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Abstract 17 

The stability of an industrial Salinity Gradient Solar Pond (SGSP) has been studied by 18 

applying classical Principal Component Analysis (PCA) on three datasets with a different 19 

number of variables and time evolution. Temperature, density and heat extraction have 20 

been measured in the upper convective (UCZ), non-convective (NCZ) and low convective 21 

(LCZ) zones in a 500 m2 solar pond, located near Granada, South of Spain. Local 22 

environmental weather conditions have been also considered in the data analysis. Two 23 
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operational seasons of the solar pond were considered in order to establish: 1) PCA 24 

exploratory models for 2014-2015 operational period and 2) to validate the obtained 25 

results during the 2015-2016 operational period. PCA results showed that three factors 26 

explained the variance in the monitored stability gradients. The first factor was related to 27 

the major effect of the seasonal temperature variation on the entire stability gradient. The 28 

second factor, related to the diurnal temperature variation, solar irradiance and wind 29 

variables, showed a strong impact on the solar pond temperature and salinity gradients 30 

and could affect strongly the UCZ and its border with the NCZ. The third factor affected 31 

the stability of salinity and temperature gradients at the LCZ and its border with the NCZ. 32 

The latter was related to the increase in temperature and salinity at the bottom of the solar 33 

pond, which suggests special attention during the initial formation and settlement of the 34 

salinity gradient and the subsequent heat extraction activities. This paper shows PCA 35 

modelling as a powerful tool for solar pond operation process surveillance and control. 36 

 37 

Keywords: Principal Component Analysis; modelling; multiparametric datasets; salinity 38 

gradient 39 

 40 

1. Introduction 41 

Global warming and, consequently, the climate crisis have motivated the need for a low-42 

carbon economic model and an energy transition that raises the need to increase the 43 

global demand for clean and cheap energy. The renewable energy sources as the 44 

alternatives to fossil fuels could be utilized given the potential of each geographic region 45 

(Kasaeian et al., 2020). Solar energy is widely available and is among the cleanest forms 46 
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of renewable energy. However, the utilization of solar energy is associated with significant 47 

challenges due to its low energy density and intermittency characteristics. The salinity 48 

gradient solar pond (SGSP) provides a solution to these problems by employing a large 49 

collection area and storage system (Tabor, 1981; Chakrabarty et al., 2020). Some of 50 

SGSP's features such as low cost of construction, simplicity in design, and integrated 51 

heat storage have promoted the use of solar pond technology as a low cost thermal 52 

energy storage system, based on the collection and storage of solar radiation as a heat 53 

source for different applications (Valderrama et al., 2016; Kumar et al., 2020). The main 54 

advantage of solar ponds is their long-term thermal energy storage capability, which can 55 

supply sufficient heat along the entire year (Alcaraz et al., 2018a, Alcaraz et al., 2018b). 56 

The classical SGSP is characterized by three different layers, the upper convective zone 57 

(UCZ), the middle non-convective zone (NCZ), and the lower convective zone (LCZ) 58 

(Zangrando, 1980). 59 

The upper convective zone (UCZ) is the topmost layer of the solar pond. It should be 60 

relatively thin and low salinity water. The non-convective zone (NCZ) is the next layer, 61 

below the upper convective zone. This layer is the thickest zone and has to be 62 

characterized with gradually increasing density along increasing . This layer 63 

serves as thermal insulating and plays a significant role in the effectiveness of the capture 64 

and storage of solar energy, keeping this layer stable minimizes the heat losses from the 65 

bottom LCZ. Finally, the LCZ layer has the highest salinity, near saturation. When the 66 

solar pond works properly, convective currents are prevented by the salinity gradient. 67 

Thus, the absorbed solar energy should enter from UCZ throughout NCZ and it is stored 68 

in the bottom part of the LCZ, where heat can be extracted from. The main purpose of the 69 
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NCZ is to act as an insulator to prevent heat from escaping into the UCZ, thus maintaining 70 

higher temperatures in the deeper areas (LCZ). The temperature differences between the 71 

top and the bottom of the solar ponds can be as high as 50 60 °C (Tundee et al., 2010). 72 

There are many examples of practical use of the heat energy (stored in the solar pond), 73 

such as the heating of buildings, power production and water desalination purposes 74 

