 𝑏𝑘𝑙             ∀𝑖, 𝑗, 𝑝, 𝑙, 𝑛   𝑠𝑡.   𝑧𝑜𝑛𝑒𝑗 = 𝑝
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

𝑡𝑟𝑎𝑚𝑀𝑀𝑝𝑛 + (𝐶 − 𝑡𝑟𝑎𝑚𝑀𝑀𝑝𝑛) ∗ 𝛼𝑀𝑀𝑖𝑗𝑙𝑛 ≥ ∑ 𝑤𝑘 ∗ 𝑚𝑘𝑙             ∀𝑖, 𝑗, 𝑝, 𝑙, 𝑛   𝑠𝑡.   𝑧𝑜𝑛𝑒𝑗 = 𝑝
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

𝑡𝑟𝑎𝑚𝑍𝑍𝑝𝑛 + (𝐶 − 𝑡𝑟𝑎𝑚𝑍𝑍𝑝𝑛) ∗ 𝛼𝑍𝑍𝑖𝑗𝑙𝑛 ≥ ∑ 𝑤𝑘 ∗ 𝑧𝑘𝑙             ∀𝑖, 𝑗, 𝑝, 𝑙, 𝑛   𝑠𝑡.   𝑧𝑜𝑛𝑒𝑗 = 𝑝
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

𝑡𝑟𝑎𝑚𝐵𝐵𝑝𝑛 + (𝐶 − 𝑡𝑟𝑎𝑚𝐵𝐵𝑝𝑛) ∗ 𝛼𝑂𝐵𝐵𝑖𝑗𝑙𝑛 ≥ ∑ 𝑤𝑘 ∗ 𝑜𝑏𝑘𝑙             ∀𝑖, 𝑗, 𝑝, 𝑙, 𝑛   𝑠𝑡.   𝑧𝑜𝑛𝑒𝑗 = 𝑝
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

𝑡𝑟𝑎𝑚𝑀𝑀𝑝𝑛 + (𝐶 − 𝑡𝑟𝑎𝑚𝑀𝑀𝑝𝑛) ∗ 𝛼𝑂𝑀𝑀𝑖𝑗𝑙𝑛 ≥ ∑ 𝑤𝑘 ∗ 𝑜𝑚𝑘𝑙             ∀𝑖, 𝑗, 𝑝, 𝑙, 𝑛   𝑠𝑡.   𝑧𝑜𝑛𝑒𝑗 = 𝑝
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

𝑡𝑟𝑎𝑚𝑍𝑍𝑝𝑛 + (𝐶 − 𝑡𝑟𝑎𝑚𝑍𝑍𝑝𝑛) ∗ 𝛼𝑂𝑍𝑍𝑖𝑗𝑙𝑛 ≥ ∑ 𝑤𝑘 ∗ 𝑜𝑧𝑘𝑙             ∀𝑖, 𝑗, 𝑝, 𝑙, 𝑛   𝑠𝑡.   𝑧𝑜𝑛𝑒𝑗 = 𝑝
𝑘

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

 

 

R11. Constraints to define the alpha variables: force that they are only activated if the waybill weight 

surpasses interval n.  

∑ (w𝑘 ∗ 𝑓𝑘𝑙)
𝑘 

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

≥ (tramFF𝑖𝑝𝑛 + ε ) ∗ αFF𝑖𝑗𝑙𝑛               ∀ 𝑖, 𝑗, 𝑝, 𝑙, 𝑛  𝑧𝑜𝑛𝑒𝑗 = 𝑝 
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∑ (w𝑘 ∗ 𝑏𝑘𝑙)
𝑘 

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

≥ (tramBB𝑝𝑛 + ε ) ∗ αBB𝑖𝑗𝑙𝑛               ∀ 𝑖, 𝑗, 𝑝, 𝑙, 𝑛  𝑧𝑜𝑛𝑒𝑗 = 𝑝 

 

∑ (w𝑘 ∗ 𝑚𝑘𝑙)
𝑘 

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

≥ (tramMM𝑝𝑛 + ε ) ∗ αMM𝑖𝑗𝑙𝑛               ∀ 𝑖, 𝑗, 𝑝, 𝑙, 𝑛  𝑧𝑜𝑛𝑒𝑗 = 𝑝 

 

∑ (w𝑘 ∗ 𝑧𝑘𝑙)
𝑘 

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

≥ (tramZZ𝑝𝑛 + ε ) ∗ αZZ𝑖𝑗𝑙𝑛               ∀ 𝑖, 𝑗, 𝑝, 𝑙, 𝑛  𝑧𝑜𝑛𝑒𝑗 = 𝑝 

 

∑ (w𝑘 ∗ 𝑜𝑏𝑘𝑙)
𝑘 

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

≥ (tramBB𝑝𝑛 + ε ) ∗ αOBB𝑖𝑗𝑙𝑛                ∀ 𝑖, 𝑗, 𝑝, 𝑙, 𝑛  𝑧𝑜𝑛𝑒𝑗 = 𝑝 

 

