Towards Functional Safety Compliance of
Matrix-Matrix Multiplication for Machine
Learning-based Autonomous Systems

Javier Fernandez®®, Jon Perez?, Irune Agirre®, Imanol Allende?®, Jaume
Abella®, Francisco J. Cazorla®

@Jkerlan Technological Research Center, Basque Research and Technology Alliance
(BRTA), Mondragon, Spain
b Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
¢ Barcelona Supercomputing Center (BSC), Barcelona, Spain

Abstract

Autonomous systems execute complex tasks to perceive the environment
and take self-aware decisions with limited human interaction. This autonomy
is commonly achieved with the support of machine learning algorithms. The
nature of these algorithms, that need to process large data volumes, poses
high-performance demands on the underlying hardware. As a result, the em-
bedded critical real-time domain is adopting increasingly powerful processors
that combine multi-core processors with accelerators such as GPUs. The re-
sulting hardware and software complexity makes it difficult to demonstrate
that the system will run safely and reliably. This is the main objective of
functional safety standards, such as IEC 61508 or ISO 26262, that deal with
the avoidance, detection and control of hardware or software errors. In this
paper, we adopt those measures for the safe inference of machine learning li-
braries on multi-core devices, two topics that are not explicitly covered in the
current version of standards. To this end, we adapt the matrix-matrix mul-
tiplication function, a central element of existing machine learning libraries,
according to the recommendations of functional safety standards. The paper
makes the following contributions: i) adoption of recommended program-
ming practices for the avoidance of programming errors in the matrix-matrix
multiplication, ii) inclusion of diagnostic mechanisms based on widely used
checksums to control runtime errors, and iii) evaluation of the impact of pre-
vious measures in terms of performance and a quantification of the achieved

November 12, 2021

© 2021 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

diagnostic coverage. For this purpose, we implement the diagnostic mecha-
nisms on one of the ARM R5 cores of a Zynq UltraScale+ multi-processor
system-on-chip and we then adapt them to an Intel i7 processor with native
code employing vectorization for the sake of performance.

Key words: Machine learning, functional safety, error detection

1. Introduction

The use of machine learning (ML) is increasing in many safety critical
domains for the deployment of complex autonomous functionalities, such as,
advanced visual perception. For example, deep neural networks relying on
convolutional neural networks (CNNs) have shown to provide high accuracy
and adaptability in camera-based object detection [1]. As a result, there is
an emerging number of software libraries deployed for object detection [2],
such as, you only look once (YOLO) [3].

These ML algorithms need to process large volumes of data in real-
time (e.g., images), and this requires high-performance embedded comput-
ing (HPEC) platforms with computing capabilities far beyond those of tra-
ditional safety systems, such as multi-core devices and GPU accelerators.

ML solutions are increasingly being adopted in safety-related tasks that
are subject to safety certification. This certification is achieved by proving
adherence to applicable functional safety standards with respect to the appli-
cation domain, such as, IEC 61508 [4] or ISO 26262 [5]. Nevertheless, neither
emerging ML algorithms nor the HPEC platforms are commonly captured
in current versions of standards and their certification is an open research
challenge. The lack of determinism —a crucial property for safety-critical
systems— is a clear example of an open issue, caused by the inherent sta-
tistical nature of ML and the high degree of parallelism of their inference
platforms.

Only the recent ISO/PAS 21448 automotive standard [6] (referred as
safety of the intended functionality (SOTIF)) explicitly addresses some of
the implications of ML algorithms, focusing mainly on the offline training
method. SOTIF sets its focus on system safety, in this case at a vehicle
level. It deals with potential hazards caused by limitations of the system to
operate autonomously in an open environment where situational awareness
is required (e.g., system malfunction due to limitations in the ML training
process in the absence of hardware and software errors). This is complemen-

tary to functional safety standards, such as IEC 61508 and ISO 26262, that
deal with hardware and software errors in the safety-critical control units of
the system. The scope of this paper relates to the latter, by evaluating and
proposing solutions for the mitigation of systematic and random errors in
ML algorithms-based software libraries executed on HPEC platforms.

More specifically, this paper builds on the open source YOLO object
detector algorithm. We have selected it among the huge variety of current
object detection algorithms [2] not only for its high accuracy on perceptual
tasks [7], but also because its reliability has been widely studied [7, 8, 9, 10].
Our contribution lies in the definition of a “safe matrix-matrix multiplication
(MMM)” software module . This arithmetic operation is the backbone of
many ML libraries [11], as it takes 67% of the CNN execution time according
to the results obtained from YOLO v3 implemented on NVIDIA GPUs [g].
An error in the execution of the MMM could lead to miss-classification in
the object detection tasks. As an illustrative example, the authors in [12, 13]
perform a fault-injection campaign to demonstrate how a single-bit error
could result in a wrong classification of a horse as a sheep, or a truck as
a bird respectively. Their results reveal that 25% of the faults forced in a
specific case of study employing the YOLO object detector lead to an unsafe
situation [12].

YOLO, as other object detectors such as Lenet [14], is based on the
Darknet CNN [15]. This open source CNN offers the user a selection of
MMM algorithms based on implementation needs: i) general matrix mul-
tiplication (GEMM) function for the sequential implementation on CPUs,
ii) CUBLAS for the implementation in GPUs with CUDA and iii) other
processor-specific variants such as the use of AVX with specific instructions
for Intel processors. This paper employs as baseline the sequential GEMM
implementation and the AVX-based MMM implementation. The former is
interesting from a safety perspective, as it is the closest option to current
safety practices. However, at the same time, the sequential implementation
provides the poorest performance, which is also an important property for
ML inference. Trying to find a balance between safety and performance, in
the first place we advocate for the AVX-based MMM instead of the CUDA-
based implementation. The main reason for this is that the closed-source
nature of CUBLAS library, none or limited support for the development of
safety-critical software by means of available GPU programming languages
[16] and GPU’s features such as dynamic memory allocation, imply bigger
challenges to comply with functional safety standards [17]. The paper con-

3

tributes with the following modifications to these two YOLO MMM baselines,
referenced as sequential MMM and AVX-based MMM:

1. We define and implement the required modifications for the avoidance
of systematic errors in the implementation of the MMM function with
the help of Polyspace [18], a static analysis tool. Likewise, we evaluate
the complete CNN used by YOLO (i.e., Darknet CNN) to demonstrate
that complying with the specifications demanded by coding guidelines
such as motor industry software reliability association (MISRA) C is
feasible with limited effort.

2. We identify and integrate a variety of suitable diagnostic mechanisms
to attain different levels of diagnostic coverage (DC) against random
errors in HPEC platforms and residual systematic errors in the design.
For that, we integrate existing checksums in the ARM Rb5 architecture
and we adapt them to the Intel AVX instructions. In addition, we
define two common safety architectural patterns where the previously
mentioned diagnostics could be used to implement error detection.

3. We assess the DC and the performance penalty incurred by previous
measures for a given set of representative matrix dimensions. For that,
we perform exhaustive single-bit error injection and, as a result, we
provide a catalogue of mechanisms with varying levels of DC and per-
formance impact, allowing the final user to choose a solution based on
system needs.

The rest of this paper is organized as follows: Section 2 outlines the basic
concepts. Sections 3 and 4 define the proposed adaptations to obtain a “safe
MMM?” software module with configurable DC levels. Specifically, the focal
point of Section 3 is the avoidance of systematic errors, while Section 4 targets
the detection of errors. Section 5 presents the results of the evaluation of the
proposed modifications and Section 6 analyses the related work. Finally,
Section 7 draws the conclusions and and outlines future work.

2. Background

This section provides the necessary background in order to ease the un-
derstanding of basic concepts throughout this paper.

2.1. Functional Safety Standards

IEC 61508 [4] is an international functional safety standard that guides
the development process of safety-related systems composed of electrical,
electronic, or programmable electronic elements across different industry sec-
tors. IEC 61508 is the reference standard for the definition of many domain
specific standards, such as ISO 26262 [5] for road-vehicles or EN 5012X [19]
for railway. These standards define the necessary requirements, techniques
and measures to guarantee the absence of unacceptable risks caused by the
malfunction of the system. To this end, the IEC 61508 standard defines the
safety integrity level (SIL) metric for each safety function according to its
criticality from SIL 1 (minimun) to SIL 4 (maximun). Similarly, ISO 26262
uses the term automotive safety integrity level (ASIL), which ranges from
ASIL A (least stringent) to ASIL D (most stringent). According to these
integrity levels, functional safety standards require the adoption of different
safety measures and mechanisms in the development-cycle and in the design.
In the case of IEC 61508, the importance of applying a specific technique
or measure for each integrity level is signified by the following notation: i)
mandatory (M), ii) highly-recommend (HR), iii) recommended (R) and iv)
non-recommended (NR).