(Alcaraz et al., 2018c; Ganguly et al., 2018).  75 

The correct operation of solar ponds is characterized by stable salinity and temperature 76 

gradients, which is generally linked to maximizing the thickness of the gradient (NCZ) and 77 

avoiding seasonal variability of the three layers. The efficiency of any solar pond in 78 

capturing energy depends on the stability of salinity and thermal gradients. Avoiding the 79 

appearance of convective forces near the boundary zones (UCZ and NCZ, and NCZ and 80 

LCZ), will maintain the stability of the salinity gradient and allow adequate heat transfer 81 

to the lower layer.   82 

The deterioration of the solar pond operational conditions is usually related with a 83 

reduction of the thickness of the NCZ layer, because the salinity gradient in this zone is 84 

destroyed and the heat transfer is altered (Montalà et al., 2019). 85 

The alteration of the boundaries between the different salinity gradient zones of the solar 86 

pond has been considered to be the main source of instability (Leblanc et al., 2011). The 87 

changes in environmental variables (e.g., temperature, rain, wind) are expected (Alcaraz 88 

et al., 2018a) to affect the overall stability of the salinity and temperature gradients of the 89 

solar pond, especially in the UCZ layer and in its boundary with the NCZ layer.  90 
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The LCZ layer of the solar pond can also be disturbed by convective forces during 91 

operational procedures, such as during heat extraction or salt addition along the 92 

maintenance stages (Montalà et al., 2019). 93 

Some previous works have reported the use of deterministic differential equations for the 94 

calculation of stability indices (Leblanc et al., 2011; Lu et al., 2004; Alenezi 2012). 95 

However, this approach is restrictive in terms of the parameters used for analysis and 96 

does not take into account all those that potentially affect stability of the solar pond in a 97 

wide time scale. In our previous study (Montalà, et al., 2019) the salinity gradient stability 98 

of the Granada solar pond (500 m2) were reported. The analysis was based on the 99 

salinity/temperature stratification in water, which occurs when masses of water at different 100 

properties, such as salinity, density or temperature, form different layers without mixing. 101 

Results reported provided insights on the sources of instability and provided a tool to 102 

control of the salinity gradient stability.  103 

Principal Component Analysis (PCA) is the most popular method in multivariate statistical 104 

analysis of environmental data, which is based on the assumption that in the original data 105 

sets, a small number of dominant factors (components) with significant influence exist, 106 

describing the main sources of variation in the studied system. It is used to explain the 107 

complex relationships and/or interactions existing among multiple variables and samples 108 

(observations), like in the analysis of environmental monitoring data sets. Usually, the 109 

application of PCA allows the investigation of the temporal (seasonal) variations, 110 

environmental weather impacts and the monitoring of the patterns/trends in the recorded 111 

data sets (Platikanov et al., 2019). 112 
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In this work, a new approach for the analysis of the stability of an industrial scale solar 113 

pond (Granada, Spain) using PCA, (Jolliffe 2002) is presented. In the case of SGSP 114 

systems, measurements of salinity (density) and temperature gradients along the solar 115 

pond depth produce two data vectors (profiles): i) one vector for the temperatures and ii) 116 

one for the density. When many consecutive observations are recorded for different 117 

days/seasons/years, these two vectors can be stored in two data matrices. In these data 118 

matrices, the columns represent the measurements of the temperature and density at the 119 

different depths of the solar pond, and the rows will represent the different monitoring 120 

times (time-stamp). Additional information can be added when environmental conditions, 121 

heat extraction and maintenance processes are also monitored for the same period of 122 

time and this information is concatenated to the salinity and thermal gradients in the 123 

matrices. In this way, PCA as a bilinear decomposition method is very useful 124 

simultaneous analysis of the measured data and will allow the extraction of: (i) hidden 125 

information about the correlations between both temperature and salinity gradient on one 126 

side and the environmental factors and operational variables on the other side; and (ii) 127 

information on the most important temporal variations and patterns at different levels of 128 

detail, diurnal to seasonal. 129 

 130 

1. 2. Material and Methods   131 

2.1 Description of the Granada Salinity Gradient Solar Pond 132 

The solar pond was constructed in the Solvay Minerales facilities in Granada (South 133 

Spain) in 2014. Details on the design, construction and operation were reported by 134 

Alcaraz et al., (2018a). The solar pond was constructed to deliver the heat needed to 135 
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preheat the water (> 60 °C) used in the mineral flotation unit. Some features of this solar 136 

pond are: the total area of the pond is 500 m2 (20 × 25 m) with a depth of 2.2 m. The 137 

thickness of the LCZ, NCZ and UCZ was 0.6 m, 1.4 m and 0.2 m, respectively. In the 138 