∑ (w𝑘 ∗ 𝑜𝑚𝑘𝑙)
𝑘 

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

≥ (tramMM𝑝𝑛 + ε ) ∗ αOMM𝑖𝑗𝑙𝑛               ∀ 𝑖, 𝑗, 𝑝, 𝑙, 𝑛  𝑧𝑜𝑛𝑒𝑗 = 𝑝 

 

∑ (w𝑘 ∗ 𝑜𝑧𝑘𝑙)
𝑘 

𝑓𝑎𝑐𝑡𝑘=𝑖

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘=𝑗

≥ (tramZZ𝑝𝑛 + ε ) ∗ αOZZ𝑖𝑗𝑙𝑛               ∀ 𝑖, 𝑗, 𝑝, 𝑙, 𝑛  𝑧𝑜𝑛𝑒𝑗 = 𝑝 

 

 

R12. Constraints to define alphas: avoid symmetries. 

𝛼𝐹𝐹𝑖𝑗𝑙𝑛 ≤ 𝛼𝐹𝐹𝑖,𝑗,𝑙,𝑛−1    ∀𝑖, 𝑗, 𝑙, 𝑛 > 0 

𝛼𝐵𝐵𝑖𝑗𝑙𝑛 ≤ 𝛼𝐵𝐵𝑖,𝑗,𝑙,𝑛−1    ∀𝑖, 𝑗, 𝑙, 𝑛 > 0 

𝛼𝑀𝑀𝑖𝑗𝑙𝑛 ≤ 𝛼𝑀𝑀𝑖,𝑗,𝑙,𝑛−1    ∀𝑖, 𝑗, 𝑙, 𝑛 > 0 

𝛼𝑍𝑍𝑖𝑗𝑙𝑛 ≤ 𝛼𝑍𝑍𝑖,𝑗,𝑙,𝑛−1    ∀𝑖, 𝑗, 𝑙, 𝑛 > 0 

𝛼𝑂𝐵𝐵𝑖𝑗𝑙𝑛 ≤ 𝛼𝑂𝐵𝐵𝑖,𝑗,𝑙,𝑛−1    ∀𝑖, 𝑗, 𝑙, 𝑛 > 0 

𝛼𝑂𝑀𝑀𝑖𝑗𝑙𝑛 ≤ 𝛼𝑂𝑀𝑀𝑖,𝑗,𝑙,𝑛−1    ∀𝑖, 𝑗, 𝑙, 𝑛 > 0 

𝛼𝑂𝑍𝑍𝑖𝑗𝑙𝑛 ≤ 𝛼𝑂𝑍𝑍𝑖,𝑗,𝑙,𝑛−1    ∀𝑖, 𝑗, 𝑙, 𝑛 > 0 
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R13. Constraints to define the WV variables (its linearization): WV variables get activated if there is a 

waybill with weight>0 from factory i to customer j in the truck l.  

∑(𝑤𝑘  ∗  𝐿_𝑊𝑉𝑓_𝑓𝑘𝑙 )

𝑘

 ≥ ∑(𝑤𝑘 ∗ 𝑓𝑘𝑙)

𝑘

      ∀𝑙 

∑(𝑤𝑘  ∗  𝐿_𝑊𝑉𝑏_𝑏𝑘𝑙 )

𝑘

 ≥ ∑(𝑤𝑘 ∗ 𝑏𝑘𝑙)

𝑘

      ∀𝑙 

∑(𝑤𝑘  ∗  𝐿_𝑊𝑉𝑚_𝑚𝑘𝑙  )

𝑘

 ≥ ∑(𝑤𝑘 ∗ 𝑚𝑘𝑙)

𝑘

      ∀𝑙 

∑(𝑤𝑘  ∗  𝐿_𝑊𝑉𝑧_𝑧𝑘𝑙  )

𝑘

 ≥ ∑(𝑤𝑘 ∗ 𝑧𝑘𝑙)

𝑘

      ∀𝑙 

∑(𝑤𝑘  ∗  𝐿_𝑊𝑉𝑜𝑏_𝑜𝑏𝑘𝑙  )

𝑘

 ≥ ∑(𝑤𝑘 ∗ 𝑜𝑏𝑘𝑙)

𝑘

      ∀𝑙 

∑(𝑤𝑘  ∗  𝐿_𝑊𝑉𝑜𝑚_𝑜𝑚𝑘𝑙 )

𝑘

 ≥ ∑(𝑤𝑘 ∗ 𝑜𝑚𝑘𝑙)

𝑘

      ∀𝑙 

∑(𝑤𝑘  ∗  𝐿_𝑊𝑉𝑜𝑧_𝑜𝑧𝑘𝑙  )

𝑘

 ≥ ∑(𝑤𝑘 ∗ 𝑜𝑧𝑘𝑙)

𝑘

      ∀𝑙 

 

R14. Constraints to define linearization variables: 

