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Abstract

Representing the rainy season of the maritime continent is a challenge for

global and regional climate models. Here, we compare regional climate models

(RCMs) based on the coupled model intercomparison project phase 5 (CMIP5)

model generation with high-resolution global climate models with a compara-

ble spatial resolution from the HighResMIP experiment. The onset and the

total precipitation of the rainy season for both model experiments are com-

pared against observational datasets for Southeast Asia. A realistic representa-

tion of the monsoon rainfall is essential for agriculture in Southeast Asia as a

delayed onset jeopardizes the possibility of having three annual crops. In gen-

eral, the coupled historical runs (Hist-1950) and the historical force atmo-

sphere run (HighresSST) of the high-resolution model intercomparison project

(HighResMIP) suite were consistently closer to the observations than the RCM

of CMIP5 used in this study. We find that for the whole of Southeast Asia, the

HighResMIP models simulate the onset date and the total precipitation of the

rainy season over the region closer to the observations than the other model

sets used in this study. High-resolution models in the HighresSST experiment

showed a similar performance to their low-resolution equivalents in simulating
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the monsoon characteristics. The HighresSST experiment simulated the anom-

aly of the onset date and the total precipitation for different El Niño-southern

oscillation conditions best, although the magnitude of the onset date anomaly

was underestimated.
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1 | INTRODUCTION

Global climate models (GCMs) are the primary tools used
to assess the impact of climate change. The reliability of
GCMs in projecting climate change depends on the skill
of the models in simulating the present-day climate
(Raäisaänen, 2007). The representation of the hydrologic
cycle in GCMs is still limited, although there have been
improvements made on physical, biological and chemical
processes (Ul Hasson et al., 2016). The spatial resolution
of the models is one of the limitations that leads to a poor
representation of the hydrologic cycle in GCMs as many
of the processes contributing to the hydrologic cycle need
to be resolved through parameterization schemes, such
as convection. With this limitation, the assessment of
future climate change impacts over Southeast Asia (SEA)
is challenging since this region has unique physio-
geographical characteristics (Ul Hasson et al., 2016).

Earlier research used rainfall gauges and gridded sea
surface temperature (SST) data for the reproduction of
the three observed dominant rainfall patterns in the
Indonesian region (Aldrian and Susanto, 2003). In a
follow-up of that study, the GCM results were down-
scaled using a regional climate model (RCM) aiming to
test the hypothesis that the poor results were related to
inadequate representation of the rainfall characteristics
and a topography that was too coarse (Aldrian
et al., 2004). The use of the RCM embedded in the global
model clearly improved rainfall due to the more realistic
topography. Changing the resolution of the GCM from
1.125� to 0.5� resulted in a dramatic improvement in
rainfall over most of the Indonesian archipelago as well.
In addition, the authors concluded that a prerequisite to
realistic simulations of precipitation patterns is to
account for the SST, which is the major factor determin-
ing the quality of the simulations. The region with the
most realistic SST values had the smallest bias. Motivated
by these results, follow-up research was conducted using
long-term high-resolution (HR) coupled climate model
simulations (Aldrian et al., 2005). The coupling produced
a more realistic representation of SST and a lower over-
estimation of rainfall over the sea. Compared to the pre-
vious research that used the uncoupled model, the HR

coupled model has accurately simulated rainfall over the
region.

The ability of the climate model to simulate El Niño-
southern oscillation (ENSO) circulation improves as the
spatial resolution increases (Shaffrey et al., 2009; Masson
et al., 2012). In addition, the modelled Atlantic inter-
tropical convergence zone (ITCZ) (Doi et al., 2012)
behaves more realistically. Further improvements are
expected in the latest generation of GCMs from the HR
model intercomparison project (HighResMIP; Haarsma
et al., 2016). These models are run at spatial resolutions
similar to that of RCMs. For Europe, the HR GCM and
the RCM show similar strengths and weaknesses in terms
of daily precipitation distribution (Demory et al., 2020).
For SEA however, the added value of the HighResMIP
approach in comparison to the downscaling approach of
RCMs needs to be investigated, especially for the aspect
of the monsoon characteristic.

As global warming affects both the mean precipita-
tion and the precipitation variability (Seager et al., 2012),
a higher frequency of dry spells may be possible (Lintner
et al., 2012). This condition may impact the monsoon
rains which are very important for agriculture in SEA
(Marjuki et al., 2016). The onset of the monsoon season is
essential for farmers in SEA. Observations have shown a
negative correlation between paddy rice yield and a del-
ayed onset for some Southeast Asian countries (Marjuki
et al., 2016). A delayed onset can prevent a farmer from
having three annual crops, which is projected in some cli-
mate scenarios (Naylor et al., 2002).

The monsoon characteristics relate not only to local
conditions but also to large-scale structures like the ITCZ
(Nieuwolt et al., 1977; Aldrian and Susanto, 2003). This
means that a global HR model might have an advantage
over a low-resolution (LR) GCM with an embedded RCM
as the former is expected to simulated large-scale struc-
tures more realistically. The HR models of HighResMIP
may show similar levels of detail and realism in precipita-
tion over complex topography as the RCMs, combined
with the benefit of a more correct large-scale ITCZ.