139 

3. The heat extraction was carried out through a heat exchanger (PE pipe with 140 

an internal diameter of 28 m) located at the LCZ with a total length of 1200 m, which was 141 

divided into six independent spirals of 200 m. The solar pond was installed in a mine 142 

facility devoted to produce celestine (SrSO4(s)). The processed rock, with a celestine 143 

content of 30-50%, is milled and then concentrated up to a content of 90% by using a 144 

flotation stage. The aqueous solution containing the flotation reagents should be heated 145 

to 60-65ºC. Before the installation of the solar pond, water was heated using a boiler fed 146 

with gasoil. The solar pond was integrated with the flotation unit by connecting a pipe 147 

from the freshwater tank that travels through the LCZ of the solar pond and joins the 148 

existing pipe line. A view of the experimental solar pond in Granada is shown in Figure 1. 149 
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150

Figure 1. Schematic view showing: a) the integration of the solar pond with the 151

mineral flotation process in Solvay Minerals facilities and b) view of the 500 m2 152

solar pond at Solvay Minerales facilities (Granada, Spain)153

154
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2.2 Principal Component Analysis 155 

The solar pond data, i.e. salinity and temperature gradients; environmental 156 

variables together with the heat extraction data, were arranged in the previously 157 

described augmented (concatenated) data matrices and subsequently were analysed by 158 

PCA methodology (Jollife, 2002). In this work, PCA results will show the hidden, 159 

underlying processes governing the stability of salinity gradient of the solar pond.   160 

According to the PCA model, the original experimental data matrix D, is 161 

decomposed using a bilinear model, giving two orthogonal matrices, T scores (mapping 162 

the samples on the principal components), PT loadings (mapping the measured variables 163 

on the principal components) and E is the matrix of residuals (unexplained variance) as 164 

in Equation (1) 165 

D = TPT + E                                                                                                  (1)                                                                                                                 166 

 The number of principal components in the PCA model (rows of T and columns of 167 

PT) in this study was selected on the basis of the two following criteria: i) the sizes of the 168 

eigenvalues associated with the principal components and ii) meaningful process 169 

explanation of score and loading profiles.  170 

PT loading profiles show the possible correlations among the environmental 171 

conditions, operational heat extraction data, salinity and temperature gradients of the 172 

solar pond. T scores give the mapping (projection) of the samples (time-stamp 173 

measurements) on the principal components. In this study, the scores will give important 174 

information about the temporal changes and distribution (measurements over time, time 175 

distribution) of the samples during the different campaigns. 176 
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PCA also provides various diagnostic tools (Bakeev, 2010) to monitor solar pond 177 

stability by very effective and convenient analytic and graphic possibilities for detecting 178 

abnormalities that may occur during the solar pond gradient evolution over time and to 179 

follow the impact of the environment variables and heat extraction. 180 

Amongst the most popular tools for are: T2 hotelling values (leverage), which 181 

present the sum of the normalized squared scores calculated with PCA, and the Q 182 

residuals, which are the measure of the difference, or residual, between a measurement 183 

and its projection on the k principal components retained in the model. Both, when plotted, 184 

provide very useful charts for the detection of unusual events (Wise and Gallagher, 1996). 185 

Leverages can be used to find very important observations as well as detecting 186 

potential out-of-control measurements by calculation of the statistical confidence limits for 187 

the values of T2 setting the threshold line separating in-control from out-of control 188 

measurements.   189 

The Q statistics can be used to indicate how well a particular measurement 190 

conforms to the model. It gives a measure of the difference, or residual, between a 191 

measurement and its projection on the k principal components retained in the model. 192 

Measurements with very high residuals are not well explained by the model. Confidence 193 

limits can be calculated for the model residuals and can serve as threshold giving a limit 194 

for the in-control state.  195 

In summary, the application of PCA to the different datasets collected in this work 196 

will give a comprehensive overview about the possible correlation among the different 197 

variables and measured variables, the discovery of unknown meaningful time trends, the 198 
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detection of unexpected events and the recovery of valuable information about the 199 

stability of salinity gradient of the solar pond technology. 200 

2.3 Dataset organization 201 

Historical temperature (ºC) data were collected from the solar pond and arranged in the 202 

data matrix, Dt (Ntimes, 40), with 40 measurements (in the columns) every 5 cm from the 203 

bottom (t1) to the surface (t40) of the solar pond. These 40 measurements were 204 

measured in three different periods on time scale and defined as Ntimes. Density 205 

concentrations (g/cm3) values were collected in the Ds (Ntimes, 22) data matrix, which 206 

has 22 measurements every 10 cm from bottom (s0.1) to 2.2m on the surface (s2.2) 207 

throughout the water body. A third data matrix has the heat extraction data (Dx(Ntimes, 208 