2.2. Types of faults and diagnostic coverage

Faults are classified into two major categories in the aforementioned safety
standards: systematic and random faults. Systematic faults are associated
with the development process and method, and may relate to hardware
and /or software. Safety standards impose a development process intended
to make the residual risk of systematic faults negligible. Instead, random
faults relate to hardware faults caused by electromagnetic interference, volt-
age drops, component wear-out and the like. Additionally, random faults
can be classified according to the frequency into permanent, if they persist
indefinitely, and transient, if the occurrence is sporadic [5]. Hence, safety
standards recommend the deployment of safety measures to detect and con-
trol those faults in such a way that they do not lead to failure.

The assessment of the effectiveness of diagnostic mechanisms is generally
evaluated in the form of DC. As defined in [20], “Diagnostic Coverage (DC)
denotes the effectiveness of diagnosis techniques to detect dangerous errors,
expressed in coverage percentage with respect to all possible dangerous errors”.
DC is classified as low (60% < DC < 90%), medium (90% < DC' < 99%)

and high (99% < DC) [4]. As stated in [20], the implementation of software-
based DC techniques becomes relevant in order to periodically diagnose the
correct operation of the hardware components or the safe operation of the
device with respect to possible faults not covered by hardware diagnosis or
to complement them (usually classified as low or medium DC).

To achieve appropriate error detection and tolerance levels, safety mea-
sures are often deployed following specific architectural patterns. There is a
large variety of patterns, and most of them are safety measure dependent,
but some of the most common ones build upon the use of redundancy (e.g.
full or partial time or space replication) and diversity (e.g., making redun-
dancy non-identical so that a single error does not lead to the same erroneous
output in all redundant instances).

IEC 61508 defines the abbreviation NooM (N out of M) to describe
the architecture of the system: M is the total number of channels in the
architecture (where channel refers to the group of elements that implement a
safety function) and, N is the minimum number of channels that are required
to complete the safety function [4]. As an example, a 1002 architecture
consists of two channels connected in parallel (M= 2) and either channel
can process the safety function by its own (N= 1). Therefore, in case of
a dangerous failure in one of the channels, the second one can still safely
perform the safety function.

2.8. ML and YOLO

ML algorithms are primarily based on statistical learning. A task is per-
formed based on a probabilistic model generated from training data instead
of derived from its specifications. This technique enables the implementation
of functionalities that are harder to be programmed by traditional software
due to the impossibility of manually formulating rules for generating output
from the large spectrum of possible inputs.

The selection of the most appropriate ML algorithm depends on the appli-
cation domain. In domains such as camera-based object detection or image
classification, CNNs are widely used. For instance, YOLO is a multi-scale ob-
ject detector traditionally based on Darknet, a CNN coded in C and CUDA.
There are several versions of this object detector [3, 21, 22] whose operation
is mainly based on three stages: i) the convolutional layers extract the fea-
tures from the input image, ii) max-pooling layers reduce the feature map
and iii) fully connected layers classify the input.

The development of convolutional operations entails the execution of
MMDMs. As mentioned in the introduction, the MMM accounts for most
of the execution time of YOLO in particular, and prediction and perception
processes in general [11]. Darknet provides several options for the implemen-
tation of this algebraic operation depending on the target platform where
it is to be deployed [15]. In the following two sections, we present the pro-
posed method and strategy to adapt the sequential and AVX-based MMM
implementations to “safe MMMs”.

3. Systematic error avoidance in the MMM

In this section, we focus on the avoidance of software systematic errors.
To that end, we have verified the source code of the sequential MMM, and
implemented the resulting verification comments, according to the following
recommendations:

e Usage of a safe subset of the “C language” according to the MISRA C
coding guideline [23]. According to ISO 26262-6 Table 1 the use of
a language subset (where unsafe language features are excluded) is
a HR technique for any ASIL [5] and for SIL 3 or higher according to
IEC 61508-3 Table A.3 [4]. More explicitly, IEC 61508 states in 7.4.4.12
that “programming languages for the development of all safety-related
software shall be used according to a suitable programming language
coding standard”.

e Use of defensive programming where input parameters are checked with
respect to coherence and correctness. This is also a HR technique in
same tables of both ISO 26262 and IEC 61508 for ASIL D / SIL 3 or
higher. Concretely, the standards recommend their use to check data
or control anomalies at runtime. In particular, we have checked that
pointers to matrices do not have “NULL” values.

The adherence to MISRA C can be checked manually by the developer
or with the help of static tools such as Polyspace [18]. In our case, we have
used this tool for identifying 33 violations in the sequential MMM as shown
in Fig. 1. We have seen that the corrections required by the MISRA C
directives (identified with the letter “D”) and rules need limited engineering
effort as described below:

e D4.6: Twenty two violations were due to not explicitly defining types
with the size and signedness for basic numerical types. In this case,
required types were explicitly defined.

e D4.14: Six violations were caused by not checking the correctness of
input parameters. As a corrective action, “defensive programming” has
been implemented, as explained before.

e 12.1: Three violations were due to not explicitly defining the desired
precedence of operators within expressions. In this case, adherence has
been achieved with the explicit definition of precedence.

e 8.13: Two violations were caused by not explicitly defining input pa-
rameter pointers as const-qualified type. As a corrective action, all
input parameter pointers to data content that are not internally mod-
ified have been explicitly qualified as constant.

MISRA C:2012 Guidelines Summary - Violations by Rule

[a)

< 813

2 121 m—

<

5 D414 I

D/}, |
g

5 0 2 4 6 8 10 12 14 16 18 20 22

Number of coding guidelines violations

Figure 1: Sequential MMM software MISRA-C compliance analysis result: number of
rules and directives (D) violated in the sequential MMM code according to an analysis
performed by the Polyspace analysis tool.

Additionally, we have analyzed the complete Darknet CNN with the
Polyspace tool identifying 2,332 violations. In the same manner, these viola-
tions do not require a significant effort to accomplish MISRA C. However, the
application of the respective modifications is out of the scope of this paper.
For illustrative purposes, in Fig. 2 we depict the 5 most repeated violations,
which suppose the 64,5 % of the total. The adherence to directive D4.6 and
rule 12.1 can be achieved with previous corrective actions and the additional
ones described below:

e D1.1: These violations are related to explicitly defining the implementation-
defined behaviour that affects the outputs, such as casting from integer

8

to floating-point numbers. As MISRA C suggests, a compliance ma-
trix with the procedures to follow by the developer should be produced
to ensure that the code complies with all MISRA C violations. This
action requires a manual review.

e 15.6: These violations concern the use of a compound statement to
enclose the body of an iteration or selection-statement. The corrective
action lies on the inclusion of this compound statement to clarify which
statements form the body.

e 10.3: The assignment of a value from an expression to an object with a
narrower essential type shall not be made. The easier corrective action
is to cast to the same essential type.

MISRA C:2012 Guidelines Summary - Violations by Rule

2 D11 ————

[

D—% 12,1 ——

- 15.6 ——

O 103

°_>’ byyes]
©

2 0 100 200 300 400 500 600 700
a

Number of coding guidelines violations

Figure 2: Darknet CNN MISRA-C compliance analysis result: top 5 of rules and directives
(D) violated in the Darknet CNN code according to an analysis performed by Polyspace.

4. Error detection in the MMM

Providing a safe inference execution environment for the YOLO MMM
software module requires the deployment of diagnostic mechanisms for run-
time error detection [24]. Moreover, the execution on a HPEC multi-core
device depends on the safe behaviour of multiple components (e.g., core,
private cache, interconnect, shared cache, shared memory, memory manage-
ment unit) and built-in mechanisms (e.g., cache coherency) required for the
execution of the given software [20]. Additionally, embedded platforms are
scaling down reducing their dimension resulting in an increase in the compo-
nent density. Hence, the soft error rate drastically increases in these silicon
devices, becoming a challenge with a dire need to overcome in safety-critical
systems [20, 25].

The implementation of DC techniques could be considered outside the
scope of YOLO MMM, exporting such requirements to the system archi-
tect and integrator. However, the implementation of simple generic DC
techniques built-in in the MMM software module can provide an efficient
solution to achieve the required DC with a reduced effort for the system
integrator [20, 26]. For example, detecting errors due to cache coherency,
cache errors, interconnect errors and core execution that could lead to incor-
rect computation errors can be a challenge in HPEC multi-core devices as
explained in [20] and also from a system integration perspective [20, 26].

In this section, we propose the use of an execution signature (ES) com-
puted by diagnostic techniques, which can provide a scalable strategy with a
trade-off between the desired potential DC level and the associated compu-
tational cost. The ES, described in Section 4.1, can summarize in a reduced
number of bits (e.g., 32 bits), the computed data and program sequence for
later comparison in the architectural patterns described in Section 4.2.

4.1. Execution signature

Among the state of the art, we have identified XOR, 2’s and 1’s comple-
ment addition, Fletcher and cyclic redundancy check (CRC) as potential di-
agnostic mechanisms to compute the ESs. These error detection mechanisms
are widely used to assure the network message data integrity with different
error detection effectiveness [27]. For details about each of these techniques,
we refer the reader to [27] and [28], which make an evaluation of the error
detection properties of each of the checksum algorithms, proposing methods
for the selection of the most appropriate one (based on parameters such as
the length of the code, the kind of errors or the selection of a polynomial
generator used in the CRC algorithm [29]). The novelty of this paper rests
in the integration of these existing diagnostics into the MMM and the evalu-
ation of both, the performance impact and achievable DC based on the data
to be protected and the checksum or combination of checksums employed.
This approach allows verifying not only the bit-wise correctness of the data
involved in the MMM execution, but also a proper program sequence with a
reduced number of bits (32 in our case).