 
𝐿_𝑜𝐷𝑒𝑝𝑡_𝑜𝑘𝑙𝑠 ≤ 𝑜𝐷𝑒𝑝𝑡𝑖𝑙𝑠    ∀𝑘, 𝑖, 𝑙, 𝑠,   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖 

𝐿_𝑜𝐷𝑒𝑝𝑡_𝑜𝑘𝑙𝑠 ≤ 𝑜𝑘𝑙     ∀𝑘, 𝑙, 𝑠 

𝐿_𝑜𝐷𝑒𝑝𝑡_𝑜𝑘𝑙𝑠 ≥ 𝑜𝐷𝑒𝑝𝑡𝑖𝑙𝑠 + 𝑜𝑘𝑙 − 1    ∀𝑘, 𝑖, 𝑙, 𝑠,   𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖 

 

𝐿_𝑜𝑑𝐷𝑒𝑝𝑡_𝑜𝑑𝑘𝑙𝑠 ≤ 𝑜𝑑𝐷𝑒𝑝𝑡𝑗𝑙𝑠    ∀𝑘, 𝑗, 𝑙, 𝑠,   𝑠𝑡.  𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝐿_𝑜𝑑𝐷𝑒𝑝𝑡_𝑜𝑑𝑘𝑙𝑠 ≤ 𝑜𝑑𝑘𝑙     ∀𝑘, 𝑙, 𝑠 

𝐿_𝑜𝑑𝐷𝑒𝑝𝑡_𝑜𝑑𝑘𝑙𝑠 ≥ 𝑜𝑑𝐷𝑒𝑝𝑡𝑗𝑙𝑠 + 𝑜𝑑𝑘𝑙 − 1    ∀𝑘, 𝑗, 𝑙, 𝑠,   𝑠𝑡.  𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

𝐿_𝑜𝑏𝐷𝑒𝑝𝑡_𝑜𝑏𝑘𝑙𝑠 ≤ 𝑜𝑏𝐷𝑒𝑝𝑡𝑙𝑠    ∀𝑘, 𝑙, 𝑠 

𝐿_𝑜𝑏𝐷𝑒𝑝𝑡_𝑜𝑏𝑘𝑙𝑠 ≤ 𝑜𝑏𝑘𝑙     ∀𝑘, 𝑙, 𝑠 

𝐿_𝑜𝑏𝐷𝑒𝑝𝑡_𝑜𝑏𝑘𝑙𝑠 ≥ 𝑜𝑏𝐷𝑒𝑝𝑡𝑙𝑠 + 𝑜𝑏𝑘𝑙 − 1    ∀𝑘, 𝑙, 𝑠 

 

𝐿_𝑜𝑚𝐷𝑒𝑝𝑡_𝑜𝑚𝑘𝑙𝑠 ≤ 𝑜𝑚𝐷𝑒𝑝𝑡𝑙𝑠    ∀𝑘, 𝑙, 𝑠 

𝐿_𝑜𝑚𝐷𝑒𝑝𝑡_𝑜𝑚𝑘𝑙𝑠 ≤ 𝑜𝑚𝑘𝑙     ∀𝑘, 𝑙, 𝑠 

𝐿_𝑜𝑚𝐷𝑒𝑝𝑡_𝑜𝑚𝑘𝑙𝑠 ≥ 𝑜𝑚𝐷𝑒𝑝𝑡𝑙𝑠 + 𝑜𝑚𝑘𝑙 − 1    ∀𝑘, 𝑙, 𝑠 

 

𝐿_𝑜𝑧𝐷𝑒𝑝𝑡_𝑜𝑧𝑘𝑙𝑠 ≤ 𝑜𝑧𝐷𝑒𝑝𝑡𝑙𝑠    ∀𝑘, 𝑙, 𝑠 

𝐿_𝑜𝑧𝐷𝑒𝑝𝑡_𝑜𝑧𝑘𝑙𝑠 ≤ 𝑜𝑧𝑘𝑙     ∀𝑘, 𝑙, 𝑠 

𝐿_𝑜𝑧𝐷𝑒𝑝𝑡_𝑜𝑧𝑘𝑙𝑠 ≥ 𝑜𝑧𝐷𝑒𝑝𝑡𝑙𝑠 + 𝑜𝑧𝑘𝑙 − 1    ∀𝑘, 𝑙, 𝑠 

 

𝐿_𝑊𝑉𝑓_𝑓𝑘𝑙 ≤ 𝑊𝑉𝑓𝑖𝑗𝑙     ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝐿_𝑊𝑉𝑓_𝑓𝑘𝑙 ≤ 𝑓𝑘𝑙     ∀𝑘, 𝑙 
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𝐿_𝑊𝑉𝑓_𝑓𝑘𝑙 ≥ 𝑊𝑉𝑓𝑖𝑗𝑙 + 𝑓𝑘𝑙 − 1   ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

𝐿_𝑊𝑉𝑏_𝑏𝑘𝑙 ≤ 𝑊𝑉𝑏𝑖𝑗𝑙     ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝐿_𝑊𝑉𝑏_𝑏𝑘𝑙 ≤ 𝑏𝑘𝑙     ∀𝑘, 𝑙 