3), with 3 variables) and a forth data matrix has the environmental variables (weather 209 

station) (Dw (Ntimes,11), with 11 variables) during 2014-2016 in two operational 210 

campaigns. The heat extraction variables include, the time of extraction (x1) measured in 211 

seconds, the water inflow measured (x2) in kg/min, and heat transfer Q (x3) measured in 212 

MJ. The environmental variables include: air temperature (w1) in ºC; relative humidity 213 

(w2) in %; solar irradiance (w3) in W/m2; accumulated solar irradiance (w4) in MJ/m2; 214 

accumulated solar irradiance (w5) in kWh/m2; average wind speed (w6) in m/s; maximal 215 

wind speed (w9) in m/s; average wind direction (w7) in degrees as low values mean winds 216 

coming usually from North-North East directions and high degree values mean winds 217 

coming usually from South-South West directions; standard deviation of wind direction 218 

(w8) in degrees; wind direction SMM (w10) in degrees; and accumulated daily rainfall 219 

(w11) in mm. 220 
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The most important aspect to be considered before their joint analysis of these data sets 221 

is the alignment of the different measured variables in accordance to the time frequency 222 

of their measurement, i.e. the alignment of the Ntimes observations. 223 

The different datasets described above were arranged in two-dimensional tables 224 

or data matrices, where observations/measurements (ordered by specific time-stamp, 225 

Ntimes) are in the rows and measured variables/variables are in the columns of a data 226 

table (data matrix). Thus, these two-dimensional data tables can be then analysed using 227 

existing multivariate statistical and chemometrics bilinear methods (Massart et al., 1998). 228 

Collected data was arranged, as shown in Figure 2, in different data sets called 229 

respectively: 230 

 a) Dataset 1 or DtDw (Ntimes,51): Row-wise augmented (concatenated) data 231 

matrices containing data about temperature measurements in depth (40 variables from 0 232 

bottom to 2.2 m at the surface) and environmental variables (11). The time-stamp 233 

alignment was adjusted for every 30 minutes during the two monitoring campaigns:  234 

Campaign 1 took place from 15/07/2014  30/04/15 underlining the first solar pond 235 

operational period and the concatenated matrix was with dimensions 9349 Ntimes (in the 236 

rows) x 51 variables (in the columns). The Campaign 2 or the second solar pond 237 

operational period took place from 12/09/2015 till 25/04/2016 and the second 238 

concatenated matrix dimension was 5413 Ntimes (in the rows) x 51variables (in the 239 

columns).  240 

b) Dataset 2 or DxDtDw(Ntimes,54): Row-wise augmented (concatenated) data 241 

matrices containing data about heat extraction data (3 variables), temperature 242 

measurements in depth (40) and the environmental variables (11). The time-stamp of 243 
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alignment for these matrices was on daily basis during the same two solar pond 244 

operational periods. The first concatenated matrix was with dimensions 290 Ntimes 245 

(rows) x 54 variables (columns) and the second concatenated matrix was 227 Ntimes 246 

(rows) x 54 variables (columns) corresponding to the two campaigns above. 247 

 c) Dataset 3 or DxDtDwDs(Ntimes,76): Row-wise augmented (concatenated) 248 

data matrices containing data about heat extraction (with 3 variables), temperature 249 

measurements in depth (with 40 values), the environmental variables (with 11 variables) 250 

and salt concentration measurements (with 22 measurements) in depth. The time-stamp 251 

alignment for these datasets was once per week over the same two monitoring 252 

campaigns. Thus, the new concatenated matrices were with dimensions 33 Ntimes (rows) 253 

x 76 variables (columns) for the first solar pond operational period, and 29 Ntimes (rows) 254 

x 76 variables (columns) for the second solar pond operational period. 255 

d) Reduced  taken from Dataset 3.256 

65, measured one time per week for during the first operational 257 

period. The included variables were 3 heat extraction variables, temperature 258 

measurements in depth (40 variables) and salinity gradient in depth (22 variables). This 259 

new dataset was divided into a calibration dataset including the same 33 observations, 260 

and the external validation dataset included 29 observations for the same number of 261 

variable during the second operational period.   262 
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263