The algebraic MMM operation is usually coded and implemented through
nested loops as shown in Algorithm 1. The ES can be calculated integrating
the checksum algorithm(s) in any of the loops, or a combination of loops and
checksum algorithms. The methodology that we employ in this paper can
be extrapolated to MMM involving a different number of loops. In our case,

10

both the sequential MMM and AVX-based MMM implementations use three
loops for computing the MMM, denoted as inner (I), intermediate (M) and
external (E) loops as shown in Algorithm 1.

Algorithm 1 MMM loops

1: for each column of the first matrix do
2: External loop statements

3: for each row of the first matrix do

4: Intermediate loop statements (Store the value of the first matrix in a register)
5: for Each column of the second matrix do

6: Internal loop statements (Compute the multiplication)

7 [Checksum (I)]

8: end for

9: [Checksum (M)]

10: end for

11: [Checksum (E)]

12: end for

The deeper the loop where the checksum is implemented, the higher is the
potential achievable DC because higher is the amount of data and computa-
tion summarized in the ES, at the cost of increasing the required computa-
tional cost to generate the ES. Therefore, the potentially achievable DC level
depends on the length of the ES and the data protected, the selected check-
sum algorithm and the loop level where it is implemented. These statements
are independent of the number of loops employed for the implementation of
the MMM.

The implemented checksums compute the ES of A, B and C' matrices
(where the duty of the MMM is to compute C' = A - B) and store these
ESs values in independent variables. Once the multiplication is complete,
the selected checksum is again employed to combine all signatures into a
single one. However, the inclusion of certain checksums, such as Fletcher
and CRC in the internal loop, can be an unaffordable solution in terms of
performance. Fortunately, it is expected that combining these algorithms in
the outermost loops with checksums with a lower performance penalty in the
inner loop will provide a reduction in overhead and an increase in DC over
individual implementations. For that reason, we have designed a catalogue
with a combination of checksums to provide the user with a wide variety of
DC and performance penalty alternatives. The catalogue can be divided into
two groups according to the checksum involved in the multiplication:

11

e Individual: use a single checksum algorithm in one of the three loops
(I, M, E) of Algorithm 1.

e Combinations: use different checksum algorithms with lower perfor-
mance impact in the internal loop and higher performance impact, and
higher DC, in the intermediate loop (e.g., XOR_Fletcher means that a
XOR is computed in the internal loop and a Fletcher in the intermedi-
ate loop).

In favour of understandability of the checksum combinations, Algorithm 2
shows the code employed to compute the ES with a XOR_Fletcher checksum
combination in the MMM. We can see how in lines 3-5 we have applied
defensive programming to check that the pointers to the arrays do not have
“NULL” values. In lines 14, 15 and 17 we code the XOR checksum to com-
pute the ES of the matrices“B”, “C” and “A” respectively. All these values
are summarized into a single ES in line 18 with the XOR checksum. Finally,
the Fletcher checksum is coded in line 19 to perform a new ES from the ES
computed by the XOR checksum.

Additionally, in Algorithm 3 we show the code of the Fletcher check-
sum. As it can be seen, the Fletcher function receives the union datatype
wid2_to_uitl6_t with the current Fletcher ES and an wint32_t datatype with
the data to be protected. The union has been employed to access the
same memory position with two datatypes: i) wint32_t and ii) an array of
two wint16_t values. The use of the union has been fostered by the nature of
the Fletcher checksum, which involves decomposition into two smaller blocks
to carry out the ES computation.

Algorithm 3 Fletcher Checksum

1: function FLETCHER32C_U132(ui32_to_uil6_t Fletcher, uint32_t data)
2: uid2_to_uil6_t v;

3: v.ui32 = uid2_data;

4: Fletcher.uil6[0u] += v.uil6[0ul;

5: Fletcher.uil6[1u] += Fletcher.uil6[0ul;
6: Fletcher.uil6[0u] += v.uil6[1lu];

7 Fletcher.uil6[1u] += Fletcher.uil6[0ul;
8: Fletcher.uil6[0u] %= 255u;

9: Fletcher.uil6[1u] %= 255u;
10: return Fletcher.ui32;
11: end function

12

Algorithm 2 Sequential MMM with XOR_Fletcher checksums implemented

1: function SMM_XOR_INTERMEDIATE(uint32_t ui32_m, uint32_t ui32_n,
uint32_t ui32_k, float32_t £32_alpha, const float32_t* const paf32_ma,
const float32_t* const paf32_mb, const float32_t* const paf32_mc)

2: //Definition of local variables
3: assert(paf32_ma != NULL); > Defensive programming
4: assert(paf32_mb != NULL);
5: assert(paf32_mc != NULL);
6: for (ui32.idx_i = Ou; ui32_idxi < ui32_m; ui32_idx_i++) do
7 uid2_idx_b_ref = Ou;
8: for (ui32.dx_k = Ou; ui32.idx_k < ui32.k; ui32_idx_k++,
ui32.idx_a++) do
9: 32_a_part = f32_alpha * paf32_ma[ui32_idx_a];

10: for (ui32.idx_j = Ou, ui32_idx_b = ui32_idx_b_ref,
uid2_idx_c = uid2_idx_c_ref; uid2_idx_j < ui32_n; ui32_idx_j++,
ui32_idx_b++, ui32_idx_c++) do

11: £32_b = paf32_mb[ui32_idx_b]; > Multiplication
12: paf32_mc[ui32_idx_c] += f32_a_part * £32_b;

13: £32_c = paf32_mc[ui32_idx_cJ;

14: uid32 xor.b @= (uint32_t) * ((uint32_t *) &£32_b); > XOR ES
15: ui32_xor_c @= (uint32_t) * ((uint32-t *) &f32_c);

16: end for

17: ui32_xor-a &= (uint32_t) * ((uint32_t *) &f32_a_part);

18: ui32_xor = (ui32_xor_a Guid2_xor_b) & ui32_xor_c;

19: Fletcher.ui32 = Fletcher32c_ui32(Fletcher, ui32 xor); > Fletcher ES
20: ui3d2_idx_b_ref += ui32_n;

21: end for

22: ui32_idx_c_ref += ui32_n;

23: end for

24: return Fletcher.ui32;
25: end function

However, the computation of the ES by itself is not sufficient for detecting
errors at runtime. The use of safety architectural patterns, explained in next
subsecion, becomes an inherent part of their implementation as diagnostic
mechanisms.

4.2. Architectural Patterns

Taking into consideration the architectural patterns and DC techniques
for HPEC multi-core devices described in [20], and the safety measures pro-
posed by the safety standards (IEC 61508, ISO 26262) considered in this
work, this section defines two basic and common architectural patterns that
support safe detection of faults based on previous diagnostic techniques.

13

Periodic diagnosis with design time fized data pattern(s). In this pattern,
in addition to the standard MMM periodic execution (7), the “safe MMM”
software variant is executed with a period L times lower (7/L). This period
is associated to the process safety time (PST) (IEC 61508) or diagnostic
time interval (DTI) (ISO 26262) of the system. During this “safe MMM”
execution, design time fixed data inputs are used, for which a design time ES
is known. This pattern enables the periodic diagnosis of device components
and built-in mechanisms. If the obtained ES does not match the expected
design time ES value, a random error may have occurred and the repetition
of this error can determine whether it is transient or permanent.

Redundancy (with or without diversity). The “safe MMM?” software, or a
complete safe YOLO library that integrates the “safe MMM?”, is executed
with redundancy by M replicas (e.g., 1002, 2003) and for each redundant
execution, both an output and ES values are generated. After that, the voting
mechanism compares ES values (and optionally the output) and the replica(s)
with discrepancies are discarded. The comparison of just the output values
would not be generally sufficient to detect latent errors (e.g., faults in matrix
B —activation weights matrix— cannot be detected in the output matrix C'
for a given set of A matrices if those matrices (A) take zero values in the
positions computed with the faulty position of matrix B). This can provide
a “correct” output while it masks a latent error that would be detected on
the ES. This pattern implies a higher computational cost than previous as
the “safe MMM?” is executed in each execution period (7) by the M replicas.
However, the correctness of components and of the output is diagnosed in
every execution period and it can support fault-tolerance as later explained in
Section 5.5 (e.g., a 2003 architecture could tolerate one discrepancy). In order
to further improve diagnostic coverage by the detection of common cause
failures (CCFs), the redundant pattern can be complemented with different
types of diversity [20], such as component diversity (e.g., implementing the
MMM in different types of cores of a multi-core platform).