This study aims to assess model performance in simu-
lating the monsoon characteristics for SEA. We also
investigate the effect of ENSO on the monsoon. A robust
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climate change impact assessment in the region must be
based on climate models, which have a good representa-
tion of the onset of the monsoon rainfall. Here, we will
compare the HighResMIP against observations and the
downscaled result of the Coupled Model Intercomparison
Project phase 5 (CMIP5) from the coordinated downscal-
ing experiment (CORDEX) SEA simulations (Giorgi
et al., 2012; Yang, 2012; Juneng et al., 2016; Ngo-Duc
et al., 2017; Supari et al., 2020; Tangang et al., 2020),
focusing specifically on monsoon characteristics. We will
also compare the HR configuration of the HighResMIP
models against their LR equivalents.

2 | MATERIALS AND METHODS

2.1 | Description of the study area

The SEA domain that we analyse covers the area between
12.5�S–24.5�N and 92.5�E–142.5�E and includes the
northern part of Myanmar, Laos, Vietnam, Thailand,
Cambodia, Malaysia and Indonesia. The wet season in
the SEA is part of the Australia-Asia monsoon system.
The system is situated between the centre of the Asian
summer monsoon and Australian summer monsoon and
spans the East Asia region, including the northern part of
Australia (Wang, 2006).

The ITCZ crosses the equatorial region (between 10�

and −5� latitude) twice a year. Most of the area in this
region has two rainy seasons, the first during boreal spring
and the second during boreal autumn with a higher peak in
the second season (Aldrian and Susanto, 2003). The tempo-
ral development of the monsoon over the region has been
described in earlier publications (Hamada et al., 2002;
Aldrian and Susanto, 2003; Moron et al., 2009).

2.2 | DATA

2.2.1 | Observation

In the SEA, the density of gauges and the long-term avail-
ability of rainfall time series are limited, which makes the
development of a dataset for daily precipitation amounts
based on in-situ measurements challenging (Van den
Besselaar et al., 2017; Singh and Xiaosheng, 2019). To
account for the uncertainty in observed rainfall, a total of
three gridded daily observational datasets are used in this
study. The first dataset is the Southeast Asia Observation
(SA-OBS) (Van den Besselaar et al., 2017). SA-OBS is a daily
HR land-only observational gridded dataset for precipitation
and minimum, mean and maximum temperatures covering
the SEA region. This dataset is used in its 0.5� by 0.5�

regular latitude-longitude grid for the period from 1981 to
2016. The observational data on which SA-OBS is based is
collected by the Southeast Asian Climate Assessment &
Dataset (SACA&D), a cooperation between Indonesia's
meteorological service and other meteorological services in
the region (Van den Besselaar et al., 2015). As a result of
this cooperation, 1,394 precipitation stations, 365 stations
with minimum and maximum temperature, and 274 sta-
tions with daily mean temperature have been selected.

The second dataset is the Asian Precipitation Highly
Resolved Observational Data Integration towards Eval-
uation of Water Resources (APHRODITE; Yatagai
et al., 2012). The APHRODITE (APHRO) daily precipi-
tation data were created by collecting and analysing rain
gauge observation data across Asia. The interpolation algo-
rithm for the latest version of APHRO is similar to that
presented by Yatagai et al. (2009) with improvements in
weighting function to consider the effect of mountain
ranges by giving high weight to gauges on slopes inclined to
the target location and low weight to gauges on the leeward
side behind a mountain ridge. The dataset is used to evalu-
ate the model skill in simulating daily precipitation, includ-
ing the precipitation extremes.

The third dataset is the Climate Hazards group Infra-
red Precipitation with Stations v2.0 (CHIRPS; Funk
et al., 2015). The CHIRPS product provides daily precipi-
tation data at a spatial resolution of 0.05� for the quasi-
global coverage of 50�N–50�S from 1981 to the present.
The CHIRPS was created using data from rain gauge sta-
tions collected from food and agriculture organization
and global historical climate network, the Cold Cloud
Duration information based on thermal infrared data
archived from climate prediction center and NOAA
National Climate Data Center (NCDC), the Version 7
TRMM 3B42 data, the Version 2 atmospheric model rain-
fall field from the NOAA Climate Forecast System, and
rain gauge station data from multiple sources.

There is good agreement between the observation
datasets on the mean onset of the rainy season in SEA
(Figure 1). Figure 1d shows that the general movement of
the onset of the rainy season is in line with the movement
of the ITCZ. The zonal mean plot shows that the onset date
moves to later dates for latitudes closer to the equator, but
local detail is lost in this aggregated view. The Maritime
Continent of SEA has a complex seasonal cycle of rainfall,
which means that some areas end up having a local charac-
teristic that is different from the movement of the ITCZ
(Aldrian and Susanto, 2003).

Between the three gridded rainfall datasets, the SA-
OBS dataset was specifically generated for the SEA using
gauged rainfall stations. The dataset has been considered
more accurate and reliable as compared to other datasets
(Van den Besselaar et al., 2017; Ge et al., 2019), but the
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restrictions on the search radius in the interpolation
method have as a consequence that in areas that are
too data-sparse, no interpolated values are calculated.
The other two datasets use other approaches or more per-
missive interpolations and cover the complete land area
of SEA.