Figure 2. Data arrangement and application of PCA on the different data sets. t 264

temperatures (ºC) collected in the solar pond every 5 cm from the bottom (t1) to the 265

surface (t40) of the solar pond and arranged in the data matrix, Dt (Ntimes, 40), with 40 266

variables in the columns; s salinity density concentrations (kg/m3) arranged in the Ds 267

(Ntimes, 22) data matrix, with 22 variables every 10 cm from bottom (s0.1m) to s2.2m on 268

the surface throughout the water body; w environmental variables from a weather station) 269

arranged in Dw (Ntimes,11) matrix, with 11 variables; x heat extraction data (Dx(Ntimes, 270

3), with 3 variables). 271

272

3. Results and Discussion273
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The first three datasets arranged in this way provide some advantages in their 274 

consequent multivariate analysis. For example, PCA of Dataset 1 would provide very 275 

detailed information about the time resolution in their PC scores, since data records were 276 

made at every 30 minutes. In contrast, PCA of Dataset 2 and Dataset 3, would provide 277 

better information about possible variable interactions in the PC loadings, although the 278 

span of measurements in time (one per day for Dataset 2 and one per week for Dataset 279 

3) in this case would miss important temporal information present in Dataset 1. For this 280 

reason, a global study of the three datasets is attempted in this work. 281 

The PCA monitoring strategy proposed in this work for stability analysis of the 282 

salinity and temperature gradients, relies on a model, which is built with control data 283 

(when the solar pond is considered to behave with stable temperature and salinity 284 

gradients), during the first period of the solar pond operation in 2014-15 years. Then, the 285 

established model is validated on data from the second operation period during 2015-16 286 

allowing to inspect the consequent PCA graphics for abnormal measurements and 287 

unexplained variance of investigated variables included in datasets. Since, the 288 

environmental variables were not controllable, the model validation approach, developed 289 

in this work, included only observations of heat extraction, temperature measurements in 290 

depth and salinity gradient in depth organized in the reduced  taken from Dataset 291 

3.  292 

293 

 294 

295 

296 
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318

Figure 3. PCA results of the three data sets with the different variables measured at the 319

Granada solar pond during the first operation season 15/07/2014 30/04/2015. PC1320

loadings (a) and scores (b) in the analysis of ; PC1 loadings (c) and 321
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scores (d) in the analysis of Dx ; PC1 loadings (e) and scores (f) in the 322 

analysis of Dx . Solar pond temperature variables: t1 (bottom) t40 323 

(surface) in ºC; Salinity density variables: s01 (bottom) -  s2.2 (surface) in g/cm3; Heat extraction 324 

variables: time of extraction (x1) measured in seconds, water inflow (x2) measured in kg/min and 325 

heat transfer Q (x3) measured in MJ.   326 

Environmental variables: air temperature (w1) in Cº; relative humidity (w2) in %; solar irradiance 327 

(w3) in W/m2; accumulated solar irradiance (w4) in MJ/m2; accumulated solar irradiance (w5) in 328 

kWh/m2; average wind speed (w6) in m/s; maximal wind speed (w9) in m/s; average wind direction 329 

(w7) in degrees; standard deviation of wind direction (w8) in degrees; wind direction SMM (w10)in 330 

degrees; and accumulated daily rainfall (w11) in mm. 331 
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431

Figure 4. PCA results of the three data sets with the different variables measured at the 432

Granada solar pond during the first operation season 15/07/2014 30/04/2015. PC2 433

loadings (a) and scores (b) in the analysis of ; PC2 loadings (c) and 434
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scores (d) in the analysis of Dx ; PC2 loadings (e) and scores (f) in the 435 

analysis of Dx .  436 

Solar pond temperature variables: t1 (bottom) t40 (surface) in ºC; Salinity density variables: s01 (bottom) 437 

- s2.2 (surface) in g/cm3; Heat extraction variables: time of extraction (x1) measured in seconds, water 438 

inflow (x2) measured in kg/min and heat transfer Q (x3) measured in MJ.   439 

Environmental variables: air temperature (w1) in Cº; relative humidity (w2) in %; solar irradiance (w3) in 440 