5. Evaluation

In this section, we evaluate the execution time penalty caused by the
inclusion of the different ESs from Section 4 in the original MMM software
module, as well as the maximum achievable DC of each ES for the detection

14

of single-bit errors. For that, we consider the sequential MMM and AVX-
based MMM extracted from YOLO. In addition, we provide a discussion of
compliance of the contributions of this paper to functional safety standards.

5.1. Experimental set-up

We have implemented the sequential MMM function on one of the ARM
R5 lock-step cores of a Zynq UltraScale+ multi-processor system-on-chip de-
vice as a representative safety device that is certified up to SIL 3 according
to IEC 61508 and up to ASIL C regarding to ISO 26262 [20]. While there
are more effective approaches for ML inference in terms of performance, like
the use of accelerators such as GPUs, they pose additional challenges for
safety certification [20]. Therefore, it is necessary to find a balance between
performance and safety. For this reason, we have first focused on a more
conservative multi-core solution based on R5 cores designed for functional
safety. However, the overall approach is platform independent and can be
adapted to diverse platforms. For instance, with the aim of improving over-
all performance, we then implement and evaluate an AVX-based solution,
which employs vectorization on an Intel i7 processor. In the future, the same
approach could be used for other implementations.

The sequential MMM has been compiled employing the ARM v8 gce
compiler while AVX-based MMM has been compiled with MSVC2018, both
without optimization to obtain worst-case performance impact results re-
gardless of the employed compiler. Regarding the time measurements, we
have employed the following libraries: i) “time.h” C library in AVX-based
MMM and ii) “xtime_1.h”, a specific Xilinx C library, in the sequential MMM
function.

For performance experiments, matrix sizes have been selected aiming to
assess the performance sensitivity on matrix sizes (square matrices) and the
representativeness for performance evaluation (unbalanced matrices). We
have assessed the performance impact of both the sequential and AVX-based
MMM with the following matrix dimensions:

e Square matrices: we have performed a first set of experiments with
square matrices (A, B and C) of dimensions Nx/N. We have run the
experiments with matrix dimensions of 80280, 1602160 and 3202320.

e Unbalanced matrices: we have also evaluated the performance impact
of unbalanced matrices with dimensions extracted from one of the most

15

repeated layers of our Darknet configuration (L91, where 91 refers to
the position of the extracted layer in the CNN). In this case, the
dimensions for matrices are MxK for A, KxN for B, and MxN for
C. The dimensions of the matrices we have employed are: M=18,
N=230400, K=64.

The assessment of the DC requires executing the MMM as many times
as the number of bit positions in the matrices A and B (single-bit error).
The computational cost required to perform this exhaustive fault-injection
campaign at bit level has lead us to the choice of smaller matrix dimensions
than those for the performance experiments:

e Square matrices: The dimensions of the matrices we have employed for
the performance assessment of DC are 20220, 40240 and 80280.

e Unbalanced matrices: we have evaluated smaller matrices keeping the
relationship between rows and columns proportional to some of the
sequential MMM implementations of Darknet. The matrices are L1
(M=32, N=29, K=144), L2 (M=8, N=900, K=8) and L3 (M=15,
N=225, K=48). These matrices have been chosen as an illustrative
example of the variability in error detection with respect to the di-
mensions of the matrices A or B and the loop where the checksum is
implemented. Up to here all the experiments have been analysed in
both, sequential and AVX-based MMM. For completeness, we have
also evaluated the DC of unbalanced matrices extracted from Dark-
net employing the sequential MMM. In this case,In this case, we have
chosen the L59 layer due to the reduced size of its matrices, when com-
pared to other Darknet layers. Its dimensions are as follows: M=18,
N=900, K=1024.

5.2. Performance Impact
First of all, we define the performance impact as a ratio (n) in terms of
execution time as shown in eq. (1) (where X and Y vary in function of the

experiments):
FEzxecution timex

= 30 1
" Ezxecution timey[) (1)

As a first step, we have measured the performance impact incurred by the
adoption of MISRA C coding guidelines and defensive programming. Here,

16

the performance impact is represented by the execution time of performing
the MMM after adhering MISRA C (X) divided by the execution time of
the original sequential MMM (Y). We have observed that these adaptations
of the original MMM do not cause a relevant overhead in the execution time
(below 1%). Additionally, we have slightly adapted the original code to opti-
mize its performance in a 5% while still complying with MISRA C guidelines.
This modification consists in the avoidance of unnecessary re-computations
in the internal and intermediate loops by the insertion of auxiliary variables
in the intermediate and external loops. According to eq. (1), in this exper-
iment X refers to the sequential MMM accomplishing MISRA C after the
optimizations and Y refers to the original sequential MMM.

For evaluating the performance slowdown incurred by the inclusion of
the checksums, we first obtain the baselines (Y) for the sequential MMM
and AVX-based MMM. To this end, we have measured the execution time
incurred by each of the aforementioned matrix dimensions defined in the
section 5.1 in both their sequential (MISRA C compliant MMM) and AVX-
based versions with no integrated diagnostic mechanisms. These baselines
reveal the execution time improvement achieved with the AVX-based imple-
mentation, which ranges between 3.97 and 6.57 faster that the sequential
MMM for the different matrix sizes. Based on these values, we then obtain
the performance impact incurred by the adoption of the ES on both imple-
mentations, where according to eq. (1), X relates to the MMM after the
implementation of the catalogue of checksums. The results are depicted in
Fig. 3 and Fig. 4 respectively.

The results of Fig. 3 are represented as follows: i) 80x80 is depicted with
a green solid line and a square marker, ii) 160x160 with a red dashed line and
round marker, iii) 320x320 with a blue dashed line and a triangular marker
and iv) LIl with a yellow dot-and-dash line and a rhomboid marker. As
previously mentioned, the performance impact of all these results are with
respect to the execution time of the sequential MMM optimized without
diagnostic mechanisms with the same matrix dimensions. As shown in Fig. 3,
the performance impact decreases with increasing matrix size, approaching
asymptotically specific values for each ES. This reduction is expected since
larger matrices require an increasing number of memory accesses, which make
decrease the performance impact of ES in relative terms. Furthermore, in this
sequential implementation, the individual experiments confirm the increase in
performance impact from the straightforward (XOR, 2’s and 1’s complement)
to the more intricate algorithms (Fletcher and CRC) as well as a smaller

17

~- 80x80 ~- 160x160 ~ 320x320 -~ L91

w

Performance Impact
N

S
O
¥ L

Checksum(s) algorithms

Figure 3: Sequential MMM: performance impact caused by the inclusion of a catalogue
of checksum algorithms evaluated in square matrices of dimensions 80x80, 160x160 and
320x320 and in unbalanced matrices of dimensions M=18, N=230400, K=64 (L91).

impact on the most external loops (M, E) with respect to the internal loop
(I). Additionally, we observe that, when the size of the matrices increases,
the performance impact of the checksum combinations tends to approximate
to the performance impact incurred by the individual checksum implemented
in the internal loop. This means that for increasing matrix sizes, the impact
of the intermediate checksum (M) is comparatively lower than the impact of
the internal checksum (I) in relative terms.

Fig. 4 keeps the same colour and type of lines used in Fig. 3. In this case,
the performance impact of those experiments are evaluated with respect to
the execution time of the AVX-based MMM without diagnostic mechanisms
with the same matrix dimensions. In Fig. 4, we can see an increase in the
performance impact of the 1’s complement checksum with respect to Fig. 3.
This increase occurs due to the fact that 1’s complement checksum requires
the addition of all values to be checked and subsequently adding the carry

18

~- 80x80 ~- 160x160 ~ 320x320 -~ L91

w

Performance Impact
N

Checksum(s) algorithms

Figure 4: AVX MMM: performance impact incurred by the adoption of the catalogue of
checksums in the MMM evaluated in square matrices of dimensions 80x80, 160x160 and
320x320 and in unbalanced matrices of dimensions M=18, N=230400, K=64 (L91).

bit back into the result before a final inversion [27]. With AVX instructions,
the arithmetic operations lack of a carry bit and hence, this checksum is not
suitable for AVX instruction-based implementations in terms of performance.
Our solution to overcome this limitation rests in using larger data-types to
compute 1’s complement checksum (where we add the carry bit), causing
higher overhead. In a similar way, the Fletcher’s checksum implies a modulo
operation for the extraction of the remainder from a specific division that
is not considered by AVX instructions. Such arithmetic operation has to be
implemented with sequential code that increases the performance impact of
that diagnostic mechanism in the AVX-based MMM.

To conclude the performance experiments, we have analyzed the impact
of the “Safe MMM?” in the full Darknet CNN, obtaining the results depicted
in Fig. 5. To offer an insight into the execution time required to process one
image with YOLO in the selected architectures, we provide the baselines for

19

our experiments, which are obtained with the optimized MISRA C compliant
sequential MMM and the AVX-based MMM, both without diagnostic mech-
anisms. The obtained values are 639.8 ms and 235.5 ms for the sequential
(R5 cores) and AVX-based MMM (Intel i7) respectively. Regarding the im-
pact of the different checksums, in Fig. 5, we can observe that the slowdown
caused by the individual experiments in the external and intermediate loops
is very close. As a consequence, it is preferable to apply the checksum in the
intermediate loop rather than in the external loop, since it allows achieving
a higher DC. In the combination experiments, the results reveal that the
checksums added in the intermediate loop do not produce a significant slow-
down with respect to that caused by the checksums applied in the internal
loop. This is so except for the 1’s_Fletcher combination in the AVX-based
MMM, which is expected based on the results we have previously seen for the
MMM, where both one’s complement and fletcher are the two least suitable
checksums for AVX-based instructions. Finally, it should be noted that since
the CNN is a portion of the full YOLO algorithm, the performance impact
of YOLO is expected to be lower that for Darknet in relative terms.