2.2.2 | Model data

In this study, two classes of model experiment results are
compared to the observation. The first model output is the
downscaled version of CMIP5. We use six downscaled
CMIP5 model datasets. The data of CNRM, CSIRO, EC-
Earth and MPI were downscaled using RegCM4 (Giorgi
et al., 2012) by CORDEX SEA (Ngo-Duc et al., 2017; Supari
et al., 2020; Tangang et al., 2020), whereas HadGEM was
downscaled using regional Weather Research and Fore-
casting (WRF3.5) (Skamarock et al., 2008) by the Asia-
Pacific Economic Cooperation Climate Centre (APCC)
(Yang, 2012). The RCMs were run over the historical
period 1971–2005. We will refer to the 6 model dataset as
CORDEX.

The second model experiment output is from the
HighResMIP experiment. The HighResMIP data are avail-
able from the H2020-funded Primavera project. In this pro-
ject, GCMs were run at a spatial resolution comparable to
that of the CORDEX models. We use two experiments of
HighResMIP in this study. The first HighResMIP experi-
ment is the coupled historic runs for the period 1950–2014
(Hist-1950). Fixed historical atmosphere and SST forcing
from 1950 was applied for the spin-up period, after which
a historically-evolving forcing was imposed (Haarsma
et al., 2016). Six HR models from the Hist-1950 experiment
were used including EC-Earth (Haarsma et al., 2020), MPI
(Müller et al., 2018), HadGEM (Roberts et al., 2019), CMCC
(Cherchi et al., 2019), CNRM (Voldoire et al., 2019), and
ECMWF (Roberts et al., 2018). EC-Earth and ECMWF are
available in two and four members, respectively. For other
models, there is only one member available. Later in this
study, the HR of Hist-1950 model experiment will be called
HR-Hist-1950.

The second HighResMIP experiment is the histori-
cally forced atmosphere run for the period 1950–2014
(HighresSST). This experiment used the daily 1/4�

HadISST2-based dataset as the SST and sea-ice forcing.

FIGURE 1 Map (SA-OBS (a), APHRO (b) and CHIRPS (c)) and zonal mean (d) of the mean onset of the rainy season in SEA. The mean

and zonal mean onset is calculated from observation datasets (SA-OBS, APHRO and CHIRPS) for the period 1981–2005 [Colour figure can
be viewed at wileyonlinelibrary.com]
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With the extended period and HR simulation, it is
expected that this experiment will improve upon the real-
ism of the ENSO teleconnection (Sterl et al., 2007). This
study used HR and LR simulation from the HighresSST.
The same six models from the Hist-1950 experiment were
used for the HighresSST experiment. There is only one
member available for the CMCC, CNRM and MPI, both
for the HR and LR simulations. For EC-Earth, there are
three members available both for the HR and LR simula-
tions. For ECMWF, there are four and eight members
available for the HR and LR simulations, respectively.
For the HadGEM, three and five members are available
for the HR and LR simulations, respectively. More
detailed information on the HighResMIP experiment can
be found in Haarsma et al. (2016). Considering CORDEX,
four models are available in HighResMIP (CNRM, EC-
Earth, HadGEM and MPI). The remaining two models
are different (CSIRO and GFDL for CORDEX, also
CMCC and ECMWF for HighResMIP), which is due to
the limitation of the data that are available from the
CORDEX-SEA and Primavera project. In addition to the
CORDEX and HighResMIP datasets, the EC-Earth GCM
from CMIP5 with an ensemble of four members was used
to support the conclusions, each member representing a
perturbation in realization.

For the analysis, we interpolate the model and obser-
vation datasets to the same grid resolution; the reference
resolution is 0.5�. We used bilinear interpolation to inter-
polate a dataset with higher resolution than the refer-
ence. Also, we used nearest-neighbour interpolation to
interpolate datasets with a lower resolution than the ref-
erence. Information about the model configurations is
shown in Table 1.

2.3 | Methods

2.3.1 | Season onset definition

There are various ways to quantify the onset (and cessation)
of the rainy season. In the model context, it is possible to
calculate sophisticated indices (including for example, wind
direction at higher elevations and reference of evapotranspi-
ration) (Zeng and Lu, 2004; Diong et al., 2019; Wati
et al., 2019) but the observational datasets lack parameters
other than temperature and precipitation, which limits us
to applying the most straightforward indices. Marjuki
et al. (2016) compared a few of these simple indices and
despite a quantitative lack of similarity between the indices
(although they are strongly correlated), we used the onset
definition developed by Liebmann et al. (2007) as this index
is applicable to the variations of climate in SEA.

We used the Liebmann et al. (2007) definition to define
the rainy season onset and retreat. This definition is based
on time series of daily sums of precipitation, which makes
it specific for each location. It is calculated by

A dayð Þ=
Xday

n=1

R nð Þ−R ð1Þ

where A is the ‘anomalous accumulation’, R nð Þ is the
daily precipitation and R is the yearly average daily pre-
cipitation. The onset (retreat) of the wet season is defined
as the absolute minimum (maximum) of A, indicating
that the daily precipitation total from that date onwards
is larger (lower) than the average daily precipitation.

The approach followed by Liebmann et al. (2007) used
average daily precipitation calculated over a climatological
mean period, but in this study, we use precipitation
amounts calculated annually. This approach allows the
onset and the retreat dates to be calculated for every year,
including excessively wet or dry years, which may not be
the case when using the climatological values (Marjuki
et al., 2016).