W/m2; accumulated solar irradiance (w4) in MJ/m2; accumulated solar irradiance (w5) in kWh/m2; average 441 

wind speed (w6) in m/s; maximal wind speed (w9) in m/s; average wind direction (w7) in degrees; standard 442 

deviation of wind direction (w8) in degrees; wind direction SMM (w10) in degrees; and accumulated daily 443 

rainfall (w11) in mm. 444 
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477

Figure. 5. PCA results of the three data sets with the different variables measured at 478

the Granada solar pond during the first operation season 15/07/2014 30/04/15. PC3 479

loadings (a) and scores (b) in the analysis of ; PC3 loadings (c) and 480

scores (d) in the analysis of Dx ; PC3 loadings (e) and scores (f) in the 481

analysis of Dx .482
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Solar pond temperature variables: t1 (bottom) t40 (surface) in ºC; Salinity density variables: s01 (bottom) 483 

- s2.2 (surface) in g/cm3; Heat extraction variables: time of extraction (x1) measured in seconds, water 484 

inflow (x2) measured in kg/min and heat transfer Q (x3) measured in MJ.   485 

Environmental variables: air temperature (w1) in Cº; relative humidity (w2) in %; solar irradiance (w3) in 486 

W/m2; accumulated solar irradiance (w4) in MJ/m2; accumulated solar irradiance (w5) in kWh/m2; average 487 

wind speed (w6) in m/s; maximal wind speed (w9) in m/s; average wind direction (w7) in degrees; standard 488 

deviation of wind direction (w8) in degrees; wind direction SMM (w10) in degrees; and accumulated daily 489 

rainfall (w11) in mm. 490 
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 503 

PCA model statistics examination is very common issue for the detection of 504 

unusual events (Bakeev, 2010). In the case of SGSP process monitoring, these unusual 505 

events can be produced by possible strong influence of environmental parameters, 506 

inadequate heat extraction and unexplained changes in thermal or salinity concentration 507 
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gradients. The PCA model statistics (highlights these unusual events with significant 508 

differences between measurements and their projections on the k principal components 509 

retained in the PCA model along time (see Section 2.2). Samples found with large 510 

leverages and high values of Q residuals can indicate influential observations as well as 511 

detecting potential out-of-control samples. The observed samples with large T2 hoteling 512 

values and Q residuals values are not well explained by the established PCA model and 513 

they can be considered as unusual events. If a sample is flagged as an event, the next 514 

step includes examination of the so-called Q residuals contribution plot (Wise and 515 

Gallagher, 1996) to detect which variable/parameter contributes strongly to the overall Q 516 

value for the considered sample. Confidence limits can be also calculated for further 517 

examination to provide threshold values to define regular or outlying conditions. When 518 

the sample measurements are under control, Q residuals should display small values 519 

within these confidence limits. Unusual (outlying) events are displayed outside these 520 

confidence limits. 521 

Once, a PCA model is built, it provides effective analytic and graphic options (T2 522 

hoteling and Q residuals) to detect anomalies. In this study, this approach is extended to 523 

the data from the second operational period using a PCA model built with data from the 524 

first operational period. It is worth mentioning, that in order to proceed correctly, data from 525 

the first operational period should include only values that were considered to be in 526 

control, while any unusual measurements required to be cleaned before. In this study, it 527 

was verified that data from the first operational period represented a steady state 528 

operation process without containing significant anomalies. A period of time, between the 529 
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first and the second operational periods, was omitted since the solar pond did not show 530 

operational stability.   531 

The new PCA model was built using the auto scaled, reduced variables  532 

dataset, with three principal components explaining more than 89 % of the data variance 533 

with the same three dominant factors explained in the previous sections. The order of the 534 

captured variance was PC1 67 % > PC2 14 % > PC3 8.6%. PC1 on Fig. 6a describes the 535 

seasonal temperature changes; PC2 on Fig. 6c described the changes in the salinity 536 

gradient and the heat accumulation and distribution from the LCZ to NCZ. PC3 on Fig. 6e 537 

describes variance as the heat accumulation at UCZ close to the boundary with NCZ layer 538 

during days with a strong solar irradiance and wind (explained also in the previous 539 

section). 540 

 541 
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542

Figure 6. PCA model validation results of the reduced data sets measured at 543

the Granada solar pond during 2014-15 (calibration) and 2015-2016 (external validation, 544

test). PC1 loadings (a) and scores (b); PC2 loadings (c) and scores (d); PC3 loadings 545