- Sequential MMM -- AVX-based MMM

Performance Impact

Checksum(s) algorithms

Figure 5: Darknet CNN: performance impact caused by the inclusion of a catalogue of
checksum algorithms evaluated in Darknet CNN.

20

5.8. Diagnostic coverage

In order to quantify the potential DC of the individual ESs, their combina-
tions and their implementation in the different loops (I, M, E) of the MMM,
common approaches are to make analytical calculations, validation through
experimental measurements with fault-injection campaigns, or a combination
of both [27].

In this paper, we have performed an exhaustive fault-injection campaign
in all bit positions of the values of matrices A and B for the evaluation of
the DC. To this end, we base on the architectural pattern a) presented in
Section 4.2 (periodic diagnosis with design time fixed data pattern). First,
we obtain the ES with a fixed data, which is later used as reference ES. Then,
we induce exhaustive single-bit fault-injections in matrices A or B and the
resulting ES is compared with respect to the reference ES. In this way we
are able to evaluate whether the checksums detect injected single-bit errors
and we can compute a DC percentage.

We have evaluated individual ES, as well as some particularly relevant
combinations. Table 1 gathers the results of the sequential and AVX-based
MMM implementations for individual ES and their combinations in the pre-
viously mentioned matrix sizes. For simplicity, the combined techniques that
reach a 100% DC for all matrix dimensions are not represented in Table 1.
As a general rule, the DC is higher when the checksums are applied in the
more internal loops, as the granularity of the diagnostics increases (i.e., in
the internal loop all values of A, B and C matrices are contemplated in the
checksum). However, the results in Table 1 show that the XOR, 1’s com-
plement and 2’s complement checksums in the internal loop do not reach
a 100% DC neither in sequential nor in AVX-based MMM. The reason is
that, although the values of A, B and C' are summarized with independent
checksums, the final ES is obtained by combining these three variables and,
therefore, some bit-errors can be masked. As explained in Section 4.1, this
can be solved by combining these individual checksums with a Fletcher or
CRC in the intermediate loop or by obtaining three different signatures (one
for each matrix) instead of a combined one. Regarding the external and in-
termediate loops, the DC is highly dependent on the dimension of the matrix
involved in the MMM. For instance, implementing Fletcher in the interme-
diate loop makes bit-error detection vary from more than 50% in the square
matrix to a 1% in a given set of unbalanced matrices (L2), according to the
results extracted from the sequential MMM and from 80% to 2.2% in the
AVX-based MMM. The reason rests in the row/column proportion of the

21

input matrices. In the intermediate loop, the ES evaluates each of the values
of the overall matrix A and only the last column of the matrix B and C.
In unbalanced matrices, such as, L2 and L3 where the dimension of A and
the number of columns of B is proportionally lower than the dimension of
B, a considerable decrease of the achievable DC can be observed. Finally,
the checksums in the external loop provide a weak DC as expected, since the
ES only contemplates M (number of rows of matrix A) of the total possible
combinations.

Table 1: Diagnostic coverage of the sequential MMM

Sequential MMM AVX-based MMM
Checksum Square Unbalanced Square Unbalanced

implemented 20 [40 [80 L1 [L2 [L3 20 [40 | 80 L1 [L2 [L3

XOR (E) 2.5 1.3 0.6 0.4 0.1 0.1 2.5 1.3 0.6 0.4 0.1 0.1
XOR (M) 50.0 | 50.0 | 50.0 | 52.5 0.9 6.6 | 50.0 | 50.0| 50.0 | 52.5 0.9 | 10.0
XOR (I) 50.0 | 50.0 | 50.0 | 52.5 0.9 | 100.0 | 50.0 | 50.0 | 50.0 | 52.5 0.9 | 100.0
One’s (E) 2.5 1.3 0.6 0.4 0.1 0.1 2.5 1.3 0.6 0.4 0.1 0.2
One’s (M) 52.5| 51.2 | 50.6 | 54.1 1.0 7.1 79.2 | 59.2 | 54.2| 729 2.2 9.9
One’s (I) 98.5| 97.7| 96.9| 98.4 | 97.7| 96.9| 99.2 | 99.2| 99.2 | 989 | 99.2 | 99.9
Two’s (E) 2.5 1.3 0.6 0.4 0.1 0.1 2.5 1.3 0.6 0.4 0.1 0.2
Two’s (M) 52.3 | 51.1| 50.6 | 54.1 1.0 71| 688 | 59.1| 544 | 63.5 1.7 9.6
Two’s (I) 96.9 | 95.3 | 93.8| 98.4 | 90.7| 96.9| 96.9| 95.3| 93.8| 92.6 | 90.7 | 100.0
Fletcher(E) 2.6 1.3 0.6 0.4 0.1 0.1 3.5 1.5 0.7 0.5 0.2 0.2
Fletcher(M) 52.2 | 51.1 50.6 | 54.1 1.0 7.1 80.0 | 60.0 | 55.0| 73.8 2.2 10.0
Fletcher(T) 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.9 | 99.9 | 100.0
CRC(E) 2.6 1.3 0.6 0.4 0.1 0.1 3.5 1.5 0.7 0.5 0.2 0.2
CRC(M) 52.5| 51.3| 50.6 | 54.1 1.0 7.1| 80.0| 60.0| 55.0|73.77 2.2 | 10.0
CRC(I) 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
XOR_Fletcher 99.8 | 99.8 | 99.8| 99.8 | 99.8| 99.8 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
Two’s_Fletcher 97.9| 97.8| 97.7| 99.6 | 99.8 | 99.6 | 100.0 | 100.0 | 100.0 | 99.9 | 99.9 | 99.9

NOTE: The combinations not shown in the table reach a 100% DC

Accordingly, the internal loop solutions seem to be the most suitable ones
from a DC perspective, but as we have seen in previous section, the execution
time penalty they involve is considerably higher (e.g., CRC (I)). For this rea-
son, we have defined the combined solutions that provide different checksum
techniques in different loops, achieving a 100% DC with less performance
impact (e.g., ONE’S_CRC).

Additionally, in Table 1 it is possible to see the difference between se-
quential and AVX-based checksum implementations. According to the XOR
checksum, we can observe that for square matrices AVX-based and sequential
MMM reach a very similar DC in the individual experiments, regardless of the
loop where it is implemented. The greatest difference comes from the one’s
complement checksum, that reaches slightly higher DC in the AVX-based

22

implementation due to the required adaptation to overcome the absence of
the carry bit. For the remaining individual experiments, we can appreciate
a DC increase when AVX-based MMM is employed, which is explained by
the single instructions with multiple data used by AVX. This causes the pro-
tected data in each checksum calculation with AVX to be higher than with
sequential instructions. However, in experiments with unbalanced matrices
implementing the Fletcher checksum in the internal loop, we can appreciate
that with matrix dimensions L1 and L2 there is a decrease in the achieved
DC, which remarks that this diagnostic mechanism is less appropriated in
AVX-based implementations. Additionally, the experiments with unbalanced
matrices highlight the impact of the matrix dimension in the achievable di-
agnostic coverage, where for instance, the DC of XOR, (I) varies from 0.9%
to 100%.

To conclude the DC experiments in sequential MMM, we have computed
the DC of a layer extracted from YOLO (L59). We have computed the DC
of the 1’s and 2’s complement checksums in the internal loop with respect
to individual experiments. The individual CRC and Fletcher experiments
in the internal loop have not been carried out since the achievable DC is
100% regardless of the dimension and the type of matrices involved in the
MMM, as shown in Table 1. In the same manner, we have not evaluated the
achievable DC of the XOR checksum implemented in the internal loop since
from Table 1 we consider that its combination with another checksum, such
as CRC or Fletcher, can be more interesting in terms of DC and performance
impact. In contrast, we have evaluated the combination of 1’s complement
with CRC and the combination 2’s complement with CRC to verify that
the DC increases when we combine checksums with lower DC detection in
the internal loop with checksum with higher a DC in the intermediate one.
The results confirm our hypothesis, producing an increase from 98.5 % in 1’s
complement checksum and 96.9 % in 2’s complement checksum, up to 100%
DC when they are implemented in combination with the CRC checksum.