𝐿_𝑊𝑉𝑏_𝑏𝑘𝑙 ≥ 𝑊𝑉𝑏𝑖𝑗𝑙 + 𝑏𝑘𝑙 − 1   ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

𝐿_𝑊𝑉𝑚_𝑚𝑘𝑙 ≤ 𝑊𝑉𝑚𝑖𝑗𝑙     ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝐿_𝑊𝑉𝑚_𝑚𝑘𝑙 ≤ 𝑚𝑘𝑙     ∀𝑘, 𝑙 

𝐿_𝑊𝑉𝑚_𝑚𝑘𝑙 ≥ 𝑊𝑉𝑚𝑖𝑗𝑙 + 𝑚𝑘𝑙 − 1   ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

𝐿_𝑊𝑉𝑧_𝑧𝑘𝑙 ≤ 𝑊𝑉𝑧𝑖𝑗𝑙     ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝐿_𝑊𝑉𝑧_𝑧𝑘𝑙 ≤ 𝑧𝑘𝑙     ∀𝑘, 𝑙 

𝐿_𝑊𝑉𝑧_𝑧𝑘𝑙 ≥ 𝑊𝑉𝑧𝑖𝑗𝑙 + 𝑧𝑘𝑙 − 1   ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

𝐿_𝑊𝑉𝑜𝑏_𝑜𝑏𝑘𝑙 ≤ 𝑊𝑉𝑜𝑏𝑖𝑗𝑙     ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝐿_𝑊𝑉𝑜𝑏_𝑜𝑏𝑘𝑙 ≤ 𝑜𝑏𝑘𝑙     ∀𝑘, 𝑙 

𝐿_𝑊𝑉𝑜𝑏_𝑜𝑏𝑘𝑙 ≥ 𝑊𝑉𝑜𝑏𝑖𝑗𝑙 + 𝑜𝑏𝑘𝑙 − 1   ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

𝐿_𝑊𝑉𝑜𝑚_𝑜𝑚𝑘𝑙 ≤ 𝑊𝑉𝑜𝑚𝑖𝑗𝑙     ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝐿_𝑊𝑉𝑜𝑚_𝑜𝑚𝑘𝑙 ≤ 𝑜𝑚𝑘𝑙     ∀𝑘, 𝑙 

𝐿_𝑊𝑉𝑜𝑚_𝑜𝑚𝑘𝑙 ≥ 𝑊𝑉𝑜𝑚𝑖𝑗𝑙 + 𝑜𝑚𝑘𝑙 − 1   ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

𝐿_𝑊𝑉𝑜𝑧_𝑜𝑧𝑘𝑙 ≤ 𝑊𝑉𝑜𝑧𝑖𝑗𝑙     ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

𝐿_𝑊𝑉𝑜𝑧_𝑜𝑧𝑘𝑙 ≤ 𝑜𝑧𝑘𝑙     ∀𝑘, 𝑙 

𝐿_𝑊𝑉𝑜𝑧_𝑜𝑧𝑘𝑙 ≥ 𝑊𝑉𝑜𝑧𝑖𝑗𝑙 + 𝑜𝑧𝑘𝑙 − 1   ∀𝑖, 𝑗, 𝑘, 𝑙   𝑠𝑡.   𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗 

 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑓𝑘𝑙𝑛 ≤ 𝑓𝑘𝑙    ∀𝑘, 𝑙, 𝑛 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑓𝑘𝑙𝑛 ≤ (𝛼𝐹𝐹𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝐹𝐹𝑖𝑗𝑙𝑛)          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑓𝑘𝑙𝑛 ≥ 𝑓𝑘𝑙 + (𝛼𝐹𝐹𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝐹𝐹𝑖𝑗𝑙𝑛) − 1          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑏𝑘𝑙𝑛 ≤ 𝑏𝑘𝑙    ∀𝑘, 𝑙, 𝑛 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑏𝑘𝑙𝑛 ≤ (𝛼𝐵𝐵𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝐵𝐵𝑖𝑗𝑙𝑛)          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑏𝑘𝑙𝑛 ≥ 𝑏𝑘𝑙 + (𝛼𝐵𝐵𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝐵𝐵𝑖𝑗𝑙𝑛) − 1          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑚𝑘𝑙𝑛 ≤ 𝑚𝑘𝑙    ∀𝑘, 𝑙, 𝑛 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑚𝑘𝑙𝑛 ≤ (𝛼𝑀𝑀𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑀𝑀𝑖𝑗𝑙𝑛)          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑚𝑘𝑙𝑛 ≥ 𝑚𝑘𝑙 + (𝛼𝑀𝑀𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑀𝑀𝑖𝑗𝑙𝑛) − 1          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑧𝑘𝑙𝑛 ≤ 𝑧𝑘𝑙    ∀𝑘, 𝑙, 𝑛 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑧𝑘𝑙𝑛 ≤ (𝛼𝑍𝑍𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑍𝑍𝑖𝑗𝑙𝑛)          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑧𝑘𝑙𝑛 ≥ 𝑧𝑘𝑙 + (𝛼𝑍𝑍𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑍𝑍𝑖𝑗𝑙𝑛) − 1          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 
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𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑏𝑘𝑙𝑛 ≤ 𝑜𝑏𝑘𝑙    ∀𝑘, 𝑙, 𝑛 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑏𝑘𝑙𝑛 ≤ (𝛼𝑂𝐵𝐵𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑂𝐵𝐵𝑖𝑗𝑙𝑛)          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑏𝑘𝑙𝑛 ≥ 𝑜𝑏𝑘𝑙 + (𝛼𝑂𝐵𝐵𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑂𝐵𝐵𝑖𝑗𝑙𝑛) − 1          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑚𝑘𝑙𝑛 ≤ 𝑜𝑚𝑘𝑙    ∀𝑘, 𝑙, 𝑛 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑚𝑘𝑙𝑛 ≤ (𝛼𝑂𝑀𝑀𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑂𝑀𝑀𝑖𝑗𝑙𝑛)          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑚𝑘𝑙𝑛 ≥ 𝑜𝑚𝑘𝑙 + (𝛼𝑂𝑀𝑀𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑂𝑀𝑀𝑖𝑗𝑙𝑛) − 1       ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑧𝑘𝑙𝑛 ≤ 𝑜𝑧𝑘𝑙    ∀𝑘, 𝑙, 𝑛 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑧𝑘𝑙𝑛 ≤ (𝛼𝑂𝑍𝑍𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑂𝑍𝑍𝑖𝑗𝑙𝑛)          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 