In this paper, the accumulation period starts on January
1st for every year. This condition makes the onset date that
is calculated for areas with two rainy seasons in the equato-
rial region represents the second rainy season. The index is
calculated when at least 350 days of the year have non-
missing data. This condition is only relevant for SA-OBS
and APHRO as they have some missing data. Furthermore,
we calculate the onset for all available members of the
ensemble and show the mean of the ensemble.

2.3.2 | Validation methods

We use the Taylor diagram to compare the climatological
mean values of the onset dates of the climate models.
The x-axis and y-axis show the normalized standard devi-
ation (SD). We use the observation SD for the normaliza-
tion. Therefore, the closer the model normalized SD is to
1, the closer the model SD is to the observation SD. The
curve axis shows the correlation between the spatial dis-
tribution of the model and the observation. The correla-
tion calculation was made over the complete land area.
The number of the grid box is the sample range for the
correlation calculation.

We also calculate bias and normalized root mean
square error (NRMSE) based on the climatological mean
and median. In the calculation, the climatological mean
and median were calculated for each grid cell. Further-
more, the indicators were calculated for each model,
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using the number of grid cells as the sample range. The
climatological bias (mean difference) and median differ-
ence are used to quantify the similarity in the climatolog-
ical condition between models and observations. The
NRMSEs are used to measure the deviation between sim-
ulated and observed values (Randall et al., 2007). The
NRMSE value is expressed as a percentage (%), and it
uses the standard deviation of observation data to nor-
malize the RMSE.

The three observation datasets (SA-OBS, APHRO and
CHIRPS) were combined into one pooled observation
series as the reference. Combining these three datasets in
this way gives us a straightforward way of accounting for
the uncertainty of the observational estimates. A model
simulation is compared to the pooled observations so that
the comparison metric, like correlation, is based on a
comparison against all three observational datasets. Fur-
thermore, for the models run in ensemble mode, the
ensemble-mean of the statistic indicator values is used.

In addition, we use the two-sample Kolmogorov–
Smirnov test (K–S index) as an evaluation metric

(Wilks, 2011). The indicator evaluates the difference in
cumulative distributions between the observations and the
model simulations. A smaller Kolmogorov–Smirnov statistic
(K–S index) value indicates a better representation of model
simulation for the data distribution. The K–S index was cal-
culated for each grid box and used every year in the time
range to build the cumulative distribution. For the cumula-
tive distributions, the model members need not be averaged
and are pooled into the sample.

3 | RESULTS

3.1 | Model performance on rainy season
simulation

3.1.1 | Onset of rainy season

In general, we found a similar pattern of the mean rainy
season onset in the models (Figure S1) as compared to
the observations (Figure 1). The onset progresses from

TABLE 1 Description of the models, showing for each model in the first column, its horizontal resolution of the global model as used in

CMIP5 and the resolution of the regional model from CORDEX for which it provided lateral boundaries

Model CMIP5 CORDEX HR Hist-1950 HR HighresSST LR HighresSST

CMCC-CM2 25 km native
atmosphere regular
grid

1 member

25 km native
atmosphere regular
grid

1 member

1� × 1� native
atmosphere regular
grid

1 member

CNRM5 (CORDEX)
CNRM-CM6-1
(HighResMIP)

25 km resolution
1 member

50 km regridded from
T359l

1 member

50 km regridded from
T359l

1 member

250 km regridded from
T127l

1 member

CSIROMk36 25 km resolution
1 member

EC-Earth (CORDEX)
EC-Earth3
(HighResMIP)

Grid T159L62
4 members
(realization)

25 km resolution
1 member

50 km
grid T511
2 members (Physics
version)

50 km
grid T511
3 members (Physics
version)

100 km
grid T255
3 members (Physics
version)

ECMWF-IFS 0.5� × 0.5� regridded
from Tco399

6 members
(Realization)

0.5� × 0.5� regridded
from Tco399

4 members
(Realization)

1� × 1� regridded from
Tco199

8 members (Realization)

GFDL 25 km resolution
1 member

HadGEM2-AO
(CORDEX)
HadGEM3-GC31

(HighResMIP)

25 km resolution
1 member

50 km grid N512
1 member

50 km grid N512
3 members
(Initialization)

250 km grid N96
5 members
(Initialization)

MPI-ESM (CORDEX)
MPI-ESM1-2
(HighResMIP)

25 km resolution
1 member

50 km spectral T255
1 member

50 km spectral T255
1 member

100 km spectral T127
1 member

Note: The fourth, fifth and sixth columns specify the global resolution and the number of available members of the ensemble for ocean–atmosphere coupled
high resolution (HR) simulations using initial conditions from 1950, historically forced high resolution atmosphere-only simulations and their low resolution
(LR) equivalents, respectively.
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May for the northern part of the region to the end of the
year for the southern part of the region. Some models
also reproduce the contrasting onset patterns of some
areas in Sulawesi, Maluku and Papua (−5�–2� latitude
and 120�–135� longitude) that have a different annual
rainfall pattern than other areas at the same latitude
(Aldrian and Susanto, 2003).