5.4. Trade-off between DC' and performance impact

Based on previous results, in this section we evaluate the relationship
between DC and performance impact for all considered checksum algorithms
and their combinations for square matrices of dimension 80x80 with the
sequential MMM and with AVX-based implementation (see Fig. 6):

DC is represented in the right-hand y-axis and it is depicted with two
green bar diagrams (the lighter one for the sequential implementation and

23

+ Performance Impact AVX-based -+ Performance Impact sequential [l DC AVX-based | DC sequential

,,,,, 100%DC gl 100
o
B a
Q (9]
g4 g
(0]
8 3
g 3
g | 50% DC S
2 g
o c
a
01— - -0
CSTSLCSTSTLQITITLEESTLLsTsgpegpees
e g & o o o 0 & s 5 60 0L LT LTI OO
COXNILVYS L9585 888580 gapdgy
X X S 5§ 8§ 7 o N R A
9 IS g 2 g X p s e S #
©oa o ¥ & 9 &
X 5 5 &

Checksum(s) Algorithms

Figure 6: Trade-off between performance impact vs. DC: performance impact and DC
values obtained after adopting the checksums catalogue with Sequential and AVX-based
MMM implementation for square matrices of dimension 80z80.

the darker one for AVX-based implementation). On the other side, the per-
formance impact is represented in the left-hand y-axis, with the AVX-based
implementation illustrated with a green solid line with triangular markers
and the sequential implementation depicted with a green dashed line and
round markers. As previously stated, not all selected combined approaches
reach 100% DC and their execution time impact considerably varies from
one checksum to another. Among the options with the highest DC, Fig. 6
depicts how the 2’s complement and 1’s complement checksums implemented
in the internal loop and the combinations XOR_Fletcher and Twos_Fletcher
do not reach 100% DC with the sequential implementation. However, AVX
implementation allows to reach 100% DC with all checksum combinations
and almost 100% with 2’s complement implemented in the most internal
loop. Although might not be evident in Fig. 6, XOR_Fletcher reaches 99,8%
error detection instead of 100% in the sequential MMM (as described in Ta-
ble 1). The reason of not reaching the maximum DC in comparison with the

24

checksum combination XOR_CRC is that the DC reached by the Fletcher
checksum in the intermediate loop is slightly inferior than that reached by
the CRC in the same loop and therefore some single-bit errors remain un-
detectable. Hence, the most promising performance results are provided
by XOR_CRC, 2’s_.CRC, 1’s_.CRC and 1’s_Fletcher checksums in sequential
MMM and 2’s_Fletcher, 2’s_.CRC, XOR_Fletcher and XOR_CRC in the AVX-
based MMM. In particular, XOR_CRC offers the lowest performance impact
for our particular sequential evaluation framework (R5 core of the Zynq Ul-
traScale+ platform) and AVX-based evaluation framework (Intel i7 Cores).

5.5. Discussion on compliance

The evaluation shown in previous subsections results in a catalogue of
checksums with varying degrees of performance impact and DC against single-
bit errors. While the required performance is application dependant, for the
DC IEC 61508-2 Table 3 determines the required coverage based on the SIL
and the hardware fault tolerance (HFT) of the safety-related system. This
allows the safety designer to select the most suitable checksum for each of
the safety architectural patterns described in Section 4.2.

For the periodic diagnosis with design time fized data pattern, which is
based on a single channel architecture with diagnostics (HFT = 0), the stan-
dard requires a DC of at least 60% for complex elements whose failure modes
cannot be easily determined. Therefore, as shown in previous Table 1, most
of the individual checksums applied in the external or intermediate loops are
not suitable by their own as a diagnostic mechanism for a safety-critical sys-
tems without redundancy. The DC is improved when the individual check-
sums are applied in the internal loop, but we have already seen that the
slowdown caused in this case is considerably bigger, which could not be af-
fordable from a real-time perspective. For this reason, the best options for
this architectural pattern are within the combined checksums. In contrast,
the architectural pattern based on redundancy can reach a HFT > 0. In
this cases the standard permits reaching the same SIL as before with lower
DC. For instance, for a HFT = 1 a DC below 60% is acceptable for up to
SIL 1, and up to SIL 2 if the HFT is at least 2. Even in these cases, although
the standard does not specify it, in practice a diligent safety system design
requires a DC closer to 60% than to 0%.

Following these requirements from IEC 61508, we select the solution that
provides best DC and performance impact ratio for Darknet CNN. However,

25

as we have already seen in previous subsections, the DC varies depending
on the considered matrix dimensions and, for that reason, the adequacy of
the checksum or combination of checksums should be evaluated for each of
the layers of the CNN (which in Darknet are known at design time). As an
example, in Table 2 we provide the selected checksums for each SIL and HF'T
in square matrices of 80280 dimensions. The grayscale of its cells refers to
the range of diagnostic coverage, where the darker the gray the higher the
diagnostic coverage required.

Table 2: Selected checksums for 80280 matrix dimension according to SIL and HFT.

HFT

0 1 2

w0
—

L Sequential AVX Sequential AVX Sequential AVX

XOR._Fletcher(#) [XOR_CRC(#)

XOR_Fletcher(#) [XOR_CRC(#)| XOR _Fletcher(*) | XOR_CRC(#%)

XOR_Fletcher " |[XOR_CRC#?)| XOR _Fletcher(") | XOR_.CRCUD | CRC (M) CRC (M)®

=N G|

XOR._Fletcher(* [XOR_CRC() CRC M)® [XOR_.CRC® Non specified

NOTE: i) DC < 60% ii) 60% < DC < 90% iii) 90% < DC < 99% iv) 99% < DC

Table 2 shows how for the same SIL, a checksum with lower DC can be
selected if it is implemented in a redundant architecture. For instance, for
SIL 2, the single-channel pattern (HFT = 0) involves a high DC (90% <
DC < 99% (iii)) for which checksum combinations are the preferred option.
For the redundant pattern instead, with HFT = 2 a low DC (< 60%) is
sufficient, and the CRC (M) individual checksum provides best performance
vs required DC ratio, reaching a 50.6% (sequential) and 55.0% (AVX) DC for
the selected matrix dimension. For high DC the XOR_Fletcher (sequential)
and XOR_CRC (AVX) combinations allow achieving the required DC with
a lower performance impact. The same solution turns out to be the most
suitable for a medium DC (60% < DC < 90% (ii)) too, since in our results
there is not any checksum within this specific DC range.

6. Related Work

In the current literature, there are plenty of works devoted to the safety
certifiability of ML-based solutions [9, 11, 31, 32, 33, 34]. There is a research
line focused on identifying and analysing the main gaps for the adoption of
ML components in safety-related system development processes, according to
the requirements imposed by functional safety standards such as ISO 26262
or IEC 61508 [17, 32, 33]. In this research line, the paper [33], which is
an extended work of [32], identifies five problems to adhere to ISO 26262

26

lifecycle with ML approaches and proposes five recommendations to address
them. In the same manner, Hamid et al. [17] identify the main challenges
of ML to adhere to the requirements for software development described in
part 6 of the ISO 26262 standard and they state the necessity of a safe ML
library. Besides, after an analysis of the deep learning framework in [11], the
authors assert the direct impact of low-level libraries, mostly based on matrix
operations, on these frameworks. They postulate that the optimization or
development of new low-level libraries would be beneficial to address issues
such as fault tolerance and promote reusability. This has served as motivation
of our work where we have defined diagnostic mechanisms to detect errors in
the computation of MMMs, the backbone of CNNs.

The evaluation of the performance of the MMM in diverse platforms such
as GPUs and multi-core processors has also been carried out in terms of
execution time [35, 36, 37|, among others. According to the reliability en-
hancement, there are both hardware and software solutions. For hardware, Li
et al. [13] propose the characterization of the CNN error propagation to select
the most suitable latches to be hardened. However, these partial-hardware
redundancies depend on the CNN and require specific hardware modifications
that entail a great effort in view of the large variety of CNN models. Accord-
ing to their results, this latch hardening incurs in an area overhead between
20% and 25%. As the suitability of these hardware solutions is evaluated
based on the required embedded area rather than by the execution time, it
is not possible to provide a performance comparison with our solution. For
software-level solutions, several research works propose the introduction of
algorithm-based fault tolerance (ABFT) to enhance the reliability both on
FPGA [38, 39] and on GPU [8, 40, 41]. These papers focus on the avoidance
of soft-errors at runtime but they do not consider the errors caused by built-
in mechanisms like cache coherency and the safe behaviour of all platform
components. ABFT solutions offer low performance impact, as demonstrated
by the authors in [40] with an overhead from 4% to 8%, up to 13.8% when
employed with small matrix dimensions [41] and 3% with square matrices of
dimensions 5002500 [39]. In contrast to these works, the slowdown caused by
the checksum catalogue of this paper has a considerably higher variability,
ranging from 0.1% to 197% (in the sequential implementation) and up to
533% (in the AVX-based implementation). While the worst overhead is sig-
nificantly higher with our approach, with the combined solutions we reached
a reasonable overhead reaching a 100% diagnostic coverage for single-bit and
program sequence errors at bit level, fact that cannot be guaranteed at the

