
iGNNspector:
A Tool for Graph
Neural Network

Acceleration

Bachelor’s Thesis
Specialization in Computing

Nil Vidal Ràfols

Director: Sergi Abadal
June 23rd, 2021

Abstract

This thesis is also part of a bigger project that is composed of 2 other final
degree thesis. The motivation behind the project was to research ways of
solving the challenges that the GNN field currently faces. With GNNs, there is
not a single model that can work with all types of graphs, but there exists
different strategies that are tuned for every case. Also, the time and memory
complexity of a GNN is greatly dependent on the type, size and topology of the
graph it is applied to. This can slow down development of GNNs or make it
difficult for newcomers to the field to design and deploy their algorithms.

The first thesis of this project is aimed to research the characterisation of
diverse graph datasets, relevant to GNNs, in order to better understand its
properties. The objective of the second thesis is to research a series of
algorithms that allows for the acceleration of GNNs and a more efficient
memory usage.

Finally, this thesis is aimed to propose a way to solve the current challenges in
the form of a software tool that can benefit from the knowledge obtained in the
other thesis. Named iGNNspector, this tool is intended to explore a way of
solving these issues. It is aimed to be used by a wide range of users regarding
their experience in GNNs and consists of a framework that also includes a user
interface.

1

Contents
1. Context and scope________________________________ 4

1.1. Context __________________________________ 4
1.1.1. Introduction ________________________ 4
1.1.2. Terms and concepts __________________ 4

1.1.2.1. Structure of a GNN algorithms __ 5
1.1.3. Problem to be solved__________________7
1.1.4. Stakeholders ________________________ 7

1.2. Justification ______________________________ 8
1.3. Scope ____________________________________ 9

1.3.1. Objectives __________________________ 9
1.3.2. Requirements _______________________ 10
1.3.3. Risks and obstacles __________________ 10

1.4. Methodology ______________________________ 11
2. Project planning _________________________________ 13

2.1. Task definition_____________________________13
2.1.1. Project management _________________ 13
2.1.2. Project development _________________ 14
2.1.3. Project documentation________________ 16

2.2. Task table and Gantt chart __________________ 17

2.3. Risk Management__________________________ 19
3. Background_____________________________________ 20

3.1. An in-depth description of GNNs_____________ 20
3.1.1. Message Passing, GNNs main operation__22

3.2. Problems and challenges ____________________ 24
3.2.1. Performance________________________ 24
3.2.2. A large variety of GNN models_________ 25
3.2.3. More layers, less performance?_________ 25
3.2.4. Heterophilic graphs__________________ 27

4. State of the art in tools and frameworks _____________ 30
4.1. Introduction______________________________ 31
4.2. GNN frameworks __________________________31
4.3. iGNNition ________________________________ 31
4.4. PyTorch Geometric_________________________ 32

4.4.1. PyTorch Geometric design principles____ 32
4.5. NetworkX_________________________________36

5. Concept for the iGNNspector tool___________________ 38
6. Architecture and design___________________________ 40

6.1. iGNNspector framework____________________ 40
6.1.1. Graph______________________________ 42
6.1.2. Analysis____________________________ 44

2

6.1.3. Model______________________________ 45
6.2. iGNNspector user interface__________________ 47

7. Implementation__________________________________ 53
7.1. iGNNspector framework ____________________53

7.1.1. Graph _____________________________ 53
7.1.2. Analysis ____________________________ 55

7.1.2.1. Experiments __________________55
7.1.2.2. Implementation________________ 65

7.1.3. GNN_______________________________ 66
7.1.4. Proposers __________________________ 67
7.1.5. Builders____________________________ 71

8. Conclusions_____________________________________ 72
8.1. Further development_______________________ 72
8.2. Technical competencies______________________73
8.3. Personal acknowledgement __________________74

9. Budget and sustainability__________________________75
9.1. Budget___________________________________ 75

9.1.1. Cost identification and estimation_______75
9.1.2. Cost Table__________________________ 77
9.1.3. Management control__________________77

9.2. Sustainability______________________________79
9.2.1. Economic dimension__________________ 79
9.2.2. Environmental dimension______________79
9.2.3. Social dimension_____________________ 80
9.2.4. Self assessment______________________ 81

10. References______________________________________ 82

3

https://docs.google.com/document/d/1JxB5yqg7sMPACfZe16t0ttp8vd_TMgIo6o9-83_vEeo/edit#heading=h.mqb89nffgx4j
https://docs.google.com/document/d/1JxB5yqg7sMPACfZe16t0ttp8vd_TMgIo6o9-83_vEeo/edit#heading=h.qwhuu5jmamnv
https://docs.google.com/document/d/1JxB5yqg7sMPACfZe16t0ttp8vd_TMgIo6o9-83_vEeo/edit#heading=h.nyhta0khpl10
https://docs.google.com/document/d/1JxB5yqg7sMPACfZe16t0ttp8vd_TMgIo6o9-83_vEeo/edit#heading=h.nyhta0khpl10
https://docs.google.com/document/d/1JxB5yqg7sMPACfZe16t0ttp8vd_TMgIo6o9-83_vEeo/edit#heading=h.lc0mtogqr9f8
https://docs.google.com/document/d/1JxB5yqg7sMPACfZe16t0ttp8vd_TMgIo6o9-83_vEeo/edit#heading=h.oc5bkqpymzob
https://docs.google.com/document/d/1JxB5yqg7sMPACfZe16t0ttp8vd_TMgIo6o9-83_vEeo/edit#heading=h.4ij87t7y8dog
https://docs.google.com/document/d/1JxB5yqg7sMPACfZe16t0ttp8vd_TMgIo6o9-83_vEeo/edit#heading=h.gk6jwdl6gucb
https://docs.google.com/document/d/1JxB5yqg7sMPACfZe16t0ttp8vd_TMgIo6o9-83_vEeo/edit#heading=h.7o1bph53wek0

1. Context and scope

1.1. Context
1.1.1. Introduction

In order to give the reader the context required to understand the purpose and
scope of the project, I will introduce in this section a brief description about the
terms and concepts surrounding the project, the problem that the project is
intended to solve, and finally, the different parties and stakeholders who are
involved in or may be affected by it.

This bachelor's thesis is part of an extended project composed of three theses in
total, the works of which complement each other. The project aims to study the
field of Graph Neural Networks, which is a branch of Machine Learning and
will be explained further on, in order to better understand the relationship
between the characteristics of a given graph and the performance of different
algorithms when executed with said graph. With the knowledge gathered, we
also aim to develop a tool that can help researchers in the field. This last part is
the one my thesis will be based on.

This work has been proposed by and is being developed with the help of the
researcher Sergi Abadal and the research group he works at, BNN-UPC or
Barcelona Neural Networking Center. This group was created by professors
Albert Cabellos and Pere Barlet-Ros, from the Facultat d'Informàtica de
Barcelona FIB, with the goals of carrying out fundamental research in the field
of Graph Neural Networks and educating and training students who are
interested in this field.

1.1.2. Terms and concepts
Graph Neural Networks (GNNs) belong to a branch of Machine Learning and
are composed of algorithms and techniques that work with graph structured
data [1].

Machine Learning is a field in computer science that studies algorithms capable
of making predictions about certain data after they have been trained on
samples of similar data. In the last decade, this field has experienced a massive
growth and has changed entire industries due to the variety of ways it can be
applied. Nonetheless, there exists data that is inherently relational, that is,
different parts of a whole system are related to each other. This data can be
represented as graphs, which are structures composed by nodes and edges, the
strings that connect one node with another.

4

Figure 1: A directed graph [2]

A graph G can be described mathematically as:

𝐺 = (𝑉, 𝐸) (1)

where V is the set of nodes from the graph G and E is the set of edges
.(𝑣, 𝑢), 𝑣, 𝑢 ∈ 𝑉

Some examples of this type of data could be the users of a social network
(nodes) and the relationship between them (edges). Or a set of molecules that
are made up by atoms bonded together in different ways. Each node from the
examples above would have a feature vector that would store information like
the type of atom or the personal information of the user.

There exists Deep Learning algorithms for almost every type of data.
Convolutional Neural Networks (CNNs) are good for grid data, e. g. an image
made up of pixels. Recurrent Neural Networks can deal with temporal data, etc.
However, those conventional techniques struggle to achieve good results when
dealing with relational data, where data points are not ordered in a certain way.
Unlike pixels or discrete moments in time, relations between nodes in a graph
do not follow a strict pattern. Here is where GNNs come in [3].

1.1.2.1. Structure of GNN algorithms
GNNs are a relatively new field that has experienced quite a lot of development
in the last few years. Their power resides in the fact that they can infer the
features of an unknown node from the characteristics of its neighbour nodes
(the ones it is connected with). This process is called Message Passing. As the
name implies, it consists in passing a message from a neighbour node through
an edge to another node.

Message Passing is not only a single step process, the features from the
neighbouring nodes undergo a series of operations listed below:

- A linear transformation can be applied to the feature vector of a
neighbour node,

- Then, the transformed features of the vectors are aggregated together
using a specific criteria.

- Finally, the feature vector of the target node is updated also using a
specific criteria and maybe a linear transformation.

5

A Message Passing process can be thought of as a layer, and several layers can
be executed sequentially to create a GNN.

Figure 2: Layers from a GNN [4].

Next, I will explain how a couple of influential GNN models work.

Graph Convolutional Network or GCN.

One of the first papers to kick off the field of GNNs was “Semi-supervised
Classification with graph Convolutional Networks”, where Thomas N. Kipf et
al. introduced in 2017 a model of GNN that implemented the Message Passing
process as a convolution of the neighbouring nodes of a target node. This
operation can be expressed as the multiplication of a feature vector matrix
containing as many rows as nodes and the adjacency matrix of the graph.
Moreover, the model adds to the multiplication a learnable weight matrix and a
diagonal degree matrix to give importance to nodes with lower degree [5].

(2)

The Message passing equation where X and X’ are the feature vector matrices,
is the learnable weight matrix and D is the diagonal degree matrix [6].θ

Graph Attention Networks or GAT.

In the paper “Graph Attention Networks”, The authors wanted to improve in
2018 the way GNNs gave importance to the surrounding nodes. GATs are quite
similar to GCNs but for one key difference. They determine the importance that
a target node should give to its neighbours not by a function of their degree, but
by a value that should be found through a learning process. This approach
turned out to be very powerful [7].

6

1.1.3. Problem to be solved
Deep Learning algorithms, like CNNs or Multilayer Perceptrons are
computationally expensive to train, because they have to do thousands upon
thousands of calculations. The more layers or neurons a model has, the more
time it will take to complete training. Nonetheless, the computational
complexity of a model is constant. Once the architecture of a model is known
its execution time can also be predicted.

GNNs are a special case among Deep Learning algorithms. The structure of a
GNN does not depend only on the number of layers it has or the steps done in a
Message Passing. Layers in a GNN have the topology of the input graph, which
means that depending on the structure of the graph, the computational and
memory complexity of the model can vary enormously [1]. Even further, the
accuracy of a given GNN algorithm may also depend on the connectivity of the
graph and the feature vectors of its nodes. Moreover, the datasets GNN
researchers have to work with contain graphs with huge amounts of nodes and
edges. This fact makes researchers have to spend large amounts of precious
time trying to come up with the best set of configurations to run their
algorithms so that they are accurate and fast.

This thesis aims to develop a software tool that can help GNN researchers
circumvent the above problems in order to save a lot of time and optimize
results. The hypothesis, hinted at in recent works, is that there is a correlation
between the graph characteristics and the performance of a certain set of GNN
algorithms , [8], To exploit this, the tool has to analyze a given graph dataset
and extract a set of characteristics. With this analysis and the knowledge we
will gather, the tool will infer a GNN model and a memory representation that
best suits the dataset and provide it to the user, or run it directly.

1.1.4. Stakeholders
The stakeholders can be classified by their involvement in the thesis and the
benefits that may bring to them. Firstly, we have the stakeholders who are
directly and actively involved.

The stakeholders that will be actively involved in the project are, first of all,
myself, the thesis researcher. I will be responsible for the planning,
development and documentation of the software tool and its core
implementation. The director, Sergi Abadal, will monitor, give advice and help
steer the planning and development of the work done. Furthermore, since the
thesis is a collaborative project that involves the work of multiple students, it
means that myself, Cristina Tubert and Carlos Gascón will be benefiting from
our respective work in the field.

Although the BNN team will not be as actively involved as the stakeholders
mentioned above, they will also provide us with knowledge and tools to make
the development of our work possible, like access to GPU servers able to
accelerate the processing of our GNN algorithms.

7

Finally, there are the stakeholders that will be benefiting from the results of the
work done. As stated in the previous section, this thesis has the potential to
benefit GNN researchers working at BNN, and also researchers from the
scientific community at large, in the form of money, time and resources saved.
Users with a varying range of knowledge or experience in the GNN field can
benefit from the capabilities of the tool, as well as companies interested in
more efficient algorithms and faster development and deployment of GNN
solutions, like Amazon, Pinterest, Alibaba, among others.

1.2. Justification
In the field of Data Science, one of the most used programming languages is
Python, which has a wide range of modules that allow researchers to
manipulate and analyze data. At the same time that research at GNN was
growing, Pytorch Geometric [9] did as well. Nowadays, this module is one of
the most, if not the most used module for GNN development. As a
consequence, there is plenty of documentation about the module and how to
use it. As it was explained before, graphs can have vastly different topology.
That is why Pytorch Geometric implements different techniques to calculate
each step of a GNN model.

For those reasons, the algorithms related to GNNs in this thesis will be
constructed with the help of Pytorch Geometric. Nonetheless, the BNN group
has not incorporated Pytorch Geometric to their research yet, as they have been
using other frameworks like TensorFlow, which is another highly popular
framework specialized in Deep Learning. This way, the thesis could bring more
variety to the techniques used at BNN and introduce the team to Pytorch
Geometric.

Although Pytorch Geometric is a powerful framework, it does not provide
advice on which GNN techniques to use for the task at hand.. To accomplish
that, a prior analysis of the graphs in a dataset has to be done. For that, we
intend to use NetworkX [10]. As it is a Python module as well, it can be used
jointly with the other modules and it brings with it a lot of methods to create
and analyze graphs.

Finally, the tool will combine in its development these libraries, among others,
in order to achieve the objectives of the thesis.

8

1.3. Scope
1.3.1. Objectives

To develop the tool that has been described before, is not precisely a short
journey. It requires acquiring extensive knowledge in the field of GNNs,
learning to use different frameworks and understanding how they internally
work, performing testing to ensure that the hypothesis about the performance of
GNNs are correct, and finally, combining all parts of the software that make up
the tool and test them rigorously to make sure they work seamlessly with each
other.

All of the steps of the project can be broken up into a set of objectives that must
be accomplished. Those objectives can be either formation objectives or
practical objectives:

● Study Graph Neural Networks in several fronts.

○ From a theoretical point of view. The general idea behind
GNNs, the different operations that can be performed in a
Message Passing process, and in what situations they work
better. Which are the most important types of GNNs and how
they are implemented.