(e) and scores (f) in the analysis.546

Solar pond temperature variables: t1 (bottom) t40 (surface) in ºC; Salinity density variables: s01 (bottom) 547

- s2.2 (surface) in g/cm3; Heat extraction variables: time of extraction (x1) measured in seconds, water 548

inflow (x2) measured in kg/min and heat transfer Q (x3) measured in MJ.  549
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While only the first PC1 (Fig. 6a) shows normal functioning of the solar pond, the second 550 

(Fig. 6d) and the third factors (Fig. 6f) explain unwanted sources of variation for the solar 551 

pond operation processes and consequently its stability. In Fig. 6d, the first three samples 552 

from the calibration set (black dots) are observed outside the threshold boundaries (blues 553 

dotted lines) suggesting that still the solar pond was not stabilized. In a similar way, the 554 

scores plot of Fig. 6f shows that the last samples are observed as abnormal, suggesting 555 

that the solar pond already was not operating properly. However, the three PCs have 556 

been maintained in the PCA model for its consequent validation on the new data from the 557 

second operation season, because PC2 and PC3 can be useful to evaluate the extent of 558 

influence of these unwanted factors on the solar pond stability during the second period 559 

of operation. 560 

 561 
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Figure 7. Plots of: a) Hotelling's T2; b) Q residuals; and c) Q variable contributions 563 

for observations from the first operation season (calibration dataset) and from the second 564 

operation season (external validation dataset). 565 

Solar pond temperature variables: t1 (bottom)  t40 (surface) in ºC; Salinity density variables: s01 (bottom) 566 

- s2.2 (surface) in g/cm3; Heat extraction variables: time of extraction (x1) measured in seconds, water 567 

inflow (x2) measured in kg/min and heat transfer Q (x3) measured in MJ.   568 

 569 

The scores plots (Fig. 6b, 6d and 6f) for these three PCs, together with the T2 570 

hotelling values are plot in Fig. 7a and 7b show the samples for calibration (data from the 571 

1st operation season) in black dots and the samples for the external validation (2nd 572 

operation season) in red diamonds. All samples from the second period (external 573 

validation data) resulted to be under control with values below the threshold at 95% 574 

confidence level, shown with the upper blue dotted line on the three PCs scores plots and 575 

the T2 Hotelling values plot. This fact means that the process during the second operation 576 

season of solar pond followed similar trends as during the first operation season. There 577 

was not great difference in the impact of the average air temperature on the stability of 578 

the two operational periods. The impact of the increase of temperature and density at 579 

LCZ and NCZ and of the strong solar irradiance and winds were also similar during both 580 

operation seasons.   581 

The Q-statistics results depicted in Fig. 7b, shows all samples from the second 582 

operation season above the 95% confidence interval threshold due to unexplained by the 583 

PCA model variance in some variables. The Q contributions of the all monitored variables 584 

for validation sample number 13 (Fig. 7c) from 13/12/2015 reveal why this sample was 585 

situated well above the established Q statistics threshold. For this sample, the density 586 
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values from LCZ and NCZ 0.1-1.7 m presented high positive scores. This fact can be 587 

interpreted with the higher density at these zones, LCZ and NCZ, during the second 588 

operation season in respect to that observed during the first operation season. On the 589 

contrary, the density values from the UCZ, present negative scores on this plot. Hence, 590 

the salinity concentrations at UCZ were lower during the second period than during the 591 

first period. 592 

Both, the operation seasons can be assumed as two separate batch experiments 593 

and PCA model validation could show clearly the different starting operational condition 594 

in the second period.  595 

PCA served for statistical process control can serve as a tool for maintaining the 596 

operation of solar ponds. The classical univariate statistical approach (the actual control 597 

at many facilities nowadays) has focused on the control of one variable at a time (density 598 

or temperature). Thus, the obtained results are not very informative for analysis of the 599 

maintenance of the solar pond gradient as a process. The PCA results of this study 600 

pointed out that this process depends on multiple operational and environmental variables 601 

exhibiting various interactions with the solar pond gradient.  602 

The proper strategy (before to establish any PCA model for process monitoring) 603 

would consider similar starting operational conditions for every consequent new batch 604 

experiment. These operational conditions should include an establishment of an initial 605 

density gradient with similar concentrations and profile in depth. The initial stage of each 606 