Tailor diagram (Figure 2) shows that in general, the
SD values of the CORDEX models are closer to the obser-
vations as compared to the HighResSST and Hist-1950
models. In addition, the spatial correlations of the clima-
tological onset of the rainy season are between 0.6 and
0.8 for most models. The model simulations are com-
pared against the reference based on the pooled observa-
tional datasets. Hence, the simulations describe the
movement of the monsoon well. The HighResMIP simu-
lations show (considerably) higher spatial correlation
with the observations as compared to the CORDEX.
Among the HighResMIP simulation, we find a similar
spatial correlation between the atmospheric model with
the prescribed SST experiment (HighResSST) and the
coupled model experiment (Hist-1950). This is also the
case between HR and LR of HighResSST. Overall, there
is no significant improvement of CORDEX results com-
pared to the single CMIP5 model. Also, there is no signif-
icant improvement of HR HighResSST compared to LR
HighResSST. However, in some models, like the MPI
model, the spatial correlation of HighResSST is higher
than Hist-1950. For the CNRM, the LR HighResSST is
higher than the HR HighResSST.

Figure 3 presents the model bias of the climatological
onset of the rainy season. We find a similar pattern of
bias distribution between the three model experiments.
There is more bias for the region around 5�S–10�N, the
models tend to have an early-onset compared to the
observations except for the area around 115–140�W
where the models tend to have a late-onset compared to
the observations.

Figure 4 presents a boxplot of the climatological bias
and median difference of the models in simulating the
onset of the rainy season. This figure shows data aggre-
gated over the land area of the domain. The simulated
monsoon onset in the CORDEX experiment is slightly
closer to the observation as compared to a single CMIP5
model. However, a better simulation is shown with the
HighResMIP experiments as indicated by the bias and
median difference. Most HighResMIP models have biases
less than ±25 days for the majority of the grid cells,
which is much less than what is simulated in CORDEX.
In terms of the HighResMIP experiments, the percentage
of grid cells with ±25 days bias amount to 58–75% for LR
HighResSST, 56–74% for HR HighResSST, and 57–73%.
However, for CORDEX, this value amounts to 50–58%

and 55% for a single CMIP5 model (Figure S2). The
enhanced realism is confirmed by the NRMSE value, the
average for HighResMIP models is 63% for LR
HighresSST, 64% for HR HighresSST and 69% for HR
Hist-1950. The average NRMSE for CORDEX models is
80%, which is slightly lower than the single CMIP5 model
with an NRMSE of 83% (Figure S3).

The two-sample Kolmogorov–Smirnov test (K–S
index) (Wilks, 2011) evaluates the difference in cumula-
tive distributions between the observations and the
model simulations. A small indicator value represents a
close similarity between observations and model results.
The K–S index for the onset of the rainy season confirms
that the HighResMIP models represent the onset date dis-
tribution substantially better than CORDEX models.
Meanwhile, we find a similar performance between COR-
DEX models and a single CMIP5 model (Figure 5).

Among the CORDEX models, the ones with lateral
boundary conditions from the global EC-Earth simulation
show high biases (Figure 4), NRMSE (Figure S3) and K–S
index (Figure 5) of the onset of the rainy season. On aver-
age, CNRM, CSIRO and HadGEM tend to delay the onset,
whereas the downscaled EC-Earth, GFDL and MPI tend to
advance the onset. Compared to other CORDEX models,
CNRM shows the smallest biases and MPI shows the low-
est NRMSE (Figure S3) and K–S index (Figure 5).

Among the HighResMIP experiments, HighResSST
shows slightly smaller bias, K–S index and NRMSE com-
pared to the Hist-1950. Furthermore, comparisons between
HR and LR of HighresSST based on the climatological mean
and median biases, the NRMSE, and the K–S index, show
similar skill in simulating the onset for both resolutions.

In the HighResMIP, ECMWF shows the smallest
biases and also the lowest NRMSE and K–S index. For
the LR HighResSST experiment, the CNRM, HadGEM
and MPI tend to overestimate (late) the onset date, while
EC-Earth, CMCC and ECMWF tend to underestimate
(early) the onset date. Whereas for the HR HighResSST
experiment, except for the CNRM, most of the models
tend to underestimate (early) the onset date. For the HR
Hist-1950 experiment, the CNRM, HadGEM and MPI
tend to overestimate (late) the onset date, while EC-Earth
tends to underestimate (early) the onset date.

3.1.2 | Total precipitation

We now turn our attention to the simulation of the accu-
mulated rainfall (total rainfall) over the monsoon season.
The total rainfall of the rainy season is calculated based
on the 6 months following the zonal mean onset of the
wet season (Figure 1d) and is the cumulative value over
these 6 months. A comparison of the three different
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climate model experiments in terms of the spatial correla-
tion in total rainfall maps shows that the downscaling
process in the CORDEX improves the spatial correlation
of the total precipitation, although the similarity with
observations is not as high as in the HighResMIP
(Figure 6). The CORDEX models have spatial correla-
tions with the observations below .2 except for CNRM.
For the HighResMIP, most of the models have a spatial
correlation with the observed precipitation pattern
exceeding .2, except for CMCC and MPI. HadGEM (MPI)
shows the highest (lowest) spatial correlation among the
HighResMIP models. Overall, we find a low correlation
between modelled and observed spatial distribution of
the total precipitation of the rainy season in the region.
In terms of the SD value, we find that the HighResMIP
and a single CMIP5 model show SD values to be closer to
observations as compared to the CORDEX models.