○ From a computation standpoint. How the data about graphs is
stored in memory. What representations are best suited for each
type of graph. What is the cost both temporal and spatial using
a concrete representation, operation, structure of the model and
structure of the graph.

● Learn about Pytorch Geometric, NetworkX, Qt, and other modules that
will be required.

○ Research how Pytorch Geometric works on the inside. How it
performs operations, how it stores graphs, etc, in order to
determine what is optimal for which type of graph.

○ Learn to program with Pytorch Geometric to test its algorithms
and integrate it to the tool.

○ Learn to program with NetworkX to analyze graphs and
integrate it to the tool.

○ Learn how to implement Graphical User Interfaces or GUIs
with Python to be used for the tool.

● Develop and implement heuristics that can determine the set of
algorithms and representations that best suits a dataset. These heuristics
must try to reflect the conclusions obtained from the parts of the
project developed by Cristina Tubert and Carlos Gascón, as well as

9

further research provided by BNN and the GNN research community
and tests performed with the servers that BNN has provided and the
Pytorch Geometric implementations build for the project.

● Develop a GUI for the tool.

● Develop and implement the software core where within its structure
will integrate Pytorch Geometric, NetworkX, the GUI, and a simple
database to store information from graphs that have already been
analyzed, configurations, and such.

● Test each part of the software to make sure that they work as intended
by themselves.

● Join all parts of the tool and conduct extensive testing to make sure
everything works together as intended.

1.3.2. Requirements

● The tool will support a set of file types (yet to be determined) that store
graph data, as well as pickle files which store instances of the graph
representation class from Pytorch Geometric and NetworkX.

● The tool will store the characteristics of a graph once this is provided
as input in order to avoid having to re-analyze it if it is used again.

● The tool and all of its dependencies have to be cross-platform. It has to
work the same way regardless of the OS that the user might be working
on.

● The external modules used within the tool, like Pytorch Geometric,
must not be altered or customized to work with the tool. Doing so
could make it impossible or very tedious to integrate new updates of
these modules to the tool.

● The user should be able to acquire the resulting algorithms provided by
the tool as pickle files or Python scripts.

● If the dataset is very big and the tool expects to complete the analysis
in no less than 10 minutes, it should ask the user if she/he wants to
analyse a subset of the dataset to receive quicker results. Otherwise, the
benefit of using iGNNspector would be completely offset by the time
required by the characterization.

● Since the tool will be written in Python, to ensure a well structured and
clean code, it will mostly comply with Pep8 rules.

1.3.3. Risks and obstacles

Some setbacks could arise during the project development. We next describe
some of these plausible risks:

10

● Deadlines auto imposed by the planning might not be met due to things
not foreseen at the beginning.

● The developed heuristics might be harder to perfect than expected.
Graphs are complex, and the performance of a GNN might be tight to a
lot of variables. This fact could lengthen the time it takes to develop
proper heuristics.

● In very large datasets, e.g. datasets that do not fit in main memory, it is
possible to encounter problems with NetworkX. Other datasets which
do fit in memory but are still very large might also take a lot of time to
analyze with NetworkX. For these reasons, it is expected that in some
cases, only a subset of the graph should be analyzed.

● It is said that the majority of the time spent developing software is
fixing bugs. In order to minimize the amount of bugs and the time
spent fixing them, it will be necessary to write well structured and
clean code and perform a lot of testing.

● Since the thesis is part of a bigger project and is in part dependent from
the findings of other student thesis conducted at the same time, an
obstacle from one thesis could affect the others and slow down in some
measure the development of the tool.

1.4. Methodology
The objectives required to get to the goal of the thesis, as every other project,
are plenty and varied. Moreover, before a task can be considered finished, it has
to transition through some phases like research, development and testing. Since
the majority of the time I will be working on the project by myself, I need a
method that allows me to keep track of all tasks in the easiest way possible, and
bring some flexibility to the process in case an obstacle shows up.

With the points presented above, it is clear that an agile methodology is the
way to go. In an agile development process requirements and solutions can be
revisited as experience shows better ways to go or some walls are encountered
along the way. Nonetheless, if the project is not well organized, some obstacles
or revisions can hurt the planning and make it difficult to meet deadlines. That
is why I intend to organize tasks in a way that they are independent from each
other.

The version control tool Git, combined with the service Github will certainly
help. The code will be hosted by a private Github remote repository. A branch
for each part of the project, e.g. a branch for graph analysis, a branch for the
GUI, etc, will be created to isolate the development in each front. This way,
some parts of the code can be revisited without affecting other areas. Also, tests
can be conducted without interference.

11

Finally, I like the concept behind the Kanban methodology, where tasks and
their state are presented in a very visual way. It is easy for our brains to identify
objects with a distinct color and form, and Kanban uses this fact at its
advantage.

Tasks will be represented as “post-its” in a canvas, and the same color will be
given to tasks from the same objective. Then, they will be placed into 5
different columns that represent their progress status. Which are:

- To do. Tasks that haven't been started yet.
- Researching. Tasks the contents from which are being researched and

learned.
- Developing. The knowledge gained from the last step is used now to

develop a part of the tool. Some simple testing is expected in this step.
- Testing. The developed software undergoes more complete and

rigorous testing.
- Done. After every step is completed successfully, it is considered that a

task is finished.

Once the tasks related to individual parts of the software are done, they will be
tested jointly. For example, if some problems arise, some tasks might go back
to the developing and testing columns for a moment to fix them before trying
again the whole system.

Figure 3: A planning board from the Kanban methodology [11].

12

2. Project planning
In this document, the reader will find documentation for all tasks that make up
the project at hand. To begin, a detailed list of the tasks is shown, followed by a
table that summarizes the tasks and a Gantt chart. Finally, some alternative
plans will be presented in order to deal with possible setbacks.

2.1. Task definition
This section provides a list of all tasks that will need to be accomplished in
order to complete the project. For each of them a brief explanation is given,
followed by the resources needed to carry them out, as well as an estimation in
hours about the time it will take to complete them.

2.1.1. Project management

The purpose of the tasks from this set is to define aspects like the scope of the
project, the time and task planning, its budget and impact, etc, and to document
them for later reference.

● T1 Project management.

○ T1.1 Meetings. One hour long meetings are held weekly,
where the director of the thesis gives feedback, advice and
corrections to different aspects of the project, during the
duration of it. Moreover, all participants of the project are able
to show their progress and share their knowledge if needed.
Resources: PC and Google Meet.

○ T1.2 Context and scope. Write a document to give context to
the project and show what the objectives are, what risks and
obstacles might be encountered and what methodology is used
to complete the project. Resources: PC and google services
like Google Drive and Google Docs.

○ T1.3 Project planning. Write a document that defines all the
tasks required to complete the project, a Gantt chart and
possible setbacks and how to circumvent them. Resources: PC
and google services like Google Drive and Google Docs.

○ T1.4 Budget and sustainability. Write a document that
specifies the budget of the project and the sustainability
measures taken. Resources: PC and google services like
Google Drive and Google Docs.

○ T1.5 Final document. Join all previous documents to use as
documentation for the project. Resources: PC and google
services like Google Drive and Google Docs.

13

2.1.2. Project development

● T2 Study of the GNN field (T2.1). Perform an initial study about the
concepts behind GNNs, read the articles related to different models,
and identify what problems and challenges this field faces. Resources:
PC.

● T3 Study of the main programming frameworks. Study the
frameworks that will be needed to develop different aspects of the tool,
like GNNs, graph analysis and the GUI.

○ T3.1 Python Geometric framework. Learn how to program
GNNs with Pytorch Geometric, figure out how the algorithms
are implemented, determine the level of customisation that can
be given to a GNN without having to change the framework’s
very own source code. Resources: PC, GPU server, GitHub,
Python Geometric,

○ T3.2 Graph analysis framework. Learn how to analyze graph
to extract different metrics with the module NetworkX or other
frameworks in the case the graphs to analyse are exceedingly
large. Resources: PC, GPU server, GitHub, NetworkX, others.

○ T3.3 GUI framework. Learn to design and implement a
simple UI with the PyQt5 or PySide2 modules to interact with
the tool version of the project. Resources: PC, GPU server,
GitHub, PyQt5/PySide2.

● T4 Research and determine algorithms. This set of tasks focuses on
researching the algorithms that have the potential of improving the
GNN execution the most, designing the heuristics to decide which ones
to use according to a graph and designing the software structure.

○ T4.1 Determine GNN algorithms. Determine which GNN
algorithms the tool will be able to make use of. They can be
divided into these categories:

■ Analysis algorithms. Used to analyse the graph and
extract the necessary metrics.

■ Preprocess algorithms. They change the representation
of a graph to decrease the size in memory or improve
the execution of a GNN model.

■ GNN algorithms. All techniques that can be used on a
Message Passing step. Essentially, the building blocks
of a GNN model. Specific techniques work better for
some types of graph than others, or are faster to
compute.

Resources: PC, Pytorch Geometric, NetworkX, GPU server,
GitHub, others.

14

○ T4.2 Determine the heuristic algorithm. Research what kind
of algorithm that takes as input a set of metrics can work best
to decide the optimal set of algorithms to use. Resources: PC,
GPU server, GitHub, others.

○ T4.3 Design the structure of the software. Design the
domain, persistence and presentation layers that will make up
the tool, as well as the classes for each layer. Resources: PC.

● T5 Implementation. This set of tasks consists in the implementation
of the concepts from T4. Resources: PC, GPU server.

○ T5.1 GPU server and github repository set-up. Resources:
PC, GPU server, GitHub.

○ T5.2 GNN algorithms implementation. Implementation of
the algorithms from T4.1. Resources: PC, GPU server, Pytorch
Geometric, NetworkX, others.

○ T5.3 Heuristic algorithm implementation. Coding of the
heuristic algorithm mentioned in T4.2. Resources: PC, GPU
server, GitHub, others.

○ T5.4 Software structure implementation. Implementation of
the classes and layers from T4.3. Resources: PC, GPU server,
GitHub, others.

● T6 Unit Testing. These tasks enable a proper unit testing environment.

○ T6.1 Unit test set-up. Set-up a test-bed to properly test each
part of the software. Resources: PC, GPU server, GitHub,
others.

○ T6.2 Unit test of each independent part. Test each isolated
part described in T4 tasks. Resources: PC, GPU server,
GitHub, others.

● T7 Tool creation. With all implemented classes and layers, create the
final versions of the software. Resources: PC, GPU server, GitHub,
others.

○ T7.1 Python tool module creation. Create a Python module
with the Persistence and Domain layer. Resources: PC, GPU
server, GitHub, others.

○ T7.1 Standalone program tool creation. Create a standalone
app by joining the Persistence, Domain and Presentation
layers. Resources: PC, GPU server, GitHub, fbs module,
others.

● T8 Integration Testing. These tasks enable a proper integration testing
environment for the different versions of the tool.

15

○ T8.1 Integration test set-up. Set-up a test-bed to properly test
each version of the tool. Resources: PC, GPU server, GitHub,
others.

○ T8.2 Integration test of each version of the tool. Test each
version of the tool described in T7 tasks. Resources: PC, GPU
server, GitHub, others.

2.1.3. Project documentation

● T9 Documentation. Tasks related to the work that has to be done in
order to complete the documentation for the thesis, both for the written
version and the oral presentation.

○ T9.1 Written documentation. All the information gathered
during the project is used to write the necessary
documentation. Resources: PC and google services like Google
Drive and Google Docs.

○ T9.2 Oral presentation. The contents from the written
documentation is converted to a presentation form with slides
and verbal explanations.

16

2.2. Task table and Gantt chart
2.2.1. Task Table

Macro-task name ID duration
(hours)

Dependencies

Project management T1.1 25

T1.2 30

T1.3 15

T1.4 15

T1.5 15 T1.2, T1.3, T1.4

Study of the GNN field T2.1 50

Study of the main programming
frameworks

T3.1 30 T2.1

T3.2 20 T2.1

T3.3 20

Research and determine algorithms T4.1 50 T3.1, T3.2

T4.2 25 T2.1

T4.3 10

Implementation T5.1 5

T5.2 50 T4.1

T5.3 25 T4.2

T5.4 20 T4.3

Unit testing T6.1 5

T6.2 30 T5.2, T5.3, T5.4

Tool creation T7.1 15 T6.2

T7.2 15 T6.2

Integration testing T8.1 5 T7.1

T8.2 15 T7.2

Documentation T9.1 80

T9.2 40 T9.1

In total, all task durations amount to 610 hours.

17

2.2.2. Gantt chart

Figure 4: Gantt Chart (Own compilation)

18

2.3. Risk Management
During the development of the project it is almost guaranteed that some
setbacks will be met. Accounting for that, here are listed some factors that
could affect the planning and the scope of the project:

● Prohibitively large graph sizes which make a fast analysis imposible.
In this case, the time spent implementing graph analysis would have to
be extended a bit to explore solutions. A random subset of the nodes
from the graph could be selected to perform an analysis. If the results
are not good enough, some extra research might be needed to find an
algorithm that properly selects a representative set of the nodes from
the graph to perform an analysis. Also, using other libraries besides
NetworkX, or using custom methods.

○ Tasks affected: T4.1, T4.2, T5.2, T5.3 (+15 additional hours
per task).

● Not enough costumability from Pytorch Geometric. There might be
some algorithms that improve GNN performance that are not able to
work along a pytorch model. If this is the case, it will be more difficult
to have this algorithm as an option. At worst, the tool could not
implement it, and just let the user know that it is a good option in case
she/he wants to implement a GNN with another framework.

○ Tasks affected: T4.2, T5.3 (+10 additional hours per task).

● Debugging. Debugging is actually the task where a programmer
spends the majority of time with. The tasks related to implementation
and testing have a duration that already deals with this fact in some
measure.

○ Tasks affected: T6.1, T6.2, T8,1, T8.2 (+10 additional hours
per task)

● High difficulty to implement certain algorithms. The algorithms
related to GNNs and Machine Learning at large are complex. It is
possible that among the selected algorithms to implement in the tool,
some require an amount of time to implement that wasn’t foreseen
beforehand. In which case, a simpler way of implementing them might
be used, although it might decrease its effectiveness. In a more extreme
case, we could decide to eliminate it from the repertoire of algorithms
offered.

○ Tasks affected: T4.1, T5.2 (+25 additional hours per task)

19

3. Background
The field of Graph Neural Networks is a relatively new field in the

realm of Machine Learning. Their algorithms are specialized to deal with
relational data. Relational data is a type of data where its individual
components, or groups of components, have relationships of some kind with
each other. Prior to its debut, relational data like network-like or
graph-structured data, was first processed by some graph algorithms to extract
its information, and then, other more traditional Machine Learning techniques
were applied [1].

Almost 10 years ago, the field of Machine Learning experienced an
explosion of popularity when techniques like neural networks started to
demonstrate remarkable effectiveness in some Artificial Intelligence
competitions. Neural Network techniques had been around for a long time, but
the hardware limitations of the time prevented them to track attention. Models
which were several layers deep, hence the name Deep Neural Networks, were
able to better retain the knowledge from data.