new operational period is critical for the solar pond settlement and for the further PCA 607 

process control monitoring. Once, the solar pond is stabilized and PCA results, visible on 608 

the scores plot, suggest that the process is in control, the main operational efforts should 609 
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be focused on the proper maintaining of the solar pond and a mitigation of possible 610 

undesired effects with environmental parameters. At this moment, the correct strategy 611 

implies a monitoring for observations with unexplained variance in some of their variable 612 

measurements. The monitoring program is also an important aspect for the proper control 613 

of the solar pond operational process and it should be focused on the local environmental 614 

conditions. The PCA results of this study revealed the day-night solar temperature 615 

dynamics, wind velocity and wind direction to have influence on the solar pond gradient 616 

in Granada. Continuous measurements, several times per day, should offer a proper 617 

timeframe to detect the undesired impact on the gradient of any sudden changes in the 618 

weather conditions. From the results obtained in this study, the importance of 619 

environmental factors, the extraction of heat and the maintenance of the gradient is 620 

observed. In this sense, some guidelines can be followed to track the stability of the 621 

salinity gradient solar pond: i) the boundaries regions UCZ-NCZ and NCZ-LCZ are the 622 

points where instability can be identified, a frequent control of the depth of each zone, 623 

especially the NCZ, and also the variability in these boundaries regions is recommended 624 

every month; ii) the impact of heat extraction on the LCZ should be controlled during cold 625 

months, temperature differences between NCZ and LCZ can be a source of instability 626 

that can be avoided, then heat extraction can be used to regulate the temperature in the 627 

LCZ; iii) salinity gradient maintenance operations are key to controlling the depth of NCZ, 628 

but can also provide sources of instability, the addition of salt in LCZ and fresh water in 629 

UCZ should be planned depending on the season and also the current level of stability.; 630 

iv) among the different environmental factors, the wind is by far the one that most impacts 631 
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stability, it is recommended that the choice of sites for the construction of the solar pond 632 

be in sites not affected by strong winds. 633 

 634 

4. Conclusions  635 

PCA has been used to analyse simultaneously as advantage the changes in stability 636 

gradient of an industrial solar pond in terms of the salt concentrations (density) and 637 

temperature changes produced during two operations seasons in correlation to the 638 

influence of environmental factors and/or heat extraction procedures. PCA as an efficient 639 

method can highlighted the existence of strong correlations between the temperature and 640 

salinity gradients, in relation to the changing environmental variables, and with the heat 641 

extraction when all monitored parameters are aligned in various datasets in matrix form. 642 

During the two operations seasons the Granada solar pond supplied 79 and 94 MJ, with 643 

an efficient of 10 and 12%, respectively, the salinity gradient was established with a 644 

density in the NCZ that ranged from 1014 to 1204 kg/m3, and decreased from 1020 to 645 

1185 kg/m3 after the gradient was considered destroyed. Three similar sources of 646 

operational process variation were identified that impact the stability of the SGSP. As 647 

expected, the major factor (variance source) was the changes of seasonal temperatures, 648 

defining the lowest (in winter) and highest (in summer) temperatures inside the solar 649 

pond. The second factor was the effect from daily-night solar irradiations, i.e. the diurnal 650 

temperature fluctuations in combination with the wind currents, which affected strongly 651 

the UCZ and as a consequence, the boundary between UCZ and NCZ. As a result, water 652 

evaporation takes place at UCZ, which produces a salt accumulation in the upper parts 653 

of the NCZ layer. Then, the necessary fresh water added to the UCZ also can potentially 654 
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contribute to the instability of this boundary, thus making necessary to develop 655 

appropriate methods seasonally dependent to accurately ensure that this operation would 656 

not affect the stability of the salinity gradient. A third resolved factor explained the 657 

temperature and density increase between LCZ and the lower half of NCZ layer due to 658 

the insufficient heat extraction and/or to the improper conditioning of the initial state of the 659 

LCZ salinity layer settlement. It is recommended to include the monitoring of this third 660 

factor, since its trend with the time may alert the irreversible deterioration of the heat 661 

extraction potential from the solar pond. This study proposes a new strategy as a 662 

monitoring tool for the simultaneous analysis of multiple variables and operational 663 

procedures of a solar pond through the application of PCA. This strategy offers a 664 

promising approach to improve your control and management of the different gradient 665 

maintenance and heat extraction processes. 666 
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