𝐿_𝑎𝑙𝑝ℎ𝑎𝑠_𝑜𝑧𝑘𝑙𝑛 ≥ 𝑜𝑧𝑘𝑙 + (𝛼𝑂𝑍𝑍𝑖,𝑗,𝑙,𝑛−1 − 𝛼𝑂𝑍𝑍𝑖𝑗𝑙𝑛) − 1          ∀𝑖, 𝑗, 𝑘, 𝑙, 𝑛  𝑠𝑡.  𝑓𝑎𝑐𝑡𝑘 = 𝑖, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑘 = 𝑗, 𝑛 > 0 
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4.4. RUNNING THE MODEL 
 

4.4.1. Software and algorithm 
In the previous sections we have presented an integer programming formulation of the particular problem 

studied in detail in this project. The standard method for solving this type of programs is the branch & 

bound method, which is an implicit enumeration method that discards entire portions of the feasible region 

based on bounds of the best value that can be attained on these regions. Indeed, most commercial solvers 

implement branch & cut algorithms, that combine branch & bound with the gradual inclusion of generic 

valid inequalities. These inequalities help pushing the bounds closer to the actual values of the integer 

solutions, speeding up the optimization process. 

Several solvers are available for addressing this type of problems. The most competitive ones include 

Xpress, Cplex, or Gurobi. In all cases, the available platforms allow to introduce separately the formal model 

and the instance data, so that solving the problem with different datasets (different instances of the same 

problem) only requires modifying the data files, but does not require modifying the formulation. 

The solver chosen in this project has been Xpress[m1], because its ease of use and also because student 

licenses are available. Although some tests have been performed with different policies for exploring the 

branch and bound tree, finally the algorithm has been run with its default settings. 

Appendix A contains the XPRESS code with the model’s formulation, together with the input parameters 

and data for the sample provided in the following section. 
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4.4.2. Sample 
We have run an example with 30 PIDS, from 4 factories to 10 customers, in the period of 2 days: 

Input 

- Shipment data as shown in Table 1. 

Table 1. Input Shipment data for the example with 30PIDS. 

 

- Costs: detailed visualization of all rates can be found in Appendix B. 

- Other parameters: 

o Truck capacity: C=6500 kg 

o Maximum time that shipments can wait at factory: WF=0 days 

o Maximum time that shipments can wait at OCP: WO=1 day 

o Routing time from factories to OCP: 

2 days from factory 1 

1 day from factories 2,3,4. 

PIDS w r fact customer zone

1 2618 1 2 7 6

2 2452 1 2 3 7

3 5 1 4 10 6

4 4828 1 2 2 10

5 6388 1 2 10 6

6 2998 1 2 8 2

7 1346 1 2 2 10

8 4215 1 2 5 8

9 978 1 2 10 6

10 3902 1 2 8 2

11 478 1 2 2 10

12 5220 1 2 2 10

13 315 1 2 1 1

14 927 1 2 7 6

15 3248 1 2 10 6

16 5388 1 2 4 1

17 5934 2 2 2 10

18 2220 2 2 8 2

19 4292 2 2 7 6

20 5935 2 2 2 10

21 10 2 2 6 2

22 5821 2 3 8 2

23 5387 2 3 9 6

24 1737 2 3 9 6

25 6421 2 3 7 6

26 262 2 3 6 2

27 3845 2 1 2 10

28 1036 2 1 3 7

29 5606 2 1 5 8

30 3624 2 1 3 7
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Output 

The solver has found a global optimum, with a total cost of 50577.91€. 