Although the concept of GNN was conceived more than a decade ago
[12][13], it has not been until a few years back that the GNN field has started
to pick up steam as more and more papers are published. These articles mostly
propose new types of GNNs, new algorithms and data representation
techniques that make these models more effective and efficient, both in terms
of time and memory. However, the field of GNNs has a set of challenges that
are unique to it. This thesis will present a solution for some of them. After an
introduction to the GNN field, these problems will be presented in 4.2.

To explain the concept behind GNNs, one of the papers that started this
trend will be used as an example. In 2017, Thomas N. Kipf et al. published the
first algorithm for a GNN in their paper “Semi-Supervised Classification with
Graph Convolutional Networks”. In the paper they proposed a Graph
Convolutional Neural Network, or GCN, which is able to account for the
relational data from a graph in order to predict the characteristics of a node,
edge, or the whole network [5].

3.1. An in-depth description of
GNNs

The idea from the GCN model is heavily inspired by what was a very
promising kind of Neural Network at the time, Convolutional Neural Networks,
or CNNs. This kind of network is specialized in image recognition tasks [5].

CNNs usually take as input a 2D matrix representing the pixels of an
image or a 3D matrix, in the case of RGB color images for example, where

20

there is a 2D slice of the image corresponding to the values of each color.
CNNs take advantage of some characteristics of image data.

● Location-invariance, which means that different parts of the image
contain the same patterns. No matter where you look at an image, all
objects will be composed of edges and corners, for example, and what
defines an edge or corner does not vary along the image.

● Importance in spatial locality. Pixels that are nearby might be part of
the same thing.

● Hierarchical structure. An object in an image is composed of other
smaller objects (features) and so on, all the way down to the pixel
level.

To benefit from the two first principles, CNNs use filters to
extract spatial data. A filter is usually a small matrix, 3x3 is a common
length. Every position holds a weight that is trained in order to learn to
extract some local pattern from a little place of an image, applying
convolution. Since the same patterns exist all over the image. A single
filter is enough for a convolution layer to search for a pattern, this way
reducing the number of weights to store and train significantly. In
practice, different filters tend to be used in a single layer to extract
more information. Finally, if multiple layers are stacked on each other,
the model will be able to recognize more abstract patterns, since it will
add up the simpler ones to detect more complex information [14].

If we think of an image as a graph, it can be said that a CNN is
a type of GNN. Pixels can be represented as nodes in a graph, which
has a regular structure in the form of a grid.

Figure 5: Regular grid graph

Each filter applies a convolution for each node in the grid graph. It
takes the value of the surrounding nodes and combines them to get a new value.
If we think of the next layer in a CNN as a graph, then the aforementioned
process applies again. A node with the new value gets updated with
information of their surrounding nodes, and so on.

21

Similar to CNNs with image data, GNNs can perform a series of
prediction tasks. They can classify between a set of labels the nodes from a
graph, or can infer the specific class of the whole graph. Also, a GNN can be
designed and trained to predict the features of a node, given its relationship
with other nodes from the graph. They can even predict the presence, or lack
thereof, of removed nodes in incomplete data.

Thomas N. Kipf et al. proposed a model with which this process could
be applied to graphs without a regular geometry, like images. Not all nodes in a
graph have the same number of neighbours and, unlike images, their relative
position might not be determined. There is no up and down, left or right. This
means that fixed size filters can not be used.

Figure 6: Irregular graphs

3.1.1. Message Passing, GNNs main
operation

Two nodes from a graph are neighbours if there exists an edge that
connects them. In the field of CNN, filters are responsible to extract features
from the neighbours of a pixel. With GNNs, a message passing operation (or
convolution) is responsible for extracting information from the neighbours of a
node. It consists of reading the features of the neighbours and combining them
with the features of the target node. Like CNN filters, message passing
operations can be chained together in the form of layers in order to extract
more information.

22

Figure 7: Layers from a GNN

As illustrated in Figure 3, message passing layers usually have the
topology of their input graph, although depending on the task at hand, final
layers can reduce the number of nodes or can be connected to MLPs.

The message passing operation can be mathematically expressed as
follows:

(3)

where xi corresponds to the feature vector of a node i and xi
(k) corresponds to

the feature vector of the node i in the message passing layer k. These
intermediate vectors are called embeddings. As it can be seen, a message
passing layer is composed the aggregation and combination substeps:

● Aggregation. It corresponds to the phase where all node
embeddings adjacent to the target node are aggregated. A
differential function, such as a linear transformation, () can
be applied before the aggregation, which typically consists of a
permutation invariant function, such as sum, mean or max
().

● Combination. Next, the result of aggregation is combined
with the target node embedding using a differentiable function
in order to compute the final node embedding of the layer k.

23

3.2. Problems and challenges
3.2.1. Performance

GNNs are a special case among machine learning methods. It is well
known that complex machine learning methods, like Deep Neural Networks,
can be computationally expensive, especially when it comes to the training
phase. If the number of layers and their size are large, there are a lot of weights
that have to be trained, which implies that a lot of operations have to be
performed on the weight matrices. This fact is often compensated by using
parallel processors like GPUs (Graphic Processing Units) or TPUs (Tensor
Processing Units). The last one consists of a processor capable of performing
parallel computations specifically designed and optimized for machine learning
algorithms.

GNNs are no exceptions for this. Moreover, they present an additional
problem. When you know the number of layers and their size, in the case of
conventional Neural Networks, you can make an estimation of the time it will
take to run them, since the model will always need to perform the same amount
of operations. When it comes to GNNs, this is not guaranteed.

The size of the layers of a GNN depend directly from the input graph,
because they share the same topology. In most cases, there exists one node in
the layer for every node in the graph and one connection for every edge. This
means that for the same GNN model, the time it takes to train it, or compute a
prediction, can vary enormously from graph to graph [1]. Graphs are complex
structures and , the time it takes for a GNN to compute a prediction on them is
also dependent on different characteristics of the graph. The more edges a
graph has, the more feature vectors it has to aggregate. Graphs can have
different degree distributions. In one case, a few nodes could connect to a very
big number of nodes, this can be the case of social networks. Another case
could be that edges are more equitably distributed between nodes. These
differences also play a role in the number of computations that a GNN has to
perform and how effective are processors in computing them.

As the graph datasets that have to be analysed gets bigger, memory
space starts to be an issue. In conventional machine learning tasks, if a dataset
is too big to fit in memory, it can get split into chunks in order to load one
chunk at a time, during training. This practice does not present a problem
because the samples of a dataset are independent from each other. A Neural
Network only cares for a particular sample or group of samples each time.

Relational data is a whole other story. Relational datasets have an
additional piece of information, which is that they relate individual samples
with each other using some criteria. Like in other ML fields, relational datasets
are split in chunks and analysed on at a time. A message Passing operation will
find in a lot of cases that some neighbours of a node are not present in the

24

current chunk, and will have to load additional data to memory. This process is
very slow and can slow down the execution of the GNN greatly.

A lot of research has been started in the last few years that aims to find
solutions that can reduce the computational cost of GNNs and make a better
use of memory resources. There are a great number of proposals both in the
software and hardware domains [1].

Two examples of these kinds of proposals are PCGCN [15] and HAG [16].
PCGCN is a partition technique that splits the graph in dense groups of nodes.
This way, there are a minimal amount of edges that depend on data that is not
loaded. HAG is a technique to reconstruct a graph in such a way that those
nodes that share the same results of a convolution get fused into a single node.
This cuts the number of operations that have to be done in a considerable
amount, since it eliminates redundant operations.

3.2.2. A large variety of GNN models

The structure of a graph and its characteristics are very diverse. There
are a lot of types of graphs, and real-world networks can have vastly different
properties. With this amount of diversity, research in GNNs has struggled to
find an algorithm that can be applied successfully with all kinds of graphs.
Instead, in recent years the number of distinct GNN strategies and techniques
has exploded, each one of them trying to achieve better performance. This large
number of GNN models can be disorienting when trying to decide a GNN for a
particular task. Especially for those people that are newcomers to the field.

3.2.3. More layers, less performance?

The Deep Neural Network revolution that has taken place this decade
has been allowed in a certain extension to the possibility of stacking a great
number of layers to construct models that are able to learn complex patterns
from data.

Nonetheless, GNNs seem to not be amenable to deep structures with
lots of layers. GNNs generally achieve their best performance with very few
layers. If more are added, then results achieve a maximum accuracy value and
then start to fall very quickly. [17]

The underperformance of Deep GNNs, or DGNNs, is understood to be
caused for 3 different factors [17]:

● Overfitting. The more layers, the more parameters, which means that
the model has a greater capacity to memorize training data results and
then fail to generalize.

● Greater difficulty to train due to vanishing gradients.
● Over-smoothing due to a great number of convolutions.

25

From these 3 factors, the over-smoothing phenomenon is, with a great
margin, the most problematic, and it is the one that researchers in the field are
trying to understand the most since it is exclusive of graphs.

When a convolution or message passing operation is performed in a
node, its feature vector gets updated with information about its neighbours.
After the convolution node features become more similar to those of its
neighbours. If multiple convolutions are applied, nodes are able to get
information from nodes that are further away from them. For example, 2
convolutions can connect the information of nodes that are level 2 neighbours,
which means they are located 2 edges away from each other. This can be a
great thing if the nature of a node depends on its further neighbours. However,
given an enough number of convolutions, nodes in a graph have been exposed
so much to the features of their neighbours that their features can end up being
almost identical. Features get averaged out between all nodes and all local
information that could have been useful disappear, making it impossible to
distinguish classes of nodes or predict features, this phenomenon is called
over-smoothing.

Luckly, researchers have already come up with some strategies that
fight this tendency. By restricting the effects of over-smoothing, they have
augmented the representative power of their GNNs, which have led to
improved performance in specific tasks. Next, some of these approaches will be
presented.

The GCNII layer [18]

Models built with this layer can perform well with up to 64 layers. In
order to avoid over-smoothing, GCNII layers introduce two elements to the
well known GCN equation:

(4)

where H(l) is the node embedding matrix of the layer l, which contains all the
node embedding vectors. H(0) is the embedding vector before the first layer, it
can be the result of applying a linear transformation to the node feature vector.
P corresponds to the renormalized graph convolution matrix, which gives more
weight to those nodes that have higher degree when it is multiplied H [18][5]:

This message passing equation describes how a node embedding gets
updated. It depends on 2 factors.

(5)

● Initial Residual connection. The paper proposes to use a
residual connection on every layer. It consists of connecting
the embeddings of a layer (H(l)) with a fraction of the

26

embeddings as they were before the first convolution (H(0)).
This way, the final representation will retain node information
that was present at the beginning of the forward pass. The
importance that is given to the first embedding can be set with
the α parameter.

(6)

● Identity mapping. This part of the equations allows us to limit
the importance that the linear transformation given by the
trainable weight matrix W(l) has over the feature aggregation.
Its effect can also be limited by a parameter, in this case β.

Normalization layers

Normalization layers are layers that can delay the appearance of
over-smoothing by applying a linear transformation to node embeddings
between message passing layers. One of their strengths reside in the fact that
they are not bound to a specific layer architecture but they can be used in
different GNN models.

These studies [17][19][20] show that normalization layers delay
over-smoothing, although in a lot of current benchmarks these do not translate
to better performance. That is due to the fact that for the size and characteristics
of those benchmarks, shallow GNNs are enough to capture the relevant
information.

Nonetheless, when DGNNs with Normalization layers are used in very
large graphs they are able to outperform conventional GNNs, specially in node
property prediction and graph property prediction. This is due to the fact that
the more layers the model has, a node can receive relevant information from
higher level neighbours, which results in more accurate predictions[17][19].

3.2.4. Heterophilic graphs

Among the numerous properties that a graph can have, there is the
concept of homophily, or the tendency of nodes to bond with nodes of similar
characteristics. It is difficult for a big graph to be perfectly homophilic, since
nodes of different kinds will end up bonding some of the time. This is why
homophily can be computed as a ratio for every graph. It is usually expressed
as a coefficient between 0 and 1. The opposite concept to homophily is
heterophily, which will be present in those graphs the nodes from which like to
bond with nodes of different classes. When the homophily ratio is low, we can
talk about a heterophilic graph.

GNNs are especially good with graphs that represent high homophily.
Message passing convolutions aggregate the embeddings of neighboring nodes.
This way, the target node embedding will resemble that of their neighbours.

27

As it can already be suspected, this approach does not play well with
heterophily. In some cases, even non-relational algorithms can outperform a
GNN struggling to generalize an heterophilic graph [21]. There are a few
reasons why this is the case [22]:

● Since message passing aggregators lose the structural information of
higher level neighbours, information can arrive from nodes that are not
immediate neighbors. However, it might be important for a
classification task to know if the information received comes from the
direct neighbour or from somewhere else, but this is not possible.

● Message passing aggregators are not capable of fully capturing
dependencies between distant nodes. If the features of a node depend
on nodes that are distant, the useful information of this dependency can
be masked by lots of irrelevant information. Also too many
convolutions might be needed to pass the information, in which case
overfitting might ruin the process anyway.

Like in the case of the overfitting problem, there has been some
research tackling this problem too. Some solutions have been defined, two of
them are explained below:

Geom-GCN [22]

The Geometric GCN model can directly aggregate feature embeddings
that are similar to the target node even if it is from nodes that are far away. To
achieve this message passing formula that goes beyond the neighbourhood, this
model uses a different aggregation scheme in addition to the conventional
aggregation scheme where neighbourhood embeddings get aggregated.

This new scheme is called a geometric aggregation scheme. It requires
a new representation of the graph. This new representation consists of mapping
all nodes to an euclidean space with a concrete number of dimensions d. A
mapping function takes as input the feature embedding of a node and outputs a
new vector with d elements, which corresponds to the coordinates of a point in
the euclidean space. Every node gets to have a point in this space. Nodes with
similar features will be closer together in the space. Then, edges can be added
between these points. Points that are closer than a specific distance receive an
edge that connects them.

Using this technique we are able to take nodes that are similar but that
might be far apart in an heterophilic graph and connect them directly. Now
nodes can receive information from their neighbors and also from other nodes
that are similar to them but are further apart in the original graph.

H2GCN [23]

The H2GCN layer applies 3 strategies to work with heterophilic
graphs:

28

● Ego and neighbor embedding separation. Nodes do not
include self loops. This means that the embedding of a node
does not factor in the aggregation of the neighbourhood.
Instead, the embedding of the target node gets concatenated to
the result of the aggregation operation in the combine
operation.

● Higher order neighbourhoods. In the aggregation phase, not
only the direct neighbours are explicitly aggregated but also
the level 2 neighbours, or even higher neighbours if wanted.

● Combination of intermediate representations. The final
embedding corresponds to the concatenation of the hidden
embeddings from all the intermediate layers. This way, the
final representation captures local data from the first
convolutions, as well as more global data given by the last
convolutions.