27

same granularity with the ABFT approach. In addition, the wide variety
of defined combinations allows the safety designer the selection of the most
adequate solution according to the required SIL and architectural pattern.
With a broader scope, multiple testing and fault injection approaches
exist for the verification and validation of automotive systems. While some
of them are not explicit for ML-based systems, they can also be applied
to those. Some works assess software-based defect detection by means of
mutation testing and fault injection in the context of autonomous driving
systems [42]. Other works focus on how to test the system with different
sets of inputs [43, 44, 45]. In a more classical strand, model-based software
design and testing can be used for verification and validation activities [46].
While the target of this work is diagnostics based on checksums, fault
detection can also be performed with execution redundancy. Some proces-
sors provide such redundancy, along with diversity, by hardware means with
lockstep architectures, such as the Infineon AURIX processor family [47], the
ST Microelectronics SPC56XL70 [48] some Arm-based designs [49]. Other
works provide redundancy with lighter-weight approaches based on single-
core thread redundancy [50, 51] or multi-core thread redundancy [52, 53, 54].
Some works even consider only partial redundancy [55, 56]. Software-only
mechanisms for execution redundancy have also been widely studied in the
context of CPUs [57, 58, 59, 60, 61, 62], including mechanisms such as a mon-
itor process to detect errors, or leveraging compilers to inject redundancy.
This type of solutions have also been explored for accelerators such as the
Kalray MPPA family and GPUs, either at hardware level [63, 64, 65, 66, 67]
or at software-only level [68, 63, 69, 70]. In all cases, however, those solutions
are orthogonal to those studied in this paper and need to be carefully applied
only whenever needed due to their costs, and meeting safety requirements in
ISO 26262 (e.g. such as diverse redundancy for the highest integrity levels).
Overall, while checksums themselves are not new, their applicability in
ML-related software for automotive systems and the different performance
and coverage tradeoffs, which are the main contributions of this work, have
not been considered in existing work yet. Existing works, instead, focus on
the correctness of ML at functional level, on the performance of MMM for
high-performance systems (without safety or diagnostics considerations), on
fault detection during system development (not online diagnostics), and on
fault detection through redundancy (with or without diversity). The latter is
normally used to reach ASIL C or D building on ASIL A and B components.
However, checksums allow reaching ASIL A and B, and hence, both types of

28

mechanisms are complementary.

Regarding MISRA-C compliance, while the work in [11] does some initial
steps towards generally assessing the compliance of a full autonomous driving
framework. Differently, our work performs a detailed analysis of a specific —
and central — software component in those frameworks, and adapts it to be
compliant.

7. Conclusions and future work

In this paper we have presented an approach to adapt the MMM functions
present in ML software libraries in order to avoid and control systematic and
random errors according to the considered functional safety standards. On
the one hand, for systematic error avoidance, we have seen that the effort to
adapt the original MMM code to MISRA C coding guidelines was relatively
low and with negligible performance impact. This same conclusion can also
be extrapolated to the complete Darknet CNN, where we have proposed so-
lutions for the most frequent violations. On the other hand, the paper has
presented an approach for runtime fault detection based on a combination of
ESs and safe architectural patterns. We have evaluated the trade-off between
performance penalty ratio and DC, achieving up to 100% DC for single-bit
inversions with a performance impact from 1.001 to 2.97 for the analyzed
largest matrix sizes computed with the sequential MMM and from 1.001
to 6.33 with the AVX-based MMM. Additionally, the experimental results
confirm that for a given DC and performance penalty target, the selection of
the appropriate combination of checksums depends on the considered matrix
dimensions (which for YOLO are known at design time) and this allows the
adoption of the most appropriate ones according to the specific application.
In particular, we have provided a pre-selection of most suitable checksums for
the CNN layer that corresponds to the 80280 matrix dimension for two differ-
ent safety architectural patterns, one based on periodic diagnostics and the
second for redundant architectures with varying degrees of fault tolerance.
Additionally, we confirm that our catalogue can be implemented employ-
ing AVX-based vectorization for the sake of performance. The experiments
demonstrate that the vectorization of certain checksums, such as 1’s com-
plement and Fletcher, implies a performance penalty that makes them less
appropriate in these implementations in terms of performance. Besides that,
the AVX-based MMM allows reaching higher performance than that provided

29

by the sequential MMM, improving execution time by a factor between 3.97
and 6.57 for different matrix sizes.

Overall, this paper is an initial step to pave the way towards the de-
velopment of a ‘safe ML library’ adhering to functional safety standards.
This first development provides a platform independent safe inference ex-
ecution environment for the MMM. As part of our future work, following
the incremental strategy exposed in this paper, the authors plan to adapt
the proposed techniques to other possible inference alternatives that exploit
parallelization [34], such as GPUs and FPGAs. In addition, with the aim
of reducing the slowdown of the proposed techniques when applied to a spe-
cific CNN, we propose the application of the checksums only on the most
error prone layers and most sensitive bits, preceded by a detailed study of
the error propagation. In addition, the most suitable checksum or checksum
combinations for each layer shall be selected, based on the matrix dimension,
the target SIL and the architectural pattern, extending the analysis done for
80280 matrices in Section 5.5 of this paper. Based on the selected options,
an additional future research topic could extend the performance impact and
DC evaluation of the complete CNN considering also multiple-bit errors.

References

[1] D. Casini, A. Biondi, and G. Buttazzo, “Deep neural networks for safety-
critical applications : Vision and open problems,” in Proc. of the 9th
Int. Real-Time Scheduling Open Problems Seminar (RTSOPS), 2018,
Conference Proceedings.

[2] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A
survey of deep learning-based object detection,” IEEE Access, vol. 7,
pp- 128 837-128 868, 2019.

[3] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018.

[4] “IEC 61508(-1/7): Functional safety of electrical / electronic / pro-
grammable electronic safety-related systems,” 2010.

[5] “ISO 26262(-1/11) road vehicles — functional safety,” ISO, 2018.

[6] “ISO/PAS 21448 road vehicles — safety of the intended functionality,”
IS0, 2019.

30

[7]

F. dos Santos, L. Carro, and P. Rech, “Kernel and layer vulnerability
factor to evaluate object detection reliability in GPUs,” IET Computers
& Digital Techniques, vol. 13, 2018.

F. F. d. Santos, L. Draghetti, L. Weigel, L. Carro, P. Navaux, and
P. Rech, “Evaluation and mitigation of soft-errors in neural network-
based object detection in three GPU architectures,” in 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W), 2017, Conference Proceedings, pp. 169-176.

H. Tabani, L. Kosmidis, J. Abella, F. J. Cazorla, and G. Bernat, “As-
sessing the adherence of an industrial autonomous driving framework to
ISO 26262 software guidelines,” in 2019 56th ACM/IEEE Design Au-
tomation Conference (DAC), 2019, Conference Proceedings, pp. 1-6.

A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A Reliability Anal-
ysis of a Deep Neural Network,” in 2019 IEEE Latin American Test
Symposium (LATS), 2019, Conference Proceedings, pp. 1-6.

H. Tabani, R. Pujol, J. Abella, and F. J. Cazorla, “A cross-layer review
of deep learning frameworks to ease their optimization and reuse,” in

IEEFE 23rd International Symposium on Real-Time Distributed Comput-
ing (ISORC), 2020, pp. 144-145.

A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis
of a deep neural network,” in 2019 IEEE Latin American Test Sympo-
sium (LATS), 2019, Conference Proceedings, pp. 1-6.

G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (DNN) accelerators and applications,” in Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. Association for Computing Machinery,
2017, Conference Proceedings, p. 8, doi: 10.1145/3126908.3126964.

A. Ruospo, A. Bosio, A. lanne, and E. Sanchez, “Evaluating convo-
lutional neural networks reliability depending on their data represen-
tation,” in 2020 23rd Euromicro Conference on Digital System Design
(DSD), 2020, pp. 672-679.

31

[15]

[16]

[17]

[21]

[22]

[23]

[24]

J. Redmon, “Darknet: Open source neural networks in C,” 2013-2016.
[Online]. Available: http://pjreddie.com/darknet/

J. Diaz, C. Munoz-Caro, and A. Nifo, “A survey of parallel program-
ming models and tools in the multi and many-core era,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 23, no. 8, pp. 1369-1386,
2012.

H. Tabani, L. Kosmidis, J. Abella, F. J. Cazorla, and G. Bernat, “As-
sessing the adherence of an industrial autonomous driving framework
to ISO 26262 software guidelines,” in Proceedings of the 56th Annual
Design Automation Conference, New York, NY, USA, 2019.

J.-L. Boulanger, Polyspace. John Wiley & Sons, Inc, 2013, book sec-
tion 3, p. 113-142, doi: 10.1002/9781118602867.

“EN50128 - railway applications: Communication, signalling and pro-
cessing systems - software for railway control and protection systems,”
2011.

J. Perez Cerrolaza, R. Obermaisser, J. Abella, F. J. Cagzgorla,
K. Grittner, I. Agirre, H. Ahmadian, and I. Allende, “Multi-core de-
vices for safety-critical systems: A survey,” ACM Comput. Surv., vol. 53,
no. 4, 2020.

J. Redmon and A. Farhadi, “Yo0lo9000: Better, faster, stronger,”
in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 6517-6525.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiw:2004.10934, 2020.