The solution is represented in Figure 9 and Table2. It has routed some shipments direct from factory to 

customer, while others have used the OCP or the BCN hub. The MAD and ZAR hubs have not been used. It 

is to be noted that the OCP has been used to achieve better consolidation (ex PIDS 10 and 18, that had 

different factory departure days without allowance to wait there), but also to achieve better rates: due to 

supply/demand balance, in some cases it is cheaper to route via the OCP than direct (ex. Fact2 to customers 

in Zone10). 

 

 

Figure 9. Visual representation of the model solution, example with 30PIDS. 
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Table 2. Model solution (detailed), example with 30PIDS.  

 

 

 

 

4.4.3. Adaptability of the model 
The defined program serves to solve a very specific case; but the power of having this built-in algorithm is 

to provide a baseline code as well as familiarity and understanding of the program language and solving 

algorithm. Then the model can be applied to any other dataset as long as the network remains the same, 

or can be more or less easily adapted to similar networks. Also, additional aspects that are relevant in 

practice could be easily added. For example, we could include a new PID parameter with its latest allowed 

delivery date (and a restriction to enforce it). One could also include certain norms, such as minimum 

volume used by a route, or an “opening cost” (i.e. fix cost for a route if it is used at least one time, relating 

to potential set up investment). If necessary, instead of the weight, the sizes of the PIDs and the trucks 

capacity could be measured in volume (loading meters), etc. And of course, it could be considered the 

Truck 

from Truck To Truck ID Waybill ID PID ID

Truck dept

(ex truck origin)

PID req

(ex fact) PID Waybil Truck

 FTL cost

[€/truck] 

LTL cost

[€/waybill]

LTL Min cost

[€/wb]

 LTL Adder 

cost [€/wb] 

fa1_o1 fa1_cu5_od1 29 2 2 5,606                   5,606                   5,606                   1,050€        

fa1_o2 fa1_cu2_od1 27 2 2 3,845                   3,845                   3,845                   1,050€        

fa2_o1 fa2_cu2_od2 17 2 2 5,934                   5,934                   5,934                   350€            

fa2_o2 fa2_cu8_od1 10 1 1 3,902                   3,902                   3,902                   350€            

4 1 4,828                   

7 1 1,346                   

11 1 478                       

12 1 5,220                   

fa2_o5 fa2_cu2_od3 20 2 2 5,935                   5,935                   5,935                   350€            

fa2_o6 fa2_cu8_od1 18 2 2 2,220                   2,220                   2,220                   350€            

cu2_od1 fa1_cu2_od1 27 4 2 3,845                   3,845                   3,845                   1,450€        

cu2_od2 fa2_cu2_od2 17 4 2 5,934                   5,934                   5,934                   1,450€        

cu2_od3 fa2_cu2_od3 20 4 2 5,935                   5,935                   5,935                   1,450€        

11 1 478                       

12 1 5,220                   

4 1 4,828                   

7 1 1,346                   

OCP Customer5 (Zone8) cu5_od1 fa1_cu5_od1 29 5 2 5,606                   5,606                   5,606                   4,550€        

10 1 3,902                   

18 2 2,220                   

fa2-cu10_d1 fa2_cu10_d1 5 1 1 6,388                   6,388                   6,388                   1,900€        

9 1 978                       

15 1 3,248                   

Fact2 Customer4 (Zone1) fa2-cu4_d1 fa2_cu4_d1 16 1 1 5,388                   5,388                   5,388                   1,950€        

Fact2 Customer5 (Zone8) fa2-cu5_d1 fa2_cu5_d1 8 1 1 4,215                   4,215                   4,215                   4,550€        

Fact2 Customer7 (Zone6) fa2-cu7_d1 fa2_cu7_d1 19 2 2 4,292                   4,292                   4,292                   1,900€        

Fact3 Customer7 (Zone6) fa3-cu7_d1 fa3_cu7_d1 25 2 2 6,421                   6,421                   6,421                   2,050€        

Fact3 Customer8 (Zone2) fa3-cu8_d1 fa3_cu8_d1 22 2 2 5,821                   5,821                   5,821                   2,250€        

Fact3 Customer9 (Zone6) fa3-cu9_d1 fa3_cu9_d1 23 2 2 5,387                   5,387                   5,387                   2,050€        

Customer6 (Zone2) fa2_cu6_f10 21 2 10                         10                         11.97€          9.57€               2€                     

Customer8 (Zone2) fa2_cu8_f2 6 1 2,998                   2,998                   2,018.85€    9.57€               2,009€             

Customer6 (Zone2) fa3_cu6_f9 26 2 262                       262                       232.45€       9.57€               223€                

Customer9 (Zone6) fa3_cu9_f9 24 2 1,737                   1,737                   1,280.35€    8.61€               1,272€             

Fact4 Customer10 (Zone6) fa4_cu10_f5 3 1 5                            5                            9.04€            9.04€               -€                 