29

4. State of the art in tools and
frameworks

4.1. Introduction
Almost in all cases, Machine Learning algorithms need to compute a

large amount of calculations with their input data. Those calculations have to
be done several times in order for the algorithm to successfully retain the
knowledge inferred from the data using backpropagation techniques. Moreover,
usually the amount of input data, extracted from a dataset of a specific kind, is
also considerably big.

These characteristics make machine learning algorithms very costly.
That is the reason why it is of great interest for all those researchers,
programmers and enterprises who use machine learning to make all processes
as efficient as possible. Luckily, the computation of a single step (the update
step in GNNs or a convolution operation in a convolutional layer in CNNs for
example) can be done in parallel since the data manipulated in said step is
largely independent of each other. Parallelism can be achieved using either a
Graphics processing Unit (GPU) or a Tensor Processing Unit (TPU).

Moreover, fast performing code has to be written in a compiled
language close to machine code, like C/C++ or Rust. These languages are
harder to use in general. Managing library dependencies, writing code, memory
management, among other things, are all more complex tasks than other
languages that are meant to be interpreted, like Python. In order to use the
processing power of a GPU or a TPU with a machine learning program one has
to also communicate correctly with the proprietary libraries and drivers that
enable the use of those parallel processors.

If we were to develop and experiment complex GNN algorithms from
scratch, just the process of writing under the hood code, setting it all up to run
correctly and debugging the project, would burn up all the resources that should
go into meaningful research, both in time and personnel, which needs to
incorporate expert programers familiarized with high performance code but
might know little about GNNs for example.

For all the reasons above, when a field in computer science gets
popular and matures, there are a lot of frameworks and tools that appear in
parallel with this growth. These tools are meant to take care of all those details
that are not directly correlated to the field's knowledge but are necessary to run
everything fast and efficiently. Then, all the programs, drivers and
dependencies needed are packed and presented with a level of abstraction that
will be usable for researchers and will enable fast prototyping and
development.

30

These tools and frameworks use a different level of abstraction
depending on their target users. For example, some of them are presented as
Python modules to program algorithms in precise ways and others are able to
run whole complex Neural Networks without having to write any line of code.

4.2. GNN frameworks
In the GNN domain, some programming frameworks have appeared in the last
few years. Some of them are built on top of existing ML libraries, making it
possible to utilize their already existing functionality while providing new
dedicated kernels for GNN specific operations like Message Passing [24].
Examples of these frameworks are Pytorch Geometric or TensorFlow for
geometric deep learning. The Deep Graph Library, or DGL, is a remarkable
example that is built on top of multiple ML libraries like PyTorch and
TensorFlow. It contains a variety of GNN implementation examples and has
different kernels to perform matrix multiplication, which are used depending on
the sparsity of the adjacency matrices. They claim to be up to 10 times faster
than PyTorch Geometric when training [1]. However, the technicality and the
quantity of their algorithms is a barrier for newcomers to the field of GNNs
since they offer little help to decide what algorithms are the best among all the
available.

4.3. iGNNition
iGNNition is a framework that takes a different approach to develop

GNNs. It has been developed by the BNN-UPC research group. With this
framework, GNNs can be designed without having to write a single line of
code by using a high level description of the model. This allows for fast
prototyping and deployment of GNNs without having the knowledge required
to program them [25]. Some of its design principles have served as inspiration
for the development of iGNNspector, Like the use of the yaml format to
describe GNN models, which is a simple and easy to use yet powerful markup
language. It is internally powered by TensorFlow, the models that it generates
from a GNN description are implemented in this ML framework.

Figure 8: iGNNition workflow diagram [25].

31

4.4. PyTorch Geometric

Figure 9: PyTorch geometric logo

In this section, we describe the PyTorch Geometric framework in more
detail, since it has been used to develop part of the iGNNspector tool.

PyTorch Geometric, or PyG, is a geometric machine learning
framework built on top of PyTorch, one of the most popular machine learning
libraries for Python and in general.

PyTorch is a very complete, open source machine learning framework
that can be used both for researching as well as production purposes. This
framework provides the user with numerous abstract entities and interfaces
useful to machine learning experts, which under the hood, are implemented in
fast performing machine code and are compatible to load to GPU memory and
be used for parallel processing. After the developing phase, trained models can
be serialized and deployed with relative ease with the tools and APIs it
provides.

Between the python data structures, functions and models defined in
PyTorch, one can find tensors, functions to transform data structures, like
activation functions, loss functions, performance metrics, and much more,
machine learning classes which go from linear regressors, support vector
machines, etc, all the way to neural networks layers like simple MLPs and
more advanced models like CNNs. All of them can be combined and fine tuned
to develop complex models.

4.4.1. PyTorch Geometric design
principles

PyG utilizes all the functionality of PyTorch to define a framework
specifically designed to be used for Geometric Machine Learning, a branch of
machine learning which works with relational data, where pieces of
information are related and depend in some form with each other. Of course,
information represented as graphs fall into this category.

The Python module is divided into 6 sections, the most important of
which for this thesis are the following.

32

Data section

It contains the classes used to prepare and hold graph-like information.
Some of the most useful are:

● torch_geometric.data.Data. It is the most straightforward class. It is
used to represent a single Graph. Its main attributes are:

○ x. The node feature matrix. It contains the feature vector of
every node. Its shape corresponds to [num. nodes, num. node
features], which means that it holds as many rows as there are
nodes in the graph, with a row length equal to the number of
features of a node. Every row belongs to the node with an
index equal to its position in the matrix. Simply, row 0 belongs
to the node with index 0, row 1 to the node 1 and so on.

○ edge_index. Adjacency matrix in COO format. With shape [2,
num. edges]. An edge is represented as the connection between
a node index in the first row to the node index in the same
position but in the second row.

○ edge_attr. The edge feature matrix with shape [num. edges,
edge features]. Very similar to x, but with edge features.

○ y. The target value to train a model against. It can have an
arbitrary shape. For example, if the task at hand is node binary
classification, then it would have shape [num. nodes, 1], if it is
node feature prediction, it might have more columns. If the
task is graph classification, then it would have shape [1, *].

To make the class more flexible, any other type of attribute can be
added.

● torch_geometric.data.Dataset. This class allows users to load a
dataset from the internet, apply a transformation to the data, add some
criteria to filter the data and then save it to a specified path location.
There are graph datasets that contain millions of nodes and edges. Such
enormous networks will likely not fit in memory. This is why Dataset
will just load and store data without loading it entirely in memory. Its
main attributes are:

○ root. The directory where you want to save the dataset.

○ pre_trasform. a callable object that, if passed, will take the
data (converted to a Data class), apply its transformation, and
return it.

○ pre_filter. Like pre_transform, a callable that will take a Data
object and return a boolean indicating if it should be stored or
ignored.

33

● torch_geometric.data.InMemoryDataset. This class inherits from
Dataset and can be used to load small datasets that do fit on memory.
This way, the process from downloading, applying transformations,
filtering to running a model with the data is much faster.

Datasets section

This section contains different classes that inherit from the class
Datasets. Each one of them can be used to download commonly used
benchmark datasets of different types. The important ones for this thesis are:

● Planetoid. Downloads the citation networks Cora, CiteSeer and
PubMed. These graphs represent scientific papers as nodes, and
citations among them as edges. They are used to predict the scientific
field of the papers, since edges between papers of the same field are
more likely.

● Wikipedia Network. Downloads to versions named “Chameleon” and
“Squirrel”. The graphs consist of nodes representing Wikipedia pages
and edges are hyperlinks between them.

● WikiCS. Downloads a similar graph than the WikipediaNetwork one.

● Actor. A graph where nodes represent actors and ages represent
common mentions between their Wikipedia pages.

● Amazon. Downloads either the “Computers” or the “Photo” network.
Nodes represent amazon products and edges represent the fact that 2
goods are usually bought together.

● CitationFull. Downloads a more large and complete version of the
datasets from Planetoid.

● Flickr. A graph that contains descriptions and common properties of
images.

nn section

This section contains classes representing a wide range of GNN layers,
inspired by their respective scientific papers. Their mother class is
MessagePassing. As the name implies, this class represents the common
operation in GNNs of message passing, described as:

(1)

Inheriting from this class, one can define the functions message() and
update() which correspond to ϕ and γ functions respectively. Internally, PyG

34

utilizes efficient GPU scatter and gather algorithms to accelerate sparse matrix
multiplication, using the edge indexes from a data object.

Since this thesis has no need for a custom GNN layer, we proceed to
explain some of the layers available in the PyG module, which have been used
in the GNN model aspect of the iGNNspector.

The way these layers are meant to be used is “inside” a machine
learning model that represents a GNN. This class has to inherit
torch.nn.Module, a class from the PyTorch library. The next code snippet
shows a simple GCN model inspired by an example in the PyG documentation
page.

class Net(torch.nn.Module):

def __init__(self, in_features, out_features):

super(Net, self).__init__()

self.conv1 = GCNConv(in_features, in_features)

self.conv2 = GCNConv(in_features, out_features)

def forward(self, data):

x, edge_index = data.x, data.edge_index

x = self.conv1(x, edge_index)

x = F.relu(x)

x = F.dropout(x, training=self.training)

x = self.conv2(x, edge_index)

return F.log_softmax(x, dim=1)

As it can be seen in the “__init__” method, two GCN layers are
initialized. The majority of layers need to be initialized with the parameters
“in_features” and “out_features”, which correspond to the length of the input
vector and the length that the output vector will have. Usually, for the first layer
“in_features” correspond to the number of features from node feature vectors.
The final layer could have “out_features” equal to the number of classes that
we want to classify.

When we want to run our model, both in training mode or inference
mode once trained, the PyTorch “forward” method will be called with the
parameter “data” representing the graph. The majority of the time, a GNN layer
is called with the feature vector (“x”) and the edge index as parameters. This
way it can perform a message passing operation from the source node to its
neighbours, and then updating its feature vectors.

Some of the implemented layers are:

● GCNConv. The simple GCN convolution. Its only mandatory
parameters are “in_features” and “out_features”, although as all other
layers it has more parameters, those two are enough to perform the
convolution operation on the given data.

35

● GATConv. The GAT convolution layer. A parameter to specify the
number of attention heads, “head” can be passed. If not, it is equal to 1.
If the user wants to average the results of the attention heads instead of
being concatenated, then it has to set the parameter “concat” to “False”.
Default is “True”.

● GINConv. The layer from the GIN model works a little bit differently.
The length of the input feature vector and the output vector does not
have to be provided to it. Instead, The only mandatory parameter has to
be a neural network. This neural network, in turn, has to be of a
specific size. The first input layer has to have the same length as the
input feature vector, and the last layer has to have the length of the
output vector.

● GCN2Conv. This layer is designed to construct Deep GNNs as it
incorporates residual connections and identity mapping to reduce the
effect of over-smoothing. The input and output vectors of this layer are
the same length so there is only one parameter to specify it.
Additionally, an “alpha” and “theta” parameters can be specified to
give more or less weight to the residual connections or the identity
mapping respectively.

transform section

This section contains transformations that can be applied to
data objects. One simple example can be the “ToUndirected” transform, which
takes a data instance and for every edge of the graph adds another edge of
opposite direction to transform it into an undirected graph.

utils section

This section contains a variety of functions to carry out very
different tasks. There are a handful of functions that are particularly important
for the graph class in iGNNspector. “to_networkx” and “from_networkx”, as
the name implies, add compatibility to use graphs previously defined with a
NetworkX class. “homophily” or “degree” are examples of functions that
compute a specific metric. Even subgraphs can be made with “subgraph” and
others.

4.5. NetworkX

Figure 10: NetworkX logo

36

NetworkX, although it is not a GNN framework, it has also played an
important role in the development of the iGNNspector. For this reason, this
section provides a detailed introduction to it.

NetworkX consists of a rich Python library that contains numerous data
structures and functions that can be used to represent and manipulate graphs, as
well as to run several algorithms with them. Although it is not a machine
learning framework, it is very useful when it comes to the use and study of
graphs, the main pillar of GNNs.

NetworkX provides graph algorithms widely used to extract knowledge
from real- world networks like social relationships, biological processes like
protein-protein interaction, and human infrastructure like telecommunication
and electrical lines, roads, urban centers, etc. A great portion of its algorithms
are implemented in fast performing C/C++ code wrapped to be used with
Python calls. It has several methods to extract graph-like data from standard
and not so standard graph representation formats. That also applies the other
way around. After defining a network with one of its highly customizable
classes, it can be stored in the format that most suits an application.

NetworkXIt was initially developed by Aric Hagberg, Dan Schult, and
Pieter Swart in 2002 and 2003 and the first official version was released in
April 2005.

NetworkX provides 4 classes that represent graph data:

- Graph. Is the simpler of the 4, but it hides a lot of functionality.
All edges from this kind of graph are undirected and self loops
are possible. Nodes can be any kind of Python object, as long
as it is hashable. You can add as many features as you want to
any node via a distinct dictionary for every node. Edges can
also hold any amount of features like nodes.

- DiGraph. This class inherits every functionality from Graph,
but unlike the prior it can hold directed edges.

- MultiGraph. This class can hold multiple edges between the
same 2 nodes, each one of them can have different features.
Those edges, however, are undirected.

- MultiDigraph. Finally, this class is able to do everything the
MultiGraph class can do and it can have directed edges.

37

5. Concept for the
iGNNspector tool
As we have discussed earlier, the field of GNNs have just gained major

popularity in recent years. However, it has to be noted that it is still a niche
field in machine learning. Due to the relatively small volume of research
conducted in the field, researchers and professionals still do not enjoy the
existence of a great quantity of resources as other more consolidated fields do.

Currently, there exist too few widely used graph benchmarks. Many of
them are quite small. Also, there is still not much variety between benchmarks,
they are graphs from similar real-world data domains, have similar structure,
and there is still a lack of datasets for some specific kinds of prediction tasks.
The Open Graph Benchmark is a community-driven initiative that offers
datasets, data loaders and evaluators to standardize evaluation in a unified
manner [26]. They are working to add more and more diverse and great graphs
based on real-world data. They also hold competitions.

Current frameworks, like PyG or GDL, although they offer powerful
performance and a great level of abstraction over Machine Learning algorithms
and GNNs, might still be too technical in some cases.

iGNNition is a tool that allows the user to define a GNN without using
a single line of code, which can speed up the developing process considerably,
but it still requires expertise both in machine learning and the concept of GNNs
to create GNN models that make sense [25].

Those people that see the positive potential that GNNs can bring to
their research or business might not have the required knowledge to develop,
train and deploy their models over their data of interest. To be able to use GNN
models they would have to spend time either looking for someone who has
already worked with GNNs and knows how to design them, or they would have
to learn the theory, inform themselves about the types of GNNs and which kind
of graphs work best for them. Then they have to still learn how to use one or
more of the several GNN frameworks that exist.

This inconvenience only accentuates when taking into account the
particular problems that the field faces. Time and memory consumption can
vary a lot depending on the structure of the graph that has to be used. Also,
none of the current frameworks is able to help users decide which GNN models
or techniques are best suited for their needs and the types of graphs that they
want to study. These factors only make development more complex and time
consuming.