Figure 7 shows the bias and difference in the median
between observed and modelled total precipitation, where
the precipitation accumulates over the rainy season. This
figure clearly shows that the CORDEX models deviate more
from observations than the HighResMIP and the single
CMIP5 model. Most of the HighResMIP models and the
single CMIP5 model have a NRMSE smaller than 150%
which is considerably smaller than the NRMSE of the COR-
DEX models which are above 300% (except for the CSIRO
model which is relatively low at 250%; Figure S4).

The K–S index values of the HighResMIP models are
significantly lower than that of the CORDEX models.
This indicates a closer resemblance of the HighResMIP
model output to observations in terms of the cumulative
distribution of total precipitation (Figure S5).

It is an unexpected result that the downscaled CMIP5
CORDEX models perform badly in terms of the mean and

median biases, NRMSE and K–S index for the total amount
of precipitation during the rainy season. One of the reasons
was explained by Juneng et al. (2016), who found that the
MIT-Emanuel convective scheme (Emanuel and Živkovi�c-
Rothman, 1999) that was used in the RegCM4 RCM had
simulated large positive precipitation biases. This condition
explains the high simulated rainfall variability found by
Nguyen-Thi et al. (2021). As an impact, we found that the
total precipitation for the rainy season was very high for the
CORDEX models. Similar results were also found by Amsal
et al. (2019), using the same configuration of RegCM4 RCM
for CSIRO Mk3.6 over Indonesia. The total rainfall bias they
found was ±500 mm/month.

Among the models in the HighResMIP experiment, we
found a slight improvement of the HR HighResSST com-
pared to the LR HighResSST in the spatial correlation. How-
ever, the same condition is not found in the biases, NRMSE
and K–S index. Overall, we observe similar performance
between HighResSST and Hist-1950 experiments and
between HR and LRHighResSST. All models excludingMPI
and CNRM tend to overestimate the total precipitation.
Compared to other HighResMIP models, EC-Earth and
CNRM show the smallest and the largest biases, respectively.

3.2 | ENSO composite analysis for the
onset simulation

3.2.1 | Understanding the effect of ENSO on
the seasonal rainfall and the onset of the rainy
season

In this ENSO composite analysis, we select the El-Niño
years (1982, 1987, 1991, 1997, 2002 and 2004) and the

FIGURE 2 Taylor diagram of

the onset of the rainy season. The x-

axis (y-axis) shows the normalized

SD of the onset date. The curve axis

shows the spatial correlation [Colour

figure can be viewed at

wileyonlinelibrary.com]
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La-Niña years (1988, 1995, 1998, 1999 and 2000) based
on the Oceanic Niño Index (ONI) (NOAA, 2020). The
El-Niño (La-Niña) years are selected using a threshold of
eight consecutive months with negative (positive) ONI
values.

Figure 8 shows the observed cumulative rainfall
anomaly in the seasonal period of December–February
(DJF), March–May (MAM), June–August (JJA) and
September–November (SON) during the El-Niño years.

During El-Niño years, the negative rainfall anomaly in
DJF is located more over the Philippines and the north-
ern part of Borneo and Sulawesi. A similar pattern is also
found in MAM, but it is more spread out to the Malaysia
Peninsula and the northwestern part of SEA. Meanwhile,
during JJA and SON, the negative rainfall anomaly is
located more over the southern part of SEA (below 5�N).
In addition, for SON, the negative rainfall anomaly is
spread more to the Philippines and Vietnam. We also

FIGURE 3 Map of difference between ensemble mean model experiment and observation on climatological onset of the rainy season in

SEA. The model experiments are CMIP5 (a), CORDEX (b), LR HighresSST (c), HR HighresSST (d) and HR Hist-1950 [Colour figure can be

viewed at wileyonlinelibrary.com]
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FIGURE 4 Mean and median model biases on the onset of the rainy season. Data are averaged over the region (land points only) and

deviations are shown with respect to the observational dataset. The bolder dots at the ends of the whiskers are the outliers. The vertical axis

is limited at approx. 60 days: most variations are in this time span [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 K–S index of the onset of the rainy season [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Taylor diagram of

the total precipitation of the rainy

season. The x-axis (y-axis) shows the

normalized SD of the total

precipitation of the rainy season. The

curve axis shows the spatial

correlation [Colour figure can be

viewed at wileyonlinelibrary.com]
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find that the positive rainfall anomaly during La-Niña
years has a similar pattern to the negative anomaly dur-
ing El-Niño years (Figure S6). These results are also

found in an earlier study that analysed the correlation
between precipitation and Nino3.4 index (Trouet and
Van Oldenborgh, 2013).