28 2 1,036                   

30 2 3,624                   

fa2_cu1_b1 13 1 315                       315                       

fa2_cu3_b1 2 1 2,452                   2,452                   

1 1 2,618                   

14 1 927                       

28 2 1,036                   

30 2 3,624                   

Customer1 (Zone1) fa2_cu1_b1 13 1 315                       315                       119€             8.32€               111€                

Customer3 (Zone7) fa2_cu3_b1 2 1 2,452                   2,452                   1,496€          25.92€             1,470€             

1 1 2,618                   

14 1 927                       

COST [€]

2,505€          

775€             

ID

Fact2

Fact3

1,850€        

WEIGHT [kg]DAY

25.92€             

6.87€               

2,479€             

768€                

350€            

350€            

1,450€        

1,450€        

2,250€        

1,900€        

1

1

3

3

3

1

2

1 6,312                   

LTL LTL

LTL LTL

LTL

LTL

3,545                   

4,660                   

3,545                   

6,174                   

5,698                   

5,698                   

6,174                   

6,122                   

4,226                   

4,660                   

fa2_cu7_b1

BCN

Customer7 (Zone6)

6,174                   

5,698                   

5,698                   

6,174                   

6,122                   

4,226                   

4,660                   

fa2_b1

fa2_cu7_b1

BCN --> 

CUSTOMER

Customer3 (Zone7) fa1_cu3_b1

fa2_cu2_od5

cu8_od1 fa2_cu8_od1

fa2-cu10_d2 fa2_cu10_d2

fa1_b1 fa1_cu3_b1 2,300€        

Fact2 BCN

FACT-->BCN

fa2_o3 fa2_cu2_od5

fa2_o4 fa2_cu2_od4

cu2_od4 fa2_cu2_od4

cu2_od5

Customer10 (Zone6)

Fact1 BCN

FACT --> OCP

OCP --> 

CUSTOMER

FACT--> 

CUSTOMER 

(FTL)

FACT--> 

CUSTOMER 

(LTL)

Fact1 OCP

Fact2 OCP

OCP Customer2 (Zone10)

OCP
Customer8

(Zone2)

Fact2
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option to include the input data and parameters not as fixed, but as stochastic variables better representing 

reality. But this, clearly, would result in a much harder problem in the area of stochastic optimization. 

Thinking broader, one could even consider this model as a baseline for factory location assignment: we 

could set up artificial origin nodes with 0-cost legs to different factories, which would have assigned certain 

node cost equal to production cost (plus the cost of the transportation route afterwards). Figure 10 

represents such scenario. 

 

 

Figure 10. Artificial nodes to model factory location assignment decisions. 

 

It has also been mentioned in earlier sections that this case study considers only the economic cost, 

however this could be easily extrapolated to any other quantitative measure (i.e. environmental impact: 

Co2eq).  

 

4.4.4. Computational limitations 
We are in front of an integer linear problem (binary to be more specific), where for each indivisible PID we 

must choose whether to take or not to take a certain route. This results in a (computationally) very 

expensive exact program, not applicable at the scale of a multinational network. The above is an example 

of the maximum complexity that this exact algorithm can cope with, which is extremely far from any real-

world application in logistics. Certain adjustments have been done to help the algorithm: providing an initial 

solution, ensuring no symmetries apply, playing with constraints so that the model can easily recognize null 

variables… but improvements are rather negligible considering how distant we are from the order of 

magnitude need for real production. 

 

4.4.5. Next Steps - Extrapolating the model to a practical solution 
As science advances, so does the power of computational systems (i.e. parallel computing), so one could 

imagine a future with enough computational strength to solve the prior exercise at a real scale (millions of 

shipments/variables) in minimum, practical time. However, we are still far away from this, so for the time 

being other solutions shall be applied to use the prior model for real applications. The use of heuristics 
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would be very interesting in this case. However, to have an idea of the expectable % gap with respect to 

the optimum, and evaluate whether the solutions provided by a particular heuristic represent a good trade-

off  between speed and solution quality, it is important to count on exact methods that allow to compare 

heuristic and exact solutions at least for small instances. 

Another solution would be to split the problem into two steps: 

1- Continuous relaxation allowing the division of the PIDS. This would determine which lanes should 

be opened. 

2- Assignment of this “opened” lanes to each PID. This would solve the same integer exact problem 

formulated previously, but with a drastic decrease in the number of variables. 

As in heuristics, here we would again be trading accuracy for speed. 

 

4.4.6. Additional note on the exact formulation 
 

It is to be mentioned that the feasible region of the formulation of the exact model (section 4.3.) contains 

solutions that are not really feasible for our problem, but this is not an issue, as is explained next to avoid 

misunderstandings.  

As defined, we do not allow waybills to split at the last FTL truck used. In case of the OCP there are two FTL 

trucks (fact->ocp->country hub). Hence, in a feasible solution of our formulation might wrongly allow 

waybills to split in the first FTL truck from factory to the OCP. It could also happen that a waybill is wrongly 

consolidating two PIDS that do not even travel in the same truck at all, like in the following example: 

- PID k=1 (from fact i=1 to customer j=1) which travels in the l=1 truck from factory to BCN hub: 

b(1,1)=1. 