This project has the intention to propose solutions that could help to
tackle some of these problems by providing guidance to users about what are
the best GNN options that they can deploy for their specific needs and

38

restrictions. The chosen strategy has been to program a simple and easy to use
framework, called iGNNspector, which is built on top of NetworkX and PyG
and that also includes a user interface application. iGNNspector is aimed at a
wide range of users regarding their level of GNN knowledge, from newcomers
to more experienced professionals. This solution brings the following
capabilities:

● A multi-framework compatible graph representation. As it has
already been discussed, there are currently a number of frameworks
that allow users to work with graph data and GNNs. Several of these
frameworks use their own graph representation schemes and classes.
Also, there exists a lot of different file formats to represent graphs,
each of them with their specifications. The lack of a standard way of
representing graphs, or a predominant one, makes it tedious to port
graph data from une framework to another. If you want to use graph
data from one place on another, you will need to have a good idea of
how data is represented in both frameworks in order to correctly port
the graph. iGNNspector takes care of conversions and allows users to
create a graph and use it for what they want regardless of the origin.

● Simple yet powerful analysis capability. Knowing the structure of a
graph and its characteristics is key to developing an efficient and
effective GNN. Our solutions enable users to make a pretty complete
analysis of the characteristics of a graph. Some graph analysis
algorithms require the graph to have some particular properties, some
work on directed graphs and some do not, or some might only work on
connected components. Several algorithms from NetworkX and PyG
have been gathered up to perform a rich analysis. The dependencies of
every algorithm are dealt with under the hood so the user does not have
to worry about them.

● A simple GNN proposal system. Users who might not know yet a lot
about GNNs can learn about what models and layers exist and which
ones work best for the graphs they have. Using the results from the
graph analysis, iGNNspector can give to the users a set of
recommendations about what layers perform best and how many of
them a model has to have.

● Code-free model building capability. This feature is inspired by the
iGNNition tool, which can generate TensorFlow GNN models.
Although it is much simpler, this iGNNsector feature is able to
generate PyG GNN models directly from its own recommendations,
this way, users do not need to specify the model if they do not want to.

● A different interface for users with different levels of expertise.
iGNNspector comes in the form of a programming framework for
Python as well as a user interface app. The app is written in Python and
is internally powered by this same framework.

39

6. Architecture and design
The project consists of two tools. This section presents them, explains

the architecture and design behind them and provides a guide to use them.
iGNNspector is open source tool and can be easily installed following the
instructions from its repository hosted in the next link:
https://github.com/NilVidalRafols/iGNNspector

6.1. iGNNspector framework
The iGNNspector framework consists of a series of Python scripts

which holds a set of simple to use classes and functions. The structure of the
library has been thought out to be descriptive and easy to import. It has also
been designed with modularity and expandability in mind. This framework has
been conceived and is intended to show a particular way of how to solve some
of the problems that the GNN field currently has. Given the time frame
available to develop the framework, we were aware that some of the features of
the framework could be expanded if we had more time. Also, we thought of
additional features that could be very useful for iGNNspector that have not
been able to make it to the tool. For this reason, the main classes and modules
have been specifically designed to be easy to expand. If, beyond the end of this
project, it is decided that iGNNspector could be expanded with these ideas or
new ones, the responsible for the project could introduce new analysis methods,
new graph compatibility, improved GNN model builders and so on without
having to rewrite hardly any code, just add new one.

Figure 7 shows the workflow that can be followed while using iGNNspector,
both in framework form and with the user interface. First, a dataset is loaded
into a graph representation class. This data can come from different sources.
The graph class allows us to perform an analysis of several properties of the
graph, regardless of the origin of the data. After the analysis is computed, it
returns a report with the resulting characterisation values and the time it took to
compute them. These results can be fed to a proposer algorithm, which will
propose a series of GNN models that it thinks that best suits the graph
according to its properties. Users then can opt to generate a fully functioning
GNN model from one or more proposals.

40

https://github.com/NilVidalRafols/iGNNspector

Figure 11: iGNNspector workflow

Next, we explain in more detail how to use each part. Figure 8 shows the
structure of the framework library. Then we proceed to explain how every
module is intended to be used.

41

Figure 12: iGNNspector library structure

6.1.1. Graph

This is the class which represents graph data. It can be initialized with
objects like a NetworkX Graph or DiGraph, a PyG Data instance or an OGB
tuple. It can also receive a path to some file storing graph data of the following
formats.

- GEXF, an XML format to represent graph data.
- GML. Graph Modelling Language.
- Pickle files containing an instance of the classes aforementioned.
- GraphML, another XML format to represent graph data.
- A JSON file previously generated by NetworkX.
- A YAML file previously generated by NetworkX.

42

Internally, a graph object can host different versions of the graph at the
same time. For example, a NetworkX DiGraph instance and a PyG Data
instance that represent the same graph.

If the single_representation parameter is set to True. This Graph
instance will internally maintain only one version of the graph. This setting is
useful when a large graph has to be loaded. Instead of accumulating different
versions of the same graph, only the most recently used will prevail. This
lowers the memory requirements and allows to load big graphs that take a lot of
memory space. What single_representation saves in memory, however, it
makes it up with time. If only one representation is used, when another
representation is needed, it has to be recalculated again. If both versions exist in
memory, they only have to be computed once.

Subgraphs can also be generated using either the subgraph method or
the to_splits methods. Everything that can be done with the Graph class, as well
as how it can be used is described below:

● Import. ignnspector.Graph
● Initial parameters.

○ data. At initialization receives either an object representing
graph data or a path to a file representing graph data. (default:
None).

○ single_representation. If set to True, only a single type of
graph representation will exist at a time. (default: False).

● Attributes.
○ num_nodes. The number of nodes that the graph has.
○ num_edges. The number of edges that the graph has.
○ directed. True if the graph is directed. False otherwise.
○ single_representation. True if using single_representation

mode.
● Methods.

○ nx_Graph(). Returns a NetworkX Graph version of the data. If
it is already builded, it just returns it, if it is not, it generates a
new instance from whichever other representation is available.

○ nx_DiGRaph(). Returns a NetworkX DiGraph version of the
data. If it is already builded, it just returns it, if it is not, it
generates a new instance from whichever other representation
is available.

○ PyG(). Returns a PyG Data version of the data. If it is already
builded, it just returns it, if it is not, it generates a new instance
from whichever other representation is available.

○ subgraph(nodes=None, num_nodes=None). If a subset of the
nodes of the graph are given with the parameter nodes, it
returns a Graph instance containing those nodes and the edges
between them. If num_nodes is given, it returns a split with as
many random nodes as num_nodes.

○ to_splits(num_nodes). It returns a generator which generates

43

as many random splits as possible with a number of nodes
equal to num_nodes. Nodes do not repeat among splits from
the same generator. The last split might contain fewer nodes
than num_nodes if the total number of nodes of the graph is
not multiple of num_nodes.

6.1.2. Analysis

This module contains 2 main functions that are used to analyse Graph
objets. Both of them return a report of the results in the form of a map. If the
user wants to save the report, it is recommended to save it as a yaml file using
the python module yaml, since the yaml syntax is very readable. The metrics
that are analysed are the following:

- Real average degree.
- False average degree.
- Edge cut.
- Average clustering.
- Density.
- Average shortest path length.
- Diameter.
- Radius.
- Node connectivity.
- Edge connectivity.
- Homophily. Two homophily values are displayed. Attribute

assortativity coefficient uses a NetworkX algorithm wereas
homophily or (homophily ratio) uses a PyG algorithm.

The report provides for each metric its resulting value as well as the
time it has taken to compute it.

The analysis module contains more functions that users can use if they
want. Although the main purpose of these functions is to complete subtasks
from the 2 main ones, which are described below:

analyse()

This function performs a full analysis of the graph that is passed. Users
can indicate the quantity of nodes to analyse, in order to reduce the time it takes
to finish the analysis. The characteristics between splits can vary if they are
small, this is why users can indicate if they want to analyse multiple splits and
average their results. If the time parameter is provided, the analysis will try to
be completed with a duration equal to the time parameter (in seconds). This
function is very versatile. One or multiple parameters can be passed and the
function will automatically adapt.

● Import. ignnspector.analysis.analyse

44

● Parameters.
○ graph. The Graph instance to analyse.
○ time. If it is not None, analyse will call analyse_with_time,

explained below. (default: None).
○ split_size. The random number of nodes that the analysed

splits have to have. (default: None).
○ num_splits. The amount of different splits to analyse in order

to average their results. (default: None).
● Return. A map instance containing the value of all the available

metrics and the time it took to compute them.

analyse_with_time()

This function takes a graph and the duration in seconds that the user is
willing to spend analysing it. Then, the function will compute the split size
necessary to perform the analysis in the expected time and will call the analyse
function with this parameter.

● Import. ignnspector.analysis.analyse
● Parameters.

○ graph. The Graph instance to analyse.
○ time. The time in seconds that the user wants the analysis to

last.
● Return. A map instance containing the value of all the available

metrics and the time it took to compute them.

6.1.3. Model

It contains everything related to GNN models. With this module, users
are able to get recommendations for what model characteristics are best suited
for a graph, and automatically generate a PyG GNN from those
recommendations without having to code. Moreover, those users with
experience with PyG programming, can also opt to program a GNN by
themselves using the built-in GNN class.

All of these functionalities are encapsulated in the following elements
from the module.

GNN

This class represents a GNN model that can be customized. It is
implemented using PyTorch and PyG elements. When initialized, it takes as its
single parameter a list containing its internal components. A component
represents a layer, and is formed by a map with the next 4 elements:

- name. A string representing the name of the layer.

45

- layer. Contains the layer convolutional corresponding to a PyG
MessagePassing instance or another type of PyTorch Module instance,
like Linear, which represents a linear transformation.

- dropout. Contains a PyTorch dropout function.
- activation. Contains a PyTorch activation function.

If dropout or activation wants to be skipped in a particular layer, they
need to just be an identity function. When the GNN runs, components will be
executed in order of appearance in the list. For each component, its elements
will be executed in this order: dropout → layer → activation.

● Import. ignnspector.model.GNN
● Initialization parameters.

○ components. The list of components as described above.
● Attributes.

○ components. The same lists as the initialization parameter.
● Methods.

○ forward(data). It runs the GNN with the Data instance given
by the data parameter. Returns the final embedding after all
layers have been applied to the feature vector x.

Proposals

This module is intended to provide functions that, given an analysis
report, outputs another report which contains design proposals for a GNN.
Currently, there is one proposal function described below.

custom_studies()

It is a customizable proposer function. To get recommendations, the
user has to give an analysis report and a feature list. The feature list is used to
specify the maximum number of proposals wanted, where each proposal has a
different type of feature. It has the following structure:

- [('model_type', 2), ('num_layers', 2)]

In this example we see that the first tuple indicates that the result will
contain proposals of two model types. The second tuple indicates that, for
every model type, there will be two proposals with a different number of layers.
If we ran custom studies with these feature lists we would get at most 4
proposals. 2 models of different numbers of layers for each of the two model
types proposed. At the moment only the number of model types and layers can
be specified. If there were more options, they could be chained together in any
specific order.

This function decides what proposals to return using a proposal tree,
which indicates models based on analysis values. It uses a default tree which is
written based on the knowledge gathered from GNN papers during the duration
of the project.

46

This function is customizable because, if users want it, they can
provide a custom proposal tree. It is recommended to write the tree in yaml
format and then provide it to the function.

The output consists of a list where each element is a proposal. A
proposal consists of a map describing the model’s architecture, which can be
converted to a yaml file for easy readability.

● Import. ignnspector.model.proposers.custom_studies
● Parameters.

○ report. The analysis report map.
○ features. List containing how many different types of features

the proposals have to cover.
○ proposal tree. The proposal tree that can be passed if wanted.

If it's None, the function will use the default tree. (default:
None).

● Return. A list of proposals.

Builders

This module is aimed to provide functions that build GNN models.
However, there is currently just one builder function which is described next.

pyg_builder()

This function takes as argument a proposal in the format used in
custom_studies and outputs a list of components. This list follows the
specification described in the GNN class section and can be used to create a
GNN class instance, which will resemble the GNN model that the proposal
initially described.

● Import. ignnspector.model.builders.pyg_builder
● Parameters.

○ report. The proposal report map.
● Return. A list of components to initialize a GNN class instance.

6.2. iGNNspector user interface
The iGNNspector app with user interface is designed to provide all the

framework’s main functionality through the use of a simple user interface. It is
aimed at people that want to start using GNNs but they do not have the
background knowledge about machine learning or the technical skills to
program machine learning algorithms by themselves. Also it can be used as a
learning tool for GNNs.

The tool provides an easy and intuitive way to load a graph, analyse it
in the way users want, get proposals and finally save analysis reports, proposal
reports or a ready to use GNN model.

47

The user interface is designed to be simple to use. Most actions that
can be done with the iGNNspector framework depend on a chain of actions that
have to have taken place before. For example, if we want to generate a GNN
model from a proposal, we need to first complete a prior series of actions. First
a graph has to be loaded, then it has to be analyzed, the analysis report has to be
passed to a proposer that returns a set of proposals. Taking one of the proposals
we can finally generate a GNN model with a builder.

These dependencies have been taken into account to design the
workflow of the GUI app. To use the tool, users follow a linear process until
they get what they want, an analysis report, proposals or a GNN model. Also
they can return to any step of the workflow from any other point. The state of
the GUI reminds users at all times which step they are at. In the following, an
explanation of the workflow is provided with some screenshots.

Figure 13: A complete look of the iGNNspector app at the first step.

Load a graph

There are 2 main ways to load a graph with the iGNNspector app. The
first one consists in browsing the file system and choosing a file containing
graph data. The compatible files are the same as the specified in the Graph
class section.

48

Figure 14: iGNNspector app browsing window.

If the browse button is clicked a file browser bubble appears. It consists
of a table with a column showing the name of files and folders and another
showing the size of only files. When a file is clicked its name will appear inside
the bubble next to the browse button. This means that the file has been selected.

Figure 15: iGNNspector analysis settings

We can configure the analysis settings the same way we would do
using the iGNNspector framework. We can set no settings, one of them, or both
the split size and the number of splits. If we click on the time button the app
will instead ask us how many minutes we want to want for the analysis to
finish.

49

Figure 16: iGNNspector time based analysis and saved reports.

If we have previously analysed a graph, its analysis report will be
saved with the name of the graph. Then, it will be listed in the table below the
file browser, ready to be selected. We will be able to see the analysis results
without the necessity to analyse the graph again. In Figure 8, the time based
analysis settings are shown, although it will not be needed if we select a saved
report.

Analyse the selected graph

If a file or a saved report is selected and the analyse button is pressed, the app
will proceed to compute the analysis.

Figure 17: App graph generating message

50

Figure 18: iGNNspector analysis report

After the app has finished analysing the graph it will proceed to show
the results in a report bubble. As it can be seen, it shows the value of a
particular metric and the time it took to compute it. If we want to save the
report as a yaml file, we have to click the Save analysis button.