FIGURE 7 Mean and median models biases of the total precipitation of the rainy season. Data are averaged over the region (land points

only) and deviations are shown with respect to the observational dataset. The bolder dots at the ends of the whiskers are the outliers. The

vertical axis is limited at approx. −1,000 to 2,000 mm: most variations are in this time span [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 8 Map of rainfall anomaly during El-Niño year for seasonal period [Colour figure can be viewed at wileyonlinelibrary.com]
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The dominant ocean surface currents during the DJF
and MAM flow from the Pacific Ocean to the north of
Papua and continues to flow northward to the Philippines
before it flows southward to the Indonesian region through
the South China Sea. Therefore, the effect of the ENSO
condition of those two periods is stronger over the northern
part of SEA (above the 0� latitude). Conversely, in JJA and
SON, the dominant surface current flows directly to the
Indonesian region from the Pacific Ocean through the
northern part of Papua. As a result, the effect of the ENSO
condition is stronger for the southern part of SEA (below
5�N; Wyrtki, 1961; Aldrian et al., 2007).

The effect of ENSO varies based on the time and place
in SEA, and the impact of the effect of ENSO on the onset
and the retreat dates of the rainy season also varies based
on the place. The onset of the rainy season progression
starts from the northern and continues to the southern part
of the SEA during the period from May to the end of the
year. In this period, the impact of ENSO is stronger for the
southern part of SEA (below 5�N). As a result, we find
more anomalies in the onset dates for this region. We find
late (early) onset dates in El-Niño (La-Niña) years for the
southern part of SEA. In contrast, there are tendencies of

early (late) onset dates for the regions over the Philippines
and the northern part of Borneo (Figure 9a).

Contrasting with the effect of the onset dates, we find
an early (late) retreat date in El-Niño (La-Niña) years for
the northern part of SEA (above 0� latitude). The retreat
date progression in SEA generally starts in the northern
part of SEA and moves to the southern part of SEA from
September to May. The retreat date for the southern (below
5�N) part of SEA occurs in the period between January
and May. In this period, the effect of ENSO is weak over
this region. Therefore, we find a contrasting condition to
the anomaly of the retreat date for the northern part in the
anomaly of the retreat date for the southern part of SEA.
Most of the southern part of SEA tends to have a late
(early) retreat date in El-Niño (La-Niña) years (Figure 9b).

3.2.2 | Model performance of the effect of
ENSO on the seasonal rainfall and the onset of
the rainy season

In this section, we investigate the performance of the LR
and HR models of the HighResSST experiment in

FIGURE 9 Map of the observed onset and the retreat dates of the anomaly during El-Niño and La-Niña years [Colour figure can be

viewed at wileyonlinelibrary.com]
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simulating the onset of the anomaly in El-Niño and La-
Niña years. The HighResSST experiment was forced by
SST observation, which means that the model can be
compared directly to the observations of the ENSO com-
posite analysis.

Figure 10 shows the Taylor diagram of the rainfall
anomaly for the seasonal periods during El-Niño and La-
Niña years. Overall, based on the spatial correlation, the
models simulate the rainfall anomaly better for El-Niño
than for La-Niña. However, the SD of the models is closer
to the observations when simulating the rainfall anomaly
for La-Niña as opposed to El-Niño.

Furthermore, based on the spatial correlation values,
we find that both resolutions (HR and LR) of
HighResSST successfully capture most of the general

pattern of the seasonal rainfall anomaly
(Figures S7–S14). This is shown by the spatial correlation
of the majority of the models that range between .4 and
.6 (Figure 10). It shows that the correlation in DJF and
MAM is higher than in JJA and SON. We find a similar
performance between HR and LR HighResSST. This con-
dition is confirmed by the rainfall anomaly (Figure S15)
and the bias of the rainfall anomaly (Figure S16) of the
models. Based on the spatial correlation, the rainfall
anomaly and the bias of the rainfall anomaly of the
models, we find that EC-Earth, ECMWF and HadGEM
perform better as compared to the three other models.

Figure 11 shows the onset and the retreat date of the
anomalies during El-Niño and La-Niña years. We found
a late (early) onset during El-Niño (La-Niña) years in the

FIGURE 10 Taylor diagram of the rainfall anomaly during El Niño year for seasonal period. The x-axis (y-axis) shows the normalized

standard deviation. The curve axis shows the spatial correlation [Colour figure can be viewed at wileyonlinelibrary.com]
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observed anomalies for most of the grid cells over SEA.
Except for CNRM, all models simulate the anomalies.
However, the magnitude of the modelled anomaly is
smaller than the observed anomaly. Overall, based on the
anomalies of the onset and retreat dates, we found a simi-
lar performance between HR and LR HighResSST. This
condition was confirmed by the spatial correlation and
SD (Figure S21) as well as the bias of the anomalies
(Figure S22) of the onset and the retreat dates. Looking at
all the parametric measures, CMCC, EC-Earth, ECMWF
and HadGEM perform better as compared to CNRM
and MPI.

4 | DISCUSSION AND
CONCLUSION

The performances of CORDEX and HighResMIP climate
models on simulating the rainy season over the SEA
region are investigated using the onset of the rainy

season as the principal metric. The onset of the rainy sea-
son starts in May in the northern part of the region and
moves to the southern part by the end of the year, except
for some areas in Indonesia, which have a non-
monsoonal rainfall pattern (Aldrian and Susanto, 2003).
Wind, precipitation, and OLR data have been widely used
for monsoon onset studies (Zeng and Lu, 2004; Diong
et al., 2019). In this study, we used a relatively simple
monsoon onset definition developed by Liebmann
et al. (2007), which uses only precipitation data. Despite
the absence of wind that describes the circulation change
on the monsoon development, the onset calculation from
Liebmann et al. (2007) captures the movement of the
monsoon onset in SEA.