- PID k=2 (from fact i=1 to customer j=1) which travels in the l=1 truck from OCP to BCN hub: 

ob(1,1)=1. 

In case this would happen, the LTL cost of this waybill would be charged twice: both ltlbcn and ltlobcn would 

be rated considering the total waybill weight (PID1+PID2). Since we are minimizing, such a solution will 

never appear as the optimal solution of the formulation. So, it is no necessary to increase the size of the 

formulation by including new constraints that forbid such solutions.  
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4.5. ENVIRONMENTAL IMPACT1 
 

The company involved in this analysis represents an industry whose products require materials extraction 

and significant manufacturing processes. In addition, through their lifecycle those products will also 

consume a significant amount of energy. Given all this, it is to be considered that their transportation and 

logistic activities only represent around 2% of the total environmental footprint. Although this is a small 

fraction, any improvement towards sustainability is always welcome.  

The goal of the study case analysed is to reduce network inefficiencies. Although the objective function in 

this thesis has been defined as an economic cost, this could easily be extrapolated to any other quantitative 

measure such as greenhouse gas emissions.  

Even if minimizing cost, we can consider that both economic cost and greenhouse gas emissions are 

positively correlated with the shipped tones-km. In that case we can consider that minimizing cost will also 

externalize to Co2 emissions.  

On the company’s case, 15,000 tones of products are shipped annually, covering an average distance of 

2,000km with standard truck mode (Co2 factor: 140g/tkm, see EEA2021). If the model could be used to 

improve the network by 10%, this would result in 420 tones of Co2 savings per year. 

Note the above is a very rough approximation that only intends to provide an order of magnitude.  

 

4.6. BUDGET1 
The cost of developing this study accounts for 25,000€ mainly driven by human resources, as other costs 

(amortization of computer’s hardward and software such as licenses, energy, etc) are negligible. 

- Project author: 400h * 50€/h = 20,000€ 

- Project director: 50h * 100€/h = 5,000€ 

  

 
1 The “Environmental Impact” and “Budget” sections have been included in this document only to comply with the formal guidelines 
of ETSEIB’s master thesis. However, given the nature of this thesis those sections do not really apply. 
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5. OTHER INVESTIGATIONS ON ACADEMIC APPLICATIONS TO REAL 

LOGISTICS NETWORK DESIGN 
 

This project has been very much focused on an exact algorithm to optimize the network operation, however 

there are multiple other approaches that could as well proof very insightful. The below list summarizes the 

best initiatives that have been identified in this regard by reviewing the literature, and from the interviews 

carried out: 

- Digital twins on dynamic transport optimization 

Extrapolate Wardrop’s traffic principles (see En.wikipedia.org. 2021) to the logistics field: creating 

digital twins of the loads and letting them decide dynamically and selfishly on their best routing 

alternative (user equilibrium). Compared to the system optimal, this user equilibrium may be easier 

to achieve while also providing very good results.  
 

- Resilient planning enabled by probabilistic simulation 

Having a good forecast is key to optimize the transportation network and avoid inefficiencies. 

Probabilistic simulation allows parameters to be random variables, hence the result is not a plan 

that best fits a unique situation but rather a set of potential future scenarios. Given today’s VUCA 

world, having this risk-assessed planning is key. 
 

- Forecasting with Artificial Intelligence  

Also relating to the importance of having a precise forecast, there are currently multiple initiatives 

that intend to use AI to find very in-depth features that can improve the definition of the forecast 

pattern. 
 

- Real time visibility 

Today, the main focus of the majority of companies is to achieve a proper visualization platform 

that can support shipment tracking at any moments. Although this relates more to IT disciplines 

(farther away from operations research), it is listed here given the criticality it has proven to have 

during the Covid Pandemic. The conclusion is clear, disruptions are frequent and in such global SC 

having a proper visibility is key for agility, resilience, and overall Supply Chain success. 
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CONCLUSIONS AND NEXT STEPS 
 

It is clear that the ability to use mathematical models to get the maximum insights from data is very 

powerful in helping companies make the right decisions. This is especially true in the case of logistics 

network design, where, although highly volatile and unpredictable, a theoretical optimum exists. While 

typical simulation tools can provide good local insights, optimization models capable of finding the most 

efficient global network given any new input can be very promising.  

Inspired by a case from a real company, this project has defined an exploitation problem of a small section 

of a multinational network. It has formulated an exact program that, through the brunch and cut algorithms 

of the FICO XPRESS software, has proven to successfully provide the best routing of each PID so that total 

system’s cost is minimum, balancing between direct routing and shipment consolidation. This program shall 

be used as a baseline and calibrator of further heuristic models that could deal with larger datasets and be 

applied to real life.  

This is just one of the many initiatives that aim to improve the use of data models and technology to gain 

better insights in the logistics business. After all, the university continues to progress, and with it the 

opportunity to better process information and reduce inefficiencies; as long as we are able to integrate 

academic advances to business practice. 
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