Model proposals

Before clicking the “propose models” button, we can check our
preferences for a GNN model. We can choose if we care about memory usage,
execution time or good prediction results.

Figure 19: Proposer preferences

51

Once the “propose model” button is clicked, a table will appear listing
the proposed models. If the “save proposals” button is clicked, every proposal
will be saved as a yaml file. We can also select a proposal from the table and
click the “Build model”. Then, a GNN model will be generated and saved to a
pickle file, prepared to be used.

Figure 20: Model proposals

52

7. Implementation
This section describes how each part of the iGNNspector framework

has been implemented and explains the reasons behind it. Some experiments
have been performed in order to decide how a module should be better
implemented, and thus they will also be explained. To get a more complete
picture of the implementation we invite the reader to check the source code as a
complement to the explanation that this section provides. It can be found in the
following link: https://github.com/NilVidalRafols/iGNNspector

7.1. iGNNspector framework
7.1.1. Graph

The idea behind this class is to have a graph representation interface
that is as agnostic as possible to the format with which the original graph data
was expressed. It is meant to allow users that need to work with different graph
related frameworks to load data one time and use a simple call to the Graph
instance to return the particular representation needed for every framework. A
good use case example for this class is the analysis module from the
iGNNspector framework, which makes use of both NetworkX and PyG
frameworks. Using the graph class, it has been much simpler to implement the
analysis functions and its code is much easier to read and understand. This in
turn has allowed for less unpleasant debugging sessions. For the moment the
compatible graph objects are NetworkX DiGraph and Graph, PyG Data and a
tuple representing a single graph from the OGB library.

Next, how the methods of the class have been implemented is described:

● Initialization. When initialising an instance of the class, the parameter
data can be defined as a pathlib.Path object (which represents a path
from the file system almost in the same way regardless of the operating
system), or a graph object from the classes mentioned before. If it is an
graph object, this function is called:

- get_graph_from_data(data)

It will define an attribute based on the object class. For example, if we
have a Data object, self.__PyG = data. If we have a DiGraph object,
self.__DiGraph = data. Also, it defines the next attributes:

- self.num_nodes. The number of nodes from the graph.
- self.num_edges. The number of edges from the graph.
- self.directed. True if the graph is directed.

It computes their value depending on the class of the parameter data.
For example, to determine if the graph is directed for NetworkX
objects, it suffices to check if it is a Graph or DiGraph instance. For

53

https://github.com/NilVidalRafols/iGNNspector

PyG Data objects or OGB tuples, it uses the utils.is_undirected
function from PyG to determine if the edge index corresponds to a
directed or undirected graph.

If data is a Path, this function will be called:

- get_data_from_path(data)

which will read the file contents according to the file suffix using a
NetworkX function. If it is a pickle file it will just load using pickle.
Then, get_graph_from_data will be called to perform the same actions
as before.

The class contains one method for every compatible graph representation class
that returns an object of that class. Those methods are:

● nx_Graph().
● nx_DiGraph().
● PyG().

They all work in a similar way. When they are called they check if the
particular representation already exists. If it does not, they proceed to create it,
assign it to a private attribute and return it.

If the “single_representation” attribute is set to True, when a method has
finished creating its representation, it sets every other representation to None,
in order to save memory space. This option was conceived during analysis
experiments. When analysing the gbn-products dataset, from OGB, the process
got killed by the system. The space needed for the original OGB data, a
NetworkX Graph, Digraph and PyG representations to coexist exceeded the
available memory space, which is a lot considering that the server BNN
provided to develop the project has 64 GB of main memory.

● subgraph(nodes=None, num_nodes=None). To return a subgraph,
this method needs a list with the node IDs. They can be provided with a
list, with the parameter nodes. They can also be chosen at random,
using the num_nodes parameter, which indicates the size of the split.

Once we have the node IDs the next code is executed:

if self.directed:

G = self.nx_DiGraph().subgraph(nodes).copy()

else:

G = self.nx_Graph().subgraph(nodes).copy()

return Graph(G)

To get a split of the graph, the NetworkX representation of the graph is
used to call its method subgraph() to get a view of the split. Then the method
copy() is called in order to generate a true new instance representing the split.
Finally the NetworkX split is used to create a new Graph instance, which will
be the final return object.

54

● to_splits(num_nodes). This method returns a generator of subgraphs
of the same size. It was decided to use a generator for efficiency
reasons. If users dealing with a really big graph only want to get a few
splits with no repeated nodes, then the generator will generate only the
splits they want and no more. If to_splits returned a list instead, it
would generate all the splits possible. This might take too much time.
Or since there would be a whole splitted copy of the graph, the system
might run out of memory.

7.1.2. Analysis

Before the implementation of this module, some experiments were carried out
to seek a good way to implement analysis functions and to see how the
combined computational cost of analysing different metrics evolves as a graph
grows in size. First of all, we will describe and show the results of the
experiments.

7.1.2.1. Experiments

Gathering data

We wanted to record the time duration of an analysis of splits of increasing
size. An analysis consists of the execution of the functions shown in 7.2.1, one
after the other. The settings that define an experiment are the following:

- Dataset. The graph used to extract the splits.

- Initial split length. The number of nodes of the first split analysed.

- Node increment. The increment in nodes with respect to the previous
split length analysed. For all the final results, this value consists of a
percentage. Results have been obtained with a 10% node increase with
respect to the number of nodes of the previous split analysed. A
percentage increment was decided to be used because, with a constant
node increase, as the graph grows, there exists less and less difference
with the results of one split and the next, so a lot of samples would end
up being very similar. We have to also consider that as the split size
grows, the cost of analysing it increases exponentially. For that, a
percentage approach is the best in terms of meaningful data extraction
and time efficiency.

- Maximum splits. With small split sizes, a graph can be divided into
multiple splits. These splits might have slightly different characteristics
and might take more or less time to analyse. Then, for every split size,
multiple splits are analysed to save the average result. The number of
splits analysed has been 5. When the size of the split grows this

55

number will decrease when it is impossible to divide the graph into 5
distinct splits.

The datasets used to run the experiments all come from PyG and are the
following, divided by dataset loader:

Loader Dataset # nodes # edges

CitationFull Cora 19,793 126,842

CiteSeer 4,230 10,674

PubMed 19,717 88,648

DBLP 17,716 105,734

WikiCS 11,701 297,110

WikipediaNetwork Chameleon 2,277 36,101

Squirrel 5,201 217,073

Amazon Computer 13,752 491,722

Photo 7,650 238,162

Table 1: Datasets and their node and edge count.

Motivation behind the experiments

Algorithms that compute a certain metric from a graph generally have an
exponential time complexity. Nonetheless, the exact const function is unique to
every metric.

With that said, we had some hypotheses.

- Although all metrics would show an exponential increase, they would
grow at different rates, some growing more rapidly than others.

- The combined time complexity of all algorithms applied to splits of a
graph could be predictable by a simple machine learning algorithm like
Linear Regression or a Neural Network.

- If the last point holds true, maybe a single model is able to predict the
time it will take to compute all metrics regardless of the graph that is
being analysed.

56

Results

The results from the analysis experiments are shown using different types of
graphics to better visualize, understand and explain them. The graphics below
show the evolution of execution times from all datasets used for experimenting.

Figure 21: Correlation between number of nodes and execution time.

Figure 22: Correlation between number of nodes and execution time.

In figure 13, 2 groups of datasets can be seen following slightly different paths.
Cora, Pubmed and DBLP grow at a lower rate. They come from the same
source, CitationFull, and represent similar data. Then we have the datasets
Computers and Photo and WikiCS. Their faster rate could be related to the fact
that they are much more dense than the others. They have the higher number of
edges from all datasets.

57

In figure 14 we can see 4 groups, CitationFull, Amazon (Computers and
Photo), WikiCS, and Squirrel. Despite being the slowest growing datasets with
nodes, CitationFull is very sensitive to an increase in edge count. The case of
Squirrel is an interesting one. It has 217,073 edges, the fourth largest edge
count among the datasets. However, edges contribute almost nothing to the
time increase, which might be due to the fact that it is the smallest in terms of
nodes, with only 2,277. With this data, the relationship between node and edge
count and time execution is not wet clear.

Figure 23: Correlation between the node and edge count and execution time.

Figure 15 contains a point for every sample from the experiment. The point
position represents the node and edge count and its color represents the
execution time of the sample. Although it is not explicitly shown, the growth of
individual datasets can be traced, since points are arranged in continuous lines.
There, some groups can be seen , as in figures 13 and 14. Among datasets of
the same group, execution time is similar for similar node-edge coordinates.
Nonetheless, there are some examples that make it evident that topology plays
an important role when it comes to execution time, not just node and edge
count. In the 10,000 - 12.500 node range, datasets with less edges take more
time to execute than datasets with more edges.

58

Figure 24: Individual function execution times stacked vertically, ordered by node
count. From the CitationFull Cora dataset.

Figure 25: Individual function execution times stacked vertically, ordered by node
count. From the Amazon Photo dataset.

59

Figure 26: Individual function execution times stacked vertically, ordered by node
count. From the Wikipedia Network Squirrel and WikiCS datasets.

These bar plots show the total execution time of the splits of a dataset, each bar
is divided by individual function times. Looking at figures 16 and 17, it is clear
that the next functions account for the majority of the execution time:

- node connectivity. Searches a node which, if removed, the graph
would cease to be a single connected component.

- edge connectivity. The same concept applies to edge connectivity but
with edges.

- average shortest path length, computes the average of all shortest
paths among nodes.

- diameter. Finds the longest distance among the shortest paths between
2 nodes of the graph.

- radius. Finds the shortest distance among the distances of any node to
its farthest node.

These algorithms are very costly and are very sensible to node or edge
increases. They need to traverse the graph one time for every node or edge in
order to make sure to find bridge nodes or edges, in the case of node and edge
connectivity, and all distances between nodes for the rest.

After seeing these plots, it is clear that the number of nodes and edges are not
good predictors for execution time. The next plots show the prediction times
given by an MLP, which makes it clear that more metrics are needed if we want
to make better time predictions.

Because MLP applies linear transformations, it would be hard for it to output
an exponential result as its prediction. For this reason, the MLP predicts the
base 10 logarithm of the execution time, which is a linear function. Then it is
reconverted to show actual time values. Node and edge count are their input
values. Although it might not seem necessary, the number of nodes and edges
are also converted to base 10 logarithm because it shows better results.

60

Figure 27: Predicted time vs. real time for Photo, Computers and WikiCS datasets
using an MLP.

61

Figure 28: Predicted time vs. real time for PubMed datasets using an MLP.

The MLP model obviously fails to generalize. It makes good predictions for the
Amazon group of datasets, but it is at the expense of not being able to predict
the CitationFull group, which has a growth rate lower than the other datasets.
Nonetheless, it does predict the execution time of some datasets with
acceptable results. As it can be seen in all figures, every dataset follows a very
uniform exponential function, with a constant growth rate.

This opens the possibility to use a machine learning method to learn the
specific growth function of a single dataset, and then use it to inform the user
how much time a dataset will take to be analysed given the size of the graph.
The inverse could be done too. Let the user decide how much time they want to
spend analysing a graph and then infer the size of a split.

The growth function of the execution time of a dataset is a simple one. For this
reason, a Linear Regression algorithm is enough to use for single dataset
prediction. The following plots show different predictions from a Linear
Regression model.

62

Figure 29: Predicted time vs. real time for the CiteSeer dataset using Linear
Regression.

Figure 30: Predicted time vs. real time for the Amazon Computers and Photo
datasets using Linear Regression.

63

Figure 31: Predicted time vs. real time for the Squirrel and WikiCS datasets using
Linear Regression.

Figure 32: Predicted time vs. real time for the CitationFull Cora and DBLP datasets
using Linear Regression.

The Linear Regression model seems to make accurate predictions for the
majority of the datasets. However, it predicts higher times than expected for
Cora and DBLP. This could be due to the fact that these 2 datasets have a very
slow exponential growth. Since the algorithm predicts the logarithmic value of
the time, it might be impossible to output a line with such low curvature. This
shows us that in some circumstances, the model could give conservative
estimations and select a smaller split size than necessary.

Conclusions

With these experiments we have observed that although different graphs
increase their execution time at different rates, they do it at a steady pace, with
a constant growth rate. With that and the results of the MLP, it is clear that a
single model is not able to generalize the prediction of execution time given
only the node and edge count. However, the constant rate with which a dataset
time grows makes it possible to use a simple ML algorithm such as Linear

64

Regression in order to make good predictions about execution times of a single
dataset.

7.1.2.2. Immplementation

Currently, 2 analysis functions are available in the iGNNspector framework.
One of which makes use of the Linear Regression models used during the
experiments to let users define how much they are willing to wait for analysis
results.

Analysis report

Analysis functions return a map that stores the value of each metric that has
been analysed as well as the time it has taken to compute it. A fragment of an
analysis report is shown below converted to yaml format:

name: 'CiteSeer'

task: node_classification

attribute_assortativity_coefficient:

time: 0.008925676345825195

value: 0.9377752578717435

average_clustering:

time: 0.02590036392211914

value: 0.11678134183176847

average_shortest_path_length:

time: 1.917839527130127

value: 7.419883997620464

density:

time: 0.0007691383361816406

value: 0.0005966905309338257

diameter:

time: 1.8830609321594238

value: 23.0

After an analysis, other entries like “name” or “task” can be added if they are
useful. For example, a proposer could make use of them.

analyse(graph, time=None, split_size=None, num_splits=None)

This function can be called with any combination of its parameters. If time is
given, the others are ignored and the “analyse_with_time” function is called,
which will be explained later. Otherwise, the parameters “split_size” and
“num_splits” are checked and corrected if either of them are greater than their
maximum values or are “None”. If both of them are “None”, all the graphs are
analysed. A generator is set using the “to_splits” method with the corrected
values.

Then, the report map is initialized with a key for every metric available. Metric
functions are stored in 3 lists located in the functions.py script,
“ignnspector_functions”, “nx_funtions” and “pyg_functions”.

65

Once we have the generator and the report, the function proceeds to start the
analysis. Every split of size “split_size” is analyzed “num_split” times and the
resulting values are averaged. Once it's done, it returns the analysis report map.

analyse_with_time(graph, time)

First of all, the time is divided by 3, because 3 splits of equal size will be
analysed in order to average the results. After that, the function
“get_best_model” is called. This function takes 10 sample splits of a graph with
increasing size, starting from 1% the number of nodes. If no edges are present
with 1%, it increases the size with another 1% until it contains edges. These
samples are analysed and used to train the next Linear Regression models from
the sklearn library:

models = [

LinearRegression(),

Ridge(),

BayesianRidge(),

LassoLars(alpha=.1),

Lasso(alpha=0.1),

ElasticNet()

]

After training, the model with the least mean square error is returned. Then, the
model is used to decide the split size correlated with the execution time
specified by the user.

Once we have the split size, the “analyse” function is called with the split size
value and a number of splits of 3. It will analyse the splits and return a report
map as we specified earlier in this section.