“MISRA C:2012 - guidelines for the use of the C language in critical
systems,” MISRA, 2012.

J. Athavale, A. Baldovin, R. Graefe, M. Paulitsch, and R. Rosales, “Al
and reliability trends in safety-critical autonomous systems on ground
and air,” in 50th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops (DSN-W), 2020, Conference
Proceedings, pp. 74-77.

32

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

33]

A. Azizimazreah, Y. Gu, X. Gu, and L. Chen, “Tolerating Soft Errors in
Deep Learning Accelerators with Reliable On-Chip Memory Designs,” in
IEEFE International Conference on Networking, Architecture and Storage
(NAS), 2018, Conference Proceedings, pp. 1-10.

J. Perez, D. Gonzalez, C. F. Nicolas, T. Trapman, and J. M. Garate, “A
safety certification strategy for IEC-61508 compliant industrial mixed-
criticality systems based on multicore partitioning,” in Euromicro con-
ference on Digital System Design (DSD), 2014, Conference Proceedings.

T. C. Maxino and P. J. Koopman, “The effectiveness of checksums for
embedded control networks,” IEEE Transactions on Dependable and
Secure Computing, vol. 6, no. 1, pp. 59-72, 2009.

P. Koopman, K. Driscoll, and B. Hall, “Selection of cyclic redun-
dancy code and checksum algorithms to ensure critical data integrity,”
Carnegie Mellon University, Report, 2015.

J. Ray and P. Koopman, “Efficient high hamming distance CRCs for em-
bedded networks,” in International Conference on Dependable Systems
and Networks (DSN), 2006, Conference Proceedings, pp. 3—12.

J. L. Hennessy and D. A. Patterson, Computer architecture: a quanti-
tative approach. FElsevier, 2011.

F. Falcini and G. Lami, “Challenges in certification of autonomous driv-
ing systems,” in 2017 IEEFE International Symposium on Software Relia-
bility Engineering Workshops (ISSREW), 2017, Conference Proceedings,
pp. 286-293.

R. Salay, R. Queiroz, and K. Czarnecki, “An Analysis of ISO 26262:
Using Machine Learning Safely in Automotive Software,” ArXiv, vol.
abs/1709.02435, 2018.

R. Salay and K. Czarnecki, “Using Machine Learning Safely in Au-
tomotive Software: An Assessment and Adaption of Software Process
Requirements in ISO 26262,” arXiv preprint arXiv:1808.01614, 2018.

A. Biondi, F. Nesti, G. Cicero, D. Casini, and G. Buttazzo, “A safe,
secure, and predictable software architecture for deep learning in safety-
critical systems,” IEEE Embedded Systems Letters, pp. 1-1, 2019.

33

[35]

[36]

[37]

[39]

[40]

M. Salim, A. O. Akkirman, M. Hidayetoglu, and L. Gurel, “Comparative
benchmarking: matrix multiplication on a multicore coprocessor and
a GPU” in Computational FElectromagnetics International Workshop
(CEM), 2015, Conference Proceedings, pp. 1-2.

Z. Huang, N. Ma, S. Wang, and Y. Peng, “GPU computing performance
analysis on matrix multiplication,” The Journal of Engineering, vol.
2019, 2019.

V. Kelefouras, A. Kritikakou, I. Mporas, and V. Kolonias, “A high per-
formance matrix-matrix multiplication methodology for CPU and GPU
architectures,” The Journal of Supercomputing, vol. 72, 2016.

I. C. Lopes, F. Benevenuti, F. L. Kastensmidt, A. A. Susin, and P. Rech,
“Reliability analysis on case-study traffic sign convolutional neural net-
work on apsoc,” in 2018 IEEE 19th Latin-American Test Symposium
(LATS), Conference Proceedings, pp. 1-6.

S. Roffe and A. D. George, “Evaluation of algorithm-based fault toler-
ance for machine learning and computer vision under neutron radiation,”
in IEEE Aerospace Conference, 2020, Conference Proceedings, pp. 1-9.

K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang,
F. Cappello, and Z. Chen, “FT-CNN: Algorithm-Based Fault Tolerance
for Convolutional Neural Networks,” IEEFE Transactions on Parallel
and Distributed Systems, p. arXiv:2003.12203, 2020. [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2020arXiv200312203Z

C. Braun, S. Halder, and H. J. Wunderlich, “A-ABFT: Autonomous
Algorithm-Based Fault Tolerance for Matrix Multiplications on Graph-
ics Processing Units,” in 44th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, 2014, pp. 443-454.

R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Térner,
“Early Verification and Validation According to ISO 26262 by Combin-
ing Fault Injection and Mutation Testing,” in Software Technologies,

J. Cordeiro and M. van Sinderen, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 164-179.

K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated
Whitebox Testing of Deep Learning Systems,” Commun. ACM,

34

[44]

vol. 62, mno. 11, p. 137-145, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3361566

R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter,
“Testing autonomous cars for feature interaction failures using many-
objective search,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
143-154. [Online]. Available: https://doi.org/10.1145/3238147.3238192

C. Berger, “Accelerating regression testing for scaled self-driving cars
with lightweight virtualization: A case study,” in Proceedings of the
First International Workshop on Software Engineering for Smart Cyber-
Physical Systems, ser. SEsCPS ’15. TEEE Press, 2015, p. 2-7.

M. Broy, S. Kirstan, H. Kremar, and B. Schatz, What s the Benefit of
a Model-Based Design of Embedded System in the Car Industry? 1GI
global, 2012.

Infineon, “AURIX Multicore 32-bit Microcontroller Family to Meet
Safety and Powertrain Requirements of Upcoming Vehicle Generations,”
2012.

STMicroelectronics, “32-bit Power Architecture microcontroller for au-
tomotive SIL3/ASILD chassis and safety applications,” 2014.

X. Tturbe et al., “The Arm triple core lock-step (TCLS) processor,”
ACM Transactions on Computer Systems, 2019.

S. K. Reinhardt et al., “Transient fault detection via simultaneous mul-
tithreading,” in ISCA, 2000.

E. Rotenberg, “AR-SMT: a microarchitectural approach to fault toler-
ance in microprocessors,” FTC| 1999.

S. S. Mukherjee et al., “Detailed design and evaluation of redundant
multithreading alternatives,” in ISCA, 2002.

M. Gomaa et al., “Transient-fault recovery for chip multiprocessors,” in
ISCA, 2003.

35

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

C. LaFrieda et al., “Utilizing dynamically coupled cores to form a re-
silient chip multiprocessor,” in DSN, 2007.

B. H. Meyer et al., “Cost-effective safety and fault localization using
distributed temporal redundancy,” in CASES, 2011.

J. Fu et al., “On-demand thread-level fault detection in a concurrent
programming environment,” in SAMOS, 2013.

G. A. Reis et al., “SWIFT: Software implemented fault tolerance,” in
CGO, 2005.

H. So et al., “Expert: Effective and flexible error protection by redun-
dant multithreading,” DATE, 2018.

F. Haas et al., “Fault-tolerant execution on cots multi-core processors
with hardware transactional memory support,” in ARCS, 2017.

H. Mushtaq et al., “Efficient software-based fault tolerance approach on
multicore platforms,” in DATE, 2013.

A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A. Connors,
“Using process-level redundancy to exploit multiple cores for transient
fault tolerance,” in 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2007, pp. 297-306.

A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors,
“Plr: A software approach to transient fault tolerance for multicore ar-
chitectures,” IEEFE Transactions on Dependable and Secure Computing,
vol. 6, no. 2, pp. 135-148, 2009.

J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and
K. Skadron, “Real-world design and evaluation of compiler-managed
gpu redundant multithreading,” in 2014 ACM/IEEE j1st International
Symposium on Computer Architecture (ISCA), 2014, pp. 73-84.

H. Jeon et al., “Warped-DMR: Light-weight error detection for
GPGPU,” in MICRO, 2012.

M. B. Sullivan et al, “SwapCodes: Error Codes for Hardware-Software
Cooperative GPU Pipeline Error Detection,” in MICRO, 2018.

36

[66] R. Nathan and D. J. Sorin, “Argus-G: Comprehensive, low-cost error de-
tection for GPGPU cores,” IEEE Computer Architecture Letters, 2015.

[67] S. Alcaide et al., “Software-only Diverse Redundancy on GPUs for Au-
tonomous Driving Platforms,” in IOLTS, 2019.

[68] M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software
approaches for gpgpu reliability,” in Proceedings of 2nd Workshop on
General Purpose Processing on Graphics Processing Units, ser. GPGPU-
2. New York, NY, USA: Association for Computing Machinery, 2009, p.
94-104. [Online|. Available: https://doi.org/10.1145/1513895.1513907

[69] S. Jain et al., “Fractional GPUs: Software-based compute and memory
bandwidth reservation for GPUs,” in RTAS, 2019.

[70] S. Alcaide et al., “High-Integrity GPU Designs for Critical Real-Time
Automotive Systems,” in DATE, 2019.

37