We also assess the effect of ENSO on the monsoon
date based on this definition. The impact of ENSO varies
depending on time and place in SEA. As a result, we find
late (early) onset dates for most of the Indonesian region
(latitude <5�N) during the El-Niño (La-Niña) phases.
This onset is then followed by a late (early) retreat date.

FIGURE 11 Boxplot of onset (top) and cessation (bottom) anomalies during El-Niño and La-Niña years [Colour figure can be viewed at

wileyonlinelibrary.com]
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In contrast, we find early (late) onset dates followed by
early (late) cessation for most of the area around the
Philippines during El-Niño (La-Niña) phases. Mean-
while, the effect of ENSO on the onset and the retreat
dates is weak over most areas in the northwestern part of
SEA (Myanmar, Laos, Thailand, Cambodia).

We use three gridded daily observational datasets in
this study. The SA-OBS is developed specifically for the
SEA region using rain gauges from the national meteoro-
logical services in the region. SA-OBS has a higher den-
sity of data as compared to two other gridded datasets
(APHRO and CHIRPS) especially over Indonesia, where
most of the actual observations over Java and Sumatra
are not available for scientific research. However, not all
Southeast Asian countries in the domain of SA-OBS con-
tributed to the dataset (Van den Besselaar et al., 2017).
This creates some limitations with regards to covering
some areas in the north of SEA. A restriction in the sea-
rch radius of the interpolation method of SA-OBS means
that the dataset has areas where no rainfall estimates can
be given when data density is too low.

More spatial coverage was found in APHRO and
CHIRPS datasets than in SA-OBS. Being developed from
in-situ measurements and having a less restrictive inter-
polation method means that the APHRO dataset covers
more area in SEA as compared to SA-OBS. However, the
dataset has a lower station density in many parts of SEA
as compared to SA-OBS (Van den Besselaar et al., 2017).
Also, the CHIRPS dataset uses a recently produced satel-
lite rainfall algorithm that combines climatology data,
satellite precipitation estimates, and in-situ rain-gauge
measurements to produce a HR precipitation product
(Funk et al., 2015). The global coverage of this satellite
data means that this dataset has better coverage com-
pared to SA-OBS and APHRO. However, the number of
rain gauges used to calibrate this dataset is lower than
what is used in the other two observational datasets
(Funk et al., 2015). Van den Besselaar et al. (2017) found
stronger similarities between the gauge-based datasets
than between the gauge-based datasets and the satellite-
based datasets.

This study aims to compare the performance of
HighResMIP against CORDEX in simulating the mon-
soon characteristics over the SEA region. The models
from the HighResMIP suite were consistently closer to
the observations than models from the CORDEX. Using
bias, NRMSE and spatial correlation of the climatological
mean and median value between model and observation
as the key metrics in comparison, we find that the
HighResMIP models simulate the onset date and the total
precipitation of the rainy season over the region closer to
the observations than the other model suits used in this
study. Based on the Kolmogorov–Smirnov index, we also

find that the HighResMIP models better represent the
annual variation of the monsoon index. We found more
general consistency in the HighResMIP model simula-
tions compared to the CORDEX model simulations.

In terms of total precipitation analysis from the COR-
DEX models, we find that the uncertainty within a model
and between models is substantial. Apparently, the down-
scaling process does not reduce uncertainty. However, for
other analysis, we find that the CORDEX experiment has
improved the model simulation of the monsoon.

This study is also interested in investigating the
model performance of the effect of ENSO on the onset
and the total precipitation of the rainy season. Here, we
compare HR against LR of HighResSST models. In gen-
eral, we find a similar performance of HR HighresSST
and LR HighresSST on simulating the monsoon charac-
teristic. Based on the El-Niño and La-Niña composite
analysis, both HighresSST model experiments (HR and
LR) simulated the anomaly of the onset and the total pre-
cipitation during different ENSO conditions with compa-
rable skill. This is similar to an earlier publication that
shows RCMs do indeed effectively reproduce variability
during ENSO years (Aldrian et al., 2004). However, the
models fail to completely follow the spatial distribution
of the onset and retreat date anomalies of the observa-
tion. In addition, the magnitude of the onset anomaly of
the model is still lower as compared to the observations.

Overall, we find no significant improvement of HR
HighresSST as compared to LR HighresSST on the El-Niño
and La-Niña composite analysis. This finding is different
than previous study results where the LR model was unable
to capture the growth of the coupled disturbance in the
developing phase of ENSO, whereas the HR model does
capture these disturbances (Gualdi et al., 2005). With this
contradiction, we argue that the high skills in the
HighresSST experiments relate to the prescribed SSTs rather
than the more detailed atmospheric dynamics.

In conclusion, we find that the HighResMIP experi-
ment has a better simulation as compared to the COR-
DEX experiment. As for the HighResMIP experiment, we
find a similar performance of the HighResSST experi-
ment compares to the Hist-1950 experiment. In the same
vein, the HR performed the same as the LR.

There is a high demand for a HR dataset for climate
and climate change analysis. We conclude that the
HighResMIP experiment models in higher resolutions
with better representations of the monsoon characteris-
tics in SEA will give a better climate change impact
assessment for the region.
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