7.1.3. GNN

This class inherits from torch.nn.Module, which is the base class for all
neural networks in the PyTorch framework. A PyTorch Module can represent a
layer or even a whole neural network model. Module is built in a way that it
can contain other Module objects, making it possible to nest them in a tree
structure to create complex neural networks .

The structure of a GNN object is defined by a map of components, the
structure of which is already described in “architecture and design”. When a
GNN object is initialized, it runs the next code:

self.components = components

a name list will be necessary to retrieve the corresponding

steps

self.names = list(map(lambda c: c['name'], components))

for name, layer in map(lambda c: (c['name'], c['layer']),

components):

self.add_module(name, layer)

66

The components list is set as an attribute, because it will be needed
later on. The PyTorch Module class is designed to configure itself depending
on if it is used during training or not. For that reason, we need to add the layer
inside a component as a child module of the GNN. To add a child module, we
need to also provide a distinct name for it. A list of names is set as an attribute
to be used later on. Then, a for loop is used to take the “name, layer” pairs from
components and initialize them with “self.add_module(name, layer)”.

When the “forward” method is called, it takes the node feature vector
“x” and the “edge_index” from the data object. Then it proceeds to execute
each GNN layer. It makes sure that layers are executed in the order that they
appear in the “names” list, which is the original order that appears in the
“components” list.

A for loop executes the layers. For each iteration, first it executes the
dropout function, followed by the layer convolution and finally the activation
function. When finished the final node embedding is returned.

7.1.4. Proposers

The module proposers, as analysis, can also be expanded by adding
new scripts containing proposer functions. For the moment, it contains the
script for the custom_studies proposer function.

custom_studies(report, features=None, proposal_tree=None)

Proposal tree

This proposer function takes a report map with the iGNNspector
analysis format and uses the results to look up a proposal tree, from which it
gets different model proposals. The proposal tree consists of a map of a specific
format, and users can provide their own map with the parameter
“proposal_tree”. It is recommended to write the tree first in a yaml file, since it
is easier and intuitive. The default map that the function uses was originally
defined in a yaml file. In order to explain the format that proposal trees have, a
little example is next shown written in yaml:

homophily:

'> 0.5':

- model_type: GCN

num_layers: 2

- model_type: GAT

num_layers: 3

'<= 0.5':

- model_type: Geom-GCN

num_layers: 4

- model_type: H2GCN

num_layers: 4

task:

67

'== node_classification':

- model_type: GCN

num_layers: 2

- model_type: GAT

num_layers: 3

'== node_feature_prediction':

- model_type: GCN2

num_layers: 16

A proposal tree has 3 types of nodes: metrics, conditions and leaves.
Metrics have the same name as they appear in an analysis report. Every metric
node is followed by condition nodes. In this example, the metric homophily is
followed by 2 conditions, “> 0.5” and “<= 0.5”. If we executed
“custom_studies” with the little tree above, it would first see the homophily
node. Then, for every condition it would check if the homophily value from the
analysis report satisfies the condition. If it does, it would enter the condition
node and find the leaves of the homophily “branch”, which are a list of GNN
proposals. These proposals are appended to a list.

After that, it goes to the next metric node and repeats the process until
there are no branches left. Note that the “task” metric does not appear in an
analysis report. This is because a proposal tree can have metrics with any name.
If a user decides to add something that considers important to an analysis
report, it will be used to propose models as long as there is a metric node for it
in the tree.

Moreover, since this is a tree, a metric node can also be the child node
of a condition node. This way nested metrics can be created. The next fragment
is an example:

memory_efficiency:

'== low':

task:

'== node_classification': &node_classification

- model_type: GCN

num_layers: 2

- model_type: GAT

num_layers: 3

'== node_feature_prediction':

- model_type: GCN2

num_layers: 16

'== high':

task:

'== node_classification': *node_classification

'== node_feature_prediction': *node_classification

68

In it we can see that for every setting of “memory_efficiency” there are
different proposals for the “task” metric. Also, if we want to repeat a fragment
of the tree we can use an anchor, which is a feature of yaml that allows us to
“copy and paste” the contents of an entry. The contents to be copied will go
after the name of the anchor, in this case “&node_classification”. Then, the
contents will be pasted in the entry where we write “*node_classification”.

Proposal selection

When all the proposals have been collected, then the function proceeds
to order them according to the feature list settings. With a feature list like this:

- [('model_type', 2), ('num_layers', 2)]

The contents of a proposal list could be the following:

Figure 33: A proposal list structure from the “coustom_studies” function.

Although the proposal list that “custom_studies” returns has no
hierarchy, this figure shows how proposals are selected internally. All of the
proposals given by the tree are passed to the function:

- select_proposals(features, proposals)

This is a recursive function. Its pseudo-code can be expressed as follows:

def select_proposals(self, features, proposals):

69

result = []

if len(features) == 0:

result = remove_duplicates(proposals)

return result

feature, num_proposals = features.pop(0)

proposals = divide_propsals(proposals, feature)

proposals = proposals[:num_proposals]

for group in proposals:

result += select_proposals(features, group)

return result

- If there are no features in the feature list, then it returns all the
proposals without duplicates.

- If there are, this function pops a feature from the feature list as if it
were a queue.

- Then, it divides proposals into as many groups as there are different
values for the feature. For example, with the feature list above, it would
group all GCNs in one group, all GCN2s in another and so on, since
the first feature is “model_type”. Then it would take only the first 2
groups, GCN and GCN2, which are the most abundant.

- Following, it would call itself recursively for every group. This time,
the most abundant 2 num. layers would be selected.

- Finally, as in Figure 33, it returns this proposal list with:

- GCN with 2 layers,
- GCN2 with 16 layers,
- GCN2 with 32 layers.

Proposal report

The proposal list then is passed to the “get_report” function. It will generate a
proposal report for each proposal. These reports consist in a map and will be
the return value of the “custom_studies” function.

In yaml format a proposal report looks as follows:

layers:

- activation: relu

in_features: 20

out_features: 15

type: GCN

- activation: relu

in_features: 15

out_features: 10

type: GCN

- activation: log_softmax

70

in_features: 10

out_features: 5

type: MLP

It defines the internal structure of the proposed GNN. “layers” contains a list
with the components of each layer of the model. The “get_report” function
lowers the size of the input features to match the size of the final output
features (both of them are indicated on the analysis report).

7.1.5. Builders

Like the analysis and proposers module, builders can be expanded by
adding scripts with functions that take as parameter a report and outputs a GNN
model. The currently available builder function is the next.

pyg_builder(report)

This builder function returns the components for a GNN class object given a
proposal report. For every layer on the report, “pyg_builder” builds a
component map with a dropout function, the proper GNN layer and the proper
activation function. Then adds all components into a list and returns it.

If the report does not mention dropout or activation, they will be identity
functions in a component. An identity function returns the same value that is
passed as a parameter. In Python they can be expressed as “lambda x: x”.

The current GNN layers and activation functions that can be loaded into a
components list are given by the next 2 maps from the source code:

layer_map = {

'GCN': get_GCNConv,

'GAT': get_GATConv,

'GIN': get_GINConv,

'GCN2': get_GCN2Conv,

'MLP': get_MLP

}

activation_map = {

'relu': F.relu,

'log_softmax': F.log_softmax

}

The keys in these maps are the ones that can be used to specify the layer and
activation of a proposal report.

71

8. Conclusions
The work of this thesis is a response to the distinct problems that the GNN
currently faces. The motivation behind the project has been to explore new
ways to tackle these challenges and propose a specific solution. The
iGNNspector tool can be used out of the box. It has been designed to be easily
extendable, so it can also be used as the foundation of a more complex and
capable framework, if in a future project it is decided to do so. Its development
has also been a way of brainstorming new interesting ideas that could also be
carried out on future projects.

Initially, we intended to develop a tool that was used exclusively with a user
interface, since it was thought to be used by machine learning programmers and
beginners in the field alike. Nonetheless, we realize that its functionality could
also be useful if used separately. We thought that it would be interesting to
develop it as an open programming framework that was versatile and easy to
expand. This way, separate elements like the graph interface, the analysis
capability, the GNN builders, etc, could be used at will. Then, the user interface
could as easily be implemented on top.

While implementing the tool, some research was made about how researchers
are trying to solve problems like the over-smoothing phenomenon or
heterophily, in order to better understand them and think how iGNNspector
could help with them. Although, given the development time frame, little
connection has been done, the knowledge gathered has been included in the
thesis.

The final result of the project is both an open source programming framework
and a user interface app. In its current state it can already be helpful.
Nonetheless, we find that its biggest value is the fact that it can help
newcomers learn the concepts and particularities of the GNN field. Also, the
new ideas that it has brought to the table can be interesting to explore in the
future.

8.1. Further development
Further development ideas range from new kinds of proposals and builder
algorithms to entirely new solution concepts.

First of all, besides the Linear Regression algorithm that powers the
“analyse_with_time” function, no other ML algorithms have been used
elsewhere. It would be interesting if a proposal function used some ML
technique. But for that, a lot of types of GNN would need to be tested for
different types of graphs and record their performance. Such activity has
remained outside the possibilities of the project.

72

Also, a proposal could be made to output an iGNNition model description, that
could then be feeded to iGNNition to generate TensorFlow based models.

Currently, the model report format that is used by the proposals and the PyG
builder is fairly simple. As the tool gets compatible with more GNN models
and techniques, a revision of this format would be very useful.

There exists a lot of GNN development frameworks like, TensorFlow, PyG,
DGL, etc. If it is needed, there can be as many builders as different GNN
frameworks.

An analysis could be much more configurable. Users could be able to specify
what metrics they want to be computed, or what metrics they want to exclude.

Needless to say, the Graph class could be made compatible with more graph
frameworks. Moreover, currently splits with nodes chosen at random is the
only way to get splits. For some topologies, if nodes are chosen at random and
the split is too small, it might contain very few edges since almost none of the
nodes from the split are neighbours. To solve problems like this, new methods
to split graphs could be introduced. Like an algorithm that gives an initial node,
it traverses the graph to take x number of nodes. This way all nodes would be
connected. Also, splits based on edges, not nodes, could be introduced.

Maybe some research could be done to determine what metrics a ML algorithm
needs to properly predict analysis times regardless of the dataset. If that were
possible, “analyse_with_time” would lose no time taking some samples from a
dataset.

Our director also has pointed out that iGNNspector could be brought to the web
for everyone to use it. This way, users could agree to share their graphs and
graph analysis with us. With all the data gathered, we could be able to better
understand the topology of all kinds of graphs and their relation with the
performance of different types of GNNs. Also, it could contribute to the search
for more and better dataset benchmarks, which is a crucial part of GNN
development.

8.2. Technical competencies
With regards to the technical competencies of the project, I think they

have been accomplished. The experiments carried out have allowed me to fine
tune the implementation of the graph class and analysis functions in order to
make them efficient. Also, the recommender system of iGNNspector reflects
the research that has been done to determine the most suited GNN algorithms
for a given input. Also, a range of ML algorithms have been used throughout
the development, like MLPs, Linear Regression, and GNNs. Finally, the code
of the iGNNspector tool has been structured in a way that makes sense, is easy
to understand, easy to traverse and with modularity and expandability in mind.

73

8.3. Personal acknowledgement
With this project I have been able to learn a lot about a unique field of

ML. The GNN field has a unique set of characteristics that separate it from
other ML fields. Their algorithms work in ways that I could not have foreseen
before I learned about them. For these reasons, since the first moment our
director presented the concept to me, GNNs have held my interest and
attention. I am happy to have worked on the development of the iGNNspector
because I have been able to explore a lot of topics that do not end with GNNs.
For me, the interest on the project stayed fresh throughout the development
because I had to tackle diverse topics for every section of the tool. I learned
about graph representation methods, graph characterization, how Python
projects are developed, how the PyG framework worked, etc. I had to even use
web development tools like html, css and javascript in order to build the user
interface, which makes use of the chrome web browser to render.

I have to thank our director Sergi for all the guidance and advice he has
given us throughout the duration of the project. His level of involvement has
helped us in a great amount. I also have to thank Cristina and Carlos, who are
responsible for the other 2 parts of the bigger project. Since iGNNspector
touches in some degree or another a lot of GNN related topics, I had to ask for
advice on their domains, and they have never hesitated to share their respective
knowledge when needed. Last but not least, I have to thank Albert for setting
up and giving us access to a powerful server. Without it, I would have not been
able to experiment with big graph datasets. Personally, I have never used such a
capable machine and it has been a pleasure.

74

9. Budget and sustainability

9.1. Budget
In this section I will describe the economic cost associated with the resources
that will be used to complete the project, among them, human resources or
hardware resources, for example. Later, a cost table can be found, which shows
the cost that each task will have, according to its resources and the total cost of
the project. Furthermore, I will explain how I plan to set an economic
emergency margin if some deviation were to occur. All costs are expressed in
euros (€).

9.1.1. Cost Identification and Estimation

9.1.1.1. Cost per task
First of all, behind every project there is a team of people who will write the
planning and push it forward to complete it. In the case of this thesis, this team
is comprised by:

- The thesis researcher, developer, tester and writer. I will be
responsible for carrying out the majority of the tasks that comprise this
project. Since the goal consists of developing a software tool to work
with GNNs, the work that has to be done is fairly varied.

- The thesis director, who will offer guidance, advice, support and will
supervise the work done.

9.1.1.2. Generic costs
The field of Machine Learning is well known for the high computational cost
that its algorithms require, and GNNs are no exception. In order to be able to
run the code from the tool, some hardware is absolutely necessary.

- A server with a rather capable GPU and RAM is needed. The
BNN-UPC research group has provided us with a server with a
powerful GPU that can be accessed via an SSH connection and a VPN.

- A laptop will be required to access the server at any time. Although it
will not run any algorithm, it will be used to perform all the research
and write all the code for the software tool.

The amortization formula used to determine the costs of hardware resources is
the following:

𝐴𝐶 = 𝑃𝑟𝑖𝑐𝑒 × 1
𝑈

𝑇
× 𝑈 (7)

Where:

75

- AC is the amortized cost for the project in €,
- Price is the initial price of the good in €,
- UT is the total amount of hours the good will be used and
- U is the amount of hours it will be used for the project.

All the hardware components that constitute the server sum up a price of
approximately 4,500 €. It will be used by the BNN-UPC research group during
a period of approximately 4 years. During those years it will be able to run
useful work 24 hours a day every day. The server will be used during the
research of the most fitting algorithms to use, implementation and testing.
Estimate that it will be used approximately 300 hours. With these numbers, the
amortized cost is:

𝐴𝐶
𝑠𝑒𝑟𝑣𝑒𝑟

= 4, 500 × 1
4×24×365 × 300 = 38. 52 € (10)

The laptop initial price was 1,160 €. It is currently being used also for personal
and academic purposes, so the amount of hours spent on average per day is 4
hours. I intend to use it for at least 4 years, so the total amount of hours which
the laptop’s will be used (UT). It is planned to be used during all phases of the
project, which sum up to 595 hours. The resulting amortized cost is:

𝐴𝐶
𝑙𝑎𝑝𝑡𝑜𝑝

= 1, 160 × 1
4×4×365 × 595 = 118 € (11)

In order to use the hardware mentioned before, an energy source is needed.
During the period where the project will be conducted, it is expected that the
electricity rate in Spain will sit around 0.12 €/kWh. When running under a high
computational load, the server uses 800W of power. However, it will not be at
full throttle all the time it is used. I expect it to run at this state only 30% of the
time at most, which is 90 hours. The rest of the time I estimate it will run at
300W. Obviously, the laptop is much less powerful, sitting at 250W. The cost
of the total energy consumption of the hardware can be calculated as such:

 𝐸𝐶 = 𝑝𝑟𝑖𝑐𝑒 × 𝑃 × 𝑇 (12)

Where:

- EC is the total cost of the energy used in €,
- price is the price in €/kWh of electricity
- P is the power from the hardware in kW and
- T is the time it spends consuming that much power in hours.

𝐸𝐶
𝑠𝑒𝑟𝑣𝑒𝑟

= 0. 12 × (0. 8 × 0. 3 + 0. 3 × 0. 7) × 300 = 16. 2 €

𝐸𝐶
𝑙𝑎𝑝𝑡𝑜𝑝

= 0. 12 × 0. 25 × 595 = 17. 85 €

76

𝐸𝐶
𝑠𝑒𝑟𝑣𝑒𝑟

+ 𝐸𝐶
𝑙𝑎𝑝𝑡𝑜𝑝

= 34. 05 €

9.1.2. Cost Table

Macro-Task Hours cost per hour (€) Macro-Task cost (€)

Project management 90 15 1350

Study of the GNN field 50 750

Study of the main
programming
frameworks

70 1050

Research and
determine algorithms

85 1275

Implementation 100 1500

Unit testing 35 525

Tool creation 30 450

Integration testing 20 300

Documentation 120 1800

Total cost per task (€) 9000

Hardware Hours used Amortized cost per
hour (€)

Total amortized cost
(€)

Server 300 0.863 38.52

Laptop 595 0.198 118.18

Total cost per task (€) 156.7

Hardware Hours used Electricity cost Total electricity cost
(€)

Server 300 0.12 16.2

Laptop 595 17.85

Total cost per task (€) 34.5

Total project cost (€) 9191.2

9.1.3. Management Control

It is very recomended to think about the planning of a project as if
contingencies and complications were totally expected to happen, as if they
were programmed, only that without a specific date to address them. To further
understand what these deviations from the original plan look like once the

77

project is done, I will list next a set of metrics that will help to visualize where
contingencies will have happened and the magnitude of them.

- Human resources deviation. There are a lot of complex algorithms
related to GNNs that need to be implemented. Also, the tool to develop
will be made up of multiple software packages and pieces. It is possible
that there is more complexity to the project than what we originally
considered. Which means that more hours will be needed to finish
some aspects of the implementation. It is also possible that algorithms
are more computationally complex than what we envisioned. These
facts can contribute to slowing down development.

𝐻𝑅
𝑑
 =

𝑝 ϵ 𝑃
∑ (𝑒𝑢

𝑝
 − 𝑟𝑢

𝑝
) × 𝐶

𝑝
(13)

Where:
- HRd is the human resource cost deviation,
- P is the set of people working in the project,
- eup is the estimated amount of hours that a person p will work

in the project,
- rup is the real amount of hours that a person p will work in the

project,
- Cp is the cost per hour of a given person p.

- Amortization deviation. As mentioned before, additional working
hours mean additional hours that hardware equipment is used and
amortized.

𝐴𝑚
𝑑
 =

𝑖 ϵ 𝐼
∑ (𝑒𝑢

𝑖
 − 𝑟𝑢

𝑖
) × 𝐶

𝑖
(14)

Where:
- Amd is the amortization cost deviation,
- I is the set of hardware used in the project,
- eui is the estimated amount of hours that a hardware i will

work in the project,
- rui is the real amount of hours that a hardware i will work in

the project,
- Ci is the cost per hour of a hardware i that will be used in the

project.

- Total cost deviation.

 𝑇𝐶
𝑑

= 𝑒𝑐 − 𝑟𝑐 (15)

Where:
- TCd is the total cost deviation,

78

- ec is the estimated general cost of the project and
- rc is the real cost of the project.

9.2. Sustainability
9.2.1. Economic Dimension

Regarding PPP: Reflection on the cost you have estimated for the
completion of the project:

Because of the current situation, the costs related to transport have been
entirely cut since we will work on the project from our homes. Also, no
hardware equipment has been bought specifically for this project. The server
has been and will be used for a lot more projects from the BNN-UPC research
group. The laptop is also used for personal and academic purposes.

Regarding Useful Life: How are currently solved economic issues (costs...)
related to the problem that you want to address (state of the art)? How will
your solution improve economic issues (costs ...) with respect to other
existing solutions?

Nowadays, the techniques used in the field of GNNs require a substantial
amount of computing power. That fact forces researchers and companies to
spend a substantial amount of money on capable computers. Moreover, the
performance and efficiency of a GNNs is tightly bound to the properties of the
graph that wants to be analyzed. Because of this, researchers have to spend a
considerable amount of time testing which algorithms work best with which
types of graphs. The thesis aims to develop a tool that can tell to its users what
algorithms work best and give the most efficient models possible, in order to
save costs related to equipment and time.

9.2.2. Environmental Dimension

Regarding PPP: Have you estimated the environmental impact of the
project?

Given the current situation related to the pandemic, all the work will in
principle be carried out remotely. Since everyone can work from their home,
we will cut a lot of our carbon footprint. With respect to the source of the
electricity used to run the hardware, unfortunately I do not have any source of
100% renewable energy, like solar panels. The carbon footprint related to the
hardware is tight to the proportion of power generation methods that are
currently in use at the areas where we live and where the server runs at.

Regarding PPP: Did you plan to minimize its impact, for example, by
reusing resources?

79

I am currently using for the project a laptop that I also use for personal and
academic purposes. Since the main computations are carried out at the server, if
something happened to the laptop I would reuse another laptop to avoid having
to buy a new one. With regards to the server, it will be used long after the end
of the project to amortize the investment and minimize the carbon footprint.

Regarding Useful Life: How are currently solved economic issues (costs...)
related to the problem that you want to address (state of the art)? How will
your solution improve economic issues (costs ...) with respect to other
existing solutions?

As mentioned at the Economic Dimension section, GNNs are expensive to
compute. Computationally expensive algorithms require a lot of energy to run
at servers. Depending on the location of the servers this consumption can
translate to a lot of carbon emissions. Also, the majority of the emissions
caused by a hardware component are related to production. Computers which
are already some years old might be replaced by newer ones in a shorter time
frame, contributing to more carbon emissions. By providing researchers and
professionals of the field with an optimized model for their specific needs,
there is less need for new hardware and time to test and run algorithms, which
leads to less emissions.

9.2.3. Social Dimension

Regarding PPP: What do you think you will achieve -in terms of personal
growth- from doing this project?

Firstly, I will gain experience working in a team project and will receive useful
advice from my director, who already has experience working in a research
team. Also, myself and two more students will help each other as we research
different aspects from the GNN field. Moreover, I will get to know a lot from
an emerging field in Machine Learning, which I think will help me if I decide
to follow this career path. Finally, I will learn a ton indirectly from this thesis,
as I will need to use frameworks and software that I never used before in order
to construct the tool.

Regarding Useful Life: How is currently solved the problem that you want
to address (state of the art)? How will your solution improve the quality of
life (social dimension) with respect to other existing solutions?

The field of this thesis, GNNs, is used in sectors where Machine Learning
algorithms already operate in some form or another. Nonetheless, GNNs show
a lot of potential improvement regarding the analysis of real world graph based
data. This kind of data is very diverse. For example, we find data related to
medicine, biology, physics, climate, transportation, economics, social
interaction, etc. This means that there is also potential for improvement in all of

80

these other fields that can lead to improvement in health, transportation,
environmental solutions, economics, etc.

Regarding Useful Life: Is there a real need for the project?

This work can help in some proportion to accelerate the pace at which GNNs
are developed, tested and deployed, this can enable a wider adoption of GNNs
by different industries, which in turn can accelerate improvement in all the
fields mentioned above.

9.2.4. Self assessment

This self assessment from the survey made me think that, while I have a
general understanding about sustainability, and social commitment, I lacked the
knowledge from a more technical approach to these issues. I am inclined to
steer a project towards sustainable solutions and good social impact, but as I
reflected on the issues I became more aware that I actually did not know the
tools and metrics to actually tackle these problems, or it had been a long time
since I had to do some analysis.

I know that other students will think like that. This section helped me
refresh some concepts as well as teach some new ones related to the planning
and analysis of the social, environmental and sustainable part of a project.

81

10. References

[1] S. Abadal, A. Jain, et al, “Computing Groah Neural Networks: A Survey from
Algorithms to Accelerators,” (2020). URL: https://arxiv.org/abs/2010.00130

[2] A gentle introduction to Graph Neural Networks (Basics, DeepWalk, and
GraphSage) URL:
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-d
eepwalk-and-graphsage-db5d540d50b3

[3] Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph
networks." arXiv preprint arXiv:1806.01261 (2018). URL:
https://arxiv.org/abs/1806.01261

[4] Tutorial 7: Graph Neural Networks. URL:
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_ov
erview.html

[5] Thomas N. Kipf, Max Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” arXiv preprint arXiv:1609.02907, (2017) URL:
https://arxiv.org/abs/1609.02907

[6] Pytorch Geometric Documentation, TORCH_GEOMETRIC.NN, Convolutional
Layers. URL:
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-laye
rs

[7] Petar Veličković, Guillem Cucurull, et. al, “Graph Attention Networks,” arXiv
preprint arXiv:1710.10903, (2018) URL: https://arxiv.org/abs/1710.10903

[8] R. Garg “A Taxonomy for Classification and Comparison of Dataflows for GNN
Accelerators” (2021) URL: [2103.07977] A Taxonomy for Classification and
Comparison of Dataflows for GNN Accelerators (arxiv.org)

[9] Pytorch Geometric Documentation. URL: Introduction by Example —
pytorch_geometric 1.6.3 documentation (pytorch-geometric.readthedocs.io)

[10] NetworkX Documentation. URL: https://networkx.org/documentation/stable/

[11] The Kanban method in IT development projects. URL:
https://www.bocasay.com/kanban-method-it-development-projects/

[12] M. Gori, et. al, “A New Model for Learning in Graph Domains”, (2005) URL:
https://www.researchgate.net/publication/4202380_A_new_model_for_earning_in_rap
h_domains

[13] F. Scarselli, et. al, “The graph neural network model”, (2009) URL:
https://persagen.com/files/misc/scarselli2009graph.pdf

82

https://arxiv.org/abs/2010.00130
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1806.01261
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://arxiv.org/search/stat?searchtype=author&query=Veli%C4%8Dkovi%C4%87%2C+P
https://arxiv.org/search/stat?searchtype=author&query=Veli%C4%8Dkovi%C4%87%2C+P
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2103.07977
https://arxiv.org/abs/2103.07977
https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html
https://networkx.org/documentation/stable/
https://www.bocasay.com/kanban-method-it-development-projects/
https://www.bocasay.com/kanban-method-it-development-projects/
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://persagen.com/files/misc/scarselli2009graph.pdf

[14] B. Knyazev, “Tutorial on Graph Neural Networks for Computer Vision and
Beyond” URL: Tutorial on Graph Neural Networks for Computer Vision and Beyond |
by Boris Knyazev | Medium

[15] C. Tian, et al. “PCGCN: Partition-Centric Processing for Accelerating Graph
Convolutional Network”, (2020) URL: PCGCN: Partition-Centric Processing for
Accelerating Graph Convolutional Network | IEEE Conference Publication | IEEE
Xplore

[16] Z. Jia, et al. “Redundancy-Free Computation for Graph Neural Networks”
(2020)URL:Redundancy-Free Computation for Graph Neural Networks (stanford.edu)

[17] Z. Jia, et al. “PairNorm: Tackling Oversmoothing in GNNs” (2020)
URL:1909.12223.pdf (arxiv.org)

[18] M. Chen, et al. “Simple and Deep Graph Convolutional Networks” (2019)
URL:Simple and Deep Graph Convolutional Networks (arxiv.org)

[19] G. Li, et al. “DeeperGCN: All You Need to Train Deeper GCNs” (2020)
URL:[2006.07739] DeeperGCN: All You Need to Train Deeper GCNs (arxiv.org)

[20] K. Zhou, et al. “Towards Deeper Graph Neural Networks with Differentiable
Group Normalization” (2020) URL:[2006.06972] Towards Deeper Graph Neural
Networks with Differentiable Group Normalization (arxiv.org)

[21] GML Newsletter: Homophily, Heterophily, and Oversmoothing for GNNs
URL:GML Newsletter: Homophily, Heterophily, and Oversmoothing for GNNs -
Graph Machine Learning (substack.com)

[22] H. Pei, et al. “Geom-GCN: Geometric Graph Convolutional Networks” (2020)
URL:2002.05287.pdf (arxiv.org)

[23] J. Zhu, et al. “Beyond Homophily in Graph Neural Networks: Current Limitations
and Effective Designs” (2020) URL:[2006.11468v2] Beyond Homophily in Graph
Neural Networks: Current Limitations and Effective Designs (arxiv.org)

[24] M. Fey, et al. “Fast Graph Representation Learning with PyTorch Geometric”
(2019) URL:[1903.02428v1] Fast Graph Representation Learning with PyTorch
Geometric (arxiv.org)

[25] iGNNition URL:Welcome to IGNNITION — ignnition main documentation

[26] W. Hu, et al. “Open Graph Benchmark: Datasets for Machine Learning on
Graphs” (2021) URL:2005.00687.pdf (arxiv.org)

83

https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://medium.com/@BorisAKnyazev/tutorial-on-graph-neural-networks-for-computer-vision-and-beyond-part-1-3d9fada3b80d
https://medium.com/@BorisAKnyazev/tutorial-on-graph-neural-networks-for-computer-vision-and-beyond-part-1-3d9fada3b80d
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://ieeexplore.ieee.org/document/9139807
https://ieeexplore.ieee.org/document/9139807
https://ieeexplore.ieee.org/document/9139807
https://cs.stanford.edu/~zhihao/papers/kdd20.pdf
https://arxiv.org/pdf/1909.12223.pdf
https://arxiv.org/pdf/2007.02133.pdf
https://arxiv.org/abs/2006.07739
https://arxiv.org/abs/2006.06972
https://arxiv.org/abs/2006.06972
https://graphml.substack.com/p/gml-newsletter-homophily-heterophily
https://graphml.substack.com/p/gml-newsletter-homophily-heterophily
https://arxiv.org/pdf/2002.05287.pdf
https://arxiv.org/abs/2006.11468v2
https://arxiv.org/abs/2006.11468v2
https://arxiv.org/abs/1903.02428v1
https://arxiv.org/abs/1903.02428v1
https://ignnition.net/doc/
https://arxiv.org/pdf/2005.00687.pdf

